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Abstract 

JAK/STAT transduction pathway is a highly conserved pathway implicated in regulating cellular 

proliferation, differentiation, survival and apoptosis. Dysregulation of this pathway is involved in 

the onset of autoimmune, haematological, oncological, metabolic and neurological diseases. 

Over the last few years, the research of anti-neuroinflammatory agents has gained considerable 
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attention. The ability to diminish the STAT-induced transcription of inflammatory genes is 

documented for both natural compounds (such as polyphenols) and chemical drugs. Among 

polyphenols, quercetin and curcumin directly inhibit STAT, while Berberis vulgaris L. and 

Sophora alopecuroides L extracts act indirectly. Also, the Food and Drug Administration has 

approved several JAK/STAT inhibitors (direct or indirect) for treating inflammatory diseases, 

indicating STAT can be considered as a therapeutic target for neuroinflammatory pathologies 

through direct and indirect interaction. Considering the encouraging data obtained so far, clinical 

trials are warranted to demonstrate the effectiveness and potential use in the clinical practice of 

STAT inhibitors to treat inflammation-associated neurodegenerative pathologies.  

 

Keywords: STAT; neuroinflammation; inhibitors; therapeutics 

 

 

 

 

1. Introduction 

Neuroinflammation is a very complex process comprising all the inflammatory processes 

that occur within the central nervous system (CNS) and involving multiple cell types and 

mediators depending on the cause of origin and evolution. The inflammatory response is under 

tight control by both pro- and anti-inflammatory signals and mediators. In general, transient and 

acute inflammatory response is beneficial, inducing an adaptive response that helps the host to be 

defended against pathogens. On the contrary, chronic neuroinflammation is deleterious leading 

to neuronal dysfunction and tissue damage. Thus, inflammation of the CNS is an essential 
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process in protecting the brain against insults, but it can also contribute to worse many brain and 

neurological diseases, including brain injuries, cancer, epilepsies and neurodegenerative diseases 

mainly Parkinson's or Alzheimer's diseases [1,2]. The inflammatory process in the CNS is 

mainly mediated by the activation of the microglia, resident macrophages and astrocytes and the 

release of many mediators including cytokines, chemokines or growth factors [3].  

     STATs (Signal transducers and activators of transcription) are transcription factors found 

within the cytoplasm in an inactive or latent state. STAT and Janus kinase (JAK) constitute the 

ubiquitous and highly conserved JAK/STAT pathway, which is involved in transducing signals 

from membrane-localized receptors to cell nucleus. When cytokines, hormones and growth 

factors bind to their own receptor, conformational changes are induced leading to activation of 

JAKs. Activated JAKs phosphorylate a tyrosine residue in the cytokine receptor, providing a 

docking site for STATs. Then, STATs bind to the cytokine receptor through SH2 (Src 2 

homology) domains, and are rapidly activated upon autophosphorylation on a tyrosine residue 

existing in the C-terminal domain (CTD). Phosphorylated STATs are released from the receptor, 

undergo homo-dimerization (and in some cases hetero-dimerization) and translocate into the cell 

nucleus where they could bind to target genes promoters, thereby engaging diverse elements of 

the transcriptional apparatus and stimulating gene expression [4-7]. STATs are DNA-binding 

proteins downstream of the engagement of JAK and is responsible for regulating diverse cellular 

processes related to cell metabolism, inflammation, apoptosis and immune response [6,8-10].  

Moreover, an elevated gene expression of STAT pathway, derived from hyperactivation of the 

JAK/STAT pathway, is present in many neurological disorders contributing to disease 

pathogenesis [11]. Therefore, a dysregulation of this pathway is implicated in various diseases, 

including autoimmune, haematological, oncological, metabolic and neurological diseases [12-15]. 
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Conversely, genetic dysfunctions/mutations of JAK/STAT pathway are implicated in 

inflammatory diseases, erythrocytosis, leukemias, as well as in the predisposition to obesity or 

type 2 diabetes mellitus (T2DM) [16]. This scenario highlights the deep implication of 

JAK/STAT in the cell homeostasis.  

Many natural and synthetic substances have the capability to interfere with JAK/STAT 

pathways. Thus, they could represent a therapeutic option among other treatments available for 

neuroinflammatory diseases. These include natural compounds chiefly, polyphenols, extracted 

from plants with potential to develop as nutraceuticals, synthetic drugs and metallic compounds. 

This review aims to report data from literature regarding the role of STATs in 

neuroinflammation and the interaction of certain molecules and plant extracts with JAK/STAT 

pathways being able to become therapeutic option for neurodegenerative pathologies.   

 

2. The STAT family: origin, structure and function 

In mammals, the JAK family consists of 4 members: JAK1, JAK2, JAK3, and Tyk2 whereas  the 

STAT family is comprised by seven members to date: STAT1-4, STAT5A-B and STAT6,  all of 

which retain a tyrosine residue near C-terminal target of phosphorylation by JAKs [17,18]. 

