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Abstract

We investigate the heliocentric in-orbit repositioning problem of a spacecraft propelled by

an Electric Solar Wind Sail. Given an initial circular parking orbit, we look for the heliocen-

tric trajectory that minimizes the time required for the spacecraft to change its azimuthal

position, along the initial orbit, of a (prescribed) phasing angle. The in-orbit reposition-

ing problem can be solved using either a drift ahead or a drift behind maneuver and, in

general, the flight times for the two cases are different for a given value of the phasing

angle. However, there exists a critical azimuthal position, whose value is numerically found,

which univocally establishes whether a drift ahead or behind trajectory is superior in terms

of flight time it requires for the maneuver to be completed. We solve the optimization

problem using an indirect approach for different values of both the spacecraft maximum

propulsive acceleration and the phasing angle, and the solution is then specialized to a

repositioning problem along the Earth’s heliocentric orbit. Finally, we use the simulation

results to obtain a first order estimate of the minimum flight times for a scientific mission

towards triangular Lagrangian points of the Sun-[Earth+Moon] system.
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Nomenclature

a = maximum propulsive acceleration, [mm/s2]

ac = spacecraft characteristic acceleration, [mm/s2]

H = Hamiltonian function

J = performance index

n = number of revolutions

O = primary’s center of mass

r = Sun-spacecraft distance, [ au]

t = time, [ days]

T = orbital period, [ days]

u = radial component of the spacecraft velocity, [ km/s]

v = circumferential component of the spacecraft velocity, [ km/s]

y = dimensionless parameter

α = cone angle, [ deg]

ΔV = velocity variation, [ km/s]

Δθ = phasing angle, [ deg]

λi = adjoint to state i

μ = gravitational parameter, [ km3/s2]

τ = switching parameter

Subscripts

0 = initial, parking orbit
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1 = perihelion, periapse

f = final

max = maximum

⊕ = Earth

� = Sun

Superscripts

· = time derivative

′ = depending on the controls

1 Introduction

The so-called phasing maneuver (or in-orbit repositioning) for a circular orbit is a

classical problem of spaceflight mechanics [1,2]. It is known that such a maneuver

consists in varying the angular position of a spacecraft that initially tracks a

circular orbit of given radius around a celestial body. The phasing maneuver is

usually studied by assuming the application of two or more impulses [1,2], and

the problem is to find the total velocity variation as a function of the required

angular displacement (i.e., the phasing angle) and the total flight time. Such

a maneuver often requires a significant velocity variation and a corresponding

substantial amount of propellant, especially when using a chemical propulsion

system.

To reduce the propellant consumption, a feasible solution is to use a propulsion
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system with a continuous thrust and a high specific impulse, such as a classical

solar electric thruster, or even a more exotic alternative, such as a propellantless

propulsion system. In the latter case the existing literature [3,4,5] already offers

interesting examples in which a photonic solar sail is assumed to perform a

heliocentric phasing maneuver. Within this context, the aim of this work is to

study the performance of a heliocentric phasing maneuver for a spacecraft whose

propulsion system is constituted by an Electric Solar Wind Sail (E-sail). The E-

sail is an innovative form of spacecraft propulsion system that exploits solar

wind plasma momentum by repelling positive ions by means of a number of long

tethers, which are biased to a high positive voltage [6], see Fig. 1.

Using an optimal approach, it is possible to find a numerical relationship between

the phasing angle, the minimum (optimal) flight time and the spacecraft charac-

teristic acceleration, i.e. the maximum propulsive acceleration of the spacecraft

at a distance from the Sun equal to one astronomical unit. In particular, this

paper analyzes the performance of an E-sail-based spacecraft for a mission sce-

nario in which the circular parking orbit approximates the Earth’s heliocentric

orbit, thus extending the previous results of Refs. [3,4,5] that involve a photonic

solar sail-based spacecraft.

