
Predictors for FlatMembrane Systems

Roberto Barbutia, Roberta Goria, Paolo Milazzoa

aDipartimento di Informatica, Università di Pisa
Largo Pontecorvo 3, 56127 Pisa, Italy

Abstract

In this paper we investigate dynamic causalities in membrane systems by proposing the concept
of “predictor”, originally defined in the context of the reaction systems by Brijder, Ehrenfeucht and
Rozenberg. The goal is to characterise sufficient and necessary conditions for the presence of a
multiset of molecules of interest in the configuration of a P system at a given evolution step (inde-
pendently from the non-deterministic choices taken). These conditions can be used to study causal
relationships between molecules and, therefore, to predict some aspects of future development of
multiset rewriting systems.

To achieve this goal, we introduce the new concept of “multiset pattern” representing a logical
formula on multisets. A sufficient predictor can be expressed as a pattern characterising initial
multisets that will surely evolve, after the given number of evolution steps, into a multiset contain-
ing the molecules of interest. On the other hand, a necessary predictor models initial multisets
that may evolve after the given number of evolution steps, into a multiset containing the molecules
of interest. Necessary predictors can be used to characterise initial multisets that will surely not
evolve (in the required number of steps) into a multiset that contains such molecules. We induc-
tively define operators able to compute these predictors.

The patterns obtained from our operators are sound (sufficient or necessary) predictors, but, in
general, they are not complete.

Keywords: Membrane Systems, Dynamic causalities, Reaction Systems, Predictors.

1. Introduction

The understanding of causal relationships among the events happening in a biological (or bio-
inspired) system is an issue widely investigated in the context of both systems biology (see e.g.
[1, 2, 3]) and natural computing (see e.g. [4]).

In [5] Brijder, Ehrenfeucht and Rozenberg initiate a study on causalities in reaction systems
[6, 7]. Causalities deal with the ways entities of a reaction system influence each other. In [5],
both static/structural causalities and dynamic causalities are discussed, introducing the idea of
predictors. A predictor can be used to determine whether a molecule of interest s will be produced
after k execution steps of the reaction system, without executing the system itself.

Email addresses: barbuti@di.unipi.it (Roberto Barbuti), gori@di.unipi.it (Roberta Gori),
milazzo@di.unipi.it (Paolo Milazzo)

Preprint submitted to Elsevier June 21, 2018

In reaction systems the environment is the only source of non-determinism. Knowledge about
the molecules which will be provided at each step by the environment is required to determine
whether a molecule s will be produced after k steps. Not all molecules are relevant for the produc-
tion of s. On the basis of these two observations, a predictor is defined as the subset of molecules
Q whose supply by the environment need to be observed in order to determine whether s will be
produced or not after k steps.

In [8, 9, 10], the idea of predictors was enhanced by defining the notion of formula based
predictor. A formula based predictor consists in a propositional logic formula to be satisfied by
the sequence of sets of molecules that the environment provides to the reaction system. This logic
formula clearly discriminates between the cases in which a particular molecule s will be produced
after a given number of steps and the cases in which it will not.

P systems [11, 12] are much more powerful and complex than reaction systems. They are
based on multisets rather than sets and evolution rules are applied with maximal parallelism and
with a non-deterministic competition for reactants.

The computational behaviour of a P system is determined only by the initial multiset and by
the non-deterministic choices made at each maximally parallel step. In this context, a notion of
predictor may correspond to a logical formula to be satisfied by the initial multiset (representing
either a sufficient condition or a necessary condition) for the molecules of interest to be present
after a given number of evolution steps. Due to the intrinsically non-deterministic nature of P
systems, sufficient and necessary conditions have to be dealt with separately.

Example 1.1. For an intuition, consider the following rewriting rules:

r0 : A→ C r1 : A→ B r2 : D→ C

forming a maximally parallel multiset rewriting system. Assume we are interested in the presence
of molecule C after one step of rewriting. If we want to be sure that molecule C will be present after
one step we have two possibilities: either C or D have to belong to the initial multiset. Having
molecule A in the initial multiset is not sufficient to ensure that molecule C will be produced after
one evolution step. Indeed, if rule r1 is applied the initial multiset does not evolve in one step
into a multiset containing molecule C. Therefore, if we want to devise sufficient conditions for the
presence of molecule C after one step, we need to characterise in some way all initial multisets
containing molecule C or D. On the other hand, if a multiset after one evolution step (from
the initial one) contains molecule C then we have three possible cases, either the initial multiset
already contained molecule C or the initial multiset contained molecule A or molecule D. Hence,
if we are interested in the necessary condition for the presence of molecule C after one step, we
have to characterise all the initial multiset containing molecule A or C or D.

The previous example shows that, in general, sufficient and necessary conditions do not co-
incide, and therefore they have to be handled separately. Note that sufficient conditions can be
used to determine the multiset of molecules that will surely cause the presence of the molecule
of interest in the required number of evolution steps, while necessary conditions can be used to
determine, by complementation, the multisets that surely cannot cause the presence of a molecule
of interest in the required number of evolution steps. Therefore, investigating causal dependencies

2

in the previous example, we can say that the presence of C or D in the initial multiset causes the
presence of C after one evolution step but the presence of C after one step cannot be caused by an
initial multiset that does not contain neither C nor A nor D.

The previous example also shows that while it is quite easy to deal with necessary conditions,
dealing with sufficient condition is a complex task because competition on reactants comes into
play.

In this paper we propose the notion of multiset pattern as a way to express logical formulas
on molecules of multisets. Multiset patterns will be used to characterise sufficient and necessary
conditions for a molecule (or, in general, for a multiset of molecules) to be present after a given
number of steps. We first focus on the pattern that expresses sufficient conditions. If the initial
multiset of the P systems satisfies (matches) such a pattern, then the multiset of molecules of
interest will be surely present after k steps; nothing can be said otherwise (it is indeed a sufficient
condition). Such pattern will be defined by a recursive operator. We will show that the pattern
obtained from the operator will be a sound, but, in general, not a complete predictor. This means
that there can be multisets that do not match the pattern, but that still always lead to the presence
of the molecules of interest in k steps. However, there might exist special classes of P system for
which the sufficient predictor is also complete. In this paper, we investigate the completeness of
our sufficient predictor for P systems with non-cooperative rules.

We then focus on the pattern expressing necessary conditions for the presence of the molecules
of interest. In this case we have that if the P system leads to a multiset that contains the molecules
of interest in the required number of steps then the initial multiset matches the pattern expressing
necessary conditions. This information can be used to characterise multisets that surely will not
evolve in a multiset containing the molecules of interest in the required number of steps. We
provide a recursively defined operator that computes such pattern. Once again, we will show that
the pattern we compute will be a sound, but, in general, not complete. This means that there can be
multisets that do model the pattern, but will not lead to the presence of the molecules of interest in
k steps. However, we prove that for P systems with non-cooperative rules our necessary predictor
is also complete.

Once defined, patterns expressing sufficient and necessary conditions can be used to discover
non trivial causal relationships among molecules.

Related works. Causality properties have been investigated in different contexts. For example,
causalities are studied in the context of concurrency theory, systems biology and natural comput-
ing. Different notions of causality have been considered such as dependencies between events or
between reachable states of the considered system. Moreover, different techniques have been ap-
plied to verify causality properties on system models such as static analysis, enhanced semantics
and other formal “ad hoc” techniques.

In [13, 14] formal methods for studying causality properties of concurrent systems are pro-
posed. Concurrent systems are described by means of process algebras such as CSS or π-calculus.
The proposed approaches consist in the definition of enriched semantics that allow modeling causal
dependencies between events (process synchronization) and states (bindings of channel names) of
the system. This is obtained by extending the semantics with information about the past execution
of the considered processes.

3

A similar approach is followed by Busi in [15] in the context of systems biology, and in [4] in
the context of membrane computing. As in the previous cases, the idea is to enrich the semantics
of the modelling formalism. In particular, in Busi’s approach, the semantics is extended with an
explicit information about the causal dependencies between reactions.

In the context of systems biology, several approaches are based on static analysis [16, 17, 1,
2, 3]. In order to make the verification of causality properties feasible, these approaches com-
pute an approximation of the system behaviour. Typically, the behaviour of the system is over-
approximated, that is, all the possible system executions are modelled, but also some executions
that are not possible are included in the model.

Methods for the analysis of systems that are based on the computation of backward evolution
steps can be found in the context of reversible systems. Reversibility is the ability of a system
to go back to the initial state and to reconstruct the trace of evolution steps leading to the final
state. Reversibility has been studied in the context of multiset rewriting and membrane systems
for instance in [18, 19] and [20].

In [18, 19] reversibility is defined as a relation between reachable configurations, that is dual
to the notion of determinism. A system is deterministic if every configuration can evolve into a
unique new configuration. Dually, a system is reversible if every configuration can be obtained
by a single previous configuration. This leads the authors to study the classes of reversible and
deterministic systems.

In [20] the author proposed membrane systems with memory, an extension of membrane sys-
tems in which objects are labeled with information about the rules that produced them in order
to be able to reverse the computations. Similarly, Dual P Systems are proposed in [21] with the
same aim. This is obtained by replacing the rules of the P system with dual rules that allow the
computations to be executed backwards.

The idea of backward execution of a P system is somehow related to the idea of identifying
the causes for the presence of some molecules after a fixed number of steps. However, in order
to predict whether some molecules will be present or not, reversing a single computation is not
enough. We show that all possible computations have to be considered.

This article is a revised and extended version of the paper in [22], endowed with the definition
of the new concept and results on necessary predictor applied to several biological examples. More
precisely, the new contributions of this paper with respect to [22] are:

• the definition of the concept of necessary predictor characterizing the necessary conditions
for the presence of a multiset after a fixed number of evolution steps;

• the definition of an operator able to compute a such predictor;

• the study of a particular class of programs for which our operators on multiset patterns are
also complete;

• the application of predictors to several biological examples to study causal dependencies;

• the inclusion of extended definitions, results and proofs.

4

The paper is organised as follows. Section 2 introduces some notions on multisets and the
standard definition of membrane systems. The new notion of multiset patterns together with a
discussion on their expressive power can be found in Section 3. In Section 4 we introduce, through
examples of incremental complexity the notion of sufficient predictor, an operator to compute it
and we state and prove all its properties. Section 5 contains the notion of necessary predictor, the
definition of the operator that computes it and all its properties. Section 6 presents applications
of predictors to language acceptors and to several biological systems related to gametogenesis,
genetics and gene regulation network. Finally, our conclusions can be found in Section 7.

2. Preliminaries

2.1. Multisets
We denote by IN the set of natural numbers. Let U be an arbitrary set. A multiset (over U) is

a mapping M : U → IN; where by |M|a, for a ∈ U, we denote the multiplicity of a in the multiset
M. The support of a multiset M is the set supp(M) = {a | |M|a > 0}. A multiset is empty when its
support is empty and it is denoted by ∅.

In order to distinguish multiset operations from standard set operations we use the following
notations: ⊆∗ for multiset inclusion, ∪∗ for multiset union, ∩∗ for multiset intersection. For no-
tational convenience, we often denote multisets by strings. Given a finite set of symbols V , V∗

represents the set of all multisets over V while V+ represents V∗ without the empty multiset ∅. For
a set X, we denote the power set of X by ℘(X) while ℘ f (X) indicate all the finite sets in ℘(X).

2.2. Membrane Systems
In this paper we consider flat P systems, namely in which the membrane structure consists only

of the skin membrane. Flat P systems are defined as follows.

Definition 2.1. A flat P system is a construct Π = (V,w,R) where:

• V is a finite set of symbols, called alphabet, whose elements are called molecules species;

• w ∈ V∗ is the initial multiset of molecules;

• R is a finite set of (V∗)2; the element of R are called evolution rules of Π .

From [23] it follows that a P system with a standard membrane structure can be translated into
an equivalent P system having a (flat) membrane structure that consists only of the skin.

In this paper we assume P systems to be closed computational devices, namely we assume
that molecules cannot be sent out of the skin membrane (i.e. rules sending molecules out are not
allowed in the skin membrane) and molecules cannot be received by the skin membrane from
outside. react As a consequence, evolution rules will have the simple form u→ v with u, v ∈ V+.
When u ∈ V the rule is called non-cooperative [12].

We denote with RV the set of all evolution rules on V .
Given an evolution rule r = u → v, we denote with react(r) and prod(r) its multisets of

reactants u and products v, respectively. The same notations extend naturally to finite multisets of

5

rules: for any finite multiset of rules M ∈ R∗V , we have react(M) =
⋃∗

r∈supp(M) react(r)|M|r and
prod(M) =

⋃∗
r∈supp(M) prod(r)|M|r .

We assume evolution rules to be applied with standard maximal parallelism. Since we consider
P systems which do not send/receive molecules to/from the external environment, we obtain that
the behaviour of a P system is determined only by its initial multiset and by the non-deterministic
choices made at each maximally parallel step.

3. Multiset Patterns

3.1. Definitions
Given an alphabet V , a multiset pattern expresses a condition on multisets in V∗. A basic

multiset pattern is a pair (u, {u1,, un}) where u, u1,, un are finite multisets in V∗. More complex
patterns can be obtained by composing basic patterns by using propositional logic connectives ∧
and ∨. The syntax of multiset patterns is defined as follows.