JAK/STAT pathway is schematically represented in figure 1. Depending on the cytokine or 

growth factor signals, diverse combinations between JAKs and STATs can be produced with an 

elevated grade of specificity [13]. The seven STAT proteins derive from gene duplication and 

random genetics changes. In this sense, Souza-Neto et al. using comparative genomics confirmed 

the conservation of JAK-STAT pathway between insects and mammals [19]. The STAT 

molecule STAT92E from Drosophila melanogaster is homologue to human STAT5 with an 

identity of 37% [20]. Through evolution the ancestral STAT genes duplicated into A- and B- 
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type STATs [21]. The D-STAT, Ag-STAT, STATs 5A, 5B and 6 comes under A-type STATs. 

Among these D-STAT and Ag-STAT are insect STATs found in D. melanogaster and Anopheles 

gambiae. The STATs 5A, 5B and 6 are vertebrate STATs. B-type STATs, which include STATs 

1, 2, 3 and 4, belong to vertebrate. Since no B-type STAT is observed in insect genomes, it has 

been predicted that the duplication of STAT genes happened previous to the evolutionary 

separation between vertebrates and insects [22]. The sequencing of STAT homologues in 

vertebrate showed the presence of conserved motif of C-terminal serine phosphorylation in 

STAT1, STAT3 and STAT4, whereas the STAT5s contains a PSP (Pro-Ser-Pro) motif. Except 

STAT2, all the B-type STATs contain PMSP (Pro-Met-Ser-Pro) motif. STAT2 is found in 

species like zebrafish or Xenopus laevis, which are distantly related to humans. The sequence 

analysis suggests that after the duplication of STAT gene and appearance of B-type STATs, the 

PMSP motif was acquired [23]. The available information suggests the STAT gene duplication 

and its functional diversification occurred to their evolutionary ancestors. This diversification 

process causes various functional role played by STAT in cell biology.  

The STATs genes in human are located on chromosome 2 (STAT 1 and STAT 4), chromosome 

12 (STAT 2 and STAT 6), and chromosome 17 (STAT 3, STAT 5a, and STAT 5b) with an 

average length of 750-850 amino acids and a size range from 90–115 kDa [24]. Although from a 

functional point of view the STATs proteins show different specific function, they share a 

common structure with remarkable homologies [25-27]. Six different domains are highly 

conserved within STATs, including an N-terminal domain (ND), coiled-coil domain (CCD), and 

the DNA-binding domain (DBD) located in the midst of the protein, the linker domain (LD), the 

SH2 domain, and, finally, a transcriptional activation domain (TAD) in the CTD. A schematic 

illustration of STATs structure is depicted in Fig. 2.  
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     The ND is a highly-conserved area containing the amino acidic sequences responsible for 

protein-protein interactions which mediate oligomerization of STAT [28]. STAT dimers 

interaction is cooperative, and cease following of the ND deletion [29]. The CCD, with an amino 

acidic region comprised between 130 and 315, bridges the ND with the DBD. This domain, 

possessing alfa-helical structures, is generally responsible for interactions with regulatory 

proteins [30-32]. The DBD determines the recognition of specific DNA sequence elements for 

each STAT and is generally located in the region comprised between 320–475 amino acids 

[32,33]. From a structural perspective, it shows similarity to an immunoglobin-like fold with β-

sheets very close to the observed in NF-kB or p53 [32]. The LD, possessing mostly an alfa-

helical structure sits between the DNA binding domain and the SH2 domain and it is also 

implicated in the transcription by interaction with the transcriptional machinery of the cell. The 

SH2 domain is located in the amino acid region between 600 and 700 [34]. It plays a key role in 

recognizing phosphorylated tyrosine residues and, therefore, mediates the interplay between 

STATs and other phosphorylated proteins, such as growth factors, JAKs, and other members of 

the STATs family to form dimer [35,36]. [37,38]. Differences within the SH2 domains are 

responsible for selectivity towards different specific receptors. Nearby the SH2 domain is located 

the key tyrosine residue needed for STAT activation. In addition to Tyr phosphorylation 

necessary for dimerization and migration into the nucleus, phosphorylation a Ser residue, with 

the exception of STAT2 and 6, is also required to start transcriptional activity [39,40]. This 

conserved Ser residue, is located into the TAD in the STATs C-terminal region (amino acidic 

residues 661–851) [40,41].  

STATs are very versatile transcription factors that modulate a number of activities of cellular 

growth, survival and differentiation [42,43]. STAT members also govern four main effector 
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responses, in particular STAT1, STAT2 and STAT4 are responsible for antiviral type1 response, 

STAT3 is responsible for antibacterial and antifungal type 3 response, STAT6 is responsible for 

anti-helminth type2 response, and STAT5 is important in the initiating inflammation processes 

[16]. Overall, STATs are crucial for optimal immune expression, otherwise could lead to 

immunodeficiency or autoimmune disorders [44,45]. Moreover, deregulation of STATs has also 

been reported to trigger angiogenesis and in turn promote tumors survival [46-50].    