The simulation results can also be used to obtain a reasonable approximation

of the flight time required to transfer a spacecraft toward the Lagrange’s tri-

angular points within the Sun-[Earth+Moon] system. Accordingly, the analysis

extends the results discussed in Ref. [7] (where a single value of characteristic

acceleration is considered) and provides a parametric study of the E-sail perfor-

mance for this significant mission scenario. Indeed a mission to the Lagrange’s

triangular points would allow a nearby analysis (possibly using multiple flybys)

of prospective Earth trojan asteroids to be found (hopefully) in a near future.
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Currently, the only known celestial body within this special family is the 2010

TK7 asteroid [8], which is in the proximity of Lagrange’s point L4. This asteroid

is however difficult to reach with a rendezvous mission due to its high orbital

inclination and eccentricity. On the other hand, a mission toward Lagrange’s

point L5 is useful for monitoring the solar wind composition in order to forecast

the geomagnetic disturbances with 4.5 days in advance [9]. Such a mission would

make it possible to increase our knowledge about the interconnections between

Earth and Sun through in-situ measurements [10,11], thus extending the mis-

sion scenarios considered in the Living With a Star Program of NASA. In this

context, an in depth discussion of the scientific implications obtainable with a

helioseismic investigation of the solar magnetism is given in Ref. [12].

The paper is organized as follows. The next section briefly summarizes the con-

flicting requirements between the total velocity variation and the flight time

necessary to obtain a prescribed phasing angle under the assumption of a bi-

impulsive and tangential maneuver. This allows us to quantify the cost of the

maneuver using a chemical thruster. Section 3 illustrates the option offered by

an E-sail to fulfil a phasing maneuver, where the problem is addressed within

an optimal framework by minimizing the total flight time using an indirect ap-

proach. Section 4 summarizes the simulation results obtained by varying both

the reference value of the E-sail propulsive acceleration, and of the (mission)

phasing angle. These results are then applied to different mission scenarios in-

cluding a phasing maneuver along the Earth’s heliocentric orbit, an estimate of

the minimum flight times required to transfer a spacecraft from the Lagrange

points L1 to L4 (or L5), and a discussion about the convenience of using a drift

ahead or a drift behind maneuver. Some final remarks conclude the paper.
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2 Position of the problem

In a simplified mission scenario, the phasing maneuver is constituted by two

impulsive velocity variations, both having the same velocity variation ΔV , and

the transfer trajectory is an ellipse tangent to the circular parking orbit (of

radius r0) at its apocenter or pericenter, see Fig. 2. In particular, the maneuver

is performed by applying two tangential impulses, that is, two impulses along

the direction of the spacecraft orbital velocity vector.

2.1 Mathematical model

The total velocity variation ΔV can be expressed as a function of the phasing an-

gle Δθ ∈ [−π, π] along the circular parking orbit. To that end, let n ∈ N
+ be the

number of revolutions covered by the spacecraft during the phasing maneuver,

and introduce the dimensionless parameter

y � Δθ

2 π n
(1)

It can be verified that the corresponding value of the total velocity variation is

ΔV

v0
= 2

∣∣∣∣∣∣
√√√√2 (1− y)2/3 − 1

(1− y)2/3
− 1

∣∣∣∣∣∣ (2)

where v0 =
√
μ/r0 is the circular velocity along the parking orbit around the

celestial body of gravitational parameter μ, whereas the total flight time Δt is

Δt

T0

= n− Δθ

2 π
with Δθ �= 0 (3)

where T0 is the orbital period of the parking orbit.

The case Δθ > 0 refers to a spacecraft that drifts ahead (case A) a virtual
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point, along the circular orbit, which coincides with the vehicle’s position at the

beginning of the maneuver, see Fig. 2(a). On the other hand, the case Δθ < 0

corresponds to a drift behind maneuver (case B) with respect to the same virtual

point, see Fig. 2(b). Note that the radius r1 of the periapse in the case A (or the

apoapse in the case B) is given by the equation

r1
r0

= 2 (1− y)2/3 − 1 (4)

From the previous results the performance of a phasing maneuver turns out

to be a suitable trade-off among conflicting requirements such as the mission

velocity variation ΔV , the total flight time Δt, and the maximum (or minimum)

admissible distance r1 from the primary’s center-of-mass O.

2.2 Application to a concrete example

The variation of ΔV/v0 with |y|, see Eq. (2), is drawn in Fig. 3. This figure

clearly shows that, for suitable values of y, the total velocity variation of the

maneuver corresponds to a significant fraction of the parking orbit’s circular

velocity v0. In that case the corresponding propellant consumption would imply

a marked variation of the spacecraft mass, taking into account the typical values

of the specific impulse for a chemical (i.e. a high thrust) propulsion system. For

illustrative purposes assume a heliocentric (μ = μ� = 132 712 439 935 km3/s2)

circular orbit of radius r0 = 1 au and v0 � 29.784 km/s, a single-revolution

phasing orbit (i.e. n = 1) and a phasing angle Δθ = 30 deg. From Eq. (1) the

dimensionless parameter is y = 1/12, which implies a required velocity variation

ΔV � 0.06 v0 � 1.8 km/s for a drift ahead maneuver (case A), see also Eq.(2). In

that case, using the rocket equation and assuming a specific impulse of 400 s, the

required propellant mass ratio would be about 37%. Note that the flight time in
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this mission scenario is Δt � 335 days, and the perihelion radius is r1 � 0.887 au,

see Eqs. (3)-(4).