Definition 3.1 (Multiset Patterns). Given an alphabet V, PV is the set of multiset patterns on V∗

inductively defined as follows:

• true, false ∈ PV ,

• if p ∈ (V∗ × ℘ f (V∗)) then p ∈ PV ,

• if p1, p2 ∈ PV then p1 ∨ p2 and p1 ∧ p2 ∈ PV .

When the reference alphabet V is clear from the context, we will denote the set PV simply as P.
Now, we formally define the notion of satisfaction of a pattern by a multiset, i.e. the semantics

of multiset patterns. The idea is that a multiset w satisfies a basic pattern (u, {u1,, un}) if by
removing from w the multisets u1,, un in any maximal way (i.e. so that what remains does not
include any of u1,, un) we always obtain a multiset which includes u. For example, multiset
A4B2 satisfies the pattern (A, {AB}) since after removing AB a maximal number of times (two
times) we obtain A2 which includes A.

The semantics of multiset patterns is formally defined as follows.

Definition 3.2. Given an alphabet V, the satisfaction relation |= ⊆ V∗ × PV is the relation induc-
tively defined as follows:

w |= true
w |= (u, {u1,, un}) iff ∀o1, ...on ∈ IN such that w ⊇∗ uo1

1 uo2
2 . . . uon

n , it holds w ⊇∗ uuo1
1 uo2

2 . . . uon
n

w |= p1 ∧ p2 iff w |= p1 and w |= p2

w |= p1 ∨ p2 iff either w |= p1 or w |= p2

For the case of a basic pattern (u, {u1,, un}), Definition 3.2 includes a requirement on all
possible values o1, ..., on ∈ IN used as multiplicities of the occurrences of u1,, un in w. It is
easy to see that the requirement can be checked by considering only the maximal combinations of
values o1, ..., on such that w ⊇∗ uo1

1 uo2
2 . . . uon

n .

6

3.2. Multiset Patterns and Multiset Languages
Multiset patterns can be used to express complex conditions on multisets.
Given a pattern p, we define the satisfaction language Lp of as

Lp = {w ∈ V∗ | w |= p}.

The pattern p1 = (AB, {BC, BE}) is satisfied by multisets that contain at least one A and one B, and
where the sum of the numbers of C and of E is smaller than the number of B. The set of multisets
satisfying the pattern corresponds to the multiset language

Lp1 = {w ∈ V∗ | |w|A > 0, |w|B > |w|C + |w|E}.

Patterns can express also conditions that are not in the “greater than” form. For example,
pattern p2 = (A, {AA}) is satisfied by multisets with an odd number of A. Namely, it characterizes
the language

Lp2 = {w ∈ V∗ | |w|A ≡mod 2 1}.

More generally, given any n ∈ IN, the multiset pattern (A, {An}) is such that w |= (A, {An}) iff w
satisfies |w|A .mod n 0.

The examples we have given show that multiset patterns could be used to characterize multiset
languages. It could be interesting to investigate the classes of languages characterised by multiset
patterns. Although such an investigation is out of the scope of this paper, we discuss few more
examples of interesting languages.

Let us look for a pattern characterizing the language consisting only of the A3 multiset. The
pattern p3 = (A3, {}) is not correct, since it is satisfied by any multiset with at least three instances
of A. We could combine p3 with a pattern satisfied by multiset containing at most three instances
of A. However, such pattern can not be directly defined but it can be obtained only by negating
the pattern (A4, {}). Hence, characterizing the language consisting only of the A3 multiset would
be possible only by including logical negation in the syntax of patterns.

A few more examples: (A, {AB}) characterizes the language AmBn with m > n. Consequently,
(A, {AB}) ∨ (B, {AB}) characterizes the language AmBn with m , n. It seems not possible to define
a pattern that characterizes the complement of the previous language, namely AnBn. However, this
would be possible by including logical negation in the syntax of patterns.

3.3. Simplification of Multiset Patterns
Multiset patterns express logical conditions on multisets, hence they can be simplified using

standard logic rules. For instance, a conjunction of basic patterns can be simplified to false every
time the basic patterns implicitly express opposite constraints. Moreover, the following properties
of the satisfaction relation |= allow us to consider further simplification rules for multiset patterns.
The proof of the two properties follows immediately from Definition 3.2.

Lemma 3.1. Let (w, {u1, ..., un}) be a basic multiset pattern and v ∈ V∗. Then v |= (w, {u1, ..., un})
iff v |= (w, {ui | ui ∩

∗ w , ∅}).

Using the previous result a basic pattern (w, {u1, ..., un}) can be always simplified into (w, {ui |

ui ∩
∗ w , ∅}).

7

Lemma 3.2. Let (w, {u1, ..., un}) be a basic pattern. If there exists i ∈ {1, ..., n} such that ui ⊆
∗ w,

then for all v ∈ V∗ it holds v 6|= (w, {u1, ..., un}).

Using the previous result a basic pattern (w, {u1, ..., un}) such that ui ⊆
∗ w for some i ∈ {1, ..., n}

can be simplified into false.

3.4. Multiset Patterns for expressing Sufficient and Necessary Conditions
We propose a methodology to compute a sufficient and necessary conditions (expressed as

multiset patterns) for the presence of a multiset u after k evolution steps in a given P system. Both
conditions will be expressed as patterns to be satisfied by the initial multiset w of the P system.

The idea is to define two different operators computing sufficient and necessary predictors by
starting from the pattern (u, {}) and by rewriting it considering the rules of the P system under
investigation.

Since establishing sufficient conditions is the most difficult task, in the next section we start by
defining sufficient predictors.

Necessary predictors will be studied in Section 5.

4. Sufficient Predictors

Here we propose a methodology based on multiset patterns to compute sufficient conditions
for the presence of a multiset u after k evolution steps of a given P system. The sufficient condition
will be expressed as a pattern (called sufficient predictor) to be satisfied by the initial multiset w of
the P system.

The idea is to define an operator that computes the predictor by starting from the pattern (u, {})
and rewriting it by taking into account the set of rules of the P system. The pattern will be rewritten
k times, each time simulating (in an abstract way) a backward step of the P system evolution. At
each step, for each rule that is assumed to be applied, the result will include information of the
rules competing with the selected rule for application.

The definition of the operator that computes a predictor for a multiset u in k steps is quite
complex. We start with the definition of few auxiliary functions and sets. Then, we choose to
introduce the concepts by giving several examples of incremental complexity. Examples will
be alternated with definitions of functions that formalise the introduced concepts. The complete
definition of the operator, together with the related theoretical results and proofs will conclude the
section (see Section 4.6).

4.1. Auxiliary Functions and Sets
Function AppRules gives the set of all possible minimal multisets of rules that lead to the

production of the finite multiset w.

Definition 4.1. Given an alphabet V, we define the function AppRules : V∗ × ℘ f (RV) → ℘ f (R∗V)
as

AppRules(w,R) = {M ∈ R∗ | w ⊆∗
⋃∗

r∈supp(M) prod(r)|M|r ,∀M′ ⊂∗ M : w *∗
⋃∗

r∈supp(M′) prod(r)|M
′ |r}

for all finite w ∈ V∗, R ∈ ℘ f (RV).
8

Example 4.1. Consider the P system Π0 = ({A, B,C,D, E},w0
0,R0) where evolution rules of the set

R0 are:

r0 : AB→ C r2 : C → AC r1 : BD→ C r3 : E → A

We have AppRules(CCA,R0) = {r0r0r3, r0r1r3, r1r1r3, r0r2, r1r2, r2r2}.

In order to simulate a backward step of the P system evolution, consider that a molecule might
be obtained as the product of an applied evolution rule, but it also might be obtained because it
was already present and no rule used it. Of course, this is not possible if there is a rule in the P
system having such a molecule as the only reactant. As a consequence, in order to simulate the
backward step of a P system, we consider an extended set of evolution rules that includes also self
rules rewriting each molecule into itself, for each molecule that is not the only reactant of a rule
of the P system.

Definition 4.2. Given an alphabet V, and a finite set of rules R ⊆ RV , the set of self rules SelfR is
defined as

SelfR = {v→ v | v ∈ V and ∀r ∈ R, react(r) , v}.

Example 4.2. For the P system Π0 of Example 4.1, we obtain

SelfR0
= {r4 : A→ A, r5 : B→ B, r6 : D→ D}.

While the self rule A → A indicate that A can be left unchanged after one evolution step of the
P system Π0, the self rule C → C cannot be introduced, because molecule C can never be left
unchanged by an evolution step of Π0, since if a multiset includes molecule C then rule r2 must be
applied. The same holds for the self rule E → E.

4.2. Competition for Reactants
Example 4.3. Consider the P system Π1 = ({A, B,C,D},w1

0,R1) where the evolution rules R1 are:

r0 : AB→ D r1 : BD→ C

A visual representation of evolution rules in R1 ∪ SelfR1
is given by the graph in Fig 1. The

nodes in the top of the graph represent molecules used as reactants (associated with index 1), while
the nodes in the bottom of the graph represent products (associated with index 2). Reactions are
represented as nodes in the middle of the graph and by the arcs connecting such nodes to reactants
and products. Solid arcs represent the evolution rules in R1, while dashed arcs the evolution rules
in SelfR1

= {r2, r3, r4, r5}.
The graph representation helps us to reason on backward steps of the P system. For instance,

in order to obtain D in one step, we need to have either A and B, or D itself in the previous step.
Moreover, the graph makes explicit the competition of evolution rules on common reactants. For
example, the production of D by rule r0 competes with the application of rule r1 since both rules
have B as a reactant. Similarly, the self rule r5 : D → D competes with rule r1. Note, however,
that the contrary does not hold. Indeed rule r1 does not compete with the self rule r5 : D → D
because self rules represent molecules which are not consumed by the evolutions steps of Π1.

9

r2

A2

A1

r0 r3

B2

B1

r1 r4

C2

C1D1

r5

D2

Figure 1: Rules R1 ∪ SelfR1

The information on competition between evolution rules is essential. Indeed, in order to be
sure that D is present after one step we need to be sure that either r0 has been applied or D was
already present and it has not been consumed by any other evolution rule not producing D.

We now define the function competitor1, which results in the set of evolution rules competing
for reactants with a given evolution rule r which produces a molecule of interest s.

Definition 4.3. Given an alphabet V, we define

competitor1(r,R, s) = {r′ ∈ R | react(r) ∩∗ react(r′) , ∅ and s < prod(r′)},

for any rule r ∈ RV , any finite set of rules R ⊆ RV and any molecule s ∈ V ∩ supp(prod(r)).

A pattern that characterises a sufficient condition for the presence of D after one step can be
easily obtained by combining the reactants of evolution rules producing D (including self rules)
with the information on the reactants of the other evolution rules that compete with them and do
not produce the molecule D.

For the case of Example 4.3, we can express a pattern that characterises a sufficient condition
for the production of D in one step as follows∨

r∈AppRules(D,R1∪SelfR1
)

(react(r), react(competitor1(r,R1,D))

that corresponds to (AB, {BD})∨(D, {BD}). This pattern shows that D can be produced in two ways:
through AB, that are the reactants of r0, or through D itself. In both cases the only competitor is r1,
whose reactants are BD. So in both cases the pattern requires that AB or D remains after removing
instances of BD in a maximal way. In other words, the pattern expresses the condition that either
the multiset includes AB and the instances of B are more than the instances of D, or there is at least
one D and the instances of D are more than the instances of B. Examples of multisets that satisfy
the pattern (leading to the production of D) are ABB, AD, ABBD, etc. If w1

0 satisfies such pattern
then we can be sure that molecule D will be present after one step.

Note that rule r2 is not considered as a competitor since it is a self rule. Such kind of rules are
not considered to compete with other rules since they simply represent molecules that are not used
by actual evolution rules of the P system.

10

In order to perform more than one backward step we will have to generalise the computation of
the pattern representing the sufficient condition for the presence of a single molecule to the case of
a multiset of molecules. For instance, in the case of Example 4.3, performing one more backward
step will require to compute the sufficient condition for the production of AB or of D, that will
then be used to obtain D.

In order to show how to compute a pattern for the presence of a multiset of molecules after one
step, consider, in the case of Example 4.3, the multiset DC. The pattern representing a sufficient
condition for the presence of DC in one step could be obtained by combining the already seen
pattern for the presence of D with analogous pattern for the presence of C, that is (BD, {AB}) ∨
(C, {}). Since D and C are two different molecules (the case of repeated occurrences of the same
molecule is more complex and will be treated separately in Section 4.3) we can combine the two
patterns by simply using conjunction of patterns, thus obtaining:

((AB, {BD}) ∨ (D, {BD})) ∧ ((BD, {AB}) ∨ (C, {})) .

Multisets satisfying the pattern are DC, ABC, ADC, ABBD, etc. Indeed, such multisets allow
us to obtain DC after one step according to the rules in R1. On the other hand, multisets not
satisfying the pattern are for instance ABD, DCB and ABDC. The latter, in particular, could lead
to the production of DC (actually DDC), but also to the production of ACC that does not include
DC.

