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ABSTRACT 17 

Most beneficial services provided by arbuscular mycorrhizal fungi (AMF), encompassing improved crop performance 18 

and soil resource availability, are mediated by AMF-associated bacteria, showing key plant growth promoting (PGP) 19 

traits, i.e. the production of indole acetic acid, siderophores and antibiotics, and activities increasing the availability of 20 

plant nutrients by nitrogen fixation and phosphate mobilization. Such functions may be affected by the ability of AMF-21 

associated bacteria to communicate through the production and secretion of extracellular small diffusible chemical 22 

signals, N-acyl homoserine lactone signal molecules (AHLs), that regulate bacterial behaviour at the community level 23 

(quorum sensing, QS). This work investigated the occurrence and extent of QS among rhizobia isolated from AMF spores, 24 

using two different QS reporter strains, Agrobacterium tumefaciens NTL4 pZRL4 and Chromobacterium violaceum 25 

CV026. We also assessed the quorum quenching (QQ) activity among Bacillus isolated from the same AMF spores. Most 26 

rhizobia were found to be quorum-signalling positive, including six isolates producing very high levels of AHLs. The 27 

results were confirmed by microtiter plate assay, which detected 65% of the tested bacteria as medium/high AHL 28 

producers. A 16S rDNA sequence analysis grouped the rhizobia into two clusters, consistent with the QS phenotype. 29 

None of the tested bacteria showed QQ activity able to disrupt the QS signalling, suggesting the absence of antagonism 30 

among bacteria living in AMF sporosphere. Our results provide the first evidence of the ability of AMF-associated 31 
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rhizobia to communicate through QS, suggesting further studies on the potential importance of such a behaviour in 32 

association with key-plant growth-promoting functions. 33 

 34 
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lactones production; quorum quenching; reporter strains.  36 

 37 

INTRODUCTION 38 

The agroecosystem services and beneficial activities provided by arbuscular mycorrhizal (AM) fungi (AMF) can be 39 

mediated by a third component of the symbiosis, the microbiota living intimately associated with fungal structures, such 40 

as spores, sporocarps and extraradical hyphae (Azcon-Aguilar and Barea 2015; Barea et al. 2002; Rouphael et al. 2015). 41 

Several molecular studies, utilizing PCR-denaturing gradient gel electrophoresis (DGGE), have revealed the complexity 42 

and diversity of bacterial communities associated with the spores of different AM fungal species (Long et al. 2008; Roesti 43 

et al. 2005). PCR-DGGE analyses have also revealed the occurrence of specific and diverse microbial communities tightly 44 

associated with the spores of six different AMF isolates, consisting of bacteria belonging to Actinomycetales, Bacillales, 45 

Rhizobiales, Pseudomonadales, Burkholderiales, and endobacteria  related to the Mollicutes (Mre) (Agnolucci et al. 46 

2015). Other studies, focused on the isolation and characterization of AMF-associated microorganisms, have reported the 47 

occurrence of dense and active bacterial communities able to promote mycorrhizal establishment and biological control 48 

of soilborne pathogens, fix nitrogen, and provide nutrients and growth factors (Alonso et al. 2008; Azcon-Aguilar and 49 

Barea 1996, 2015; Barea et al. 2002). Recent studies have reported the isolation of bacteria associated with the spores of 50 

the AMF species Rhizophagus intraradices, showing multiple functional Plant Growth Promoting (PGP) traits, such as 51 

siderophore and indole acetic acid (IAA) production, phosphorus (P) solubilization from inorganic and organic sources 52 

and nitrogen fixation (Battini et al. 2016b) and producing large increases in the uptake and translocation of P from the 53 

soil to the host plant (Battini et al. 2017). Some of them were able to improve the biosynthesis of plant health-promoting 54 

secondary metabolites and to affect the expression levels of transcripts encoding for key enzymes involved in their 55 

biosynthetic pathways (Battini et al. 2016a). 56 

So far, nothing is known about the ability of AMF-associated bacteria belonging to the same species to 57 

communicate with one another through the production and secretion of extracellular small diffusible chemical signals, 58 

called autoinducers, that regulate their behaviour at the community level, i.e. quorum sensing (QS) (Fuqua et al. 1994). 59 