3 The E-sail option

Consider the dynamics of a spacecraft that initially covers a heliocentric circular

orbit with radius r0, and assume that the spacecraft is equipped with a primary

propulsion system constituted by an E-sail. The in-orbit repositioning problem

can be conveniently studied using a polar heliocentric reference frame T (O; r, θ),

in which the angular variable θ is measured counterclockwise starting from the

Sun-spacecraft direction at the beginning of the phasing maneuver (time t =

t0 � 0) and the radial direction coincides, to a first order approximation, with

the propagation direction of the solar wind.

3.1 Mathematical model

The spacecraft dynamics in the polar heliocentric reference frame is described

by the following set of differential equations, see Fig. 4 .

ṙ = u (5)

θ̇ =
v

r
(6)

u̇ = −μ�

r2
+

v2

r
+ τ a0

(
r0
r

)
cosα (7)

v̇ = −u v

r
+ τ a0

(
r0
r

)
sinα (8)

where u and v are, respectively, the radial and circumferential component of

the spacecraft velocity, τ = {0, 1} is the switching parameter, which allows the
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propulsive acceleration modulus to be set equal to zero to account for the pres-

ence of coasting arcs during the orbit transfer, and a0 is the maximum propulsive

acceleration on the circular orbit of radius r0. In particular, the variation law of

the propulsive acceleration with the distance from the Sun is in accordance with

the recent plasma dynamic simulations by Janhunen [13].

Note that a0 coincides with the spacecraft characteristic acceleration ac when the

radius of the parking orbit is one astronomical unit. More precisely, the relation

between a0 and ac is

ac = a0

(
r0
r⊕

)
(9)

where r⊕ � 1 au. Finally, α ∈ [−αmax, αmax] in Eqs. (7)-(8) is the cone angle, i.e.

the angle between the Sun-spacecraft line and the thrust direction. The modulus

of the cone angle is constrained to not exceed an upper bound, which in this

paper is assumed to be αmax � 30 deg.

A set of canonical units is now introduced to reduce the numerical sensitivity in

the integration of the differential equations and to make the simulation results

independent of the radius of the initial parking orbit. The canonical values of

distance (DU) and time (TU) are defined as

DU � r0 , TU �
√√√√ r30
μ�

(10)

Note that a0, when expressed in canonical units, coincides with the ratio of the

propulsive acceleration modulus to the gravitational acceleration modulus along

the parking orbit (the latter being μ�/r
2
0). Recalling that the parking orbit is

circular, the four state variables at time t0 are given by

r(t0) = 1DU , θ(t0) = 0 , u(t0) = 0DU/TU , v(t0) = 1DU/TU

(11)
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while the Sun’s gravitational parameter is unitary, that is, μ� = 1DU3/TU2.

For a given value of a0, the problem is to minimize the time interval Δt = tf

(where tf is the final time) required to accomplish a phasing maneuver of a

prescribed angle Δθ. This amounts to maximizing the scalar performance index

J � −Δt = −tf (12)

where the boundary conditions to be met at the final time are

r(tf ) = 1DU , θ(tf ) = tf

√
μ�

r30
+Δθ , u(tf ) = 0DU/TU , v(tf ) = 1DU/TU

(13)

Using an indirect approach, introduce the Hamiltonian function H, which, re-

calling the equations of motion (5)–(8), is given by

H � λr u+
λθ v

r
+λu

[
−μ�

r2
+

v2

r
+ τ a0

(
r0
r

)
cosα

]
+λv

[
−u v

r
+ τ a0

(
r0
r

)
cosα

]

(14)

where λr, λθ, λu and λv are the adjoint variables associated with r, θ, u and v,

respectively. The time derivative of the generic adjoint variable is obtained from

the Euler-Lagrange equations:

λ̇r � −∂H
∂r

=
λθ v

r2
− λu

[
−v2

r2
+

2μ�

r3
− τ a0

(r0
r2

)
cosα

]
− λv

[u v
r2

− τ a0

(r0
r2

)
sinα

]
(15)

λ̇θ � −∂H
∂θ

= 0 (16)

λ̇u � −∂H
∂u

= −λr +
λv v

r
(17)

λ̇v � −∂H
∂v

= −λθ + 2λu v − λv u

r
(18)

As a consequence of Eq. (16), the adjoint variable λθ turns out to be a constant

of motion.