Example 4.4. Consider now a P system Π2 = ({A, B,C,D},w2
0,R2) where R2 (depicted in Fig 2) is

quite similar to R1 of Example 4.3 with r0 extended with one more product, namely

r0 : AB→ DC r1 : BD→ C

While the sufficient conditions for molecule D to be present after one step are the same as in
the previous example, the condition for the presence of C after one step has to take into account
that now r0 produces C, therefore it does not compete with r1 for the production of C. This is
correctly taken into account by the function competitor1, indeed competitor1(r0,R2,C) = ∅.
Therefore, the pattern for the presence of C in one step, defined as∨

r∈AppRules(C,R2∪SelfR2
)

(react(r), react(competitor1(r,R2,C))) ,

r2

A2

A1

r0 r3

B2

B1

r1r4

C2

C1

D2

D1

r5

Figure 2: Rules R2 ∪ SelfR2

11

turns out to be (AB, {}) ∨ (BD, {}) ∨ (C, {}).

4.3. Competitors Dealing with Multiple Occurrences of Molecules
When multiple occurrences of the same molecule come into the picture, things get quickly

more complicated.

Example 4.5. Consider the P system Π3 = ({A, B,C,D},w3
0,R3) where the evolution rules R3 =

{r0, r1}, depicted in Fig. 3, are

r0 : AB→ D r1 : BC → D

Assume we are interested in the multiset DD. To produce DD in the P system Π3 we may either
apply one rule twice, or the two rules together. The pattern for the presence of DD in one step
cannot be obtained just as a conjunction of a pattern p expressing the sufficient condition for D
with itself, since p ∧ p is equivalent to p.

In order to deal with multiple occurrences of molecules we have to consider, in the computation
of the backward step, the possible multisets of evolution rules that could have been applied in order
to produce such molecules. These multisets of rules are given by the auxiliary function AppRules
defined in Section 4.1.

At a first glance one may think of defining the pattern for the presence of DD in one step as
follows: ∨

n∈AppRules(DD,R3∪SelfR3
)

∧
r∈supp(n)

(react(r)|n|r , react(competitor1(r,R3,D))),

that would give the following result:

(ABAB, {}) ∨ ((AB, {}) ∧ (BC, {})) ∨ ((AB, {}) ∧ (D, {})) ∨ ((BC, {}) ∧ (D, {})) ∨ (BCBC, {})
∨ (DD, {}))

This pattern is however not correct, since it is satisfied by multiset ABC (because ABC |= (AB, {})∧
(BC, {})) that does not lead to DD in one step.

r2

A2

A1

r0 r3

B2

B1

r1 r4

C2

C1

r5

D2

D1

Figure 3: Rules R3 ∪ SelfR3

12

r4

A2

A1

r0 r3r5

B2

B1

r1r2 r6

C2

C1

r7

D2

E1

r8

E2

D1

Figure 4: Rules R4 ∪ SelfR4

The point in this case is that there are two different rules that produce the same product D
competing for the same reactant B. Since more than one instance of D has to be produced, we
have to take also this form of competition into account. To this purpose, we define the function
competitor2.

Definition 4.4. Given an alphabet V, we define

competitor2(r,R, n) = {r′ ∈ R | r′ ∈ supp(n), r′ , r, react(r) ∩∗ react(r′) , ∅}

for any rule r ∈ RV , any finite set of rules R ⊆ RV and any finite multiset n ∈ R∗.

Now, the pattern for DD can be expressed as∨
n∈AppRules(DD,R3∪SelfR3

)

∧
r∈supp(n)

(react(r)|n|r , react(C12))

where C12 = competitor1(r,R3,D) ∪ competitor2(r,R3, n). The formula gives the following
result:

(ABAB{}) ∨ ((AB, {BC}) ∧ (BC, {AB})) ∨ ((AB, {}) ∧ (D, {})) ∨ ((BC, {}) ∧ (D, {})) ∨ (BCBC, {})
∨ (DD, {})

which now correctly models the required property.

4.4. Competition for Products
Example 4.6. Consider the P system Π4 = ({A, B,C,D, E},w4

0,R4) where the evolution rules R4 =

{r0, r1, r2, r3}, depicted in Fig. 4, are

r0 : AB→ D r1 : BC → D r2 : BB→ DD r3 : ACE → D

Assume that, as in Example 4.5, we are interested in the presence of multiset DD after one
step. The multiset DD can be produced by several combinations of rules in R4. Rule r2 has DD as
product, but suffers from the competition of r0 and of r1 that, although producing the same kind of

13

molecule, produce only one instance of such a molecule. Indeed, by starting from multisets ABB
or BBC, we may obtain DD through r2, but we may also obtain only one D, through r0 or r1,
respectively.

Similarly, there are cases in which DD can be obtained by applying r0 and r1 together. Rule
r3, however, may compete with such a combination of rules, since in presence of E it may consume
reactants necessary for the application of r0 and r1 giving only one D as a result.

This example suggests that the concept of competitor has to be enriched with a definition that
takes into account when a rule competes with a multiset of rules n ∈ R∗ that produce more than
one occurrence of a molecule. Intuitively, this occurs when the use of such a rule prevents the
application of a subset of the rules in n without producing an equivalent number of occurrences
of the required molecule. This form of competition is formalised by the function competitor3

defined as follows.

Definition 4.5. Let r ∈ RV , R ⊆ RV , n ∈ R∗ and s ∈ V, we define:

competitor3(r,R, n, s) =

{r′ ∈ R | s ∈ prod(r′), r′ < supp(n), react(r) ∩ react(r′) , ∅,
∃m ⊆∗ n, {r} ⊆∗ m, react(m) ∩∗ react(r′) = react(n) ∩∗ react(r′),
∀m′ ⊂∗ m, react(m′) ∩∗ react(r′) , react(n) ∩∗ react(r′), |prod(m)|s ⊃∗ |prod(r′)|s}.

Assume as before that we are interested in the production of DD in one step. The pattern
expressing a sufficient conditions is then∨

n∈AppRules(DD,R4∪SelfR4
)

∧
r∈supp(n)

(react(r)|n|r , react(C123))

where C123 = competitor1(r,R4,D) ∪ competitor2(r,R4, n) ∪ competitor3(r,R4, n,D). The
formula gives the following result:

((AB, {BC, ACE})∧ (BC, {AB, ACE}))∨ (BB, {AB, BC})∨ ((AB, {ACE, BC})∧ (ACE, {AB, BC}))
∨ ((BC, {ACE, AB}) ∧ (ACE, {BC, AB})) ∨ (DD, {}) ∨ (ABAB, {}) ∨ (BCBC, {}) ∨ (ACEACE, {})

In the obtained pattern, conjunction (AB, {ACE, BC})∧(ACE, {AB, BC}) is not satisfiable, since
on the one hand it requires ABACE to be included in the multiset, but at the same time it requires
BC not to be included. The same holds for (BC, {ACE, AB}) ∧ (ACE, {BC, AB}) with BCACE and
AB. As a consequence, the pattern can be simplified into

((AB, {BC, ACE}) ∧ (BC, {AB, ACE})) ∨ (BB, {AB, BC}) ∨ (DD, {}) ∨ (ABAB, {}) ∨ (BCBC, {})
∨ (ACEACE, {})

According to this pattern, neither multiset ABB nor BBC satisfy it.
This example shows the situation in which the pattern does not describe all multisets that

actually lead to the presence of DD in one step. Indeed, the multiset ABBCE leads to the presence
14

r3

A2

A1

r0 r4

B2

B1

r1 r2

D1

r6

E1

r7 r5

C2

C1

D2 E2

Figure 5: Rules R5 ∪ SelfR5

of DD in one step. What happens in this case is that rule r3 is identified as a competitor of both
r0 and r1. However, in a multiset like ABBCE the application of r3 (that actually prevents r0

and r1 to be applied) causes also r2 to be applied, obtaining DDD as result. This shows that the
proposed notions of competitor are not able to characterise all multisets that lead to the presence
of a required multiset in a given number of steps. In this case it is not able to recognise that the
application of a competitor rule has as side effect the application of some other rules that actually
lead to the desired result.

4.5. Multiple Backward Steps
We now describe how to obtain a pattern that expresses sufficient conditions for the presence

of a molecule after two or more steps starting from patterns expressing sufficient conditions after
one step.

Example 4.7. Let us consider the P system Π5 = ({A, B,C,D, E, F},w5
0,R5) where the evolution

rules in R5, depicted in Fig. 5, are

r0 : AB→ D r1 : BD→ C r2 : ED→ B

Note that rule r0 and r1 are the ones of Example 4.3 and the pattern for the presence of molecule
D, in one step, is the same of the previous example, namely p = (AB, {BD}) ∨ (D, {BD, ED}).
Intuitively, in order to obtain the pattern expressing the sufficient condition for the presence of D
after two steps, we have to consider all the ways a multiset satisfying p can be obtained in one
step.

The pattern p is satisfied by multiset containing A and B, or D. Hence, we could compute the
patterns that predict the presence of A, B and D in one step, and use them to construct a pattern for
the satisfaction of p after one step. In addition to this, we have to pay attention to the competitors
of A, B and D mentioned in p, namely the set {BD, ED}. In order to construct the pattern for the
satisfiability of p in one step we have to consider also all the ways the competitors BD and ED
can be obtained in one step.

We formally define an operator that considers all the possible ways a set of multisets repre-
senting competitors can be obtained in one step.

15

Definition 4.6. Given an alphabet V, we define

Cr(R, {u1,, um}) = {react(n) | n ∈ AppRules(ui,R ∪ SelfR)) and ui ∈ {u1, ..., um}}

for any finite set R ⊆ RV and any set {u1,, um} such that ui is a finite multiset in V∗, for i ∈
{1, ...,m}.

For computing the predictor of D in two step, our starting point is the predictor of D in one
step computed in Example 4.7, that is (AB, {BD})∨(D, {BD, ED}). Now we have to devise in some
way all the multisets that could lead to the previous pattern in one step. This would give all the
multiset patterns that lead to D in two steps.

In order to rewrite the multiset AB in one step, we need to compute the predictors of A in
one step, that is (A, {AB}), and the predictor of B in one step, that is (ED, {BD}) ∨ (B, {AB, BD}).
Moreover, we need to know how we can obtain the competitor of AB and D in one step. To
this aim, we look for the possible rewritings of BD and ED using the operator Cr(.), that is,
Cr(R5, {BD}) = {BD, EDD, ABB} = C5 and Cr(R5, {ED}) = {ED, EAB} = C6. Hence, we can now
construct a pattern that predicts the presence of D in two steps as follows:

((A, {AB} ∪C5) ∧ (ED, {BD} ∪C5)) ∨ (A, {AB} ∪C5) ∧ (B, {AB, BD} ∪C5))
∨ (AB, {BD} ∪C5 ∪C6) ∨ (D, {BD, ED} ∪C5 ∪C6)

Using the result of Section 3.3, the previous multiset pattern can be simplified as follows:

((A, {AB}) ∧ (ED, {BD, EDD}) ∨ (A, {AB}) ∧ (B, {AB, BD}))
∨ (AB, {BD, ABB, EAB}) ∨ (D, {BD, ED}),

where a pattern like (A, {AB, ABB}) is simplified in (A, {AB}), since the presence of ABB in addition
to AB in the set of competitors does not introduce any stronger constraint on molecule A.

The initial multiset AED satisfies the pattern. Indeed, in one step we obtain AB using the only
enabled rule r2 and in two steps we obtain D applying the only enabled rule r0. Consider AEDD
that does not satisfy the pattern, after one step we obtain ABD using the only enabled rule r2 but
also rule r1 is enabled and by applying it we obtain AC that does not contain D.

4.6. Definition of the Main Operator and Theoretical Results
In the previous sections we have described the ingredients for the computation of a pattern

expressing sufficient conditions for the presence of an molecule s after k steps. Now, we formally
define an operator ScΠ that performs such a computation.

The definition is given inductively on the following order on P × IN, (p1, n1) v (p2, n2) iff
n1 < n2 or n1 = n2 and p2 is a multiset pattern more complex than p1, i.e. p2 = p1 ∨ p3 or
p2 = p1 ∧ p3, for some pattern p3.

Definition 4.7. Let Π = (V,w,R) be a P system. We define a function ScΠ : V∗ × IN → P as
follows:

ScΠ(u, k) = ScaΠ((u, {}), k)
16

where the auxiliary function ScaΠ : P × IN→ P is recursively defined as follows:

ScaΠ(p, 0) = p

ScaΠ(p1 ∨ p2, k) = ScaΠ(p1, k) ∨ ScaΠ(p2, k)

ScaΠ(p1 ∧ p2, k) = ScaΠ(p1, k) ∧ ScaΠ(p2, k)

ScaΠ((u, {u1, ..., um}), k) = ScaΠ

(∧
s∈supp(u)

p(s|u|s , {u1, ..., um}), k − 1
)

where

p(si,U) =
∨

n∈AppRules(si,R∪SelfR)

 ∧
r∈supp(n)

(react(r)|n|r ,
⋃

r′∈C123

{react(r′)} ∪ Cr(R,U))

and

C123 = competitor1(r,R, s) ∪ competitor2(r,R, n) ∪ competitor3(r,R, n, s)

Now we present some lemmata that, step by step, lead to the main theorem stating that the
ScΠ(u, k) operator actually computes a pattern representing a sufficient condition for the presence
of u after k steps. In the lemmata and in the main theorem, given two multisets w and w′ and a
set of evolution rules R, we will denote with w →R w′ the fact that w′ can be obtained from w by
applying rules in R in a maximally parallel way.

