
GALOIS REPRESENTATIONS ATTACHED TO

ABELIAN VARIETIES OF CM TYPE

by Davide Lombardo

Abstract. — Let K be a number field, A/K be an absolutely simple abelian variety

of CM type, and ` be a prime number. We give explicit bounds on the degree over K

of the division fields K(A[`n]), and when A is an elliptic curve we also describe the
full Galois group of K(Ators)/K. This makes explicit previous results of Serre [17]

and Ribet [14], and strengthens a theorem of Banaszak, Gajda and Krasoń [2]. Our
bounds are especially sharp when the CM type of A is nondegenerate.

Résumé (Représentations galoisiennes associées aux variétés abéliennes de type CM )

Soient K un corps de nombres, A/K une variété abélienne géométriquement simple
de type CM et ` un nombre premier. Nous donnons des bornes explicites sur le degré

sur K des extensions K(A[`n]) engendrées par les points de `n-torsion de A, et quand

A est une courbe elliptique nous décrivons le groupe de Galois de K(Ators)/K tout
entier. Cela fournit une version explicite de résultats antérieurs de Serre [17] et Ribet

[14], et renforce un théorème de Banaszak, Gajda and Krasoń [2]. Nos bornes sont

particulièrement fines quand le type CM de A est non-dégénéré.

1. Introduction and statement of the result

The aim of this work is to study division fields of simple abelian varieties of
CM type. Recall that an abelian variety A, of dimension g and defined over
a number field K, is said to admit (potential) complex multiplication, or CM
for short, if there is an embedding E ↪→ EndK(A)⊗Q, where E is an étale Q-
algebra of degree 2g. We shall very often restrict to the situation of A admitting
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complex multiplication by E over K, by which we mean that EndK(A) is equal
to EndK(A), and of A being absolutely simple, or equivalently, of E being a
number field (of degree 2g over Q). The problem we discuss is that of estimating
the degree [K(A[`n]) : K], where ` is a prime number and K(A[`n]) is the field
generated over K by the coordinates of the `n-torsion points of A in K. As we
shall see shortly, this is really a problem in the theory of Galois representations,
and the seminal contributions of Shimura–Taniyama [21] and Serre–Tate [19]
provide us with powerful tools for handling these representations in the CM
case. Employing such tools, Silverberg studied in [22] the extension of K
generated by a single torsion point of A, while Ribet gave in [14] asymptotic
(non-effective) bounds on [K(A[`n]) : K] as n → ∞. Our first result can be
seen as an explicit version of the main theorem of [14]:

Theorem 1.1. — Let K be a number field and A/K be an abelian variety of
dimension g admitting complex multiplication over K by an order in the CM
field E. Denote by µ be the number of roots of unity contained in E and by
h(K) the class number of K. Let r be the rank of the Mumford-Tate group of
A (cf. definition 2.10) and ` >

√
2 · g! be a prime unramified in E · K. The

following inequality holds:

1

4µ
√
g!
· `nr ≤ [K(A[`n]) : K] ≤ 5

2
µ · h(K) · `nr.

Even though theorem 1.1 gives a good idea of the actual order of magnitude
of the degree [K(A[`n]) : K], we can in fact prove much more precise results
that apply to all primes ` and which are most easily described in the language
of Galois representations. Recall that for every ` and every n there is a natural
continuous action of Gal

(
K/K

)
on A[`n], giving rise to a representation

ρ`n : Gal
(
K/K

)
→ Aut(A[`n]);

the extension [K(A[`n]) : K] is Galois, and its Galois group can be identified
with the image G`n of ρ`n . Taking the inverse limit of this system of represen-
tations gives rise to the `-adic representation on the Tate module T`A,

ρ`∞ : Gal
(
K/K

)
→ Aut(T`A).

We denote by G`∞ the image of ρ`∞ and remark that, for every n, the group
G`n is clearly isomorphic to the image of G`∞ through the canonical projection

Aut(T`A)→ Aut

(
T`A

`nT`A

)
∼= Aut(A[`n]);

for simplicity of exposition, we fix once and for all a Z`-basis of T`A and consider
G`∞ (resp. G`n) as a subgroup of GL2g(Z`) (resp. of GL2g(Z/`nZ)).

We have thus reduced the problem of giving bounds on [K(A[`n]) : K] to
that of describing G`n : in trying to do so, it is natural to compare G`∞ with
MT(A), the Mumford-Tate group of A (cf. definition 2.10). By construction,
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MT(A) is an algebraic subtorus of GL2g which is only defined over Q, so there
is no obvious good definition for the group of its Z`-valued points. However,
Ono [12] has shown that there is in fact a good notion of MT(A)(Z`) (cf.
definition 2.3), and the Mumford-Tate conjecture [8, §4] – which is a theorem
for CM abelian varieties ([13] and [21]) – can be expressed by saying that,
possibly after replacing K by a finite extension, G`∞ is a finite-index subgroup
of MT(A)(Z`). For the sake of simplicity, assume for now that no extension of
the base field K is necessary to attain the condition G`∞ ⊆ MT(A)(Z`) (our
results do not depend on this assumption). The problem of estimating the
degree [K(A[`n]) : K] is then reduced to the study of two separate quantities:
the order of the finite group MT(A)(Z/`nZ) and the index [MT(A)(Z`) : G`∞ ].

We treat the first problem in two important situations: when ` is unramified
in E (a rather simple case, covered by lemma 2.5), and when the CM type of
A is nondegenerate (theorem 6.1). Our result can be stated as follows:

Theorem 1.2. — Let A/K be an absolutely simple abelian variety of dimen-
sion g, admitting (potential) complex multiplication by the CM field E. Denote
by MT(A) the Mumford-Tate group of A and let r be its rank.

1. If ` is unramified in E the following inequalities hold:

(1− 1/`)r`nr ≤ |MT(A)(Z/`nZ)| ≤ (1 + 1/`)r`nr.

2. Suppose r = g + 1. For all primes ` 6= 2 and all n ≥ 1 we have

(1− 1/`)g+1 · `(g+1)n ≤ |MT(A)(Z/`nZ)| ≤ 2g (1 + 1/`)
g−1

`(g+1)n,

while for ` = 2 and all n ≥ 1 we have

1

22g+3
· 2(g+1)n ≤ |MT(A)(Z/2nZ)| ≤ 22g−1 · 2(g+1)n.

As for the index [MT(A)(Z`) : G`∞ ], our main result is as follows (cf. defi-
nition 2.9 for the notion of reflex norm):

Theorem 1.3. — (Theorem 5.5) Let A/K be an absolutely simple abelian va-
riety of dimension g admitting complex multiplication over K by the CM type
(E,S), and let ` be a prime number. If A has bad reduction at a place of K
dividing ` let µ∗ = |µ(E)|, the number of roots of unity in E; if on the contrary
A has good reduction at all places of K of characteristic ` set µ∗ = 1. Denote
by r the rank of MT(A) and by F the group of connected components of the
kernel of the reflex norm TE∗ → TE, where E∗ is the reflex field of E. Then:

(1) The index [G`∞ : G`∞ ∩MT(A)(Z`)] does not exceed |µ(E)| ·h(K), where
h(K) is the class number of K.

(2) We have [MT(A)(Z`) : G`∞ ∩MT(A)(Z`)] ≤ µ∗ · [K : E∗] · |F |2r.
(3) If ` is unramified in E and does not divide |F |, then the index

[MT(A)(Z`) : G`∞ ∩MT(A)(Z`)] divides µ∗ · [K : E∗] · |F |. If ` is
also unramified in K, the bound can be improved to µ∗ · |F |.
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Finally we have r ≤ g + 1 and |F | ≤ f(r) ≤ f(g + 1), where

f(x) =

⌊
2

(
x+ 1

4

)(x+1)/2
⌋
.

Remark 1.4. — A few comments are in order:

– Theorem 1.1 follows immediately upon combining theorems 1.2 and 1.3.
– The assumption that the action of E is defined over K implies that the

reflex field E∗ is contained in K, see [6, Chap. 3, Theorem 1.1]. In
particular, the degree [K : E∗] makes sense.

– The condition ` - |F | is certainly satisfied if ` > |F |: in particular, it is
true for all primes ` > f(r).

– Since |F | is bounded by f(g + 1), the degree [K : E∗] does not exceed
[K : Q], and µ∗ can be controlled in terms of g alone (a trivial bound
is for example µ∗ ≤ 16g2), we see that part (2) of theorem 1.3 gives a
universal bound on [MT(A)(Z`) : G`∞ ∩MT(A)(Z`)] that only depends
on g and [K : Q].

– For small values of g the function f(g+ 1) takes reasonably small values:
we have f(3) = 2, f(4) = 3, f(5) = 6, f(6) = 14 and f(7) = 32.

In the special case of elliptic curves the Mumford-Tate group admits a par-
ticularly simple description, which leads to a very precise characterization of
the corresponding Galois representation. Such a description can already be
found (in a non-effective form) in [17, Corollaire on p.302], and the following
result makes it completely explicit:

Theorem 1.5. — (Theorem 6.6) Let A/K be an elliptic curve such that
EndK(A) is an order in an imaginary quadratic field E. Denote by

ρ∞ : Gal
(
K/K

)
→
∏
`

AutT`A the natural adelic representation attached to A,

and let G∞ be its image. For every prime ` denote by C` the group (OE ⊗ Z`)×,
considered as a subgroup of AutZ` (OE ⊗ Z`) ∼= GL2(Z`) ∼= AutT`A, and let
N(C`) be the normalizer of C` in GL2(Z`).

1. Suppose that E ⊆ K: then G∞ is contained in
∏
` C`, and the index

[
∏
` C` : G∞] does not exceed 3[K : Q]. The equality G`∞ = C` holds for

every prime ` unramified in K and such that A has good reduction at all
places of K of characteristic `.

2. Suppose that E 6⊆ K: then G∞ is contained in
∏
`N(C`) but not in∏

` C`, and the index [
∏
`N(C`) : G∞] is not finite. The intersection

H∞ = G∞ ∩
∏
` C` has index 2 in G∞, and the index [

∏
` C` : H∞] does

not exceed 6[K : Q]. The equality G`∞ = N(C`) holds for every prime `
unramified in K · E and such that A has good reduction at all places of
K of characteristic `.
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Finally, the constants 3 and 6 appearing in parts (1) and (2) respectively can
be replaced by 1 and 2 if we further assume that the j-invariant of A is neither
0 nor 1728.