The two-point boundary value problem (TPBVP) associated to the minimum
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time problem is therefore constituted by the four equations of motion (5)–(8)

and the four Euler-Lagrange equations (15)–(18). The corresponding boundary

conditions are the four initial conditions (11) and the four final conditions (13)

to be calculated at the unknown final time tf . The latter is found by enforcing

the transversality condition that, taking into account Eq. (12) and the second of

Eqs. (13), is written as

H(tf ) = 1 + λθ

√
μ�

r30
(19)

The two control variables (i.e. the switching parameter τ and the cone angle α)

are obtained using the Pontryagin’s maximum principle, by maximizing, at any

time, the portion H′ of the Hamiltonian that explicitly depends on the control

variables, viz.

H′ � τ (λu cosα + λv sinα) (20)

Taking into account the constraint on the maximum value of the cone angle α,

the optimal control law is given by

α =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sign(λv) arccos

⎡
⎣ λu√

λ2
u + λ2

v

⎤
⎦ if arccos

⎡
⎣ λu√

λ2
u + λ2

v

⎤
⎦ ≤ αmax

sign(λv)αmax if arccos

⎡
⎣ λu√

λ2
u + λ2

v

⎤
⎦ > αmax

(21)

and

τ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if (λu cosα + λv sinα) ≥ 0

0 if (λu cosα + λv sinα) < 0

(22)

where sign(�) is the signum function.
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3.2 Numerical Resolution of the problem

For a given pair of mission parameters {a0, Δθ}, the minimum flight time Δt and

the corresponding time histories of the state variables are found by numerically

solving the TPBVP associated to the optimization problem. The approach used

in the solution is described in Ref. [7], while the differential equations have been

integrated in double precision using a variable order Adams-Bashforth-Moulton

solver scheme [14,15] with absolute and relative errors of 10−12.

4 Application to a mission scenario

The optimal performance of a phasing maneuver along a heliocentric circular

orbit of radius r0 has been studied using the approach described in the previous

section. The minimum (optimal) flight time Δt has been numerically calculated

as a function of the maximum propulsive acceleration and of the phasing angle,

which are varied in the ranges a0 ∈ [0.02, 0.5]DU/TU2 and Δθ ∈ [−60, 60] deg,

respectively. Recall, with the adopted convention, that Δθ > 0 implies a drift

ahead maneuver (case A), while Δθ < 0 represents a drift behind maneuver (case

B). Also note that a0 = 0.5DU/TU2 corresponds to a maximum propulsive

acceleration equal to one half the local solar gravitational acceleration at the

beginning (and at the end) of the transfer. In this sense, a value of a0 greater

than 0.5 is well beyond the current potential performance of an E-sail-based

propulsion system for a phasing maneuver involving the heliocentric Earth’s

orbit (i.e. r0 = r⊕).

The simulation results are summarized in Fig. 5(a) for case A, and in Fig. 5(b)

for case B. These two figures represent the contour lines of the surface Δt =
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Δt (a0, Δθ). In both cases, for a given Δθ, there is a marked increase in the

required flight time when a0 is decreased. Also, for a given pair (a0, |Δθ|), the drift

behind maneuver takes advantage of the spacecraft motion along the circular

parking orbit and, as such, always needs a flight time smaller than that required

in a drift ahead maneuver. For example, assuming a propulsive acceleration equal

to a tenth the local gravitational attraction (i.e. a0 = 0.1DU/TU2), a drift ahead

maneuver of 30 deg requires a flight time about 1.2 times the orbital period T0 of

the parking orbit. The same spacecraft could complete a drift behind maneuver

of 30 deg within a flight time of 0.7T0, with a reduction of over 40% of T0

when compared to case A. Recall that a two-impulse phasing maneuver of 30 deg

requires a velocity variation ΔV/v0 equal to 6% (or 5%) for a drift ahead (or

behind).