Such signalling molecules are represented by N-acyl homoserine lactones (AHLs) in Gram-negative bacteria, by a family 60 

of small oligopeptides in Gram-positive bacteria and by other molecules (autoinducer-2) in both Gram-positive and 61 

negative bacteria (Miller and Bassler 2001). QS can control the expression of many genes responsible for different 62 
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bacterial activities and functional traits, such as swarming and motility, biofilm formation, bioluminescence, plasmid 63 

conjugal transfer and virulence, metabolite production, as well as the production of antibiotics, siderophores and 64 

exoenzymes, and symbiotic interactions (Hartmann and Schikora 2012). As AMF-associated bacteria are able to carry 65 

out many of the described activities, some of which are necessary for the optimal performance of mycorrhizal plants, 66 

investigations able to reveal their QS phenotype are important and highly relevant. 67 

Studies on the diversity of AHL-producing bacteria have focused on many diverse habitats, but only a few have 68 

investigated the occurrence and diversity of AHL-producing bacteria in the soil environment and in particular in the 69 

rhizosphere (Chan et al. 2011). So far, the details of QS processes taking place in the diverse bacterial species and strains 70 

isolated from the mycorrhizosphere, and in particular from AMF spores, remain to be unravelled.  71 

The aim of the present study was to assess the occurrence and extent of QS among bacteria living associated 72 

with AMF spores. To this aim, we screened 28 Gram-negative bacteria previously isolated from the spores of Rhizophagus 73 

intraradices IMA6, for AHL production, using two different QS reporter strains, Agrobacterium tumefaciens NTL4 74 

pZRL4 (sensitive to medium, long chain AHLs) and Chromobacterium violaceum CV026 (sensitive to short chain AHLs). 75 

In addition, using the latter reporter, we evaluated the ability of 9 Gram-positive bacteria isolated from the same ecological 76 

niche, to interfere with QS, a process generally described as ‘quorum quenching’ (QQ), by assessing their ability to 77 

degrade AHLs.  78 

 79 

MATERIALS AND METHODS 80 

Bacteria  81 

The bacteria utilized in this work were previously isolated from the Rhizophagus intraradices IMA6 sporosphere (Battini 82 

et al. 2016b) and maintained in the collection of the Microbiology Labs of the Department of Agricultural, Food and 83 

Environment, University of Pisa, Italy (International Microbial Archives, IMA). Among the heterotrophic isolates 84 

showing the mucoid morphotype and originating from TSA medium (tryptic soy agar) 28 Gram-negative bacteria were 85 

screened for AHL production. For AHL degradation, 9 Gram-positive bacteria morphologically ascribed to Bacillaceae 86 

were selected. All the bacterial isolates were molecularly analysed by 16S rRNA gene sequencing (Supplementary 87 

material, SM, Tables 1 and 2), except four of them (TSA3, TSA26, TSA41, TSA50), which had been previously identified 88 

(Battini et al. 2016b).  89 

  90 

Extraction of total DNA, PCR analysis and sequencing 91 
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Genomic DNA was extracted from bacterial liquid cultures grown overnight at 28 °C using “MasterPureTM Yeast DNA 92 

Purification Kit” (Epicentre®) following the manufacturer’s protocols. Bacterial isolates were identified based on 16S 93 

rDNA sequencing, as reported by Battini et al. (2016b). 94 

 95 

Nucleotide sequence accession numbers  96 

The sequences of 16S rRNA genes were submitted to the European Nucleotide Archive (ENA) under the accession 97 

numbers from LT984816 to LT984840 and from LT984844 to LT984851. 98 

 99 

Screening for AHL-producing bacteria  100 

The 28 Gram-negative bacteria were screened for AHL production using the AHL reporter strains Agrobacterium 101 

tumefaciens NTL4 pZRL4 and Chromobacterium violaceum CV026 by microtiter plate assays (McClean et al. 1997; 102 