As a by-product of the proof of theorem 1.3 we also obtain the following
proposition, which slightly strengthens a result first proved by Banaszak, Gajda
and Krasoń ([2, Theorem A]) by removing both the assumption that the CM
type of A is nondegenerate and the hypothesis that ` is completely split in K.

Proposition 1.6. — (Proposition 5.6) Let A/K be an absolutely simple
abelian variety admitting complex multiplication (over K) by the CM field E,
and let ` be a prime unramified in E. Let E∗ be the reflex field of E and
suppose that A has good reduction at all places of K of characteristic `.

– The index [MT(A)(F`) : G` ∩MT(A)(F`)] divides [K : E∗] · |F |.
– If ` is also unramified in K, then [MT(A)(F`) : G` ∩MT(A)(F`)] divides
|F |.

Let us conclude this introduction by giving a brief overview of the material
in the paper.

In section 2 we recall some fundamental notions about algebraic tori over
Q and their Z`-points; this part also includes a brief account of the theory of
abelian varieties of CM type and of their Mumford-Tate groups. In section
3 we apply cohomological machinery to study the map induced on Z`-points
by algebraic maps between Q-tori with good reduction at `. With more ef-
fort, the method could also give results in the bad reduction setting, but the
argument would become quite cumbersome and the result would not be very
satisfactory for our purposes. To remedy this situation, in section 4 we treat
the case of arbitrary reduction through a purely geometric argument inspired
by [23]; it should be pointed out, however, that – in the good reduction set-
ting – the cohomological approach gives much sharper bounds. In section 5 we
recall a form of the Fundamental Theorem of Complex Multiplication, which
gives a complete description of the Galois representations attached to A, and
apply it to deduce theorem 1.3. In section 6 we give bounds on the order
of MT(A)(Z/`nZ) under the assumption that A is of nondegenerate type, i.e.
that rank MT(A) = dimA+ 1. Finally, in the short section 7 we give a simple
example that shows that the optimal bound on `n rank MT(A)

/
[K(A[`n]) : K]

grows at least exponentially fast in g, so that our bounds are not too far from
the truth.

Acknowledgments. I thank Nicolas Ratazzi for his unending support and
invaluable advice. I am also grateful to Jacob Tsimerman for his help with
understanding parts of his paper [23], and to the anonymous referee for their
thorough reading of the manuscript.
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2. Preliminaries on algebraic tori

Recall that over a perfect field k there is an equivalence of categories be-
tween algebraic tori and finitely generated, torsion-free, continuous Gal

(
k/k

)
-

modules: if T is a k-torus, the corresponding Gal
(
k/k

)
-module is the group of

characters T̂ = Hom
(
Tk,Gm,k

)
. Also recall that this construction extends to

an equivalence between finitely generated, continuous Gal
(
k/k

)
-modules and

k-group schemes of multiplicative type; we will make use of this fact to study
the kernel of the reflex norm. We now introduce a family of Q-algebraic tori
that will be especially relevant for us:

Definition 2.1. — If E is any number field we set TE = ResE/Q(Gm,Q).

The torus TE is of rank [E : Q], and it admits a very simple description in
terms of characters: it is the Q-torus that corresponds to the free module over
the set Hom(E,Q), endowed with its natural (right) Gal

(
Q/Q

)
-action.

Proposition 2.2. — Let E be a number field. The torus TE has good reduc-
tion at all the primes not dividing disc(E).

Proof. — By the Galois criterion ([9, Proposition 1.1]), TE has good reduction
at ` if and only if the inertia group at (a place of Q over) ` acts trivially on

T̂E . In the present case T̂E is the free module over Hom(E,Q), so if we let L

be the Galois closure of E in Q the action of Gal
(
Q/Q

)
on T̂E factors through

its finite quotient Gal(L/Q). Now if a prime ` is unramified in E it is also
unramified in L, hence the inertia at ` has trivial image in Gal(L/Q) and TE
has good reduction at `, as claimed.

2.1. Points of tori with values in Z` and Z/`nZ. — We briefly discuss the
various possible definitions for the group of Z`-valued points of a Q`-torus; our
main reference for this section is [14, §2]. Let T be a Q`-torus, not necessarily
having good reduction over F`. We fix a finite Galois extension L of Q` that
splits T , and we regard T̂ as a Γ-module, where Γ := Gal(L/Q`). Also notice

that a character χ ∈ T̂ can in particular be considered as a homomorphism
χ : T (L)→ L×.

Definition 2.3. — Following Ono (cf. [12, §2]), we define T (Z`) to be

HomΓ

(
T̂ ,O×L

)
, the group of Γ-equivariant morphisms (of abelian groups) of

T̂ in O×L . Equivalently, T (Z`) is the maximal compact subgroup of T (Q`).

If furthermore we suppose that T has good reduction, then it is known
([24, Theorem 2 on p.109]) that there exists a Z`-model T of T (that is, a
commutative smooth group scheme over Spec(Z`) whose generic fiber is T ).
As pointed out in [14, Remark 2.2], in this case the Z`-points of T in the
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sense of Ono agree with the Z`-valued points of T , so that we are free to use
whichever definition we find more convenient. When a smooth model T exists
we can also give the following definition:

Definition 2.4. — If T has good reduction, the Z/`nZ-points of T are the
Z/`nZ-valued points of its smooth Z`-model T .

We still need to discuss the meaning of T (Z/`nZ) when T does not have
good reduction. The construction in this case is again due to Ono. For n ≥ 0,
we define subgroups of T (Q`) by the rule

T (1 + `nZ`) =
{
x ∈ T (Q`)

∣∣ v`(χ(x)− 1) ≥ n ∀χ ∈ T̂
}
.

We simply write T (Z`) for the group corresponding to n = 0: it can be easily
checked that this definition agrees with our previous ones. We can now set

T (Z/`nZ) =
T (Z`)

T (1 + `nZ`)
; once again, when T has a smooth Z`-model T ,

the group T (Z/`nZ) agrees with T (Z/`nZ). Finally, when T is a Q-torus we
define T (Z/`nZ) to be the group of Z/`nZ-points of T ⊗Q`. We conclude this
discussion with the following well-known lemma:

Lemma 2.5. — Let T/Q` have good reduction. For every positive integer n we
have

(1− 1/`)dimT `n dimT ≤ |T (Z/`nZ)| ≤ (1 + 1/`)dimT `n dimT .

Proof. — A combination of Hensel’s lemma and [24, Theorem 2 on p.104]; for
further details, we refer the reader to [4, Lemme 2.1 and Proposition 2.2].

2.2. CM types and reflex norm. — We briefly recall the notions of CM
type, of reflex type, and of reflex norm; we refer the reader to [14, §3] for further

details. Let E be a CM field of degree 2g and Ẽ be its Galois closure in Q, and
write G,H for the Galois groups Gal(Ẽ/Q) and Gal(Ẽ/E) respectively. We
denote by τ the complex conjugation of C, or any of its restrictions, and we
take the convention that the set Hom(E,Q) be identified with the coset space
H\G.

Lemma 2.6. — The degree [Ẽ : Q] divides 2gg!.

Proof. — Let E0 be the maximal totally real subfield of E and a ∈ E0 be such
that E = E0(

√
a). Let Ẽ0 be the Galois closure of E0 and a1 = a, . . . , ak ∈ Ẽ0

be the conjugates of a over Q, where k ≤ [E0 : Q] = g. It is clear that Ẽ

is generated over Ẽ0 by
√
a1, . . . ,

√
ak, so [Ẽ : Q] divides [Ẽ0 : Q] · 2k. As

[Ẽ0 : Q]
∣∣ g! and k ≤ g the lemma follows.

Definition 2.7. — A CM-type for the CM field E is a subset S of H\G such
that S ∩ τ(S) = ∅ and H\G = S ∪ τ(S).
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Let S be a CM type for E and S̃ be the inverse image of S in G, i.e.

S̃ =
{
g ∈ G

∣∣ Hg ∈ S}. We set H ′ =
{
g ∈ G

∣∣ S̃g = S̃
}

and let E∗ be the

fixed field of H ′; we then set R̃ =
{
s−1

∣∣ s ∈ S̃} and let R be the image of R̃

in H ′\G ∼= Hom
(
E∗,Q

)
. It is not hard to check that R is a CM type for E∗.

Definition 2.8. — The pair (E∗, R) is called the reflex type of (E,S).

Finally, a CM type (E,S) is called simple if the equality

H =
{
g ∈ G

∣∣ gS̃ = S̃
}

holds. We are now ready to define the reflex norm:

Definition 2.9. — Let (E,S) be a CM type, Ẽ the Galois closure of E/Q
and (E∗, R) the reflex type of (E,S). The reflex norm associated with (E,S)
is the Q-morphism

Φ(E,S) : TE∗ → TE

of algebraic tori given on characters by

Φ∗(E,S) : T̂E → T̂ ∗E
[g] 7→

∑
r∈R[rg],

where [g] (resp. [rg]) is the embedding of E (resp. E∗) in Q induced by the

automorphism g ∈ Gal(Ẽ/Q) (resp. rg ∈ Gal(Ẽ/Q)).

2.3. The Mumford-Tate group. — Our interest in the reflex norm stems
from the fact that it allows us to define the Mumford-Tate group of a CM
abelian variety rather directly. Before doing so, however, we need to recall how
one associates a CM type with a CM abelian variety.

Let A/K be an absolutely simple abelian variety, admitting complex multi-
plication (over K) by the field E. The tangent space at the identity of AK
is a K-module and an E-module, and the two actions are compatible: it
follows that this tangent space is a (E ⊗ K)-bimodule, so it decomposes as
TidAK

∼=
∏
ϕ∈S Kϕ, where Kϕ is a 1-dimensional K-vector space on which E

acts through the embedding ϕ : E ↪→ K. The set S of embeddings that appear
in this decomposition can be shown to be a CM type for E, and in this case
we say that A admits complex multiplication by the CM type (E,S). When
furthermore we have EndK(A) = EndK(A) we say that A admits complex
multiplication by (E,S) over K.

Definition 2.10. — Let A/K be an absolutely simple abelian variety admit-
ting complex multiplication (over K) by the CM type (E,S), and let (E∗, R) be
the reflex type. We define the Mumford-Tate torus MT(A) to be the image of
the reflex norm Φ(E,S) : TE∗ → TE.
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Remark 2.11. — The Mumford-Tate group of A is in fact a purely geometric
object – it can described in terms of the Hodge structure associated with the
complex abelian variety AC. In particular, it is insensitive to extensions of the
base field K.