     STAT1 and STAT2 have shown a crucial role in the host defense in case of hepatitis C virus 

(HCV) infection and interferon (IFN)-α treatment-induced HCV clearance [51,52]. The HCV-

infected hepatocytes lead to the generation of IFN-β, as a result, STAT1 and STAT2 activation 

occurred through modulation of IFN-α/β receptor and thus cause the upstream regulation of 

several antiviral proteins in the surrounding uninfected environment that stop further 

proliferation of infection [53-57]. STAT1 mutations have been associated with a progressive 

multifocal leukoencephalopathy (PML) produced by the polyomavirus JC virus, which typically 

occurs only in immune-compromised patients [35]. In addition, the activity and expression of 

STAT1 is deregulated in both cancer and insulin resistance disorders [36]. STAT3 is considered 

a proto-oncogene constitutively activated in several human cancers and plays a crucial role in 

survival of tumor cells, cell proliferation, migration, metastasis and angiogenesis [58]. STAT3 

has reported to be required for optimal function of the electron transport chain in a 

transcriptional-independent manner [59-62]. In STAT3−/− cells it has been evidenced defects in 

mitochondrial complexes I and II [60].  However, the mechanism by which STAT3 modulates 

complexes I and II remains to be elucidated. Moreover, STAT3 was reported to support 

oncogenic transformation that maintains mitochondrial respiratory chain activity and blocks the 

transition pore of mitochondrial permeability [63]. STAT3 over-expression also showed a direct 

ACCEPTED M
ANUSCRIP

T



10 

 

association with the development of arthritis [64,65]. STAT4 is distinct from other STAT 

member family since its expression is limited to T lymphocytes, myeloid cells and spermatozoa 

[66,67]. STAT4 was first observed to be activated in response to treatment with interleukin-12 

(IL-12) of T cells [68] and studied for its role as central protective mediator during immune 

responses and immune-mediated diseases [69]. STAT5A and 5B share almost 95% of sequence 

identity and the functions of these proteins appear to be dependent on hormone and tissue in a 

context-dependent manner [70]. Recently, the participation of STAT5 signaling pathway in 

modulating maternal and feeding behaviors has been suggested [71]. STAT6 has been reported 

to be activated by IL-4 and IL-13 and modulates the expression of genes that regulate allergic 

inflammatory responses mediating the pathogenesis of allergic disorders such as asthma, atopic 

dermatitis and food allergy [72,73]. Additionally, a chimeric decoy oligodeoxynucleotides 

significantly down regulated lung inflammation through STAT6 modulation [74]. 

Finally, an association between diverse polymorphisms in STATs and the development of some 

inflammatory diseases has been reported. In this sense, a strong gene-gene interaction of STAT-4 

T90089C, STAT-6 G2964A, and IFN-γ T874A has been found to cause an up-regulation of 

asthma in a Chinese population [75]. STATs gene polymorphisms STAT3 C4796793G and 

STAT5b C6503691T favor the appearance of rheumatic heart diseases and could be an effective 

biomarker for the prognosis of individuals with high risk of rheumatic heart diseases [76].  

Cytokines, growth factors and hormones are the main activators of STATs family. STAT1 has 

been reported to be activated by IFN-α, IFN-β or IFN-γ and several interleukins (IL-6, IL-7, IL-

10 and IL-27) in immune cells [77-82], and this STAT1 activation was reduced by Zn2+ chelation 

[77,78]. Recently, estrogen treatment has been also shown to up-regulate STAT1 mRNA 

expression in THP-1 and K562 cells [83]. In an animal model of injury-induced inflammation, 
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STAT2 mRNA levels were up-regulated in astrocytes in a process mediated by NF-κB signaling 

[84]. In human artery endothelial cells, oxidized low density lipoprotein (oxLDL) treatment was 

able to increase the STAT1/2 mRNA levels [85]. Cytokines such as IL-6, IL-1β, and TNFα 

increased STAT3 mRNA levels in pancreatic [86] and lung cells [87,88]. β-catenin/T-cell factor 

(TCF) pathway has evidenced to increase mRNA STAT3 expression human esophageal 

squamous carcinoma cells [89]. STAT3 was also increased in ob/ob livers after long-term 17β-

estradiol treatment [90]. STAT4 activation in mediated by IFN-α/β and by diverse interleukins 

(IL-2, IL-12, IL-13, and IL-17) [91-93]. STAT4 can also undergo epigenetic regulation by DNA 

hypermethylation, since higher levels of STAT4 mRNA were found after treatment with 

demethylating drugs in human primary T cells [94]. STAT5 is activated by prolactin, 

erythropoietin and growth factors [95]. Cytokines such as IL-2, IL-3, IL-4, IL-5, IL-6 and IL-7 

could induce STAT5 A/B expression in different immune cell types [96-101]. STAT6 activation 

is mediated by IL-4 and IL-13 [102]. In fact, IL-4 facilitates the direct gene-specific 

demethylation in the differentiation of innate immune cells through a mechanisms that involve 

activation of STAT6 [103] and IL-13 acts as a central effector cytokine in ulcerative colitis by 

activating the STAT6 [104]. 