Shaw et al. 1997; Trovato et al. 2014). Bacteria were grown at 28 °C overnight with continuous shaking (120 rpm) on LB 103 

broth until the exponential growth phase was reached and then centrifuged at 7,500 rpm for 10 min. A volume of 1 mL 104 

of supernatant was transferred to a 1.5 mL Eppendorf tube and stored at -20 °C. Two mL of A. tumefaciens NTL4 105 

preculture were inoculated in a 50 mL tube containing 18 mL of AB liquid medium (3 g/L K2HPO4, 1 g/L NaH2PO4, 1 106 

g/L NH4Cl, 0.3 g/L MgSO4, 0.15 g/L KCl, 0.01 g/L CaCl2, 2.5 m g/L FeSO4, 0.5% glucose) supplemented with gentamycin 107 

(30 µg/mL) and incubated at 28 °C with continuous shaking (120 rpm) for 24 h. A volume of 16.75 mL of bacterial 108 

culture was mixed with AB agar (33.25 mL, 0.7% Agarose I; Euroclone) containing 5-Bromo-4-chloro-3-indolyl b-d-109 

galactopyranoside (X-Gal; 20 mg/mL) and gentamycin (30 µg/mL) previously melted and cooled at 43 °C. Aliquots of 110 

200 μL of A. tumefaciens/AB agar mixture were poured in each of the wells of a sterile 96-well microtiter plate (Cellstar, 111 

Greiner bio-one, Kremsmuenster, Austria). Upon solidification, 10 μL of overnight culture supernatant grown and 112 

harvested as described above, were dispensed over the agar in the wells and incubated for 24 h at 30 °C. Negative control 113 

wells contained 10 µL of sterile LB growth medium, while the medium amended with 10 µL of a 10 ng/µL solution of 114 

N-octanoyl-L-homoserine lactone (OHL; Fluka Chemie GmbH Buchs, Switzerland) and subsequent fivefold stepwise 115 

dilutions, was used as positive control. Bacteria able to produce AHL could be identified by the activation of the reporter 116 

strains through blue coloration. Digital images of the results were acquired directly on an Epson Perfection 1240U flatbed 117 

digital scanner. The bacterial isolates were further screened for the production of AHL by plate assay on TSA agar using 118 

the bioreporter strain C. violaceum CV026. Briefly, the isolates were streaked against the reporter strain in a perpendicular 119 

manner, incubated at 28 °C for 24 h and observed for violet colouration due to the induction of violacein pigment in the 120 

reporter strain. C. violaceum CV026 streaked against itself was used as a negative control. Isolates testing positive to the 121 
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qualitative tests were subsequently analyzed for semi-quantitative AHL production by the same microtiter assay upon 122 

performing serial 10:1 serial dilutions of the supernatants. 123 

 124 

AHL degradation assay 125 

The QQ activity was assessed in solid plate assays carried out with the AHL biosensor C. violaceum CV026 (McClean et 126 

al. 1997; Romero et al. 2011). The 9 bacterial isolates were grown in 1 mL of TSA at 28 °C and 200 rpm for 24 h. A 127 

volume of 40 μL of a stock solution (50 μg/mL) of N-octanoyl-L-homoserine lactone (OHL; Fluka Chemie GmbH Buchs, 128 

Switzerland) were added to achieve a final concentration of 2 μg/mL, and incubated for further 24 h. In order to detect 129 

the inhibition of OHL activity, 50 μL of the supernatants were spotted in wells made in TSA plates overlaid with 5 mL 130 

of a 1:100 dilution of an overnight culture of C. violaceum CV026 in soft TSA (0.8% agar). Sterile water, sterile TSA 131 

growth medium and OHL were used as negative controls. The formation of halo zones around wells indicated the capacity 132 

of the bacteria to degrade OHLs after 24 h, eliminating the violacein production. 133 

 134 

RESULTS 135 

Identification of bacteria  136 

Among the 37 bacteria analysed, 33 of them were 16S-sequenced and affiliated to genus and species using BLAST, 137 

together with the four bacteria previously sequenced (Battini et al. 2016b). The 25 Gram-negative bacteria belonged to 138 