Remark 2.12. — It is known that the rank of MT(A) is at most g+1. When
equality holds, the CM type is said to be nondegenerate, and the Mumford-
Tate group has a very simple description in terms of E: if τ denotes complex
conjugation on E, for any Q-algebra B the B-points of MT(A) are given by

MT(A)(B) =
{
x ∈ (E ⊗Q B)

× ∣∣ xτ(x) ∈ B×
}
.

For all these facts see for example [14], Proposition 3.3 and the remarks
following it.

2.4. The group of connected components of ker Φ(E,S). — An object
which will be crucial to our study is the kernel of the reflex norm Φ(E,S): in this
short subsection we establish a bound on the order of its group of components.
The bound is ultimately a consequence of Hadamard’s inequality, which is the
main tool used to establish the following lemma:

Lemma 2.13. — Let A be a n × n integral matrix all of whose entries are in
{0, 1}. The following inequality holds:

|detA| ≤ b2−n(n+ 1)(n+1)/2c.

Proof. — Consider the matrix

B(A) =


1 1 · · · 1
0

2A
...
0

 .

It is clear by definition that detB(A) = 2n det(A). Consider the matrix
H(A) obtained from B(A) by subtracting the first row to each of the others.
Clearly H(A) and B(A) have the same determinant, and furthermore all the
entries of H(A) are in {±1}. In particular, the L2-norm of every row of H(A)
is
√
n+ 1, so Hadamard’s inequality implies

|detA| = 2−n |detB(A)| = 2−n |detH(A)| ≤ 2−n(n+ 1)(n+1)/2.

The claim then follows from the fact that det(A) is an integer.

Lemma 2.14. — Let T : Zn → Zm be a linear map, represented in the standard
bases by a matrix A all of whose entries are in {0, 1}. Let Y be the image of
T , denote by k the rank of Y , and let Z be given by

Z =
{
z ∈ Zm

∣∣ ∃q ∈ Z such that qz belongs to Y
}
.
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The quotient Z/Y , which is isomorphic to the torsion part of Zm/Y , has order
at most b2−k(k + 1)(k+1)/2c.

Proof. — The order of Z/Y is given by

gcd
{

det(Ak)
∣∣ Ak is a minor of A of size k

}
.

Lemma 2.13 ensures that the determinant of every minor of size k does not
exceed b2−k(k + 1)(k+1)/2c, and the lemma follows.

Proposition 2.15. — Let C be the group of multiplicative type defined by the
exact sequence

1→ C → TE∗
Φ(E,S)−−−−→ MT(A)→ 1

and let Ĉ be its character group. Suppose MT(A) has rank r. The torsion

subgroup of Ĉ has order at most b2−r(r + 1)(r+1)/2c.

Proof. — Let Y be the image of Φ∗(E,S) : T̂E → T̂E∗ and

Z =
{
χ ∈ T̂E∗

∣∣ ∃n ∈ Z such that nχ ∈ Y
}
.

The torsion subgroup of Ĉ is isomorphic to Z/Y . Moreover, it is apparent
from definition 2.9 that the matrix representing Φ∗(E,S) in the natural bases of

T̂E∗ , T̂E has entries in {0, 1}, so the proposition follows from lemma 2.14.

3. Cohomology and integral points of tori

The purpose of this section is to study the map induced on Z`-points by a

surjection of tori over Q`. More precisely, we let T
β−→ T ′′ → 1 be a surjection

of Q`-algebraic tori, and we assume that T has good reduction. We let T ′ be
the kernel of β, which is in general just a group of multiplicative type (and not
necessarily a torus), and write F for the torsion subgroup of its character group

T̂ ′. We also denote by a the rank of T ′, so that we have an isomorphism of
abelian groups T̂ ′/F ∼= Za. Finally, we fix a finite unramified Galois extension
L of Q` that splits T , and we let Γ denote the Galois group of L over Q`. It is
also useful to introduce the following notation:

Notation. If n is any integer and ` is a prime we write |n|` for `−v`(n). When
M is a finite group we also write |M |` for `−v`(|M |).

With this notation we shall show:

Proposition 3.1. — The cokernel of T (Z`)
β−→ T ′′(Z`) has order dividing

|F | · |F |−[L:Q`]
` .
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The proof is given below in §3.2, and relies mainly on the basic tools of
Galois cohomology, together with the following classical theorem of Nakayama
(cf. for example [20, §2, Theorem 32]):

Theorem 3.2. — Let A and B be modules over the finite group G. Assume
that A is cohomologically trivial. In order for Hom(B,A) to be cohomologically
trivial it is necessary and sufficient that Ext1(B,A) be cohomologically trivial.
In particular, if B is Z-free, then Hom(B,A) is cohomologically trivial.

3.1. Preliminaries on p-adic fields. — The following two lemmas are cer-
tainly well-known, but for lack of an easily accessible reference we prefer to
include a short proof.

Lemma 3.3. — Let L be a finite extension of Q` with ring of integers OL, and

let n be a positive integer. The quotient OL/O×nL has order dividing n·|n|−[L:Q`]
` .

Proof. — We regard all the involved groups as Z/nZ-modules with trivial ac-
tion, and denote by hn the associated Herbrand quotient, that is to say for
every finite Z/nZ-module M we set

hn(M) :=
|Ĥ0(Z/nZ,M)|
|H1(Z/nZ,M)|

.

As O1
L, the subgroup of principal units of OL, has finite index in O×L (and the

Herbrand quotient is invariant by passage to finite-index subgroups), we have
hn(O×L ) = hn(O1

L).
On the other hand, O1

L contains a subgroup of finite index that is isomor-
phic to OL ([16, Chapitre XIV, prop. 10]), so hn(O×L ) = hn(O1

L) = hn(OL).

Furthermore, H1(Z/nZ,O×L ) = Hom
(
Z/nZ,O×L

)
= O×L [n] has order dividing

n, while H1(Z/nZ,OL) = OL[n] = 0. The lemma then follows easily because

the quantity
∣∣∣ O×LO×nL ∣∣∣ = h1(Z/nZ,O×L ) · hn

(
O×L
)

divides

n · hn(OL) = n
|OL/nOL|

h1(Z/nZ,OL)
= n · |n|−[L:Q`]

` .

Lemma 3.4. — Let F be a finite abelian group and L be a finite extension of

Q`. Then |Ext1(F,O×L )| divides |F | · |F |−[L:Q`]
` .

Proof. — Writing F as
⊕
i

Z
diZ

we have

Ext1
(
F,O×L

) ∼= ∏
i

Ext1

(
Z
diZ

,O×L
)
∼=
∏
i

O×L
O×diL

.

The result follows from the previous lemma.
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3.2. Proof of proposition 3.1. — Note that – since L/Q` is unramified –
the group O×L is a cohomologically trivial Γ-module (cf. for example [11, Prop.

7.1.2 (i)]). As T̂ and T̂ ′′ are free abelian groups, Nakayama’s theorem implies in

particular that Hom
(
T̂ ,O×L

)
and Hom

(
T̂ ′′,O×L

)
are cohomologically trivial

Γ-modules. We will make extensive use of this fact. The character groups of
T, T ′, T ′′ fit into an exact sequence

0→ T̂ ′′ → T̂ → T̂ ′ → 0;

applying the functor Hom
(
−,O×L

)
gives another exact sequence

0→ Hom
(
T̂ ′,O×L

)
→ Hom

(
T̂ ,O×L

)
→ Hom

(
T̂ ′′,O×L

)
→ Ext1

(
T̂ ′,O×L

)
→ 0,

where the following Ext term vanishes since T̂ is free. If we let

I := Image
(

Hom
(
T̂ ,O×L

)
→ Hom

(
T̂ ′′,O×L

))
,

the previous sequence gives rise to the two exact sequences

(1) 0→ Hom
(
T̂ ′,O×L

)
→ Hom

(
T̂ ,O×L

)
→ I → 0

and

(2) 0→ I → Hom
(
T̂ ′′,O×L

)
→ Ext1

(
T̂ ′,O×L

)
→ 0.

The long exact sequences in Galois cohomology associated with (1) and (2)
give
(3)

0→ HomΓ

(
T̂ ′,O×L

)
→ T (Z`)→ H0(Γ, I)→ H1

(
Γ,Hom

(
T̂ ′,O×L

))
→ 0,

(4) 0→ H1(Γ, I)→ H2
(

Γ,Hom
(
T̂ ′,O×L

))
→ 0,

and

(5) 0→ H0(Γ, I)→ T ′′(Z`)→ H0
(

Γ,Ext1
(
T̂ ′,O×L

))
→ H1(Γ, I)→ 0,

where we have used the fact that Hom
(
T̂ ,O×L

)
and Hom

(
T̂ ′′,O×L

)
are coho-

mologically trivial. Also notice that we have an exact sequence of Γ-modules

(6) 0→ F → T̂ ′ → T̂ ′/F → 0

where T̂ ′/F ∼= Za is free. We can then apply Hom
(
−,O×L

)
to (6) to get

0→ Hom
(
T̂ ′/F,O×L

)
→ Hom

(
T̂ ′,O×L

)
→ Hom

(
F,O×L

)
→ 0,
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and since Hom
(
T̂ ′/F,O×L

)
is again cohomologically trivial by theorem 3.2 we

deduce that for every n ≥ 1 we have canonical isomorphisms

(7) Hn
(

Γ,Hom
(
T̂ ′,O×L

))
∼−→ Hn

(
Γ,Hom

(
F,O×L

))
.

Straightforward manipulations of sequences (3) and (5) show that

|coker (T (Z`)→ T ′′(Z`))| =
h0
(

Γ,Ext1
(
T̂ ′,O×L

))
· h1

(
Γ,Hom

(
T̂ ′,O×L

))
h1(Γ, I)

.

For the sake of notational simplicity set M = Hom
(
F,O×L

)
. Using (4) and (7)

we arrive at

(8) |coker (T (Z`)→ T ′′(Z`))| =
h0
(

Γ,Ext1
(
T̂ ′,O×L

))
· h1 (Γ,M)

h2(Γ,M)
.

Observe now that the group Γ is cyclic (since it is the Galois group of
an unramified extension) and the module M is finite: as it is well-known,

the Tate cohomology Ĥn of a cyclic group with values in a finite mod-

ule is 2-periodic in n. Moreover, the Herbrand quotient
|Ĥ0(Γ,M)|
|Ĥ1(Γ,M)| equals

1 since M is finite, and therefore h2(Γ,M) =
∣∣∣Ĥ0(Γ,M)

∣∣∣ = h1(Γ,M)

(for all these facts cf. for example [11, §I.7]). Using this equality in (8)

we finally find |coker (T (Z`)→ T ′′(Z`))| = h0
(

Γ,Ext1
(
T̂ ′,O×L

))
. Propo-

sition 3.1 then follows from the fact that h0
(

Γ,Ext1
(
T̂ ′,O×L

))
divides∣∣∣Ext1

(
T̂ ′,O×L

)∣∣∣ =
∣∣Ext1

(
Za ⊕ F,O×L

)∣∣ =
∣∣Ext1

(
F,O×L

)∣∣ and from lemma 3.4.