The first lemma states that the portion of the pattern computed by the operator and defined as
p(si,U) in Def. 5.1 is a predictor for the presence of i instances of molecule s after one step of
evolution of the P system.

Lemma 4.1. Given a P system Π = (V,w0,R), w ∈ V∗ and si ∈ V∗ with s ∈ V and i > 0, if
w |= p(si, {}) then ∀w′ ∈ V∗ such that w→R w′, it holds si ⊆∗ w′.

Proof. By definition, Cr(R, {}) = {}, therefore, in this case, we have
p(si, {}) =

∨
n∈AppRules(si,R∪SelfR)(

∧
r∈supp(n)(react(r)|n|r , {react(r′)|r′ ∈ C123})). Assume now, by

contradiction, that w |= p(si, {}) but there exists w′ such that w →R w′ and si *∗ w′. This implies
that w |=

∧
r∈supp(n)(react(r)|n|r , {react(r′)|r′ ∈ C123}) for at least one multiset n of rules in R∪SelfR

such that si ∈ prod(n).
Let us denote the conjunction

∧
r∈supp(n)(react(r)|n|r , {react(r′)|r′ ∈ C123}) simply as CP. Note

that w |= CP implies that, for each r ∈ supp(n), w ⊇∗ react(r)|n|r . Intuitively, this means that w
could be rewritten applying each rule r ∈ supp(n) for the number of times required by the multiset
n but we still are left to prove that all rules r ∈ supp(n) could be applied simultaneously each one
for the number of times required by the multiset n. Assume, by contradiction that this is not the
case, then there exists at least two rules r and r′′ belonging to n such that react(r)∩react(r′′) , ∅
and such that w +∗ react(r)|n|rreact(r′′)|n|r′′ . Note that at most one can be a self rule s → s.
Assume that if one is a self rule than it is the one called r. As a consequence, we are sure that
r′′ does not belong to SelfR. Since r′′ ∈ R and, by hypothesis, it belongs to n and it is such
that react(r) ∩ react(r′′) , ∅ then, by definition, we have that r′′ ∈ competitor2(r,R, n).
Therefore, when verifying that w |= CP, react(r′′) has to be maximally matched in w before

17

matching with react(r)|n|r . Since w ⊇∗ react(r′′)|n|r′′ but w +∗ react(r)|n|rreact(r′′)|r
′′ |n , this

gives a contradiction. Hence, we can conclude that w ⊇∗ react(r1)|n|r1react(rt)|n|rt for r1, ..., rt ∈

supp(n).
Now assume that w could be maximally rewritten with rules r̃o1

1 ...r̃
oh
h (of R) that, by hypothesis,

give a w′ satisfying v j ∈ w′ ⇒ j < i.
Therefore, there exist some rules in {r1,, rt} such that they are not applied with the multiplic-

ity required by n, when applying r̃o1
1 ...r̃

oh
h . In more detail, the self rule s→ s belongs to such set if

the instances of s in w that are left unchanged when applying r̃o1
1 ...r̃

oh
t are less than the multiplicity

of the self rule s→ s in n.
Among all the rules of {r1,, rt} satisfying the above property, let us consider the case in

which there exists r that also satisfies the following property:

{r̃ | r̃ ∈ {r̃1, ..., r̃h}, s ∈ prod(r̃), r̃ < supp(n), react(r̃) ∩ react(r) , ∅} ⊆ competitor3(r,R, n, s)
(1)

In this case, since r̃o1
1 ...r̃

oh
h is a maximal rewriting of w such that r is not applied with the

multiplicity required by n, it means that
w 6|= (react(r)|n|r , {react(r̃) | r̃ ∈ {r̃1, ..., r̃t}, r̃ , r, react(r) ∩ react(r̃) , ∅}). Since we have
assumed that 1 holds, we have three cases for each r̃ ∈ {r̃1, ..., r̃h} ⊆ R such that r , r̃ and
react(r) ∩ react(r̃) , ∅:

1. s < prod(r̃) then, by definition, r̃ ∈ competitor1(r,R, s).
2. s ∈ prod(r̃), r̃ ∈ n, then, by definition, r̃ ∈ competitor2(r,R, n).
3. s ∈ prod(r̃), r̃ < n, in this case, since we have assumed that (1) holds, we can be sure that

r̃ ∈ competitor3(r,R, n, s).

As a consequence, we have that {react(r̃) | r̃ ∈ {r̃1, ..., r̃h}, r̃ , r, react(r) ∩ react(r̃) , ∅} ⊆
{react(r′) | r′ ∈ C123}. Then, we have a contradiction since, from the last reasoning, we can
conclude that w 6|= (react(r)|n|r , {react(r̃) | r̃ ∈ {r̃1, ..., r̃t}, r̃ , r, react(r)∩react(r̃) , ∅}) but, by
hypothesis, w |= CP and, as a consequence, since r ∈ n, w |= (react(r)|n|r , {react(r′) | r′ ∈ C123}).

Assume now that does not exist an r satisfying (1). This implies that for each ri (with i = 1, ..., t)
there exist (at least one) r̂i

1...r̂
i
zi
∈ {r̃1, ..., r̃h} such that for j = 1, ...zi, r̂i

j , ri, react(r̂i
j)∩react(ri) ,

∅, and r̂i
j < C123. Therefore, for i = 1, ..., t and j = 1, ...zi, by definition, we have that it must

be the case that s ∈ prod(r̂i
j) (otherwise r̂i

j would belong to C1) and r̂i
j < supp(n) (otherwise

r̂i
j would belong to C2) and, for each combination m of rules of n that could not be maximally

applied because we apply r̂i
j, we have that prod(m) ⊆∗ prod(r̂i

j) (otherwise r̂i
j would belong to

C3). For simplicity, let us say that a rule r̂ covers a multiset m ⊆∗ n iff react(m) ∩∗ react(r̂) =

react(n) ∩∗ react(r̂) and, ∀m′ ⊂∗ m, react(m′) ∩∗ react(r̂) , react(n) ∩∗ react(r̂). It is
worth noting that using a rule r̂ ∈ {r̂1

1...r̂
1
z1
,, r̂t

1...r̂
t
zt
} instead of rules r1, ..., rt to rewrite w cannot

give any w′ that does not contain si. This is because for each multiset m of rules r1, ..., rt such that
m ⊆∗ n, if r̂ covers m, then |prod(r̂)|s ⊂∗ |prod(m)|s. Therefore we have a contradiction.

The second lemma states that if a multiset w satisfies p(si,U), then the multiset obtained after
one evolution step will satisfy the basic pattern (si,U).

18

Lemma 4.2. Given a P system Π = (V,w0,R), w ∈ V∗ and a basic pattern (si,U) with s ∈ V and
i > 0, if w |= p(si,U) then ∀w′ ∈ V∗ such that w→R w′, it holds w′ |= (si,U).

Proof. By definition, from w |= p(si,U), it follows w |= p(si, {}). By applying Lemma 4.1 we can
conclude that ∀w′ such that w→R w′, w′ ⊇∗ si. For simplicity assume that w′ ⊇∗ si but w′ +∗ si+1.
The more general case can be obtained by applying the following reasoning more than once.

Assume now, by contradiction, that w′ 6|= (si,U). Then, there must be the case that w′ ⊇∗

uo1
1 , ..., u

ot
t for {u1, ..., ut} = U but w′ +∗ uo1

1 , ..., u
ot
t si. This implies that there exists at least one

u j with j ∈ {1, ..., t} such that s ∈ u j and o j > 0, that is u j ⊆
∗ w′. Consider the multiset of

rules n = r̃õ1
1 ...r̃

õk
k , let us assume there is just one, used to obtain w′ from w where the proper

rule r̃ ∈ SelfR is used to indicate that an occurrence of a molecule is left unchanged. Then
w = pred(r̃1)õ1 , ..., pred(r̃k)õk . Since w′ ⊇∗ u j ⊇

∗ s we can conclude that there exists a mini-
mal multiset of rules m ⊆ n such that prod(m) ⊇∗ u j. Note that m ∈ AppRules(u j,R ∪ SelfR),
therefore react(m) ∈ Cr(R,U) and react(m) ⊆∗ w. Since s ∈ u j, there exists a rule in m, let
us call it r̃h, such that s ∈ prod(r̃h). By react(m) ⊆∗ w, we derive that also react(r̃h) ⊆∗ w.
Therefore, there exists at least one rule r̃h with h ∈ {1, ..., p} such that r̃h ∈ supp(n) such that
w 6|= (react(r̃)|n|r̃ ,

⋃
r′∈C123

{react(r′)} ∪ Cr(R,U)).
Hence, w 6|=

∧
r∈supp(n)(react(r)|n|r ,

⋃
r′∈C123

{react(r′)} ∪ Cr(R,U)).

The following result comes directly from the definition of multiset patterns

Lemma 4.3. If w |= (u, {u1, ..., us}) and w |= (u, {u1, ..., us}) with u∩u = ∅, then w |= (uu, {u1, ..., us}).

Finally, the following lemma states that if a multiset w satisfies the pattern
∧

s∈supp(u) p(s|u|s ,U)
with u a generic multiset, then the multiset obtained after one evolution step will satisfy the basic
pattern (u,U).

Lemma 4.4. Given a P system Π = (V,w0,R), u ∈ V∗, w ∈ V∗ and a basic pattern (u,U) with
u ∈ V∗, if w |=

∧
s∈supp(u) p(s|u|s ,U) then ∀w′ ∈ V∗ such that w→R w′, it holds w′ |= (u,U).

Proof. Assume that w |=
∧

s∈supp(u) p(s|u|s ,U). This implies that w |= p(s|u|s ,U) for each s ∈
supp(u). By Lemma 4.2 we have that ∀w′ such that w →R w′, w′ |= (s|u|s ,U) with s ∈ supp(u).
Therefore, we can conclude that ∀w′ such that w →R w′, w′ |=

∧
s∈supp(u)(s|u|s ,U). Since s

|u|s1
1 ∩

s
|u|s2
2 = ∅ for s1, s2 ∈ supp(u), s1 , s2, by Lemma 4.3, we can conclude that w′ |= (u,U).

Theorem 4.5. Let Π = (V,w0,R) be a P system and let p ∈ P be a multiset pattern. If w0 |=

ScaΠ(p, k) then for any w1, . . . ,wk such that wi∈{1,...,k} ∈ V∗ and w0 →R w1 →R . . . →R wk, it holds
wk |= p.

Proof. Assume that w0 |= ScaΠ(p, k), the proof is by induction on the pair (p, k) considering the
order v on P × IN defined as P × IN, (p1, n1) v (p2, n2) iff n1 < n2 or n1 = n2 and p2 is a multiset
pattern that contains p1.

The base case is when p is a basic multiset pattern p = (u,U) and k = 0. In this case
ScaΠ((u,U), 0) = (u,U), therefore, since by hypothesis w0 |= ScaΠ(p, 0) we have that w0 |= p.

19

For the inductive case, we have that either p is not a basic multiset pattern or p = (u,U) and
k > 0. We consider these cases separately.

• p = p1∧p2. In this case since ScaΠ(p, k) = ScaΠ(p1, k)∧ScaΠ(p2, k), if w0 |= ScaΠ(p, k) then
w0 |= ScaΠ(p1, k) and w0 |= ScaΠ(p2, k). By induction hypothesis, for any w1, . . . ,wk such
that wi∈{1,...,k} ∈ V∗ and w0 →R w1 →R . . . →R wk, it holds wk |= p1 and for any w1, . . . ,wk

such that wi∈{1,...,k} ∈ V∗ and w0 →R w1 →R . . . →R wk, it holds wk |= p2. Hence, we can
conclude that for any w1, . . . ,wk such that wi∈{1,...,k} ∈ V∗ and w0 →R w1 →R . . . →R wk, it
holds wk |= (p1 ∧ p2) = p.

• p = p1 ∨ p2. In this case the proof is analogous to the previous case.

• p = (u,U) and k > 0. In this case since ScaΠ(p, k) =

ScaΠ(
∧

s∈supp(u) p(s|u|s , {u1, ..., ut}), k − 1), if w0 |= ScaΠ(p, k) then
w0 |= ScaΠ(

∧
s∈supp(u) p(s|u|s , {u1, ..., ut}), k − 1). By induction hypothesis, we have that for

any w1, . . . ,wk−1 such that wi∈{1,...,k−1} ∈ V∗ and w0 →R w1 →R . . . →R wk−1, it holds wk−1 |=∧
s∈supp(u) p(s|u|s , {u1, ..., ut}). By Lemma 4.4 we have that ∀wk ∈ V∗ such that wk−1 →R wk, it

holds wk |= (u,U) = p.

We are now ready to state the main result of this paper based on Theorem 4.5.

Corollary 4.6 (Sufficient Condition). Let Π = (V,w0,R) be P system and u ∈ V∗. If w0 |= ScΠ(u, k)
then for any w1, . . . ,wk such that wi∈[1,k] ∈ V∗ and w0 →R w1 →R . . .→R wk, it holds u ⊆∗ wk.