Recent studies have identified three molecules that negatively regulate JAK/STAT signaling 

including protein inhibitors of activated stats (PIAS), suppressors of cytokine signaling (SOCS), 

and protein tyrosine phosphatases (PTPs). PIAS, characterized by a zinc-binding ring-finger 

domain in the central portion, bind the activated STAT dimers preventing them from binding 

DNA, or promoting SUMOylation which can modulate STATs phosphorylation and 

dimerization [105,106]. SOCS proteins contain a central SH2 domain which directly binds to 

phosphorylated tyrosines of activated JAKs, causing the JAK kinase activity to be blocked, 
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preventing the recruitment of the STATs [105,107]. PTPs are a group of distinct proteins  that 

dephosphorylate JAKs at the level of tyrosine residues reversing the JAK-STAT activity  [108]. 

miRNA are important gene expression modulators, and several miRNA are found to control the 

expression of STAT family of transcription factors. In this context, Kohanbash and Okada 

summarized the reciprocal regulations between STATs and miRNA in the context of diseases 

[109].  

STATs can also interact with other transcription factors (STAT co-activators) modulating gene 

transcription in an indirect way. Some transcription factor such as orphan nuclear hormone 

receptor, USF1 (upstream stimulatory factor-1), ZXDC (zinc finger X-linked duplicated family 

member), ETS (erythroblast transformation-specific), p300/cAMP-responsive element-binding 

protein (CBP), AP-1 (activator protein-1), and Sp1 (specificity protein 1)  potently drive target 

gene expression of STAT1 [110,111]. The transcriptional activity of STAT3 can be enhanced by 

its association with HNF-3 (hepatocyte nuclear factor 3), NcoA/SRC1a (steroid receptor 

coactivator 1), GR (glucocorticoid receptor), Crif1 (CR6-interacting factor 1), Sp1, p300/CBP 

and c-jun [112,113]. The interaction of STAT5 with p300/CBP, high-mobility group N2 protein 

(HMGN2), CPAP (centrosomal P4.1-associated protein), Nmi (N-Myc interactor), Sp1, YY1 

(Ying Yang-1), and C/EBPβ increase STAT5 target gene expression [114-116]. The 

transcriptional activation of STAT6 requires the interaction with p160/SRC (NCoA) coactivator 

family, C/EBP and p100 [117-119].  

 

3. Role of STATs signaling in neuroinflammation 

Microglia and astrocytes are the main CNS-resident cells responsible for the immune and 

inflammatory responses. Activation of these cells induces inflammation and the release of 
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multiple inflammatory mediators including cytokines and growth factors. In this scenario, the 

JAK-STAT pathways are implicated in the regulation of the inflammatory response since they 

are activated by some of these cytokines/growth factors but also by other inflammatory signals 

such as LPS, gangliosides and thrombin [120,121]. Upon exposure to pro-inflammatory signals 

(cytokines, cellular or bacterial debris), resident macrophages and microglia become polarized 

towards a pro-inflammatory M1 phenotype and release inflammatory mediators and chemokines, 

in a process mediated by STATs [122,123]. Under physiological conditions, when the CNS is 

damaged, the JAK-STAT pathway plays an important role in the neuronal regeneration process 

as well as in the formation of glia scars around the injured area. In accordance, it has been 

observed that after nerve injury, STAT3 expression is induced and activated by phosphorylation 

in regenerating neurons promoting the regrowth of damaged axons [124]. Moreover, the deletion 

of SOCS3 in diverse mutant mouse models of optical nerve injury induces the regeneration of 

injured axons [125]. Diverse cytokines and oxidative stress have been reported to activate mainly 

the STAT1 and STAT3 isoforms leading to the induction of inflammation-associated and 

survival-associated gene expression [126,127]. Although CNS inflammation is an important 

mechanism to protect the brain against injuries, when it occurs excessively or prolonged, 

inflammation can contribute to the appearance or worsen various diseases that affect the brain. 

Since the JAK-STATs mediate the inflammatory responses, a dysregulation of these pathways is 

related to neuroinflammation and neuroglial survival. In addition, depending of the STAT 

activated and the site of activation the effects on inflammation and cell survival could be not 

identical.   

Although evidences report the participation of STAT3 in brain inflammation, the exact role is 

not clear and still controversial. The activation of this pathway results in the expression of genes 
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that sequentially repress the transcription of pro-inflammatory genes contributing to the 

resolution of the inflammatory process [128]. However, it has been evidenced that STAT3 is 

capable to promote cell apoptosis and brain damage or favor cell survival. Specifically, diverse 

studies have evidenced that STAT3 excessive activation contributes to neuronal damage, 

whereas in other studies the deleterious effects are associated with the disruption of STAT3 

signaling [129-131]. On the contrary, the role of STAT1 is clearer as it induces cell death [132]. 

STAT3 activation also induces the expression of STAT3 itself, thus promoting a positive 

feedback loop of STAT3 that if not properly regulated can lead to neuronal damage [133]. It was 

also evidenced that STAT3 is necessary for the expression of miR-155 in cultured Th17 cells, 

indicating a function in the etiology of inflammatory disorders inducing the expansion of Th17 

cells [134]. Mutations in STAT proteins that lead to excessive activation of the pathways are not 

frequent and the excessive activity is generally triggered by the overproduction of cytokines, 

and/or deregulation of endogenous negative modulators of the JAK/STAT [10,11]. The negative 

feedback molecules, especially SOCS1 and 3 that are expressed in immune cells and cells of the 

CNS, are an important point of interest since they act as suppressors of cytokine signaling, 

limiting the cellular cytokine response [135]. In accordance, many anti-inflammatory drugs, such 

as aspirin, exert some of their effects via SOCS proteins [136]. It has been reported that SOCS1 

limits chemokine-induced migration of immune cells within the brain and ameliorates the release 

of chemokines and pro-inflammatory mediators by inhibiting the STAT and the NF-kB 

activation [137-139]. Similarly, SOCS3 inhibits the signalling of a wide range of immune 

molecules such as IL-6, IL-10, IFNs, LPS, among others [137,140,141]. 