4. The cokernel of an isogeny, without the good reduction
assumption

Let T, T ′ be Q`-tori and λ : T → T ′ be a Q`-isogeny. We do not assume that
T or T ′ has good reduction, and for the purposes of this section we define the
Z`-points of a Q`-torus to be the maximal compact subgroup of T (Q`) (cf. def-

inition 2.3). Our aim is again to bound the order of coker
(
T (Z`)

λ−→ T ′(Z`)
)

,

in terms of the degree m of λ and of dimT = dimT ′ =: d. Cohomological
tools could again be used to investigate the problem, but we find that an en-
tirely different approach (through p-adic differential geometry) yields simpler
and more effective proofs; the method is inspired by [23], see especially lemma
4.4 in op. cit.
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Proposition 4.1. — Let T, T ′ be Q`-tori of dimension d and λ : T → T ′

be an isogeny of degree m. The order of coker
(
T (Z`)

λ−→ T ′(Z`)
)

is at most

md · |m|−d` .

Proof. — Notice first that λ fits into a commutative diagram

T ′(Z`)
λ∨ //

[m]
$$

T (Z`)

λ
zz

T ′(Z`)

and therefore it is enough to bound the cokernel of [m] : T ′(Z`)→ T ′(Z`). Fix
now a Haar measure µ on T ′(Q`), normalized in such a way that µ(T ′(Z`)) = 1.

Consider the kernelK of [m] (as a subgroup of T ′(Z`), not as a group scheme)
and the quotient S = T ′(Z`)/K, and note that π : T ′(Z`) → S is a covering
map. We denote by µS the measure on S given by µS(A) = 1

|K|µ
(
π−1(A)

)
:

it can also be interpreted as the measure induced on S by the (Haar) volume
form of T ′(Z`), which passes to the quotient since it is translation-invariant.

The volume of S (for the measure µS) is
vol(T ′(Z`))
|K|

=
1

|K|
, and we have an

`-adic analytic map q : S → T ′(Z`) such that the following diagram commutes:

T ′(Z`)
[m]

//

π
""

T ′(Z`)

S

q

<<

Clearly q is an `-adic analytic embedding and we have Image q = Image[m] =: I.
We have the following immediate equality:

(9) vol(I) =
1

|T ′(Z`)/I|
vol (T ′(Z`)) =

1

|T ′(Z`)/I|
.

On the other hand, a simple computation in coordinates shows q∗µ = |m|d` µS :
we can parametrize a neighbourhood of g ∈ T ′(Z`) by x 7→ g exp(x) (for x
varying in some small neighbourhood of 0 in the Lie algebra of T ′(Q`)), and
composing with π this also induces a parametrization of a neighbourhood of
π(g) ∈ S. In these coordinates the map q is simply multiplication by m, so
its Jacobian determinant is |m|d` and the change of variables formula for `-adic
integration gives the required result. This yields

vol(I) =

∫
I

dµ =

∫
q(S)

dµ =

∫
S

d(q∗µ) =

∫
S

|m|d` dµS = |m|d`
1

|K|
,
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and comparing this equality with equation (9) gives∣∣∣∣coker

(
T ′(Z`)

[m]−→ T ′(Z`)
)∣∣∣∣ = |T ′(Z`)/I| =

1

vol(I)
=
|K|
|m|d`

.

Finally, it is clear that |K| ≤
∣∣T ′(Q`)[m]

∣∣ = md, and this finishes the proof.

5. Description of the Galois representation

Let A/K be an absolutely simple g-dimensional CM abelian variety admit-

ting complex multiplication (over K) by the CM type (E,S). Let Ẽ be the
Galois closure of E, denote by (E∗, R) the reflex type of (E,S), and let ` be
a prime number. It is known that – since the action of E is defined over K –
the reflex field E∗ is contained in K ([6, Chap. 3, Theorem 1.1]), and by [19,
Corollary 2 to Theorem 5], the `-adic Galois representation attached to A can
be viewed as a map

ρ`∞ : Gal
(
K/K

)
→ (EndK(A)⊗ Z`)× ↪→ (OE ⊗ Z`)× .

We denote by G`∞ the image of ρ`∞ . We now recall the description of ρ`∞

coming from the fundamental theorem of complex multiplication, and refer the
reader to [14, §4] and [19] for further details. Let IK be the group of idèles of

K. As (OE ⊗ Z`)× is commutative, there is a factorization

IK // Gal
(
K/K

)ab
// (OE ⊗ Z`)×

Gal
(
K/K

) ρ`∞

77OO

which (by class field theory) allows us to regard ρ`∞ as a map from IK to

(OE ⊗ Z`)×. Let us introduce some notation: we write µ(E) for the group of
roots of unity in E, and if v is a place of K we write OK,v for the completion
at v of the ring of integers of K. If v is furthermore finite we denote by pv its
residual characteristic; we also let ΩK be the set of all finite places of K. If F
is a number field we denote by F` the algebra F ⊗Q`, and for an idèle a ∈ IK
we write a` for the component of a in K`

∼=
∏
pv=`

K×v . With this notation, the

map ρ`∞ is described very precisely by the following theorem:

Theorem 5.1. — ([19, Theorems 6, 10 and 11]) There exists a unique contin-
uous homomorphism ε : IK → E× such that, for all finite places v of K, the

group ε
(
O×K,v

)
is contained in µ(E), and

ρ`∞(a) = ε(a)Φ(E,S)

(
NK`/E∗` (a`)

)−1
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for all a ∈ IK . If furthermore v ∈ ΩK is a place of good reduction for A, then

ε
(
O×K,v

)
is trivial.

We now consider the restriction of ρ`∞ to K× ·
∏
v∈ΩK

O×K,v: as it is well-

known (cf. for example [10, Proposition 2.3]), this is the group of idèles of H,
the Hilbert class field of K. In terms of Galois groups, this has the effect of re-
stricting ρ`∞ to Gal

(
H/H

)
⊆ Gal

(
K/K

)
, so it is clear that ρ`∞

(
Gal

(
H/H

))
is a subgroup of ρ`∞

(
Gal

(
K/K

))
of index dividing h(K), the class number of

K. Now as ρ`∞ factors through Gal
(
K/K

)
we see that ρ`∞(K×) is trivial, so

we can just consider the restriction of ρ`∞ to
∏
v∈ΩK

O×K,v. We now remark

that for an idèle (av) ∈
∏
v∈ΩK

O×K,v theorem 5.1 implies

ε(a) =
∏
v∈ΩK

ε (av) =
∏

v:A has bad
reduction at v

ε(av) ∈ µ(E),

whence J := ker ε ∩
∏
v∈ΩK

O×K,v has index dividing |µ(E)| in
∏
v∈ΩK

O×K,v,
and likewise the index of J` := ker ε ∩

∏
v|`O

×
K,v in

∏
v|`O

×
K,v divides |µ(E)|.

Furthermore, since the function a 7→ Φ(E,S)

(
NK`/E∗` (a`)

)−1

kills O×K,v when

pv 6= `, we have ρ`∞(J) = ρ`∞(J`). Also notice that, upon restriction to J`,
the representation ρ`∞ coincides with the map

ϕ`∞ :
∏
v|`

O×K,v → (OE ⊗ Z`)×

a 7→ Φ(E,S)

(
NK`/E∗` (a)

)−1

,

and that if A has good reduction at v, then ρ`∞ and ϕ`∞ coincide on all of∏
v|`

O×K,v. For the sake of notational simplicity let us then set

µ∗ =


|µ(E)|, if A has bad reduction at

some place v of characteristic `

1, otherwise

We have proved:

Proposition 5.2. — For all primes ` the group G`∞ contains ρ`∞ (J`) as a
subgroup of index dividing |µ(E)| · h(K). We have ρ`∞(J`) = ϕ`∞(J`), and if
A has good reduction at all places v of characteristic ` we have J` =

∏
v|`O

×
K,v.

Finally,

(10)

ϕ`∞
∏
v|`

O×K,v

 : ρ`∞(J`)

 ∣∣ µ∗.
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We can now interpret ϕ`∞ as a map between algebraic tori: indeed, the
norm NK/E∗ can be seen as a morphism TK → TE∗ , and

∏
v|`O

×
K,v is nothing

but TK(Z`), so the map ϕ`∞ is simply the map induced on Z`-points by(
Φ(E,S)

)−1 ◦NK/E∗ : TK → MT(A);

together with the previous proposition, this implies in particular that
ρ`∞ (J`) = ϕ`∞ (J`) is contained in MT(A)(Z`), and that ϕ`∞ (J`) has index
at most µ∗ in ϕ`∞ (TK(Z`)). We thus want to understand the composition

TK(Z`)
NK/E∗−−−−→ TE∗(Z`)

ψ`−→ MT(A)(Z`),

where for simplicity of notation we write ψ` for the base-change to Q` of the

map
(
Φ(E,S)(·)

)−1
. Even though the extension K/E∗ is in general non-abelian,

the cokernel of NK/E∗ can be understood through class field theory:

Theorem 5.3. — ([1, Theorem 7 on p. 161]) Let L/M be an extension of
local fields, and let Lab be the largest abelian subextension of L/M . Then we

have NL/ML
× = NLab/M

(
L×ab
)
, and the cokernel

M×

NL/ML×
has order dividing

[L : M ].

Note that the image of ψ` is open and MT(A)(Z`) is compact, so the cokernel

of ψ` : TE∗(Z`)
ψ`−→ MT(A)(Z`) is finite; since furthermore by theorem 5.3∣∣∣∣ TE∗(Z`)

NK/E∗(TK(Z`))

∣∣∣∣ divides [K : E∗] we find that

(11) [MT(A)(Z`) : ϕ`∞(TK(Z`))] divides [K : E∗] ·
∣∣∣∣ MT(A)(Z`)
ψ` (TE∗(Z`))

∣∣∣∣ .
Remark 5.4. — When ` is unramified in K the local norm TK(Z`)→ TE∗(Z`)
is surjective and the factor [K : E∗] can be omitted, cf. [16, Corollary to
Proposition 3 of Chapter V].