4.1 Earth’s orbit phasing

The results summarized in Fig. 5 are independent of the radius r0 of the parking

orbit and, therefore, they can be applied to different mission scenarios involving

heliocentric circular parking orbits. The most interesting case concerns a phasing

maneuver along the Earth’s heliocentric orbit. This corresponds to a situation in

which the spacecraft escapes from the Earth’s gravitational field using a parabolic

orbit (relative to the Earth) and, once outside the Earth’s sphere of influence, it

tracks a nearly circular orbit (with a radius r0 = r⊕) around the Sun.

The previous results can be specialized to this noteworthy scenario by simply

observing from Eq. (9) that in this case a0 coincides with the E-sail characteristic

acceleration ac. In particular, the analysis involves different values of the char-

acteristic acceleration, which is assumed to range in the interval [0.1, 1]mm/s2.
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The upper bound of the interval reflects the value that is estimated to be reached

by the E-sail technology in a near future. The simulation results have been col-

lected with the aid of contour lines of the function Δt = Δt(ac, Δθ) and are

shown in Fig. 6. The characteristic acceleration ac is parameterized with a step

variation of 0.1mm/s2.

4.2 Reaching triangular Lagrangian points

An interesting conclusion can be deduced by carefully analyzing the previous

results. Consider an E-sail with a characteristic acceleration ac = 1mm/s2 and

assume that the phasing angle to be met is |Δθ| = 60 deg. From Fig. 6(a) the

required flight time for a drift ahead maneuver is 450 days, while it reduces to

about 286 days for a drift behind maneuver, see Fig. 6(b). These flight times

are nearly coincident with those obtained in Ref. [7] for an optimal transfer

between the two classical Lagrange points L1 → L4 (445 days), and L1 → L5

(287 days) of the Sun-[Earth+Moon] Circular Restricted Three-Body Problem

(CRTBP). Note that the simulation results in Ref. [7] were obtained assuming a

three-dimensional dynamics and taking into account the gravitational attraction

of both the Sun and that of Earth+Moon planetary system. The similarity of

the results of this paper with those of Ref. [7] is by no means surprising. As a

matter of fact, the Sun and the triangular Lagrangian points (L4 and L5) are at

the vertices of an equilateral triangle with a side equal to 1 au, while L1 is along

the Sun-Earth line at a distance of about 0.99 au from the star, see Fig. 7.

Therefore, neglecting the Earth+Moon gravitational attraction (thus reducing

the problem to a two-body motion involving the Sun and the spacecraft only)

and approximating the L1 point location with a distance equal to r⊕ from the
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Sun, the transfer L1 → L4 is nearly coincident with a drift ahead maneuver of

an angle Δθ = 60 deg, while the transfer L1 → L5 is close to a drift behind

maneuver of an angle Δθ = −60 deg. More generally, using the results shown in

Fig. 6 when |Δθ| = 60 deg, it is possible to have a first order estimate of the

minimum flight times required to transfer a spacecraft from L1 to L4 or from

L1 to L5 as a function of the magnitude of the characteristic acceleration. These

data, reported in Fig. 8, extend the results discussed in Ref. [7] that were confined

to a single value of spacecraft characteristic acceleration only, i.e. ac = 1mm/s2.

In particular, Fig. 8 points out the marked nonlinear relation between minimum

flight time and spacecraft characteristic acceleration. For example, a character-

istic acceleration reduction of a factor two, from 1mm/s2 to 0.5mm/s2 (possibly

due to a doubling of the spacecraft launch mass) would imply a flight time in-

crease of 25% in a transfer to L5 (corresponding to a total flight time of about

353 days), but a time increase of 12% only in a transfer to L4 (with a total flight

time of 504 days). Note that the flight time sensitivity to a variation of the char-

acteristic acceleration tends to decrease by increasing the value of ac, that is, by

improving the performance of the propulsion system.