Proof. Since ScΠ(u, k) = ScaΠ((u, {}), k), if w0 |= ScΠ(u, k) then we have that w0 |= ScaΠ((u, {}), k).
By Theorem 4.5 we have that for any w1, . . . ,wk such that wi∈{1,...,k} ∈ V∗ and w0 →R w1 →R . . .→R

wk, it holds wk |= (u, {}). By definition of multiset pattern note that wk |= (u, {}) iff wk ⊇
∗ u.

The corollary essentially states that the pattern computed by the ScΠ operator is a sound suffi-
cient predictor.

Corollary 4.6 proves a righthand implication, that is, if an initial state of a P system satisfies
ScΠ(u, k) then it will surely lead after k steps to a multiset that contains u. The left-hand implication
does not hold for any P systems. Indeed, there can be multisets that do not match the pattern but
still always lead to the presence of u after k steps (see, for example, the discussion of Example 4.6
at the end of Section 4.3).

However, the left-hand implication may hold in some special cases. We can prove that left-
hand implication of Corollary 4.6 holds for P systems containing non-cooperative rules only either
when k = 1 or for any k when the system has the additional property of being strong reversible
[18, 19].

Lemma 4.7. Consider a P system with non-cooperative rules Π = (V,w0,R). Let w ∈ V∗ be a
multiset. If for all w′ such that w →R w′ we have that si ⊆∗ w′, for some s ∈ V and i > 0, then
w |= p(si, {}).

20

Proof. First note that in this case v→ v ∈ SelfR if and only if there does not exists any rule v→ u
with v ∈ V and u ∈ V+.

Assume that for all w′ such that w →R w′ we have that si ⊆∗ w′. Between all the multiset of
rules in R ∪ SelfR that rewrite w in a maximal way, choose one multiset n of rules that produce si

and that satisfies the following conditions:

(i) ∀r ∈ supp(n) there does not exists r′ ∈ supp(n) such that react(r) = react(r′),

(ii) ∀r ∈ supp(n), r′ ∈ R such that react(r) = react(r′) and s ∈ prod(r′) we have that
prod(r)|s ≤ prod(r′)|s,

(iii) n is minimal, i.e. ∀n′ ⊆∗ n, n′ does not produce si.

Note that we can always find an n satisfying (i), (ii) and (iii) since if react(r) = react(r′) implies
that if w ⊇ react(r) then w ⊇ react(r′). Since the multiset of rules n are used to rewrite w, we
can conclude that react(r1)|n|r1react(rm)|n|rm ⊆∗ w for r1,, rm ∈ supp(n).

Observe that n ∈ AppRules(si,R∪ SelfR), since all possible rewritings of w lead to the produc-
tion of si. Consider now the following multiset pattern:∧

r∈supp(n)

(react(r)|n|r ,
⋃

r′∈competitor1(r,R,s)∪competitor2(r,R,n)∪competitor3(r,R,n,s)

{react(r′)} ∪ Cr(R, {})). (2)

Since Cr(R, {}) = {}, we can rewrite multiset pattern 2 as follows,∧
r∈supp(n)

(react(r)|n|r ,
⋃

r′∈competitor1(r,R,s)∪competitor2(r,R,n)∪competitor3(r,R,n,s)

{react(r′)}. (3)

We now prove that ∀r such that r ∈ supp(n),
competitor1(r,R, s) ∪ competitor2(r,R, n) ∪ competitor3(r,R, n, s) = ∅.
Indeed, r′ < competitor1(r,R, s), this is because otherwise there would exist a maximal rewriting
of w using rule r′ instead of rule r but not producing si (see condition (iii)). Moreover, condition (i)
implies that r′ < competitor2(r,R, n), while condition (ii) implies that r′ < competitor3(r,R, n, s).
Therefore multiset pattern (3) boils down to be∧

r∈supp(n)

(react(r)|n|r , {}). (4)

Since react(r1)|n|r1react(rm)|n|rm ⊆∗ w for r1,, rm ∈ supp(n) and multiset pattern 3 is equiv-
alent to 4, we can conclude that w models multiset pattern 2. The last step consists of observing
that multiset pattern 2 is one of the multiset of the disjunction p(si, {}), therefore, since we have
prove that w models 2, we have that w |= p(si, {}).

Theorem 4.8. Consider a P system with only non-cooperative rules Π = (V,w0,R). Let w ∈ V∗ be
a multiset. If for all w′ such that w →R w′ we have that u ⊆∗ w′, for some multiset u ∈ V∗, then
w |= ScΠ(u, 1).

21

Proof. Consider u = so1
1 ...s

om
m where s1, ..., sm ∈ supp(u). Since for all w1 such that w →R w1 we

have that soi
i ⊆

∗ w′ for i ∈ {1, ...,m} then, by Lemma 4.7, we have that w |= p(soi
i , {}). Therefore,

w |=
∧

s∈supp(u) p(soi
i , {}). Then, by definition, we have that w |= ScΠ(u, 1).

When the P system is also strong reversible, i.e. each configuration can be obtained by at most
one single previous configuration, we can prove the following.

Theorem 4.9. Consider a strong reversible P system with non-cooperative rules Π = (V,w0,R).
Let w ∈ V∗ be a multiset. If for all w1, ...,wk such that w →R w1 →R ... →R wk we have that
u ⊆∗ wk, for some u ∈ V∗, then w |= ScΠ(u, k).

Proof. The proof is by induction on k.

Base case: The base case is when k = 1. In this case by applying Theorem 4.8 we have that
w |= ScΠ(u, k).

Inductive case: In this case consider the single configuration wk−1 such that wk−1 →R wk. We
have that w →R w1 →R ... →R wk−1 in k − 1 steps. Consider the set C = {react(n) |
n ∈ AppliedRules(u,R)}. Since P is strong reversible and therefore each configura-
tion can be obtained by at most one single previous configuration, we have that ∀n, n′ ∈
AppliedRules(u,R), react(n) = react(n′). Moreover, react(n) ⊆∗ wk. By inductive
hypothesis, we have that w |= ScΠ(react(n), k − 1).

We are left to prove that ScΠ(react(n), k − 1) is equal to ScΠ(u, k). Note that ScΠ(u, k) is
defined as
ScΠ

(∧
s∈supp(u)

(∨
n∈AppRules(si,R∪SelfR)

(∧
r∈supp(n)(react(r)|n|r ,

⋃
r′∈C123

{react(r′)})
))
, k − 1

)
.

The first observation is that the pattern∧
s∈supp(u)

(∨
n∈AppRules(si,R∪SelfR)

(∧
r∈supp(n)(react(r)|n|r ,

⋃
r′∈C123

{react(r′)})
))

can be simplified in∧
s∈supp(u)

(∧
r∈supp(n)(react(r)|n|r ,

⋃
r′∈C123

{react(r′)})
)
,

for a unique n ∈ AppliedRules(si,R ∪ SelfR) since multiset si can be obtained by at most
one single previous multiset. Moreover, since ∀wk such that wk−1 →R wk we have that
u ⊆∗ wk, together with the assumption that the P system is strong reversible, allow us to
further simplify the latter pattern in∧

s∈supp(u)

(∧
r∈supp(n)(react(r)|n|r

)
.

The last step consists in observing that all rules are non cooperatives, therefore, for a rule r
involved in the production of si ⊆∗ u and a rule r′ involved in the production of vi ⊆∗ u with
s , v, react(r) ∩ react(r′) , ∅ implies that prod(r) = prod(r′) ⊇∗ sv.

Hence, in this case
∧

s∈supp(u)

(∧
r∈supp(n)(react(r)|n|r

)
= react(n). This allows us to conclude

that in this case ScΠ(react(n), k − 1) is equal to ScΠ(u, k).

22

5. Necessary Predictors

As before, we propose a methodology based on multiset patterns to compute necessary condi-
tions for the presence of a multiset u after k evolution steps of a given P system. The necessary
condition will be expressed as a pattern (called necessary predictor) to be satisfied by the initial
multiset w of the P system.

To devise necessary conditions for a multiset u to be present after k steps is a much more easy
task because competition between rules does not need to be taken into account when considering
all the ways a multiset containing u can be obtained.

Example 5.1. Consider again the P system Π5 = ({A, B,C,D, E, F},w5
0,R5) where the evolution

rules in R5, depicted in Fig. 5, are

r0 : AB→ D r1 : BD→ C r2 : ED→ B

In order to obtain the pattern expressing the necessary conditions for the presence of DC after
one step, intuitively we have to consider all the ways we can obtain the multiset DC after one step.
Therefore, the necessary multiset pattern is obtained by considering all the possible combination
of rules that evolves into a multiset containing molecules DC without considering competitions
between rules. In this case the required pattern is given by (DC, {}) ∨ (ABC, {}) ∨ (DBD, {}) ∨
(ABBD, {}). Note that since competition between rules is ignored, in order to obtain CD we do
not need to consider the production of C and D separately. This will simplify the definition of the
operator that computes the necessary predictor.

It is easy to see that if the initial multiset w5
0 evolves into a multiset containing CD then the

initial multiset has to contain at least one multiset between DC, ABC, DBD or ABBD, as required
by pattern (DC, {}) ∨ (ABC, {}) ∨ (DBD, {}) ∨ (ABBD, {}).

When interested to the pattern expressing the necessary conditions for the presence of DC
after two steps, we simply have to find all ways each simple pattern can be obtained. In this
case, the pattern expressing the necessary conditions for the presence of DC after two steps is
(DC, {}) ∨ (ABC, {}) ∨ (DBD, {}) ∨ (ABBD, {}) ∨ (DEDD, {})).

Note that when interested in the presence of a multiset u after a given number of steps, neces-
sary conditions can be used to devise, through complementation, initial multisets that will never
evolve in the required number of steps into a multiset containing u. Indeed, in the previous exam-
ple we can be sure that if a multiset does not contain neither DC nor ABC nor DBD nor ABBD
then it will not able to evolve into a multiset containing CD.

We can now give the definition of the operator NcΠ that computes the necessary predictor. As
for the case of sufficient conditions, the definition is given inductively on the order v on P × IN.

Definition 5.1. Let Π = (V,w,R) be a P system. We define a function NcΠ : V∗ × IN → P as
follows:

NcΠ(u, k) = NcaΠ((u, {}), k)

where the auxiliary function NcaΠ : P × IN→ P is recursively defined as follows:

23

NcaΠ((u, {}), 0) = (u, {})
NcaΠ(p1 ∨ p2, k) = NcaΠ(p1, k) ∨ NcaΠ(p2, k)
NcaΠ(p1 ∧ p2, k) = NcaΠ(p1, k) ∧ NcaΠ(p2, k)

NcaΠ((u, {}), k) = NcaΠ

(∨
n∈AppRules(u,R∪SelfR)

(react(n), {}), k − 1
)

Lemma 5.1. Given a P system Π = (V,w0,R), u ∈ V∗, w′ ∈ V∗ and a basic pattern (u, {}) with u ∈
V∗, if w′ |= (u, {}) then ∀w ∈ V∗ such that w→R w′, it holds that w |=

∨
n∈AppRules(u,R∪SelfR)(react(n), {}).

Proof. We prove that w ⊇∗ react(n) for at least one n ∈ AppRules(u,R∪SelfR). Since w′ |= (u,U)
we have that w′ ⊇∗ u. Now since w →R w′, consider the multiset n of rules of R ∪ SelfR that
when applied to w gave u ⊆∗ w′, where if a molecule s was not produced by a rule but it was
already present in w we consider the self rule s → s in n. Since n was the multiset of rules that
was actually applied to w in order to obtain w′, we can conclude that react(n) ⊆∗ w. Hence,
w |=

∨
n∈AppRules(u,R∪SelfR)(react(n), {}).

Theorem 5.2. Let Π = (V,w0,R) be P system and let p ∈ P be a multiset pattern where the
second element of the pair is always the empty set. If wk |= p then for any w1, . . . ,wk such that
wi∈{1,...,k} ∈ V∗ and w0 →R w1 →R . . .→R wk, it holds w0 |= NcaΠ(p, k).

Proof. Assume that wk |= p, the prove is by induction on the pair (p, k) considering the order v on
P × IN.

Base case: The base case is when p is a basic multiset pattern p = (u, {}) and k = 0. In this case,
by hypothesis w0 |= p, since NcaΠ(p, 0) = p, we have that w0 |= NcaΠ(p, 0).

Inductive case: Here we have that either p is not a basic multiset pattern or p = (u, {}) and k > 0.
We handle these cases separately.

• p = p1 ∧ p2. In this case, if wk |= p this implies that wk |= p1 and wk |= p2. By
inductive hypothesis, for any w1, . . . ,wk−1 such that wi∈{1,...,k} ∈ V∗ and w0 →R w1 →R

. . . →R wk, it holds w0 |= NcaΠ(p1, k) and for any w1, . . . ,wk−1 such that wi∈{1,...,k} ∈ V∗

and w0 →R w1 →R . . . →R wk, it holds w0 |= NcaΠ(p2, k). Hence, since NcaΠ(p, k) =

NcaΠ(p1, k)∧ NcaΠ(p2, k), we can conclude that for any w1, . . . ,wk such that wi∈{1,...,k} ∈

V∗ and w0 →R w1 →R . . .→R wk, it holds w0 |= NcaΠ(p1 ∧ p2, k) = NcaΠ(p, k).