It is clear that ψ` = Φ−1
(E,S) and Φ(E,S) have the same cokernel, so ultimately

we just need to compute the cokernel of the reflex norm. Denote by T ′ the kernel

of Φ(E,S) and write F for the torsion of its character group T̂ ′. By proposition

2.15 we have |F | ≤ b2−r(r + 1)(r+1)/2c, where r = dim Im Φ∗(E,S) = rk MT(A)

does not exceed g + 1. Set now T = TE∗ ⊗ Q` and T ′′ = MT(A) ⊗ Q`,
and let L be one of the fields appearing in the decomposition of Ẽ ⊗ Q` as
a direct sum of fields: L/Q` is then a finite Galois extension that splits T

(recall that Ẽ is Galois and contains E∗). If ` is unramified in E (hence in

Ẽ) the extension L/Q` is itself unramified, so T has good reduction over Q`;
furthermore, [L : Q`]

∣∣ [Ẽ : Q]
∣∣ 2g · g! (cf. lemma 2.6).
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Applying proposition 3.1 to the surjection of algebraic tori T
Φ(E,S)−−−−→ T ′′ we

find that

(12)

∣∣∣∣coker

(
TE∗(Z`)

Φ(E,S)−−−−→ MT(A)(Z`)
)∣∣∣∣ divides |F | · |F |−[L:Q`]

` ,

and the right hand side in turn divides |F | · |F |−2gg!
` ; we have thus almost

completely established the following result:

Theorem 5.5. — (Theorem 1.3) Let A/K be an absolutely simple abelian va-
riety of dimension g admitting complex multiplication over K by the CM type
(E,S), and let ` be a prime number. If A has bad reduction at a place of K
dividing ` let µ∗ = |µ(E)|, the number of roots of unity in E; if on the contrary
A has good reduction at all places of K of characteristic ` set µ∗ = 1. Denote
by r the rank of MT(A) and by F the group of connected components of the
kernel of the reflex norm TE∗ → TE, where E∗ is the reflex field of E. Then:

(1) The index [G`∞ : G`∞ ∩MT(A)(Z`)] does not exceed |µ(E)| ·h(K), where
h(K) is the class number of K.

(2) We have [MT(A)(Z`) : G`∞ ∩MT(A)(Z`)] ≤ µ∗ · [K : E∗] · |F |2r.
(3) If ` is unramified in E and does not divide |F |, then the index

[MT(A)(Z`) : G`∞ ∩MT(A)(Z`)] divides µ∗ · [K : E∗] · |F |. If ` is
also unramified in K, the bound can be improved to µ∗ · |F |.

Finally we have r ≤ g + 1 and |F | ≤ f(r) ≤ f(g + 1), where

f(x) =

⌊
2

(
x+ 1

4

)(x+1)/2
⌋
.

Proof. — We have already proved (1): the intersection G`∞ ∩MT(A)(Z`) con-
tains ϕ`∞(J`) = ρ`∞(J`), and by proposition 5.2 the group ϕ`∞(J`) has index
at most |µ(E)| · h(K) in G`∞ . As for part (2), the exact sequence

1→ T ′ → TE∗ ⊗Q` → MT(A)⊗Q` → 1

induces, by quotienting out by (T ′)0 (the connected component of the identity
of T ′), the exact sequence

1→ F → TE∗ ⊗Q`
(T ′)0

τ`−→ MT(A)⊗Q` → 1,

where F is a finite group scheme of order |F |. Proposition 4.1 implies∣∣∣∣ MT(A)(Z`)
ψ` (TE∗(Z`))

∣∣∣∣ =

∣∣∣∣coker

(
τ` :

TE∗ ⊗Q`
(T ′)0

(Z`)→ MT(A)(Z`)
)∣∣∣∣

≤ |deg(τ`)|dim MT(A)|deg(τ`)|− dim MT(A)
`

= |F |dim MT(A)|F |− dim MT(A)
` ,
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which, together with equations (10) and (11), gives the desired result. Fi-
nally, consider part (3). As ρ`∞(J`) is a subgroup of MT(A)(Z`) the index
[MT(A)(Z`) : G`∞ ∩MT(A)(Z`)] divides [MT(A)(Z`) : ρ`∞(J`)], and we can
write∣∣∣∣MT(A)(Z`)

ρ`∞(J`)

∣∣∣∣ ∣∣ µ∗ · [MT(A)(Z`) : ϕ`∞(TK(Z`))] (by (10))∣∣ µ∗ · [K : E∗] · |coker (ψ` : TE∗(Z`)→ MT(A)(Z`))| (by (11))∣∣ µ∗ · [K : E∗] · |F | · |F |−2gg!
` . (by (12))

Since by assumption ` does not divide |F | we conclude that the index
[MT(A)(Z`) : G`∞ ∩MT(A)(Z`)] divides µ∗ · [K : E∗] · |F |. Finally, when ` is
unramified in K the factor [K : E∗] can be omitted, cf. remark 5.4.

Starting from equations (11) and (12) it is also easy to prove the following
result, which might have some independent interest:

Proposition 5.6. — (Proposition 1.6) Let A/K be an absolutely simple
abelian variety admitting complex multiplication (over K) by the CM field E,
and let ` be a prime unramified in E. Let E∗ be the reflex field of E and
suppose that A has good reduction at all places of K of characteristic `.

– The index [MT(A)(F`) : G` ∩MT(A)(F`)] divides [K : E∗] · |F |.
– If ` is also unramified in K, then [MT(A)(F`) : G` ∩MT(A)(F`)] divides
|F |.

Proof. — By proposition 2.2 the hypothesis implies that TE∗ has good reduc-
tion at `, hence the same is true for its quotient MT(A), which therefore defines
a torus over F`: in particular, the group MT(A)(F`) makes sense and its or-
der is not divisible by `. On the other hand, the index of G` ∩ MT(A)(F`)
in MT(A)(F`) divides [K : E∗] · |F | · |F |−2gg!

` by proposition 5.2 and equa-
tions (11) and (12), and since |MT(A)(F`)| is prime to ` we deduce that
[MT(A)(F`) : G` ∩ MT(A)(F`)] divides [K : E∗] · |F | as claimed. The sec-
ond part follows by the same argument using remark 5.4.

6. The Mumford-Tate group in the nondegenerate case

In this section we consider CM abelian varieties A with nondegenerate CM
type, that is to say we assume that rank(MT(A)) = dimA + 1: this is the
“generic” case, and it is also known that all simple CM varieties of prime
dimension have nondegenerate CM type (a result due to Ribet, cf. [15]). In
this situation we have the following bounds on the order of MT(A)(Z/`nZ):
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Theorem 6.1. — Suppose A is simple of nondegenerate CM type. For all
primes ` 6= 2 and all n ≥ 1 we have

(1− 1/`)g+1 · `(g+1)n ≤ |MT(A)(Z/`nZ)| ≤ 2g (1 + 1/`)
g−1

`(g+1)n,

while for ` = 2 and all n ≥ 1 we have

1

22g+3
· 2(g+1)n ≤ |MT(A)(Z/2nZ)| ≤ 22g−1 · 2(g+1)n.

The proof of this result will occupy sections 6.1 and 6.2, while in sections
6.3 and 6.4 we discuss the special cases of elliptic curves and abelian surfaces.

6.1. The natural filtration on the norm-1 torus. — Let ` 6= 2 be a
rational prime, L be a finite extension of Q` and τ be an involution of L. Denote
Lτ the fixed field of τ , so that L/Lτ is a quadratic (Galois) extension. Fix a

squarefree d ∈ OLτ such that L = Lτ
(√

d
)

and consider the (multiplicative)
group

C =
{
x ∈ O×L

∣∣ x · τ(x) = 1
}
.

We write λ for a uniformizer of Lτ , set e = e (Lτ/Q`), and consider v` and
vλ as valuations on Q`, normalized so as to have vλ(λ) = 1 and v`(`) = 1; in
particular, vλ = e · v`. We want to investigate the structure of the filtration
of C given by C(n) :=

{
x ∈ C

∣∣ vλ(x− 1) ≥ n
}

. It is easy to see that every
x ∈ C(1) can be represented as

x = 1 + 2du · λ2+2v + 2u2 · λ1+v
√
d

with u, u2 ∈ O×Lτ and v ∈ N subject to the condition

(13) u(1 + du · λ2+2v) = u2
2.

Furthermore, for n ≥ 1 we have an exact sequence of abelian groups

0→ C(n+ 1) → C(n)
α−→ OL/(λ)OL,

x 7→
[
x− 1

2λn

]
where [·] denotes the class of an element of OL in the quotient OL/(λ)OL. Let
us describe the image of α for n ≥ 1. Clearly x ∈ C(n) implies v ≥ n− 1, and

for v ≥ n we have α(x) = 0; when v = n − 1 we have α(x) = [u2

√
d]. Notice

now that we have an injection (of additive groups) OLτ
(λ)OLτ ↪→

OL
(λ)OL induced by

x 7→ x
√
d, and we claim that all points in the image of this embedding can be

realized as α(x) for some x ∈ C(n). This is clear for the zero element, so let us

consider an element of the form [u2

√
d] with u2 ∈ O×Lτ . Consider the equation

(14) t
(
1 + λ2ndt

)
= u2

2

in the variable t. By Hensel’s lemma, the discriminant ∆ := 1 + 4u2
2λ

2nd is a
square in OLτ (recall that n > 0). Let 1 + z be the square root of ∆ that is
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congruent to 1 modulo λ: then z satisfies (1 + z)2 = 1 + 4u2
2λ

2nd, from which

we easily find vλ(z) = 2n + vλ(d). It follows that u :=
−1 +

√
∆

2dλ2n
=

z

2dλ2n

is a solution to equation (14) which is also a λ-adic unit. We can then set

x = 1 + 2du · λ2n + 2u2 · λn
√
d: by construction x is an element of C(n), and

it satisfies α (x) = [u2

√
d]. This shows that the image of α is in bijection with

OLτ
(λ)OLτ . Finally, a very similar argument can be repeated when ` = 2, except

that Hensel’s lemma is now only applicable for n > vλ(2). We thus deduce the
following lemma:

Lemma 6.2. — Suppose ` 6= 2. For every n ≥ 1, the quotient C(n)/C(n + 1)

has order
∣∣∣ OLτ(λ)OLτ

∣∣∣. For ` = 2 the same conclusion holds for every n > vλ(2).