     It is interesting to mention that de-regulated JAK/STAT pathways are found in 

neurodegenerative disorders. For example, in a model of Parkinson’s disease developed in rats 
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(by viral mediated overexpression of α-synuclein), the pharmacological inhibition of the 

JAK/STAT pathway by the JAK inhibitor AZD1480 , significantly prevented neuroinflammation 

and neurodegeneration [142]. The activation of the JAK/STAT pathway in Parkinson’s disease is 

related to the elevated levels of IFN-γ and IL-6 [142]. Multiple sclerosis is a devastating 

demyelinating disease that curses with chronic inflammation and neuronal degeneration. In 

patients with this pathology, it has been evidenced that immune cells from subjects suffering 

from relapsing-remitting multiple sclerosis express [141]more phosphorylated STAT3 during 

relapse than in remission [143]. Moreover, diverse studies concentrate on the induction of 

SOCS3, which leads to the inhibition of STAT1 and STAT3 in humans and in experimental 

autoimmune encephalomyelitis animal model [144,145]. On the contrary, in Alzheimer’s disease 

the levels of phosphorylated STAT3 in hippocampal neurons were reduced in a mice model of 

Alzheimer’s disease (Tg2576) and in Alzheimer’s disease patients [146]. In this study, 

pharmacological inhibition of the JAK2/STAT3 pathway caused memory impairment in Tg2576 

mice, whereas colivelin, a derivate of the neuroprotective peptide humanin, totally recovered 

cognitive function in an Alzheimer’s disease model (Tg2576) via activation the JAK2/STAT3 

pathway [146]. Also, nicotinic acetylcholine receptors have been reported to reduce Aβ 

neurotoxicity by activating the JAK2/STAT3 pathway [147]. 

In addition, neural damage resulting from infections, trauma and deposition of abnormal proteins 

like β-amyloid and transactive response (TAR) DNA binding protein, can induce secondary 

response such as neuroinflammation aggravating the neuronal impairment far more than the 

primary injury [148].  

 

4. POLYPHENOLS 
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4.1 Direct inhibitors of STAT 

Although diverse polyphenols have been evidenced diminish the ability of STAT to signal 

transcription of inflammatory genes, the most studied are quercetin, curcumin, resveratrol and 

luteolin (figure 3). Quercetin directly inhibits the phosphorylation of STAT and has been found 

effective in preventing apoptosis in dopaminergic cells through down regulation of pro-apoptotic 

genes like Bax and up-regulation of anti-apoptotic gene Bcl-2 [149]. Kumar and colleagues 

showed that quercetin possesses neuroprotective effects in diabetes induced neuro-degeneration 

and inflammation, partly due to its STAT inhibition [150]. Coupling quercetin with nanoparticles 

like β-cyclodextrin-dodecylcarbonate increases its permeability through blood-brain barrier 

making it a suitable drug for STAT intervention and prevention of neuroinflammation [151]. 

     Curcumin also presents its anti-inflammatory properties partly by suppressing JAK/STAT 

pathway [152]. It has been shown to decrease activation of microglial cells by preventing STAT 

1 and 3 phosphorylation indirectly through activation of SHP-2, a tyrosine phosphatase which 

negatively regulates JAK, thereby weakening the inflammatory action of microglia. [153]. 

Curcumin also suppresses Oncostatin M (a cytokine from interleukin 6 family) induced p-

STAT1 [154]. Curcumin and 1,25 dihydroxyvitamin-D3 at dosages of 20 µg/ml and 250 nM 

respectively, independently prevent the development of autoimmune encephalomyelitis, leading 

to multiple sclerosis (MS-EAE) by inhibiting the differentiation of neural antigen specific Th1 

cells, through blockage of IL-12 mediated STAT3/4 activation [155,156]. 

     Resveratrol is a wine-derived polyphenol that suppresses LPS (lipopolysaccharide) induced 

inflammation in part by inhibiting phosphorylation of STAT1/3 which mediates the release of 

pro-inflammatory cytokines [157]. It significantly inhibits the activation of STAT1 in a lower 

dose than 5-aminosalicylic acid (25µM for resveratrol vs 500 µM for 5-aminosalicylic acid) in 
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HT-29 cells [158] However, the co-treatment with the two inhibitors did not exert synergistic 

effect against the expression of pro-inflammatory mediators in cytokine-stimulated cells 

mediated by the JAK-STAT pathway [158]. However, resveratrol does not interfere with the 

MAPK mediated negative feedback mechanism of STAT showing its STAT1 specificity [158].  

     Luteolin supplementation leads to decreased IL-6, a microglial cell activator, indirectly 

suppressing STAT activation in children with autism spectrum disorders (ASD) which resulted 

in improvement in their communication and living skills [159], thus preventing microglial 

activation associated with an anti-inflammatory phenotype at dose of luteolin of 100 U/ml 

[160,161].  