• p = p1 ∨ p2. In this case since wk |= p then either wk |= p1 holds or wk |= p2

holds. Without losing generality assume that wk |= p1. By inductive hypothesis, for
any w1, . . . ,wk such that wi∈{1,...,k} ∈ V∗ and w0 →R w1 →R . . . →R wk, it holds w0 |=

NcaΠ(p1, k). Hence, we can conclude that for any w1, . . . ,wk such that wi∈{1,...,k} ∈ V∗

and w0 →R w1 →R . . .→R wk, it holds w0 |= NcaΠ((p1 ∨ p2), k) = NcaΠ(p, k).

24

• p = (u, {}) and k > 0. In this case by hypothesis, wk |= p. By applying Lemma 5.1 we
have that wk−1 |=

∨
n∈AppRules(u,R∪SelfR)(react(n), {}). By inductive hypothesis, we have

that w0 |= NcaΠ

(∨
n∈AppRules(u,R∪SelfR)(react(n), {}), k − 1

)
.

By definition, NcaΠ

(∨
n∈AppRules(u,R∪SelfR)(react(n), {}), k − 1

)
= NcaΠ((u, {}), k). This

concludes the proof.

Corollary 5.3 (Necessary Condition). Let Π = (V,w0,R) be P system and u,w0 ∈ V∗. If there
exists a wk such that wk ⊇

∗ u, and w0 →R w1 →R . . .→R wk, then it holds that w0 |= NcΠ(u, k).

Proof. Assume that wk |= u, by Theorem 5.2 we have that for any w1, . . . ,wk such that wi∈{1,...,k−1} ∈

V∗ and w0 →R w1 →R . . . →R wk, it holds w0 |= NcaΠ(u, {}, k). Since NcΠ(u, k) = NcaΠ((u, {}), k),
we have that w0 |= ScΠ(u, k). This concludes the proof.

Once more, Corollary 5.3 proves a righthand implication, that is, if there exists a wk such that
w0 →R w1 →R . . . →R wk and wk |= (u, {}), then it holds that w0 |= NcΠ(u, k). In general the
left-hand implication does not hold, that is, there might exist w0 modelling NcΠ(u, k) that do not
lead to the production of u in k steps.

Example 5.2. Consider a P system with just one rule AB→ D. By definition, NcΠ(A, 2) = (A, {}).
Consider the multiset AB and note that AB |= NcΠ(A, 2). However, there does not exists any
maximal rewriting of AB than leads to the production of A in two steps.

The left-hand implication of Corollary 5.3 holds for P systems with non cooperative rules.
This time without any further restriction.

Theorem 5.4. Let Π = (V,w0,R) be P system with non-cooperative rules and let u,w0 ∈ V∗. If
w0 |= NcΠ(u, k) then there exists a wk such that wk ⊇

∗ u, and w0 →R w1 →R . . .→R wk.

Proof. As we have already pointed out, in this case v → v ∈ SelfR if and only if there does not
exists any rule v→ u with v ∈ V and u ∈ V+.

Assume now that w0 |= NcΠ(u, k), the prove is by induction on k.

Base case: The base case is when k = 1. In this case, by definition,
NcaΠ((u, {}), 1) = NcaΠ

(∨
n∈AppRules(u,R∪SelfR)(react(n), {}), 0

)
=

∨
n∈AppRules(u,R∪SelfR)(react(n), {}).

By hypothesis we have that w0 |= NcΠ(u, 1) =
∨

n∈AppRules(u,R∪SelfR)(react(n), {}). Then there
must exists at least one n ∈ AppRules(u,R ∪ SelfR) such that w0 |= react(n). Since a rule,
in this case a self-rule v → v is introduced in SelfR iff there does not exists any rule r′ ∈ R
such that react(r′) = v, we can conclude that w0 →R w1 where if a self rule v → v is used
in the multiset of rules n then it means that v is left unchanged.

Inductive case: In this case, by definition,
NcaΠ((u, {}), k) = NcaΠ

(∨
n∈AppRules(u,R∪SelfR)(react(n), {}), k − 1

)
and

NcaΠ

(∨
n∈AppRules(u,R∪SelfR)(react(n), {}), k−1

)∨
n∈AppRules(u,R∪SelfR) NcaΠ(react(n), {}). By hy-

pothesis we have that

25

w0 |= NcΠ(u, 1) = NcaΠ((u, {}), k) =
∨

n∈AppRules(u,R∪SelfR) NcaΠ(react(n), {}). Then there must
exists at least one n ∈ AppRules(u,R ∪ SelfR) such that
w0 |= NcaΠ(react(n), k − 1). By inductive hypothesis, we have that w0 →R →R wk−1.
Since n ∈ AppRules(u,R ∪ SelfR), we can conclude that w0 →R →R wk−1 →R wk, where
if a self rule v→ v is used in the last step then it means that v is left unchanged, and wk ⊇

∗ u.

This completes the proof.

6. Applications of Predictors

6.1. P Systems as Language Acceptors
Let us consider again the example of the multiset language consisting only of the multiset

A3 discussed in Section 3. An acceptor for such a language can be represented by the P system
Π6 = ({O, A,T, F},w6

0,R6), where R6 consists of the following rules:

r0 : OA3 → T r1 : T A→ F

The acceptor works by assuming that |w6
0|O = 1 and |w6

0|T = |w6
0|F = 0. If |w6

0|A = 3, then in one
step T is produced and it is left unchanged in the second step (actually, the P system terminates
after one step). If |w6

0|A , 3, then either T is not produced, or it is replaced by F in the second step.
As a consequence, T will be present after two steps iff |w6

0|A = 3.
Let us compute the sufficient predictor of T in two steps for the P system Π6 by applying the

ScΠ6 operator:

ScΠ6(T, 2) = ScaΠ6((T, {}), 2) = ScaΠ6((OA3, {T A}) ∨ (T, {T A}), 1)

= ScaΠ6((OA3, {T A}), 1) ∨ ScaΠ6((T, {T A}), 1)

= ScaΠ6((OA3, {T A,OA4}), 0) ∨ ScaΠ6((OA3, {T A,OA4}) ∨ (T, {T A}), 0)

= ScaΠ6((OA3, {T A,OA4}), 0) ∨ ScaΠ6((OA3, {T A,OA4}), 0) ∨ ScaΠ6((T, {T A}), 0)

= (OA3, {T A,OA4}) ∨ (OA3, {T A,OA4}) ∨ (T, {T A})

= (OA3, {T A,OA4}) ∨ (T, {T A}) .

Assumptions |w6
0|T = 0 allow us to simplify the obtained pattern into (OA3, {OA4}). Using now

the assumption |w6
0|O = 1 allows us to model the language A3.

We now compute the necessary predictor of T in two steps by applying the NcΠ6 operator:

NcΠ6(T, 2) = NcaΠ6((T, {}), 2) = NcaΠ6((OA3, {}) ∨ (T, {}), 1)

= NcaΠ6((OA3, {}), 1) ∨ NcaΠ6((T, {}), 1)

= NcaΠ6((OA3, {}), 0) ∨ NcaΠ6(T, {}), 0)

= (OA3, {}) ∨ (T, {}).

Such pattern can be used to devise initial multisets that will never be able to evolve into mul-
tisets containing molecule T . Indeed, if a multiset w6

0 6|= NcΠ6(T, 2) then we can conclude that it
26

cannot evolve in two steps into a multiset containing molecule T . In this case, we are sure that
initial multisets w6

0 such as ∅, A or AA cannot evolve into multiset containing T , thus assuring that
the presence of T depends on more than two occurrences of molecule A.

We now consider an acceptor for the language AnBn. As in Section 3, we start by focusing on
the complement of AnBn, namely AnBm with n , m. Let Π7 = ({O,D, A, B,C,T, F},w0,R7) be a P
system where rules in R7 are:

r0 : AB→ C r1 : AD→ T r2 : BD→ T r3 : O→ D r4 : FT → T

Let us assume that the initial multiset w7
0 contains exactly one F, one O and no instances of T and

of D, namely |w7
0|F = |w7

0|O = 1 and |w7
0|T = |w7

0|D = 0. Under such an assumption, the evolution
Π7 is as follows: in the first step a maximal number of AB pairs are consumed by rule r0 and, at
the same time, molecule O is transformed into molecule D by rule r3. In the second step, if either
some A or some B is still present, that is if the number of A was not the same as the number of
B in the initial multiset, then one instance of T is produced by either r1 or r2. If T is produced, it
causes F to be removed in the third step due to the application of rule r4. As a consequence, after
three steps molecule T is present iff the initial multiset contained different numbers of A and B.
Otherwise, molecule F is present instead of T .

Let us compute the predictor of T after three steps for the P system Π7 by applying the ScΠ7

operator:

ScΠ7(T, 3) = ScaΠ7((T, {}), 3)

= ScaΠ7((T, {}) ∨ (FT, {}) ∨ (BD, {AB}) ∨ (AD, {AB}), 2)

= ScaΠ7((T, {}), 2) ∨ ScaΠ7((FT, {}), 2) ∨ ScaΠ7((BD, {AB}), 2) ∨ ScaΠ7((AD, {AB}), 2)

= ScaΠ7((T, {}), 1) ∨ ScaΠ7((FT, {}), 1) ∨ ScaΠ7((BD, {AB}), 1) ∨ ScaΠ7((AD, {AB}), 1)

∨ ScaΠ7((BO, {AB}), 1) ∨ ScaΠ7((AO, {AB}), 1)

= ScaΠ7((T, {}), 0) ∨ ScaΠ7((FT, {}), 0) ∨ ScaΠ7((BD, {AB}), 0) ∨ ScaΠ7((AD, {AB}), 0)

∨ ScaΠ7((BO, {AB}), 0) ∨ ScaΠ7((AO, {AB}), 0)

= (T, {}) ∨ (FT, {}) ∨ (BD, {AB}) ∨ (AD, {AB}) ∨ (BO, {AB}) ∨ (AO, {AB})

= (T, {}) ∨ (BD, {AB}) ∨ (AD, {AB}) ∨ (BO, {AB}) ∨ (AO, {AB}) .

Note that pattern (T, {}) ∨ (FT, {}) can be simplified to (T, {}) because T ⊆∗ FT :
The assumptions on the absence of T and D and on the presence of O in the initial multi-

set make the obtained pattern equivalent to (B, {AB}) ∨ (A, {AB}), that is exactly the pattern we
identified in Section 3 for AnBm with n , m. Moreover,

NcΠ7(T, 3) = NcaΠ7((T, {}), 3) = NcaΠ7((T, {}) ∨ (FT, {}) ∨ (BD, {}) ∨ (AD, {}), 2)

= (T, {}) ∨ (FT, {}) ∨ (BD, {}) ∨ (AD, {}) ∨ (BO, {}) ∨ (AO, {})

= (T, {}) ∨ (BD, {}) ∨ (AD, {}) ∨ (BO, {}) ∨ (AO, {}) .

27

Again, the assumptions on the absence of T and D and on the presence of O in the initial multiset
make the obtained pattern equivalent to (B, {}) ∨ (A, {}) that allows us to say that any pattern that
does not contain neither molecule A nor molecule B cannot cause the production of T .

For the same P systems Π7, let us now compute the predictor for the presence of F after three
steps. This actually should be a pattern characterising AnBn (that, as we have seen in Section 3,
cannot be expressed by the current version of multiset patterns).

ScΠ7(F, 3) = ScaΠ7((F, {}), 3) = ScaΠ7((F, {FT }), 2) = ScaΠ7((F, {FT, FAD, FBD, FFT }), 1)

= (F, {FT, FAD, FBD, FFT, FAO, FBO}) .

From the assumption on the absence of T and D in the initial multiset we have that the obtained
pattern corresponds to (F, {FAO, FBO}). Moreover, from the assumption on the presence of F and
O we can conclude that the pattern is actually satisfied only when |w7

0|A = |w7
0|B = 0. Hence, the

pattern is a correct predictor (since A0B0 belongs to the AnBn language), but it does not capture all
the initial multisets that would lead to the presence of F in three steps.

The pattern obtained by the proposed operator represents a sufficient condition for the presence
of some molecules after a given number of steps. The last example shows that there are cases
in which a complete condition (without false negatives) cannot be expressed with the current
definition of multiset patterns. However, the limited expressiveness of multiset patterns is not
the only reason for the incompleteness of the ScΠ operator. Indeed, there are also cases in which
the operator fails in computing a complete pattern, even if such a pattern could be expressed. We
have shown this kind of situations in Example 4.6.