The quotients C(n)/C(n + 1) for small values of n are described by the
following lemma:

Lemma 6.3. — Let f be the inertia degree of Lτ over Q`. Suppose first ` 6= 2:

then the quotient C(0)
C(1) has order either 2`f or `f+1, with the first (resp. second)

case happening exactly when L/Lτ is ramified (resp. unramified). Suppose on

the other hand that ` = 2 and n ≤ vλ(2): then the quotient C(n)
C(n+1) has order

at most 4f .

Before giving a proof, recall the following

Definition 6.4. — Let L be a finite extension of Q` with ring of integers
OL and residue field F. Let π : OL → F be the canonical projection. The
Teichmüller lift is the unique group homomorphism ω : F× → O×L such that,

for all y ∈ F×, the element ω(y) ∈ O×L is the unique solution to the equation

x|F|−1 = 1 satisfying π(x) = y.

Proof. — Consider first the case of L/Lτ being unramified (and ` 6= 2). Let
π : OL → F := OL

(λ)OL be the canonical projection, and observe that F has order

`2f . It is clear that π restricts to a map C(0) → F×, and on the other hand
x ∈ C(0) maps to 1 if and only if vλ(x − 1) > 0, i.e. if and only if x ∈ C(1):
this implies that C(0)/C(1) injects into F×. The involution τ induces on F an

automorphism τF, which is necessarily the unique nontrivial involution x 7→ x`
f

.
Let now x ∈ C(0). By definition we have x · τ(x) = 1, hence

1 = π(x) · π(τ(x)) = π(x) · τF(π(x)) = π(x)`
f+1,

so C(0)/C(1) injects into the subgroup H of F× consisting of the roots of unity
of order dividing `f +1. The group H is of order `f +1, and it is not hard to see
that C(0)/C(1) surjects onto it: indeed for every h ∈ H we have ω(h) ∈ C(0),
and by definition π(ω(h)) = h. Suppose on the other hand that L/Lτ is

ramified, so that L = Lτ (
√
d) with vλ(d) = 1. Again we see that C(0)/C(1)
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injects into F× :=
(
OL

(λ)OL

)×
(which however is not a field anymore), and the

involution τ acts on an element [a + b
√
d] ∈

(
OL

(λ)OL

)×
, with a, b ∈ OLτ , by

sending it to [a − b
√
d]. Writing π(x) = [a + b

√
d], the equation xτ(x) = 1

implies [a2 − db2] = 1, which in turn, since vλ(d) = 1, means [a2] = 1 and

[a] = ±1. This shows that C(0)/C(1) injects into {±1} × OLτ
(λ)OLτ , a set of

order 2 · `f . On the other hand, for any value of [±1 + b
√
d] ∈ F×, the equation

a2 = 1+db2 (with fixed b, in the variable a) admits solutions in OLτ by Hensel’s

lemma; the elements ±a+ b
√
d ∈ C(0) then satisfy

(±a+ b
√
d) · τ(±a+ b

√
d) = a2 − db2 = 1,

and on the other hand π(±a + b
√
d) = [±1 + b

√
d], so C(0)/C(1) actually

projects surjectively on {±1} × OLτ
(λ)OLτ ; this shows that |C(0)/C(1)| = 2`f as

claimed. The upper bound for ` = 2 likewise follows from the fact that for any
n ≥ 0 the quotient C(n)/C(n+ 1) injects into OL

(λ)OL .

6.2. The order of MT(A)(Z/`nZ). — Let E be a CM field of degree 2g
over Q and TE be the associated algebraic torus, and let τ denote complex
conjugation on E. If A/K is an abelian variety with complex multiplication
by the nondegenerate CM type (E,S), it is known that we have

MT(A)(B) =
{
x ∈ (E ⊗Q B)×

∣∣ xτ(x) ∈ B×
}
∀ Q-algebra B.

We can also consider the ‘norm 1’ (or Hodge) subtorus of MT(A) given as
a functor by

Hg(A)(B) =
{
x ∈ (E ⊗Q B)×

∣∣ xτ(x) = 1
}
∀ Q-algebra B.

We aim to give bounds on the number of Z
`nZ -points of MT(A), but it is

easier to first consider Hg(A). If we write E ⊗ Q` ∼=
∏s
i=1 Fi (a product of

fields), we have

Hg(A)(Q`) =

{
x = (x1, . . . , xs) ∈

s∏
i=1

F×i
∣∣ xτ(x) = 1

}
.

We can renumber the Fi’s in such a way that τ acts by exchanging F2i−1 and
F2i for i = 1, . . . , r and it acts as an involution on Fi for i = 2r+1, . . . , s. With
this convention, a point (x1, . . . , x2r, x2r+1, . . . , xs) ∈

∏s
i=1 F

×
i is in Hg(A)(Q`)

if and only if x2i−1x2i = 1 for i = 1, . . . , r and xiτ(xi) = 1 for i = 2r+ 1, . . . , s,
that is,

(15) Hg(A)(Q`) ∼=
r∏
i=1

{
x2i−1 ∈ F×2i−1

}
×

s∏
i=2r+1

{
xi ∈ F×i

∣∣ xiτ(xi) = 1
}
.

The character groups of MT(A)Q` and of Hg(A)Q` are quotients of T̂E,Q` ,
which in turn is generated by elements of the form (χ1, . . . , χs), where χi
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ranges over the embeddings of Fi in Q`. It follows that a point x ∈ Hg(A)(Q`)
is in Hg(A)(Z`) if and only if for any choice of embeddings χi : Fi ↪→ Q` we
have χi(xi) ∈ Oχi(Fi); as the property of being `-integral is Galois-invariant

we deduce that a necessary and sufficient condition is xi ∈ O×Fi . Hence we

find Hg(A)(Z`) ∼=
r∏
i=1

O×F2i−1
×

s∏
i=2r+1

{
xi ∈ O×Fi

∣∣ xiτ(xi) = 1
}

, and a perfectly

analogous argument shows that

Hg(A)(1 + `nZ`) ∼=
r∏
i=1

{
x2i−1 ∈ O×F2i−1

∣∣ v`(x2i−1 − 1) ≥ n
}
×

×
s∏

i=2r+1

{
xi ∈ O×Fi

∣∣ v`(xi − 1) ≥ n, xiτ(xi) = 1
}
.

Write ei and fi for the ramification index and inertia degree of F τi over Q`,
and λi for a uniformizer of F τi (i = 2r+ 1, . . . , s). The order of

∣∣∣ Hg(A)(Z`)
Hg(A)(1+`nZ`)

∣∣∣
is then given by

(16) |Hg(A)(Z/`nZ)| =
r∏
i=1

∣∣∣∣∣ O×F2i−1

1 + `nOF2i−1

∣∣∣∣∣ ×
s∏

i=2r+1

∣∣∣∣ C(i)(0)

C(i)(nei)

∣∣∣∣ ,
where

C(i)(k) =
{
xi ∈ O×Fi

∣∣ vλi(xi − 1) ≥ k, xi · τ(xi) = 1
}

is the filtration we studied in the previous section for the field Fi and the
involution τ |Fi . For i = 1, . . . , r let furthermore πi (resp. ei, fi) be a uniformizer
(resp. the ramification index over Q`, the inertia degree over Q`) of F2i−1. We
now compute the order of Hg(A)(Z/`nZ). Basic properties of local fields show

that for i = 1, . . . , r the quotient

∣∣∣∣ O×F2i−1

1+`nOF2i−1

∣∣∣∣ has order∣∣∣∣∣ O×F2i−1

1 + πiOF2i−1

∣∣∣∣∣ ·
nei−1∏
j=1

∣∣∣∣ 1 + (πi)
jOF2i−1

1 + (πi)j+1OF2i−1

∣∣∣∣ =
(
`fi − 1

)
· `fi(nei−1),

while (for ` 6= 2) lemma 6.2 gives∣∣∣∣ C(i)(0)

C(i)(nei)

∣∣∣∣ =

∣∣∣∣C(i)(0)

C(i)(1)

∣∣∣∣ · ∣∣∣∣ C(i)(1)

C(i)(nei)

∣∣∣∣ =

∣∣∣∣C(i)(0)

C(i)(1)

∣∣∣∣ · `fi(nei−1).

Now notice that s − 2r does not exceed g: indeed [Fi : F τi ] = 2 for every

i = 2r + 1, . . . , r, hence 2g = [E ⊗Q` : Q`] ≥
s∑

i=2r+1

[Fi : Q`] ≥ 2(s − 2r) as

claimed. Applying lemma 6.3 we then deduce that the order of Hg(A)(Z/`nZ)
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is at most
r∏
i=1

`nfiei ·
s∏

i=2r+1

2
(
1 + `fi

) (
`fi
)nei−1

= 2s−2r
2r∏
i=1

`
1
2n[Fi:Q`]

s∏
i=2r+1

(
1 + `−fi

) (
`fi
)nei

≤ 2s−2r (1 + 1/`)
s−2r

s∏
i=1

`
1
2n[Fi:Q`]

≤ 2g (1 + 1/`)
g
`gn,

and at least
r∏
i=1

(
`fi − 1

)
`(nei−1)fi

s∏
i=2r+1

(`fi + 1)
(
`fi
)nei−1

≥ (1− 1/`)r ·
r∏
i=1

`nfiei
s∏

i=2r+1

`nfiei

= (1− 1/`)r ·
2r∏
i=1

`
1
2n[Fi:Q`] ×

s∏
i=2r+1

`
1
2n[Fi:Q`]

≥ (1− 1/`)g · `gn;

moreover, if for at least one index i ∈ {2r + 1, . . . , s} the extension Fi/F
τ
i is

ramified, then we see from lemma 6.3 that the lower bound can be improved
to

(17) |Hg(A)(Z/`nZ)| ≥ 2(1− 1/`)g · `gn.
To finish the proof of theorem 6.1 we shall use the following result:

Lemma 6.5. — Consider the map

Ψ : Hg(A)(Z/`nZ)× (Z/`nZ)
× → MT(A)(Z/`nZ)

(h,m) 7→ m−1h.