In addition to these four polyphenols, genistein, kaempferol and daidzein have been reported 

to inhibit the activation of STAT-1 and NF-κB pathways [162]. Hämäläinen et al. [162], 

analyzed the effects of 36 naturally occurring flavonoids as anti-inflammatory agents. Within 

these compounds, the above-mentioned polyphenols were capable to inhibit the activation of 

STAT-1 in macrophages stimulated with LPS. A recent study also reported that kaempferol 7-O-

β-D-glucoside, isolated from Cudrania tricuspidata, inhibits the phosphorylation of STAT-1 in 

LPS-stimulated macrophages [163].  

     Extracts from a number of herbal plants have been found to target JAK/STAT pathway, and 

could present as a therapeutic regime for neuroinflammation. Agrimonia pilosa has long been 

used in traditional Chinese medicine for its anti-inflammatory properties as it is rich in 

flavonoids like Agrimonolide, which at a dose of 80 µM has been found to inhibit LPS-induced 

JAK/STAT pathway directly by preventing phosphorylation of JAK1 and consequently STAT1 

and 3, while indirectly by down regulating IL-6 expression  [164]. Plumbagin, a compound 

extracted from Plumbago zeylanica, directly blocks the phosphorylation of STAT1/4 and STAT3 
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to downregulate differentiation of Th1 and Th17 cells respectively (at 2 mg/kg in experimental 

autoimmune encephalomyelitis-EAE), to control encephalitis [165]. Progression of disease is 

substantially controlled when plumbagin is administered pre-immunization in the model [165]. 

Similarly, tripchlorolide (T4) a constituent of Tripterygium wilfordii Hook F. extract reduces the 

disease severity of EAE in the same manner by blocking the JAK/STAT along with ERK1/2-NF-

kB involved in Th1 and 17 proliferation at a mere dose of 40 µg/kg [166]. A compound extracted 

from Cornus officinalis, cornel iridoid glycoside (CIG) halts multiple sclerosis progression by 

suppressing the JAK/STAT1 and JAK/STAT3 and subsequently IL-6 in a dose dependent 

manner, also returning the microglial population to normal at 120 mg/kg in EAE animal model 

[167]. 

 

4.2. Indirect inhibitors of STAT 

Berberis vulgaris L derived Berbamine extract indirectly stimulates STAT4 degradation through 

STAT-interacting LIM protein (SLIM) without affecting its phosphorylation, leading to 

decreased inflammatory cytokine assembly in EAE [168]. Berberine at the dose of 50 mg/kg 

targets JAK1/2 and STAT1/3/4 activation among many others to halt the differentiation of T 

helper cells Th1 and 17 in the EAE [169]. A novel caffeic acid derivative [(E)-2-cyano-N-[(S)-1-

phenylethyl]-3-(pyridin-2-yl)acrylamide], which resembles in structure like AG490, a developed 

JAK inhibitor (also called Jakinibs), has been found to significantly down regulate levels of 

pSTAT3 and its dependent genes in glioma cells in a long term manner by acting on JAK1/2 

activators, rendering low phosphorylation levels and inducing apoptosis at half the dose of 

AG490 (i.e., 25 µM). AG490 at 50 µM only slightly lowers p-JAK levels [170].  
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    Sophora flavonone G extracted from Sophora alopecuroides partly exhibits its anti-

neuroinflammatory properties by suppression of JAK1/2 and STAT1/3/5, their phosphorylation 

was significantly reduced in LPS induced inflamed microglial cells treated with the compound 

[171]. In the same manner, Serenoa repens is another phyto-therapeutic compound which along 

with inhibiting neuroinflammation by blocking the inflammation regulator (STAT3), also 

decreases growth of glioma cells; this effect of Serenoa repens is synergized by the JAK 

inhibitor AG490, where the co-treatment of the two compounds at 1 µl/ml and 20 nM 

respectively, markedly increased apoptotic processes in glioma cells [172]. Moreover, it down 

regulated both basal p-STAT and IL-6 induced p-STAT, facilitating the chemotherapeutic 

activity of docetaxel in treatment of myelomas by increasing apoptosis, however, lower cancer 

cell viability is also evidenced after co-treatment with docetaxel and AG490 [173]. 

 

5. DRUGS 

Certain JAK/STAT inhibitory drugs have been approved by FDA for use in treatment of neuro-

inflammatory diseases while other potential suppressors are vigorously under investigation and 

could be developed as standard intervention strategy for inflammatory and autoimmune disorders 

of nervous system.  

 

5.1. Direct STAT inhibiting drugs 

Approved STAT inhibitors include laquinimod, glatiramer acetate, and fumarates. These halt 

multiple sclerosis progression by blocking STAT1/3 activation leading to decreased cytokine 

production and increased population of macrophages and type II dendritic cells; where they 
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additionally block the differentiation of Th1 and Th17 cells [174]. Laquinimod and fumarates 

have the potential to reverse EAE at the doses of 25 mg/kg and 70 µM respectively [175,176]. 