Sinorhizobium meliloti (Table S1), while the 8 Gram-positive ones were affiliated to Bacillus and Fictibacillus spp. (Table 139 

S2). 140 

 141 

Screening for AHL-producing bacteria (Quorum sensing) 142 

Most of the isolates were found to be quorum-sensing positive in one or both AHL assays, but they showed different 143 

response patterns to the two AHL reporter strains. Specifically, A. tumefaciens NTL4 detected 23 out 28 bacteria (82%) 144 

as AHL producers, while C. violaceum CV026 detected 14 out of 28 bacteria (50%) as AHL producers. The bacteria 145 

unable to produce AHL (S. meliloti TSA 22, 95, 99, 107, 137), as revealed by both reporter strains, were not further 146 

investigated. According to the colour pattern observed in the semi-quantitative bioassay performed with A. tumefaciens 147 

NTL4, 15 out of 23 (65%) and 8 out of 23 (35%) of the tested bacteria showed medium/high and low production of signal 148 

molecules, respectively (Table 1). The semi-quantitative test did not reveal short signal molecules for 9 (39%) of the 149 

rhizobia tested, consistently with the qualitative assay (Table 1). It is interesting to note that 16S rDNA sequence analysis 150 

detected two clusters, corresponding with the level of AHL production (high versus low producers). Accordingly, the 151 

non-short chain AHL producing strains, as assessed by C. violaceum CV026, grouped together in the second cluster (Fig. 152 
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1). The sequences of the tested bacteria were aligned, revealing two base changes, CT at positions 1026 and 1146, 153 

referring to the 16S rRNA gene of Escherichia coli. 154 

 155 

AHL degradation assay (Quorum quenching) 156 

The reporter strain AHL biosensor C. violaceum CV026, producing violacein in response to the presence of short-chain 157 

AHLs, revealed that none of the tested Gram-positive bacteria was capable of interfering with AHL activity in the plate 158 

bioassay. 159 

 160 

DISCUSSION 161 

This work provides the first evidence of the ability of rhizobia living associated with AMF spores to communicate through 162 

the production of extracellular small diffusible signalling molecules, able to regulate their behaviour at the community 163 

level, as most of the tested isolates showed the quorum sensing phenotype.  164 

The 28 tested bacteria utilized in this work, previously isolated from AMF spores, belonged to S. meliloti. Their 165 

occurrence in association with AMF may be ascribed to their ability to produce exopolysaccharides and to form biofilms, 166 

thus allowing an efficient colonization of roots and mycorrhizal hyphae (Toljander et al. 2006). It is important to note 167 

that, beyond biological nitrogen fixation, rhizobia produce phytohormones, improving plant nutritional status and 168 

biocontrolling phytopathogens (Chandra et al. 2007). In particular, some of the S. meliloti isolates tested here - TSA3, 169 

TSA26 and TSA41 - show multiple functional PGP traits, such as siderophore and IAA production, P solubilization and 170 

phytate mineralization (Battini et al. 2016b).  171 

A high percentage of isolates showed the QS phenotype (82%) and 6 produced very high levels of the signal 172 

molecules AHLs, revealing the large extent of the phenomenon within the rhizobia isolated from AMF spores. Our data 173 

on the abundance of AHL-producing bacteria are higher than those reported by previous studies performed on bacteria 174 

isolated from the rhizosphere of wheat (8%), tomato (12%), tobacco (ca. 20%) and ginger (12%) (Chan et al. 2011; 175 

D'Angelo-Picard et al. 2004; Pierson et al. 1998; Steidle et al. 2001). This can be explained taking into account that the 176 

rhizobia tested here were isolated from a peculiar and specialised ecological niche - AMF spores - where the QS phenotype 177 

may represent an important factor for their establishment and maintenance. Moreover, such isolates belong to a species, 178 

S. meliloti, that has been reported to produce seven compounds with N-acyl-L-homoserine lactone signalling activity 179 

(Cha et al. 1998). 180 

Here, we report for the first time that the bacteria showing different QS activity differed in their 16S rDNA 181 

sequences, a trait to be further investigated in order to develop a possible molecular marker for the rapid identification of 182 

high AHL-producers. 183 



7 

 