6.2. An Application to Gametogenesis
Lake frog (Pelophylax ridibundus Pallas, 1771) and pool frog (Pelophylax lessonae Camer-

ano, 1882) can mate producing the hybrid edible frog (Pelophylax esculentus Linneus, 1758). The
edible frog can coexist with one or both of the parental species giving rise to mixed populations.
Usually the genotypes of P. ridibundus, P. lessonae and P. esculentus are indicated by RR, LL,
and LR, respectively. In Europe there are mainly mixed populations containing P. lessonae and
P. esculentus, called L-E systems. Hybrids in these populations reproduce in a particular way,
called hybridogenesis. Hybridogenesis consists in a particular gametogenetic process in which
the hybrids exclude one of their parental genomes, and transmit the other one, clonally, to eggs
and sperm. This particular way of reproduction requires that hybrids live sympatrically with the
parental species the genome of which is eliminated. In this way hybrids in a L-E system eliminate
the L genome thus producing P. esculentus when mating with P. lessonae, and generating P. ridi-
bundus when mating with other hybrids. Usually P. ridibundus generated in L-E complexes are
inviable due to deleterious mutations accumulated in the clonally transmitted R genome. Because
of inviability of P. esculentus × P. esculentus offspring, edible frog populations cannot survive
alone, but they must act as a sexual parasite of the parental species P. lessonae. In L-E com-
plexes, the reproductive pattern is the one described in the following table, where the subscribed y
indicates the male sexual chromosome.

28

LL LR

LyL LyL LL LyR LR

LyR LR RR not viable

Note that the y chromosome, determining the sex of males, can occur only in the L genome, due
to primary hybridization which involved, for size constraints, P. lessonae males and P. ridibundus
females. The table shows that only one of the three possible matings resulting in viable offspring
produce LL genotypes.

In [24, 25, 26] we studied the dynamics of frog populations by varying a set of biological
parameters. Here we propose a simple example inspired by hybridogenesis in L-E complexes. We
assume to have P. esculentus males and females, represented by P♂

E and P♀
E , respectively, and P.

lessonae males and females represented by P♂
L and P♀

L . For the sake of simplicity we assume
that each frog produces a single gamete. In particular, P. esculentus males produce R♂ gametes,
while P. esculentus females produce R♀ gametes; P. lessonae males produce either L♂ or L♂

y

gametes, and P. lessonae females produce only L♀ gametes. Gametes combine for producing the
next generation of frogs.

The example is formalised by the P system Π8 = (VFrogs,w8
0,RFrogs) where VFrogs contains

all the molecules representing individual frogs and gametes, and the set RFrogs consists of the
following evolution rules:

P♂
E → R♂ P♀

E → R♀ P♂
L → L♂ P♂

L → L♂
y P♀

L → L♀

L♂L♀ → P♀
L L♂R♀ → P♀

E R♂L♀ → P♀
E L♂

y L♀ → P♂
L

L♂
y R♀ → P♂

E R♂R♀ → ∅

We want to check the possibility to obtain a particular frog in two steps. We assume to start from
an initial configuration containing only frogs. This will allow us to discard all patterns which
consider the possibility to have gametes in the initial situation.

First we check whether there is an initial configuration which gives the certainty to obtain a P.
esculentus male, P♂

E , in two steps. We have:

ScΠ8(P♂
E , 2) = ScaΠ8((P♂

E , {}), 2) = ScaΠ8((L♂
y R♀, {L♂

y L♀, R♂R♀}), 1)

= ScaΠ8((P♂
L , {P♂

L , P♂
L P♀

L , L
♂
y L♀, R♂R♀, P♂

E P♀
E }) ∧ (P♀

E , { P♂
L P♀

L , L
♂
y L♀, R♂R♀, P♂

E P♀
E }), 0)

= false ∧ (P♀
E , { P♂

E P♀
E }) = false

In the last step, the first operand of the ∧ operator is always false. Thus there are no initial
multiset of frogs which can ensure the production of a P. esculentus male. Recall that a P. escu-
lentus male can be obtained only by a P. lessonae male producing the gamete L♂

y . Unfortunately
P. lessonae males could all produce the L♂ gamete and no L♂

y .

29

Then we compute the necessary predictor to detect the conditions that cannot surely allow us
to obtain a P. esculentus male in two steps.

NcΠ8(P♂
E , 2) = NcaΠ8((P♂

E , {}), 2) = NcaΠ8((L♂
y R♀, {}), 1) = NcaΠ8((P♂

L P♀
E , {}), 0) = (P♂

L P♀
E , {})

This tells us that the only way a P. esculentus male can be obtained is starting with a P. esculen-
tus female and P. lessonae male. Even if this will not ensure the production of a P. esculentus male
in two steps, it is the only possibility: any other combination will surely not lead to the required
product.

Let us now consider the production of a P. esculentus female, P♀
E , in two steps:

ScΠ8(P♀
E , 2) = ScaΠ8((P♀

E , {}), 2)

= ScaΠ8((L♂R♀, {L♂L♀, L♂
y R♀,R♂R♀}) ∨ (R♂L♀, {L♂

y L♀, L♂L♀ R♂R♀}), 1)

= ScaΠ8((L♂R♀, {L♂L♀, L♂
y R♀,R♂R♀}), 1) ∨ ScaΠ8((R♂L♀, {L♂

y L♀, L♂L♀,R♂R♀}), 1)

= ScaΠ8(((P♂
L , {P♂

L , ...}) ∧ (P♀
E , { ...})), 0)

∨ (ScaΠ8((P♂
E , {P♂

L P♀
L , P

♂
L P♀

E , P
♂
E P♀

E , L
♂
y L♀, L♂L♀, R♂R♀}), 0)

∧ ScaΠ8((P♀
L , {P

♂
L P♀

L , P
♂
L P♀

E , P
♂
E P♀

E , L
♂
y L♀, L♂L♀, R♂R♀}), 0))

= false ∨ (P♂
E , {P♂

E P♀
E }) ∧ (P♀

L , {P
♂
L P♀

L })

The pattern (P♂
E , {P♂

E P♀
E })∧ (P♀

L , {P
♂
L P♀

L }) is satisfied by multisets containing both more P. escu-
lentus males than P. esculentus females and more P. lessonae females than P. lessonae males. For
example an initial multiset containing two P. esculentus males, one P. esculentus female and two
P. lessonae females will produce at least one P. esculentus female in two steps.

By computing the sufficient predictor we discover the conditions that cannot surely allow us to
obtain a P. esculentus female in two steps:

NcΠ8(P♀
E , 2) = NcaΠ8((P♀

E , {}), 2) = NcaΠ8(((L♂R♀, {}) ∨ (R♂L♀, {})), 1)

= NcaΠ8((L♂R♀, {}), 1) ∨ NcaΠ8((R♂L♀, {}), 1) = NcaΠ8((P♂
L P♀

E , { }), 0) ∨ NcaΠ8((P♂
E P♀

L , {}), 0)

= (P♂
L P♀

E , { }) ∨ (P♂
E P♀

L , {})

This tells us that the different ways in which we could produce an P. esculentus male. If we do
not have at least one P. esculentus male and one P. lessonae females or one P. esculentus male and
one P. lessonae females we can not have any P. esculentus male in two steps.

6.3. An Application to Genetics
In cats, the red variants (red or cream) of coat color is due to a gene called O. The O allele

of such a gene induces phaeomelanin (red pigment) to completely replaces eumelanin (black or
brown pigment). The gene is a mutation of the wild o allele which codes for the non-red color
(brown, black, blue, ...).

30

The O gene is sex-linked being located on the X chromosome. Males have only one X chromo-
some, so they have only one allele of this gene: O results in red color, and o results in non-red coat.
Females have two X chromosomes, thus they have two alleles of the gene. OO results in either
red or cream females, oo results in non-red females, and Oo results in tortoiseshell (or blue-cream
when the color is diluted) cats, in which part of the coat color is determined by the O allele and
part by the o one. The reason for this expression of alleles is X − inactivation, a process by which
one of the copies of the X chromosome is inactivated in cells. The choice of which X chromo-
some will be inactivated is random during the embryos development, but once an X chromosome
is inactivated it will remain inactive throughout the lifetime of the cell and its descendants in the
organism. Therefore, since Y is the males sex chromosome, XO is a X chromosome with the O
allele, and Xo is a X chromosome with the o allele, we have the following kinds of cats.

(YXO) red male
(YXo) non-red male

(XOXO) red female
(XOXo) tortoiseshell female
(XoXo) non-red female

In the following table are depicted the possible offspring of cats with different genetics.

(XOXO) (XOXo) (XoXo)

(YXO) (YXO) (XOXO) (YXO) (YXo) (XOXO) (XOXo) (YXo) (XOXo)

(YXo) (YXO) (XoXO) (YXO) (YXo) (XOXo) (XoXo) (YXo) (XoXo)

For example, a red male and a tortoiseshell female can produce either a red or non-red male or
a red or tortoiseshell female.

The example is formalised by the P system Π9 = (VCats,w9
0,RCats) where VCats contains male

and female cats with different colors, represented by the combination of the Y chromosome and
the two different version of X chromosome, and the set RCats consists of the following evolution
rules representing the different possibilities of the previous table:

(YXO) (XOXO) → (YXO) (YXO) (XOXO) → (XOXO) (YXO) (XOXo) → (YXO)
(YXO) (XOXo) → (YXo) (YXO) (XOXo) → (XOXO) (YXO) (XOXo) → (XOXo)
(YXO) (XoXo) → (YXo) (YXO) (XoXo) → (XOXo)

(YXo) (XOXO) → (YXO) (YXo) (XOXO) → (XOXo) (YXo) (XOXo) → (YXo)
(YXo) (XOXo) → (YXO) (YXo) (XOXo) → (XOXo) (YXo) (XOXo) → (XoXo)
(YXo) (XoXo) → (YXo) (YXo) (XoXo) → (XoXo)

Assume we are interested in having a red female after one, two or three generation. By com-
puting the necessary predictor, we discover the conditions that may allow us to have a red female
in one generation:

31

NcΠ9((XOXO), 1) = NcaΠ9(((XOXO), {}), 1) = NcaΠ9(((YXO)(XOXo), {}) ∨ ((YXO)(XOXO), {})), 0)
= NcaΠ9(((YXO)(XOXo), {}), 0) ∨ NcaΠ9(((YXO)(XOXO), {})), 0)
= ((YXO)(XOXo), {}) ∨ ((YXO)(XOXO), {}).

The predictor tells us that the only possibility for having a red female after one generation is to
start with a red male and either a tortoiseshell or red female. No other combination of parents can
lead to the generation of a red female. Indeed, it is not possible to generate a red female starting
either with a non-red male or with a female not having at least one O allele.

Computing the sufficient predictor for allowing us to have a red female in two generations, we
obtain:

NcΠ9((XOXO), 2) = NcaΠ9((XOXO), {}), 2) = NcaΠ9(((YXO)(XOXo), {}) ∨ ((YXO)(XOXO), {}), 1)
= NcaΠ9(((YXO)(XOXo), {}), 1) ∨ NcaΠ9(((YXO)(XOXO), {}), 1)
= NcaΠ9(((YXO)(XOXO)(YXO)(XOXo), {}) ∨ ((YXO)(XOXO)(YXO)(XoXo), {})

∨ ((YXO)(XOXO)(YXo)(XOXO), {}) ∨ ((YXO)(XOXO)(YXo)(XOXo), {})
∨ ((YXO)(XOXo)(YXO)(XOXo), {}) ∨ ((YXO)(XOXo)(YXO)(XoXo), {})
∨ ((YXO)(XOXo)(YXo)(XOXO), {}) ∨ ((YXO)(XOXo)(YXo)(XOXo), {})
∨ ((YXo)(XOXo)(YXO)(XOXo), {}) ∨ ((YXo)(XOXo)(YXO)(XoXo), {})
∨ ((YXo)(XOXo)(YXo)(XOXO), {}) ∨ ((YXo)(XOXo)(YXo)(XOXo), {}), 0)∨

NcaΠ9(((YXO)(XOXO)(YXO)(XOXo), {}) ∨ ((YXO)(XOXO)(YXO)(XOXO), {})
∨ (((YXO)(XOXo)(YXO)(XOXo), {}) ∨ ((YXO)(XOXo)(YXO)(XOXO), {})
∨ ((YXo)(XOXo)(YXO)(XOXo), {}) ∨ ((YXo)(XOXo)(YXO)(XOXO), {})
∨ ((YXO)(XOXO)(YXO)(XOXo), {}) ∨ ((YXO)(XOXO)(YXO)(XOXO), {}), 0)

= ((YXO)(XOXO)(YXO)(XOXo), {}) ∨ ((YXO)(XOXO)(YXO)(XoXo), {})
∨ ((YXO)(XOXO)(YXo)(XOXO), {}) ∨ ((YXO)(XOXO)(YXo)(XOXo), {})
∨ ((YXO)(XOXo)(YXO)(XOXo), {}) ∨ ((YXO)(XOXo)YXO(XoXo), {})
∨ ((YXO)(XOXo)(YXo)(XOXO), {}) ∨ ((YXO)(XOXo)(YXo)(XOXo), {})
∨ ((YXo)(XOXo)(YXO)(XOXo), {}) ∨ ((YXo)(XOXo)(YXO)(XoXo), {})
∨ ((YXo)(XOXo)(YXo)(XOXO), {}) ∨ ((YXo)(XOXo)(YXo)(XOXo), {})
∨ ((YXO)(XOXO)(YXO)(XOXO), {}) ∨ ((YXO)(XOXo)(YXO)(XOXO), {})
∨ ((YXo)(XOXo)(YXO)(XOXo), {}) ∨ ((YXo)(XOXo)(YXO)(XOXO), {})

This new predictor tells us all the ways in which four cats can generate in two generations
a red female. Since we have modelled a situation where each pair generates just one kitten, the
conditions that we obtain says that four distinct (grandparents) cats are necessary. Actually, it is
not mandatory that the cats are all distinct. For example, in the multiset (YXo)(XOXo)(YXo)(XOXo)
the cats involved can be just two, because one pair of cats can generate more than one kitten.