If ` 6= 2, the group Im Ψ has order equal to 1
2 |Hg(A)(Z/`nZ)|× (1−1/`)`n and

has index at most 2 in MT(A)(Z/`nZ). Moreover, Ψ is surjective if and only

if for all x ∈ MT(A)(Z/`nZ) the number xτ(x) is a square in (Z/`nZ)
×

. On
the other hand, for ` = 2 we have

– for n = 1, the group Im Ψ has order equal to that of |Hg(A)(Z/2Z)| and
Ψ is surjective;

– for n = 2, the group Im Ψ has order equal to that of |Hg(A)(Z/4Z)| and
Im Ψ has index either 1 or 2 in MT(A)(Z/4Z);

– for n ≥ 3, the group Im Ψ has order equal to 2n−3 · |Hg(A)(Z/2nZ)| and
Im Ψ has index 1, 2 or 4 in MT(A)(Z/2nZ);
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Proof. — Let us start with the case ` 6= 2. The kernel of ψ is given by the
intersection of Hg(A)(Z/`nZ) and (Z/`nZ)

×
inside MT(A)(Z/`nZ), namely{

h ∈ (Z/`nZ)
× ∣∣ hτ(h) = 1

}
=
{
h ∈ (Z/`nZ)

× ∣∣ h2 = 1
}

= {±1} ,

so Im Ψ has order

1

|ker Ψ|
· |Hg(A)(Z/`nZ)| ·

∣∣∣(Z/`nZ)
×
∣∣∣ =

(`− 1)`n−1

2
· |Hg(A)(Z/`nZ)|

as claimed.
As for the index of Im Ψ, notice first that for every x = m−1h ∈ Im Ψ we have

that x · τ(x) = m−2 is a square in (Z/`nZ)
×

, so if Ψ is surjective we necessarily
have x · τ(x) ∈ (Z/`nZ)×2 for every x ∈ MT(A)(Z/`nZ). Conversely, suppose

that for every x in MT(A)(Z/`nZ) the number xτ(x) is a square in (Z/`nZ)
×

,

say xτ(x) = µ(x)2 with µ(x) ∈ (Z/`nZ)
×

. Then every x can be written as
x = µ(x) · x

µ(x) , and since x
µ(x) is in Hg(A)(Z/`nZ) this shows that x belongs

to Im Ψ, which is therefore surjective.
Finally, if there is a y ∈ MT(A)(Z/`nZ) such that yτ(y) is not a square in

(Z/`nZ)
×

, then using the fact that (Z/`nZ)
×2

is of index 2 in (Z/`nZ)
×

we
easily see that for every x ∈ MT(A)(Z/`nZ) either x or xy belongs to Im Ψ,
thus proving the remaining claim. The conclusion for ` = 2 follows by the

same argument upon noticing that (Z/2nZ)×

(Z/2nZ)×2 has order 1, 2, or 4, according to

whether n is 1, 2, or at least 3.

Combining this last lemma with our previous estimates gives the desired
upper bound

|MT(A)(Z/`nZ)| ≤ 2 |Im Ψ| = |Hg(A)(Z/`nZ)| ×
∣∣∣(Z/`nZ)

×
∣∣∣

≤ 2g (1 + 1/`)
g−1

`(g+1)n.

As for the lower bound, suppose first that for at least one index i in the set
{2r+ 1, . . . , s} the extension Li/L

τ
i is ramified: then using the lower bound of

equation (17) (which is conditional on this hypothesis) we find

|MT(A)(Z/`nZ)| ≥ 1

2
|Hg(A)(Z/`nZ)| ×

∣∣∣(Z/`nZ)
×
∣∣∣ ≥ (1− 1/`)g+1`(g+1)n.

Suppose on the other hand that Li/L
τ
i is unramified for every i = 2r+1, . . . , s:

then we claim that map Ψ from lemma 6.5 is not surjective. Assuming this is
the case, we have

|MT(A)(Z/`nZ)| ≥ 2× 1

2
×|Hg(A)(Z/`nZ)|×

∣∣∣(Z/`nZ)
×
∣∣∣ ≥ (1−1/`)g+1`(g+1)n,

which is what we want to show. We are thus reduced to proving that Ψ is
not surjective, or equivalently (by lemma 6.5), to showing that there is an

x ∈ MT(A)(Z/`nZ) such that xτ(x) is not a square in (Z/`nZ)
×

. By the same
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argument that leads to equations (15) and (16), we can represent elements of
MT(A)(Z`) as tuples

(x1, . . . , x2r, x2r+1, . . . , xs,m) ∈
2r∏
i=1

O×Fi ×
s∏

j=2r+1

O×Fj × Z×` ,

satisfying x2i−1x2i = m for i = 1, . . . , r and xjτ(xj) = m for j = 2r + 1, . . . , s.
Now if 2r = s it is clear that MT(A)(Z/`nZ) contains elements x such that
xτ(x) is not a square (it suffices to choose m ∈ Z×` which is not a square in
(Z/`nZ)× and set x2i−1 = 1, x2i = m for i = 1, . . . , r), so we can assume s > 2r.
For j = 2r+ 1, . . . , s write Fj = F τj (

√
dj) for some squarefree dj ∈ O×Fj (recall

that we assume Fj/F
τ
j to be unramified), and likewise write xj = aj + bj

√
dj

for some aj , bj ∈ OF τj . We claim that since Fj/F
τ
j is unramified every element

m ∈ Z×` can be represented as a2
j − djb2j for some choice of aj , bj ∈ OF τj . To

see this, notice that for fixed m and dj the conic section C : {a2− djb2 = mc2}
admits a point (a0, b0, c0) over the residue field of F τj ; as dj is not a square
in F τj we cannot have c0 = 0, and since C is smooth the point (a0, b0, c0) lifts

to a point (a, b, c) ∈ C
(
OF τj

)
, with c a unit (since it does not reduce to 0 in

the residue field). Dividing through by c2 then yields (a/c)2− dj(b/c)2 = m as
desired. Pick now a fixed non-square m ∈ Z×` and for each j = 2r + 1, . . . , s
fix a representation m = a2

j − djb2j . Take furthermore x2i−1 = 1, x2i = m for
i = 1, . . . , r.

The corresponding point x = ((xi)i=1,...,2r, (xj)j=2r+1,...,s,m) of MT(A)(Z`)
has the property that xτ(x) = m is not a square in Z×` , and therefore the image

of x in MT(A)(Z/`nZ) has again the property that xτ(x) = [m] ∈ (Z/`nZ)
×

is not a square. Combined with lemma 6.5, this shows that Ψ is not surjective
in this case and concludes the proof of theorem 6.1 for ` 6= 2.

Notice now that for ` = 2 the lower bound of theorem 6.1 is trivial for
n ≤ 2, so we can assume n ≥ 3. We then remark that (by equation (16))
Hg(A)(Z/2nZ) has order at least

r∏
i=1

2(n−1)[F2i−1:Q`] ×
s∏

i=2r+1

∣∣∣∣C(i)(ei + 1)

C(i)(nei)

∣∣∣∣ ,
which (by the same argument as above, using the second part of lemma 6.2) in
turn is at least

r∏
i=1

2(n−1)[F2i−1:Q`] ×
s∏

i=2r+1

(
2fi
)(n−1)ei−1 ≥ 2g(n−2).

Furthermore, taking into account the factor coming from the homotheties –
namely (Z/2nZ)

×
– we find |MT(A)(Z/2nZ)| ≥ 2(g+1)(n−2)−1. Finally, the
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upper bound for ` = 2 follows trivially from the previous computations and
from the second halves of lemmas 6.3 and 6.5.

6.3. Elliptic curves. — When the CM abelian variety under consideration
is an elliptic curve we can give a complete description of the full adelic Galois
representation:

Theorem 6.6. — Let A/K be an elliptic curve such that EndK(A) is an order

in an imaginary quadratic field E. Denote by ρ∞ : Gal
(
K/K

)
→
∏
`

AutT`A

the natural adelic representation attached to A, and let G∞ be its image. For
every prime ` denote by C` the group (OE ⊗ Z`)×, considered as a subgroup
of AutZ` (OE ⊗ Z`) ∼= GL2(Z`) ∼= AutT`A, and let N(C`) be the normalizer of
C` in GL2(Z`).

1. Suppose that E ⊆ K: then G∞ is contained in
∏
` C`, and the index

[
∏
` C` : G∞] does not exceed 3[K : Q]. The equality G`∞ = C` holds for

every prime ` unramified in K and such that A has good reduction at all
places of K of characteristic `.

2. Suppose that E 6⊆ K: then G∞ is contained in
∏
`N(C`) but not in∏

` C`, and the index [
∏
`N(C`) : G∞] is not finite. The intersection

H∞ = G∞ ∩
∏
` C` has index 2 in G∞, and the index [

∏
` C` : H∞] does

not exceed 6[K : Q]. The equality G`∞ = N(C`) holds for every prime `
unramified in K · E and such that A has good reduction at all places of
K of characteristic `.

Finally, the constants 3 and 6 appearing in parts (1) and (2) respectively can
be replaced by 1 and 2 if we further assume that the j-invariant of A is neither
0 nor 1728.

We start by recording the following consequence of theorem 5.5:

Corollary 6.7. — Let A/K be an elliptic curve admitting complex multipli-
cation (over K) by the imaginary quadratic field E. The group G`∞ is contained
in MT(A)(Z`) = C`, and if A has good reduction at all places of K of charac-
teristic ` the index [MT(A)(Z`) : G`∞ ] is at most 1

2 [K : Q]. If in addition ` is

also unramified in K we have G`∞ = (OE ⊗ Z`)×.

Proof. — Since E is quadratic, E and E∗ coincide and the reflex norm is
simply the identity TE → TE , hence MT(A) = TE and (in the notation of

theorem 5.5) F is the trivial group. In particular TE(Z`) = (OE ⊗ Z`)× = C`
contains G`∞ by [19, Corollary 2 to Theorem 5] (cf. also [17, Corollaire on p.
302]): the claim on the index then follows from theorem 5.5 upon noticing that
[K : E∗] = [K : E] = 1

2 [K : Q]. Furthermore, if ` is unramified in K, then it
is also unramified in E, and the remaining assertion G`∞ = C` = MT(A)(Z`)
follows from part (3) of theorem 5.5.
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We shall also need some results concerning elliptic curves A/K that admit
complex multiplication over K but not over K. Results similar to lemmas 6.8,
6.9 and 6.10 already appear for example in [18, Appendix A.5], but we include
short proofs that do not depend on the splitting and/or ramification properties
of the prime ` in the ring OE .

Lemma 6.8. — C` is of index 2 in N(C`). In particular, N(C`) is generated
by C` and any element in N(C`) \C`. Furthermore, if H` is an open subgroup
of C`, then the normalizer of H` in GL2(Z`) is contained in N(C`).