The shape of the transfer trajectory, for a fixed phasing angle Δθ, is strongly

dependent on the value of the characteristic acceleration. A significant example

of the different trajectories that can be obtained is illustrated in Fig. 9, which

shows the results when ac = {0.1, 1}mm/s2, for the two cases of either drift

ahead maneuver with Δθ = 60 deg (see Fig. 9(a)), or a drift behind maneuver

with Δθ = −60 deg (Fig. 9(b)). Note that the trajectories of Fig. 9 are drawn

in a reference frame that rotates around the Sun with an angular velocity equal

to that of the Earth’s circular orbit. In particular, the E-sail trajectories reveal

the existence of coasting phases during the transfer, whose number and length
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depend both on the phasing type (ahead or behind maneuver) and on the charac-

teristic acceleration value. Note that in a drift ahead maneuver the trajectory is

inside the Earth’s circular orbit, while in a drift behind maneuver the spacecraft

distance from the Sun is always greater than r⊕, and the shape of the transfer

trajectory for the case ac = 1mm/s2 is very close to that found in Ref. [7].

4.3 Choosing between drift ahead and drift behind in a mission design

The simulation results have another interesting application. Assume that a given

point along the circular parking orbit, characterized by an angular distance Δθ ∈

(0, 360) deg from the initial position, is to be reached either with a drift ahead

maneuver (therefore Δθ ≡ Δθ), or with a drift behind maneuver (that is, Δθ =

360 − Δθ). It has been shown that, the characteristic acceleration being the

same, the performance is remarkably different for the two phasing maneuvers. It

is therefore possible to look for the value Δθ below which a drift ahead maneuver

is better (i.e., it requires smaller flight times) than a drift behind maneuver. An

example is shown in Fig. 10, which illustrates the minimum flight time as a

function of Δθ for a characteristic acceleration ac = 1mm/s2.

Figure 10 shows that when Δθ > 160 deg, the final position along the circular

orbit being the same, a drift behind maneuver guarantees a flight time less than

that required by a drift ahead maneuver. This is a counterintuitive and useful

result, as it gives, with a reduced computational time, a precise information on

the best strategy to be used in this mission scenario.

16 of 30



5 Conclusions

The conducted analysis and the numerical simulations show that the Electric

Solar Wind Sail is a potentially interesting option for an in-orbit repositioning

problem of a spacecraft placed along a circular heliocentric orbit. The intrinsic

capability of this propulsion system to produce a propulsive thrust without the

use of propellant, guarantees the possibility of overcoming the limitations of

conventional propulsion systems related to the large velocity variations they

require to perform the maneuver. The flight times required to complete the

transfer are comparable to that necessary for a two-impulse maneuver, using a

propulsion system with medium-low performance.

The proposed method gives interesting information involving a transfer mission

to the triangular Lagrange’s points of the Sun-[Earth+Moon] system, with a

reduced amount of simulation time. The parametric approach allows the sensi-

tivity to mission performance to be estimated as a function of the propulsion

system performance (expressed in terms of characteristic acceleration modulus).

The obtained results are a good starting point for a more refined analysis of a

transfer toward the triangular Lagrange’s points, which could take into account,

for example, the spatial-temporal irregularity of the solar wind.
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Figure 1. In-orbit repositioning of a E-sail-based spacecraft: conceptual scheme. We
assume a radial direction of the solar wind plasma propagation.
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Figure 2. In-orbit repositioning with a two-impulse, tangential, phasing orbit. The
parking orbit is circular and the spacecraft covers an inner (outer) phasing orbit when
a drift ahead (behind) is considered.
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Figure 3. Dimensionless velocity variation ΔV/v0, where v0 is the parking circular orbit
speed, as a function of the phasing angle in a two-impulse mission case, see Eq. (2).
Case A (or B) refers to a drift ahead (or behind).
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Figure 5. Dimensionless minimum flight time Δt/T0, where T0 is the parking orbit
period, as a function of the maximum propulsive acceleration a0 and phasing angle
Δθ.
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(b) Drift behind maneuver.

Figure 6. Earth’s orbit phasing mission scenario: minimum flight time as a function of
the characteristic acceleration ac and phasing angle Δθ.
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Figure 7. Approximate positions of the classical Lagrangian points L1, L4 and L5 in
the Sun-[Earth+Moon] planetary system.
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Figure 8. Approximate minimum flight time between Lagrangian points L1 and L4

(or L5) of the Sun-[Earth+Moon] planetary system, as a function of the characteristic
acceleration ac.
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Figure 9. Optimal phasing transfer trajectories when ac = {0.1, 1} mm/s2 (solid line:
thruster on; dashed line: thruster off).
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Figure 10. Earth’s orbit phasing mission scenario: minimum flight time as a function
of the phasing angle Δθ, for a canonical value of the characteristic acceleration (ac = 1
mm/s2).
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