The potential importance of the QS phenotype in the modulation of key PGP functions may be suggested by the 184 

P solubilisation and phytate mineralization ability of some of the tested strains, one of which, S. meliloti TSA26, improved 185 

root P content in maize plants (Battini et al. 2017). Indeed, diverse rhizobial strains have been reported to secrete organic 186 

anions chelating cations bound to phosphate and to produce phytase/phosphatase enzymes (Owen et al. 2015).  187 

Here, none of the tested Gram-positive bacteria was capable of interfering with AHL activity, i.e. of disrupting 188 

the QS signalling, suggesting the absence of antagonism towards the rhizobia living in the same ecological niche, the 189 

AMF sporosphere. This is an interesting finding, as the bacteria tested belonged to the species Bacillus, widely studied 190 

for its efficient QQ activity (Grandclément et al. 2015); actually, the QQ trait is a strain characteristic and it is feasible 191 

that the coexistence of bacteria showing QS and QQ activities in the same niche, entails the exclusion of competitive 192 

strains, in favour of commensal/neutral ones.  193 

In conclusion, our work provides the first evidence of AHL production in rhizobia living associated with AMF 194 

spores. As the secretion of such compounds, able to regulate the QS behaviour, occurred in most of the bacteria analyzed, 195 

we propose that it may represent an important mechanism allowing them to become established in the mycorrhizosphere, 196 

where they may be functionally complementary to AMF, in the promotion of plant nutrition and health. Further 197 

investigations will reveal whether the bacteria producing the highest AHL levels show also the best functional traits, in 198 

order to select the appropriate AMF/bacteria consortia to be utilized in sustainable and innovative food production 199 

systems, where soil biological fertility and natural biogeochemical cycles are protected and maintained.   200 
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TABLES 283 

Table 1 Semi-quantitative AHL production in rhizobia isolated from Rhizophagus intraradices spores, as assessed by 284 

the microtiter assay upon performing 10:1 serial dilutions of the supernatants, using the reporter strains 285 

Agrobacterium tumefaciens NTL4 and C. violaceum (CV026).    286 

Isolates 
          Reporter strain  

NTL4 CV026 

S. meliloti TSA1 ++++ ++ 

S. meliloti TSA3 +++ ++ 

S. meliloti TSA6 +++ ++ 

S. meliloti TSA10 ++++ +/- 

S. meliloti TSA11 +++ +/- 

S. meliloti TSA24 ++++ ++ 

S. meliloti TSA26 +++ ++ 

S. meliloti TSA27 +++ ++ 

S. meliloti TSA28 ++++ ++ 

S. meliloti TSA29 +++ ++ 

S. meliloti TSA41 +++ + 

S. meliloti TSA42 +++ +/- 

S. meliloti TSA45 ++++ ++ 

S. meliloti TSA91 + - 

S. meliloti TSA94 + - 

S. meliloti TSA96 + - 

S. meliloti TSA98 + - 

S. meliloti TSA100 + - 

S. meliloti TSA101 + - 

S. meliloti TSA102 ++ - 

S. meliloti TSA105 + - 

S. meliloti TSA106 + - 

S. meliloti TSA139 ++++ ++ 

 287 

NTL4: A. tumefaciens NTL4 (pZLR4); CV026: C. violaceum CV026.  288 

- no production; +/− = scarce production; + = low production; ++ = medium production; +++/++++ = high production. 289 

  290 
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FIGURE LEGEND 291 

Fig. 1 Affiliation of the sequences of the bacteria isolated from spores of Rhizophagus intraradices IMA6 with the existing 292 

16S rRNA gene sequences, using Neighbor-Joining method based on the kimura 2-parameter method. Bootstrap 293 

(1000 replicates) values below 50 are not shown. Evolutionary analyses were conducted in MEGA6. The DNA 294 

sequences retrieved in this work are indicated by their isolate code and accession numbers. 295 

 296 
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