Proof. — Fix ω ∈ OE such that (1, ω) is a Z-basis of OE . There exist c, d ∈ Z
such that ω satisfies the quadratic relation ω2 = cω + d. In the Z`-basis (1, ω)
of OE ⊗ Z`, the group C` is the subgroup of GL2(Z`) given by the invertible

matrices that can be written as

(
a bd
b a+ bc

)
for some a, b ∈ Z`. We thus see

that C` is given by the intersection of GL2(Z`) with a 2-dimensional plane Π
(that defined by the equations x11 + cx21 = x22, x12 = dx21, where xij is the
coefficient on the i-th row and j-th column). In particular, for an element
g ∈ GL2(Z`) the condition of normalizing C` is equivalent to that of stabilizing
Π. The latter is a Zariski-closed condition, and since any subgroup H` of C`
open in the `-adic topology is Zariski-dense in Π we see that if g normalizes
H`, then it stabilizes Π and hence it normalizes C`. Finally, with the explicit
description at hand it is immediate to see that [N(C`) : C`] = 2, and that a

nontrivial element of N(C`) \ C` is given by

(
1 c
0 −1

)
.

Lemma 6.9. — Suppose A/K is an elliptic curve such that EndK(A) = Z but
EndK(A) is an order in an imaginary quadratic field E: then for every prime
` the group G`∞ is contained in N(C`).

Proof. — The field K1 = K ·E is a quadratic extension of K over which all the

endomorphisms of A are defined, and the group G1
`∞ = ρ`∞

(
Gal

(
K1/K1

))
is

a closed subgroup of G`∞ of index at most 2 (hence in particular it is normal
and open in G`∞). Let R = EndK(A). Since A admits complex multiplication
by R over K1, we know by [17, §4.5, Corollaire] that G1

`∞ is of finite index in
(R ⊗ Z`)×, which in turn is of finite index in C`. Thus the normalizer of G1

`∞

is included in N(C`) by lemma 6.8, and since G1
`∞ is normal in G`∞ we have

G`∞ ⊆ N(G1
`∞) ⊆ N(C`) as claimed.

Lemma 6.10. — In the situation of the previous lemma, for all primes ` the
group G`∞ has nontrivial intersection with N(C`) \ C`.

Proof. — For all primes ` we have G`∞ ⊆ N(C`). On the other hand, we know
by Faltings’ theorem that the centralizer of G`∞ in End (T`A) ⊗ Q` equals
EndK(A)⊗Q` = Q`. It follows that G`∞ cannot be abelian, for otherwise its
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centralizer would contain all of G`∞ (which is not contained in the homotheties
Q`): in particular, G`∞ must have nontrivial intersection with N(C`) \C`.

We can now prove theorem 6.6:

Proof. — (of theorem 6.6) The proof is quite similar to that of theorem 5.5,
the main differences being that we need to treat all places at the same time and
that the action of E needs not be defined over K. Consider first case (1). The
inclusionG`∞ ⊆ C` is part of corollary 6.7, and impliesG∞ ⊆

∏
`G`∞ ⊆

∏
` C`.

In particular, G∞ is abelian, so class field theory allows us to interpret ρ∞ as
a map

IK
ρ∞−−→

∏
`

C`

that is trivial on K∗. As in the proof of theorem 5.5, since we are looking for a
lower bound on G∞ no harm is done in replacing IK by the group of idèles of
the Hilbert class field of K; concretely, this means considering the restriction

of ρ∞ to
∏
v∈ΩK

O×K,v, where ΩK is the set of finite places of K. Recall from

theorem 5.1 that the action of ρ∞ on a finite idèle a = (av)v∈ΩK is given by

ρ∞(a) = ε(a)
(
NK`/E`(a

−1
` )
)
` prime

.

As in the proof of theorem 5.5, if we let µ(E) be the group of roots of unity in
E we know that ker ε is a subgroup of

∏
v∈ΩK

O×K,v of index at most |µ(E)|,
and since E is a quadratic imaginary field we have |µ(E)| ≤ 6. Therefore the
image of ρ∞ has index at most | ker ε| ≤ 6 in the image of the map

ϕ∞ :
∏
v∈ΩK

O×v →
∏
`(OE ⊗ Z`)× =

∏
` C`

(a)v 7→
(
NK`/E` (a`)

)
`

given by taking local norms from K` to E`. Hence in particular we have
[
∏
` C` : G∞] ≤ 6 [

∏
` C` : Imϕ∞], and it suffices to show that[∏
`

C` : Imϕ∞

]
≤ [K : E] =

1

2
[K : Q],

which follows from [1, Theorem 7 on p. 161] (the global field counterpart of
theorem 5.3). The remaining assertion of part (1) is exactly the content of
corollary 6.7.

As for part (2), we have seen in lemmas 6.9 and 6.10 that in this case G`∞

is contained in N(C`), but not in C`. If we let K1 = K · E, then A admits

complex multiplication by E over K1, so ρ∞

(
Gal

(
K1/K1

))
is contained in∏

` C` by part (1). Since Gal
(
K1/K1

)
has index 2 in Gal

(
K/K

)
we must

have H∞ = ρ∞

(
Gal

(
K1/K1

))
, so that the index [G∞ : H∞] is indeed 2 and

applying part (1) we find [
∏
` C` : H∞] ≤ 3[K1 : Q] = 6[K : Q]; moreover, the
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index [
∏
`N(C`) : G∞] is not finite since the same is clearly true for the index

[
∏
`N(C`) :

∏
` C`]. Finally, if ` is unramified in K1 we see from corollary 6.7

(applied to A/K1) that G`∞ contains all of C`, and by lemma 6.10 we know
that G`∞ also contains an element of N(C`) \ C`. The equality G`∞ = N(C`)
then follows from lemma 6.8.

As for the last assertion, notice that if we exclude elliptic curves with j-
invariant equal to 0 or 1728 the field of complex multiplication E is neither
Q(i) nor Q(ζ3), so the only roots of unity in E are ±1. This implies that ker ε
has index at most 2 in

∏
v∈ΩK

O×v , and the same argument as above shows that
the constants 3 and 6 can indeed be replaced by 1 and 2.

Remark 6.11. — The following simple example shows that the constants 3
and 6 cannot be improved in general. We consider the elliptic curve A over the
field K = Q (ζ3) given by the Weierstrass equation y2 = x3 + 1. As it is clear,
A has complex multiplication (over K) by the full ring of integers of E = K.
Moreover, all the 2-torsion points of A are defined over K, so G2 has trivial
reduction modulo 2. Hence G2 is a subgroup of ker (Z2[ζ3]× → F2[ζ3]×), and
its index in (OE ⊗ Z2)× ∼= Z2[ζ3]× is divisible by |F2[ζ3]×| = 3. Likewise, the
fact that the 3-torsion point with coordinates (0, 1) is defined over K shows
that the index of G3 in (OE⊗Z3)× is divisible by 2. Thus we conclude that the
index of G∞ in

∏
` C` is at least 6 = 3[K : Q], so that the constant 3 is indeed

sharp. Finally, considering the Q-elliptic curve given by the same Weierstrass
equation shows the optimality of part (2): in this case H∞ is exactly the image
of the Galois representation attached to A/K, so we have [

∏
` C` : H∞] = 6 by

what we just showed.

6.4. Abelian surfaces. — An easy direct computation shows that when
dimA = 2 the kernel of the reflex norm is always connected, and therefore
the group F of theorem 5.5 is trivial. Since furthermore simple CM types are
automatically non-degenerate in dimension 2, combining theorems 5.5 and 6.1
we deduce:

Corollary 6.12. — Let A/K be an absolutely simple abelian variety of di-
mension 2. Suppose that A has CM over K by the field E and let ` be a prime
number such that A has good reduction at all places of K of characteristic `.
The group G`∞ ∩MT(A)(Z`) has index at most [K : E∗] in MT(A)(Z`), hence

we have [K(A[`n]) : K] ≥ 1

[K : E∗]
(1 − 1/`)3`3n for ` 6= 2, while for ` = 2 we

have [K(A[2n]) : K] ≥ 1

27[K : E∗]
23n. Finally, if ` is unramified in K · E we

even have [K(A[`n]) : K] ≥ (1− 1/`)3`3n.
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7. A family of varieties with small 2-torsion fields

Let p ≥ 3 be a prime number and Kp be the cyclotomic field Q (ζp). We let
Cp be the unique smooth Kp-curve birational to yp = x(1− x) and J(p) be its
Jacobian, again over Kp. It is clear that Cp admits an action of µp, so J(p)
is a CM abelian variety, admitting complex multiplication over Kp by the full
ring of integers of Kp. Notice furthermore that Cp is birational to the curve

z2 = wp + 1/4

(just set x = z + 1/2, y = −w), so it is hyperelliptic of genus p−1
2 . Direct

inspection of the model yp = x(1− x) reveals that Cp is smooth away from p,
so J(p) has everywhere good reduction over Kp except perhaps at the unique
place dividing p. The reflex field is K∗p = Kp. Let us compute the CM type S

of J(p): in the basis ωj := wj dwz (j = 0, . . . , p−3
2 ) of the space of differentials

on Cp, the action of ζp is given by [ζp]
∗ωj = ζj+1

p ωj , hence the CM type,

considered as a subset of
(

Z
pZ

)×
, is

{
1, . . . , p−1

2

}
. Equivalently,

S =

{
g ∈

(
Z
pZ

)× ∣∣ 2〈g〉 < p

}
,

where 〈g〉 is the unique integer lying in the interval [0, p− 1] that is congruent
to g modulo p. This description shows that our CM type agrees with the type
S1 described in [7], which by [7, Lemma 1] is nondegenerate (cf. also [5]): thus
we have rank MT(A) = dimA+ 1 = p+1

2 .

Let now β1, . . . , βp be the roots of wp + 1/4 = 0 in Q, and let Pi = (βi, 0)
be the corresponding points of Cp (in the coordinates (w, z)). Finally, for
i = 1, . . . , p let di denote the divisor (Pi)− (∞). It is known (see for example
[3, §5.1]) that the 2-torsion of J(p) is an F2-vector space of dimension p − 1
spanned by the di’s, which are only subject to the linear relation

∑p
i=1 di = [0].

It follows that the 2-torsion field Kp(J(p)[2]) = Kp ({βi}) = Kp

(
p
√

1/4
)

has

degree p over Kp, so for ` = 2 and n = 1 the ratio `n rank MT(A)
/

[K(A[`n]) : K]
is given by

2rank MT(A)

[K(J(p)[2]) : K]
=

2(p+1)/2

p
=

2dim J(p)+1

2 dimJ(p) + 1
,

which shows in particular that, as claimed in the introduction, the optimal
bound on the quantity `n rank MT(A)

/
[K(A[`n]) : K] grows at least exponen-

tially in the dimension of A.
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