32

// A
**
B

**
C

	 �

Figure 6: An example of gene regulatory network.

Moreover, the multiset (YXO)(XOXO)(YXO)(XoXo) can represent only three cats, since the red male
can be involved in two different matings.

If we observe two generations of cats, it is possible that non-red males generate a red female if
they mate with red or tortoiseshell females (see the pattern ((YXo)(XOXo)(YXo)(XOXo), {})). Indeed,
a black male that mate with a tortoiseshell female can generate either a red male or a tortoiseshell
female, which, in the next generation may generate a red female. Note that, it is not possible for a
red male and a non-red female to generate a red female in two generations; in the predictor there
is not a pattern of the form ((YXO)(XoXo)(YXO)(XoXo), {}), but all patterns involving a pair of red
male and a non-red female ((YXO)(XoXo)) also involve a pair of either black or red male and either
tortoiseshell or red female (see for example the pattern ((YXo)(XOXo)(YXO)(XoXo), {})).

If we ask for the sufficient predictor for having a red female in three generations we obtain
a disjunction of multiset patterns expressing conditions on eight cats. It is easy to see that one
member of the disjunction NcΠ9((XOXO), 3) is the pattern
((YXO)(XoXo)(YXO)(XoXo)(YXO)(XoXo)(YXO)(XoXo), {}). Such pattern tells us that, finally after
three generation, a red female can be obtained even starting from a pair of cats formed by a red
male and a non-red female. It is worth noting that no sufficient predictor can be useful in this
case. Due to the non-determinism, there are no conditions that assure us that a particular kitten is
generated. Indeed, ScΠ9(cat, k) = false for cat ∈ {(YXo), (YXO), (XOXO), (XOXo), (XoXo)} and for
all k. Intuitively this is because the same pair of cats can generate several kinds of kittens.

6.4. Application to Gene Regulatory Networks
Gene regulatory networks are networks of interactions among genes of the same cell aimed at

regulating the activation of specific cell functionalities. More specifically, in a regulatory network
each active gene can either stimulate or inhibit the activation of a number of other genes. Moreover,
the activation of some genes is also usually influenced by other factors such as the availability
of some substances in the environment or the reception of a signal form neighbour cells. As a
consequence, gene regulatory networks can be seen as the mechanisms that allow a cell to react to
external stimuli. When a stimulus is received, it usually changes the activation state of few genes.
This causes, through the regulatory network, a chain of changes in the activation states of other
genes, allowing a new configuration of active genes to be reached.

A gene regulatory network is often represented as a graph like the one in Fig. 6. Nodes of the
graph represent genes and edges represent interaction. Arrows represent the way genes influence
each other. An arrow form a node X to a node Y means that the gene represented by X influences
the activation of the gene represented by Y . If the arrow is normal, it means that X stimulates the
activation of Y . On the other hand, if the arrow is T-shaped, it means that X inhibits the activation
of Y . What happens when the same activation of a gene is concurrently stimulated and inhibited
by other genes can be different for different genes.

33

Gene regulatory networks can be modelled in many ways (see [27] for a survey on this topic).
Modelling techniques can either deal with only the qualitative aspects of such networks (treating
them essentially as logic circuits), or can describe also the quantitative aspects, such as the rates of
the interactions. The latter approach is for sure more precise, but requires many additional details
of the networks dynamics to be taken into account, such as the rates of transcription into RNA
and the translation into proteins of each involved gene. Qualitative models are often sufficient to
reason on the behaviour of the regulatory networks, although with some degree of approximation.

In the qualitative modelling setting, one of the most successful modelling frameworks for
gene regulatory networks are boolean networks. The idea is that each gene is described as a
boolean variable the value of which represents the gene’s activation state. Moreover, each gene is
associated with a boolean function used to compute the value of the variable in terms of the values
of the variables associated with the other genes.

The same interpretation of gene regulatory networks used to model them as boolean networks
may be used to construct models based on P systems. The gene network shown in Fig. 6 can be
formalised by the P system Π10 = (V10,w10

0 ,R10) where
V10 = {A, B,C, AB, Bc,CA,CB, A, B,C, AB, Bc,CA,CB} and the set R10 consists of the following
evolution rules:

A→ AB A→ AB B→ BC B→ BC C → CBCA

C → CBCA CBAB → B CBAB → B CBAB → B CBAB → B
CB → A CB → A BC → C BC → C

For any gene X ∈ {A, B,C} with X we model the fact that the gene is active while X denote
the fact that the gene X is inactive. Moreover, for any X ∈ {A, B,C, A, B,C} and Y ∈ {A, B,C} we
model the effect the active or inactive gene X has on gene Y . Note that, every real evolution step of
the gene network corresponds to two steps of our P system. Moreover, multisets where X and X
(X ∈ {A, B,C}) are both presents do not describe any real possible multiset. If we are interested in
all initial multisets that can lead in one real step to the situation where all three genes are inactive
we have to compute NcΠ10(ABC, 2) as follows.

NcΠ10(ABC, 2) = NcaΠ10((ABC{}), 2) = NcaΠ10(CBCBABBC, {}) ∨ (CBCBABBC{})), 1)

= NcaΠ10(CBCBABBC, {}), 1) ∨ NcaΠ10((CBCBABBC{}), 1)

= NcaΠ10(CCAB, {}), 0) ∨ NcaΠ10((CCAB, {}), 0)

= (CCAB, {}) ∨ (CCAB, {})

The qualitative reading of these results tells us that for having all three genes inactive in one
step we have to start with a configuration having gene C active and gene B inactive.

If we are interested in all initial multisets w10
0 that can lead in two real step to the situation

where all three genes are active we have to compute NcΠ10(ABC, 4) as follows.

34

NcΠ10(ABC, 4) = NcaΠ10((ABC{}), 4) = NcaΠ10((CBCBABBC, {}), 3)

= NcaΠ10((ABCC, {}), 2) = NcaΠ10((CBCBABBC BC, {}), 1)

= NcaΠ10((ABBCC, {})), 0) = (ABBCC, {})

Again, the qualitative reading of the result tells us that for having all three genes active after
four steps we have to start with a initial configuration having gene A active and gene B and C
inactive. Finally, note that since we are interested in a qualitative reading of this last biological
example the sufficient predictor in this case does not model any interesting behaviour of the gene
regulation network.

7. Conclusions and Further Developments

In this paper we studied dynamic causalities in membrane systems by defining the new notions
of sufficient and necessary predictors. These are multiset patterns intended to characterise initial
multisets that surely evolve in multiset containing molecules of interest in a given number of steps
and initial multisets that surely will not evolve in multiset containing molecules of interest in a
given number of steps. This information can be easily exploited to define causal relations. Indeed,
in this paper we presented several biological examples that can be studied and better understood
using our predictors. Moreover, another main contribution of this paper is the definition of multiset
patterns. Multiset patterns have a finite representation but can characterise infinite sets of multisets
such as languages. Multiset patterns seem, at this stage, the right issue to express predictors that
can have several other applications e.g., to define a subclass of P systems with some important
decidable properties.

Further developments of our work include the investigation of multiset patterns under the view-
point of the multiset languages they characterise. Moreover, extensions of multiset patterns could
be studied in order to enrich their expressiveness, this would be useful also to allow a new notion
of predictors to be proposed which satisfies the completeness property (absence of false negatives).

References

[1] R. Gori, F. Levi, Abstract interpretation based verification of temporal properties for bioambients, Inf. Comput.
208 (8) (2010) 869–921.

[2] C. Bodei, R. Gori, F. Levi, An analysis for causal properties of membrane interactions, Electr. Notes Theor.
Comput. Sci. 299 (2013) 15–31.

[3] C. Bodei, R. Gori, F. Levi, Causal static analysis for brane calculi, Theor. Comput. Sci. 587 (2015) 73–103.
[4] N. Busi, Causality in membrane systems, in: Membrane Computing, 8th International Workshop, WMC 2007,

Thessaloniki, Greece, June 25-28, 2007 Revised Selected and Invited Papers, 2007, pp. 160–171. doi:10.

1007/978-3-540-77312-2_10.
[5] R. Brijder, A. Ehrenfeucht, G. Rozenberg, A note on causalities in reaction systems, ECEASST 30.
[6] A. Ehrenfeucht, G. Rozenberg, Reaction systems, Fundamenta informaticae 75 (1-4) (2007) 263–280.
[7] R. Brijder, A. Ehrenfeucht, M. G. Main, G. Rozenberg, A tour of reaction systems, Int. J. Found. Comput. Sci.

22 (7) (2011) 1499–1517.
[8] R. Barbuti, R. Gori, F. Levi, P. Milazzo, Investigating dynamic causalities in reaction systems, Theoretical

Computer Science 623 (2016) 114–145.

35

http://dx.doi.org/10.1007/978-3-540-77312-2_10
http://dx.doi.org/10.1007/978-3-540-77312-2_10

[9] R. Barbuti, R. Gori, F. Levi, P. Milazzo, Specialized predictor for reaction systems with context properties,
Fundamenta Informaticae 147 (2-3) (2016) 173–191.

[10] R. Barbuti, R. Gori, F. Levi, P. Milazzo, Generalized contexts for reaction systems: definition and study of
dynamic causalities, Acta Informatica (2017) 1–41In Press.

[11] G. Pǎun, Computing with membranes, Journal of Computer and System Sciences 61 (2000) 108–143.
[12] G. Păun, Membrane Computing: An Introduction, Natural Computing Series, Springer-Verlag GmbH, 2002.
[13] M. Boreale, D. Sangiorgi, A fully abstract semantics for causality in the pi-calculus, Acta Informatica 35 (5)

(1998) 353–400.
[14] P. Degano, C. Priami, Enhanced operational semantics: a tool for describing and analyzing concurrent systems,

ACM Computing Surveys (CSUR) 33 (2) (2001) 135–176.
[15] N. Busi, Towards a causal semantics for brane calculi, Proceedings of the Fifth Brainstorming Week on Mem-

brane Computing, 97-111. Sevilla, ETS de Ingenierı́a Informática, 29 de Enero-2 de Febrero, 2007.
[16] H. R. Nielson, F. Nielson, H. Pilegaard, Spatial analysis of bioambients, in: International Static Analysis Sym-

posium, Springer, 2004, pp. 69–83.
[17] F. Nielson, H. R. Nielson, C. Priami, D. Rosa, Control flow analysis for bioambients, Electronic Notes in Theo-

retical Computer Science 180 (3) (2007) 65–79.
[18] A. Alhazov, K. Morita, On reversibility and determinism in p systems, in: International Workshop on Membrane

Computing, Springer, 2009, pp. 158–168.
[19] A. Alhazov, R. Freund, K. Morita, Sequential and maximally parallel multiset rewriting: reversibility and deter-

minism, Natural Computing 11 (1) (2012) 95–106.
[20] G. M. Pinna, Reversing steps in membrane systems computations, in: International Conference on Membrane

Computing, LNCS 10725, Springer, 2017, pp. 245–261.
[21] O. Agrigoroaiei, G. Ciobanu, Dual p systems, in: International Workshop on Membrane Computing, LNCS

5391, Springer, 2008, pp. 95–107.
[22] R. Barbuti, R. Gori, P. Milazzo, Multiset patterns and their application to dynamic causalities in membrane

systems, in: Membrane Computing - 18th International Conference, CMC 2017, Bradford, UK, July 25-28,
2017, Revised Selected Papers, 2017, pp. 54–73.

[23] R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, S. Tini, Flat form preserving step-by-step behaviour, Fundamenta
Informaticae 87 (2008) 1–34.

[24] P. Bove, P. Milazzo, R. Barbuti, The role of deleterious mutations in the stability of hybridogenetic water frog
complexes, BMC evolutionary biology 14 (1) (2014) 1.

[25] R. Barbuti, P. Bove, P. Milazzo, G. Pardini, Minimal probabilistic P systems for modelling ecological systems,
Theoretical Computer Science 608 (2015) 36–56.

[26] R. Barbuti, P. Bove, P. Milazzo, G. Pardini, Applications of P systems in population biology and ecology: The
cases of MPP and APP systems, in: 17th International Conference on Membrane Computing (CMC17), LNCS
10105, Springer, 2016, pp. 28–48.

[27] T. Schlitt, A. Brazma, Current approaches to gene regulatory network modelling, BMC bioinformatics 8 (6)
(2007) S9.

36

	Introduction
	Preliminaries
	Multisets
	Membrane Systems

	Multiset Patterns
	Definitions
	Multiset Patterns and Multiset Languages
	Simplification of Multiset Patterns
	Multiset Patterns for expressing Sufficient and Necessary Conditions

	Sufficient Predictors
	Auxiliary Functions and Sets
	Competition for Reactants
	Competitors Dealing with Multiple Occurrences of Molecules
	Competition for Products
	Multiple Backward Steps
	Definition of the Main Operator and Theoretical Results

	Necessary Predictors
	Applications of Predictors
	P Systems as Language Acceptors
	An Application to Gametogenesis
	An Application to Genetics
	Application to Gene Regulatory Networks

	Conclusions and Further Developments
	References