     AG490 is an established JAK inhibitor and is used for blocking JAK/STAT pathway in many 

inflammatory diseases including multiple sclerosis and cancers like the glioblastoma, where it 

down-regulates transcription of a number of inflammatory cytokines like IL-2, 6 and 12. In the 

LPS induced microglial apoptosis, AG490 (10 µM) prevents cellular death and inflammation by 

preventing JAK2/STAT induced NO release and protects endothelial cell mediated blood brain 

barrier destruction [177]. It is also used as a standard when there is a need for comparing the 

JAK inhibitory potential of novel synthetic drugs and natural compounds under study.  

Among others, Cucurbitacin-I (JSI-124) inhibits both JAK2/STAT3 directly by blocking STAT’s 

phosphorylation via JAK and also preventing STAT dimerization [178]. Sorafenib and WP1066, 

both are known STAT inhibitors in CNS. Sorafenib at 10 µM blocks the phosphorylation of 

STAT3 in glioma cells inducing apoptosis, the upstream JAK1 and 2 inhibition by Sorafenib is 

reversible by mutant STAT3, and its phosphatase activity is revoked by tyrosine phosphatase 

inhibitor [179]. A novel molecule structurally similar to AG490, WP1066, which at the 

concentration of 10 µM significantly inhibits STAT3 and exhibits anti-cancer apoptotic 

properties in glioma cells and in vivo conditions, and is found to be almost 17 times more 

cytotoxic to U87-malignant glioma cell line than AG490 [180]. It also blocks JAK2/STAT3 to 

abolish growth of multiple brain tumor sphere cultures (BTSC) and their xenografts irrespective 

of the mutations they carry [181]. 

     AZD1480 suppresses STAT1/4 in Th1 cells and STAT3 in Th17 cells of EAE models at 25 

mg/kg to inhibit their differentiation and release of other pro-inflammatory cytokines thereby 

preventing neuronal inflammation in multiple sclerosis [182], it also target JAK/STAT pathway 
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to inhibit dopaminergic degeneration in PD cell line. Acute administration of 10 µM AZD1480 

exhibits anti-inflammatory properties by suppressing α-synuclein induced immune system 

activation [183]. AZD1480 supplied to 50 mg/kg induce apoptosis and reduce proliferation in 

human and murine glioblastoma tumor cells by suppressing basal and induced JAK1/2 and 

STAT3 [184]. 

     A JAK3/STAT5 specific inhibitor ZM39923 (ZM) completely abolishes the activation of this 

pathway at 30 µM [185] and also inhibits the growth of brain tumor initiating cells (BTIC) at a 

dose of merely 1 µM by blocking JAK3/STAT3 [186]. The drug Pacritinib (also called as 

SB1518) is a JAK2/STAT3 inhibitor which significantly decreases cell viability and neurosphere 

formation in heterogeneous BITC populations at 5 µM concentration and increases the 

sensitivity of BITC cultures without affecting normal astrocytes in human [187]. A synthetic 

molecule ORL-NIH001 is a STAT3 suppresser which prevents the progression of inflammation 

in experimental uveitis by halting STAT mediated IL-6 expression which suppresses upstream 

differentiation of CD4+T cells into Th17 cells, also blocking Th17 proliferation, entry into neuro-

retina and subsequent release of inflammatory cytokines; it can also be used in the management 

of multiple sclerosis due to its Th17 inhibitory activity [188]. Similarly, another synthetic 

molecule BRD0476 has a novel mechanism of action against JAK/STAT pathway where it 

decrease the levels of IFN-γ- induced p-STAT1 without affecting the kinase activity of JAK2 by 

inducing a competition between its phosphorylation and ubiquitination, where ubiquitination is 

performed by inducing deubiquitinase ubiquitin-specific peptidase 9X (USP9X)  [189]. In 

methamphetamine induced neuro-inflammation models, Asiatic acid has the capability to return 

the methamphetamine induced abnormal phosphorylation of STAT3 by JAK2 to standard levels 

at 20 µM, blocking the expression and release of inflammatory IL-6 as the DNA binding activity 

ACCEPTED M
ANUSCRIP

T



22 

 

of STAT is also attenuated by Asiatic acid [190].  Pyridone 6 (P6) also inhibits the 

phosphorylation of JAK2/STAT3 and blocking the release of its mediated pro-inflammatory 

cytokines, specifically TNFα and the iNOS (inducible nitric oxide synthase) to attenuate the 

destructive function of activated microglial cells, which arise in neuroinflammation and various 

neuropathological conditions like Parkinson’s disease and amyotrophic lateral sclerosis [191]. 

 

5.2. Indirect STAT inhibiting drugs 

Tofacitinib, ruxolitinib and baricitinib are three developed JAK1/JAK2 inhibitors FDA approved 

for use in autoimmune and anti-inflammatory diseases like Rheumatoid arthritis, psoriasis and 

lupus; and could present as an effective therapeutic regime for encephalitis and other 

autoimmune inflammatory disorders of nervous system. Tofacitinib is a JAK1/3 inhibitor where 

ruxolitinib and baricitinib suppress the activity of JAK1/2 and their downstream STATs in the 

signaling cascade [192]. Ruxolitinib inhibits JAK/STAT to indirectly prevent oxidative stress-

induced neuroinflammation which is potentiated by IL-13, and subsequent death of 

dopaminergic neurons in cultured cells and animal models of Parkinson’s disease [193].  

      Ionomycin and PMA (phorbol 12-myristate 13-acetate) inhibits IL-6 induced STAT3 

promptly by activating MAPK, ERK (extracellular signal regulated kinase) family of MPAK is 

antagonistic to STAT in certain conditions, which is reversible on the suppression of the latter by 

ERK specific kinase inhibitors. However, ionomycin and PMA have no effect on IFN-α 

stimulated STAT3 activation, showing their specificity and potential for use in IL-6 mediated 

inflammatory pathways like those involved in EAE, ASD, uveitis, etc. [194]. Similarly, 

phenylephrine at 100 µM can also reversibly inhibit STAT3 activation through MAPK 

dependent pathway [195].  
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     Among other Jakinibs, tyrphostin B42 is a JAK2 specific inhibitor reducing MS severity by 

diminishing IL-12 induced JAK phosphorylation and thereby, reducing Th1 proliferation [196]. 

A new JAK3 specific inhibitor CP-690,550, has negative potency for JAK 1 and 2; and could be 

used therapeutically in multiple sclerosis for its ability to target IL-2 and 12 stimulated T cell 

populations [197]. JAK3 blockage sufficiently prevents against autoimmune and alloimmune 

actions [198]. Dimethoxy-quinazolines (WHI-P154 and WHI-P131), two novel quinazoline 

derivatives are JAK3 inhibitors, where the latter also blocks OSM induced STAT1 

phosphorylation. In a familial ALS mouse model with Cu, Zn-superoxide dismutase (SOD1) 

mutation, which leads to ROS (reactive oxygen species) accumulation, causing STAT mediated 

release of pro-inflammatory cytokines, WHI-P131 treatment inhibits STAT and increases 

neuronal survival in transgenic mice and improves pathological condition [154,198]. 

     Various other JAK inhibitors possessing affinity for specific JAK target molecule are being 

successfully tested in clinical trials (primary and advanced stages) of numerous cancers including 

those of nervous system where they prevent inflammation and increases apoptosis of malignant 

cells; these Jakinibs include but are not limited to TG101348 specific for JAK2, NS-018 (JAK2), 

XL019 (JAK2), CEP-701 (JAK2), CYT-387 (JAK1/2), LY2784544 (JAK2/STAT5), BMS-

911543 (JAK2/STAT1), lestaurtinib (JAK2/3) [199-206]. Lestaurtinib is a blocker of STAT5 

phosphorylation and its activity in CNS has led to its use in treatment of neuroblastoma [207].  

 

6. Conclusions and future prospects 

In conclusion, the role of STAT in brain inflammation is still controversial. In fact, on the one 

hand, many investigations showed that STAT3 activation contributes to neuronal damage, and, 

on the other hand, the disruption of STAT3 signaling resulted be linked to deleterious effects 
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[129-131]. In particular, deregulation of the JAK/STAT pathway found in neurodegenerative 

diseases, such as Parkinson’s disease, Alzheimer’s disease, and multiple sclerosis. Therefore, 

over the last few years, modulation of STATs caused by many natural and synthetic substances 

has become a hot topic in the treatment of human diseases including those linked to 

neuroinflammation. The mechanisms at the basis of the modulation of STATs are different and 

very complex being both direct and indirect interactions depending on the type of substance. In 

addition, growing evidence suggests the importance of JAK inhibitors possessing affinity for 

specific JAK target molecule. Some JAK inhibitors resulted to be effective in treating cancers 

inCNS where they decrease inflammation and increase apoptosis of malignant cells.  

The natural substances, characterized by low adverse and secondary effects, and with the 

capability to exert specific effects on JAK/STAT should be evaluated and developed for the 

treatment neuroinflammatory disorders opening a new horizon of hope for patients. The 

intervention of JAK/STAT pathway by small molecules could be a feasible therapeutic choice 

against many neuroinflammatory diseases due to their low cytotoxicity, usually high target 

specificity, low IC50, and sufficient potential of crossing the blood brain barrier. 

Considering the encouraging data obtained so far, clinical trials are requested to show the 

effectiveness and use in the clinical practice of JAK/STAT pathway inhibitors for the treatment 

of inflammation-based neurodegenerative pathologies. In addition, considering that the 

mechanisms of action of these inhibitors still remain to be fully elucidated, further studies are 

strongly requested to understand these aspects. 
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Figures and figure legends 

Figure 1.   Schematic representation of JAK/STAT signaling pathway JAK, Janus kinase; 

STAT, signal transducer and activator of transcription; P, phosphorylated molecule.  
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Figure 2. Commonly conserved structure domains of the STATs family protein: N-terminal 

domain (ND); coiled-coil domain (CCD); DNA-binding domain (DBD); linker domain (LD); Src 

homology 2 domain (SH2); Tyrosine residue (Tyr) crucial for phosphorilation (P); 

transcriptional activation domain (TAD). 
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Figure 3. Chemical structure of curcumin (a), quercetin (b), plumbagin (c), luteolin (d) and 

resveratrol (e) 
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