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Abstract: Dykes feed laccoliths and sills, however the link between feeder and intrusion is 12 rarely observed. The felsic San Martino laccolith displays a clear feeder-intrusion link, 13 allowing reconstruction of the influence of the size and location of feeder dykes on magma 14 flow during formation of sub-horizontal intrusions. This work uses anisotropy of magnetic 15 susceptibility (AMS) combined with mineral shape-preferred orientations of sanidine 16 megacrysts to examine magma flow pathways through feeders into a laccolith. Strong 17 correlation between AMS and K-feldspar data sets indicates that alteration affecting the 18 paramagnetic mineralogy did not influence AMS results. The well established field 19 relationships between feeder and laccolith provided a robust "geo-logical" model for flow 20 pathways that we have used as a framework to aid interpretation of AMS data. The position 21 and size of the main feeder dyke helped to predict the flow paths in the overlying laccolith. 22 Our results show that magma spread laterally from the feeding system and built the 23 laccolith layers with propagating and inflating divergent flow where tabular particles 24 became aligned perpendicular to the magma displacement direction. The lack of internal 25 discontinuities indicates that the magma was injected as a single pulse or a series of 26 quickly coalescing pulses. 27  28 
Supplementary material: AMS methods, AMS data and detailed fabric maps are available 29 at http://www.geolsoc.org.uk/SUP0000. 30  31 Shallow igneous intrusions record the link between plutonic and volcanic processes. In 32 particular, models of magma supply, accommodation and storage in intrusive bodies 33 contribute to explain the evolution of felsic magma chambers (Miller & Miller 2002; 34 Bachmann et al. 2007; Bachmann & Bergantz 2008). Recent multidisciplinary studies have 35 led to the widely held view that igneous bodies often grow by incremental 36 thickening/inflation of initially thin, sheet-like or tabular bodies by the addition of 37 successive magma pulses (McCaffrey & Petford 1997; Cruden & McCaffrey 2001; Saint-38 Blanquat et al. 2001; Rocchi et al. 2002; Menand 2008), overlapping of sub-horizontal 39 sheets (Horsman et al. 2005; Saint-Blanquat et al. 2006; Morgan et al. 2008) or 40 amalgamation of magma fingers and tongue-like lobes (Stevenson et al. 2007). Incremental 41 magma intrusion is also a common interpretation of geophysical observations of 42 deformation episodes at active volcanoes (Biggs et al. 2011). 43 This study contributes to understanding magma flow during feeding and growth of 44 shallow-level intrusions (< 3-4 km deep) by investigating their internal structures. 45 However, rock fabrics can be difficult to disentangle for several reasons. First, the final rock 46 



fabric may result from “pure” magmatic processes (e.g., emplacement flow, convection), 47 late magmatic processes (thermal contraction, gravitational compaction) or tectonic 48 processes (syn-emplacement deformation, post-emplacement deformation), or a multiple 49 overprinting of them all. Second, magmatic fabric reflects finite strain produced by 50 progressive magmatic flow rather than directly recording a simple flow direction (Saint-51 Blanquat et al. 2006; Paterson et al. 1998). 52 We therefore performed a multidisciplinary analysis: relevant data are represented by field 53 observations, structural measurements of mineral foliations and lineations, and a large 54 collection of anisotropy of magnetic susceptibility data (AMS). Additionally, this study 55 focuses on fabrics in both a laccolith system and its feeder dykes, hence these data 56 constrain the movement of magma in feeders as well as in the main sites of accumulation. 57 Here we use the late Miocene San Martino felsic laccolith, Elba Island, Italy, as a case study. 58 Its geometry and emplacement/tectonic history are well defined (Dini et al. 2002; Rocchi et 59 
al. 2002; Westerman et al. 2004; Dini et al. 2006; Rocchi et al. 2010), thanks in part to 60 serendipitous tectonic tilting that exposed several transects of the laccolith layers from top 61 to bottom. This igneous body offers the chance to study internal structures that are 62 undoubtedly magmatic since it crystallized very quickly, experienced no detectable 63 subsequent ductile deformation, and local brittle tectonics (sliding and tilting of the 64 laccolithic complex as a single rigid body) did not affect internal structures. Geometric data 65 for the San Martino laccolith led to infer a two-stage growth model, with initial expansion 66 of a thin sill followed by a vertical inflation stage (Rocchi et al. 2002). Our new fabric data 67 allows the reconstruction of internal structures and presents a more refined picture of 68 magma emplacement during laccolith growth. 69  70 
Geological framework 71 
 72 
The Setting 73  74 The Elba Island region was involved during late Cretaceous-early Miocene in the 75 convergence-collision process between the Sardinia-Corsica block and Adria plate. This 76 process resulted, on Elba Island, in a stack of thrust complexes (Fig. 1) (Bortolotti et al. 77 2001). Collision was followed by extensional processes coupled with eastward-propagating 78 emplacement of igneous complexes (Serri et al. 1993; Serri et al. 2001). Between ~8.5 and 79 5.8 Ma, the two uppermost thrust complexes (comprised of a Jurassic ophiolite sequence 80 with its cover, and a Cretaceous-Eocene turbidite unit) were intruded by laccoliths, plutons 81 and dykes. In western-central Elba the igneous sequence started with the emplacement of 82 the two-layers Capo Bianco aplite (~8.5 Ma) (Maineri et al. 2003; Dini et al. 2007). These 83 layers were intruded and fragmented by the four intrusive layers of the felsic, sanidine-84 phyric Portoferraio porphyry (7.95 Ma) (Dini et al. 2002). Then, intrusion of the felsic, 85 sanidine-megacrystic San Martino porphyry followed (7.4 Ma) (Dini et al. 2002). 86 Altogether, these intrusions are defined as multilayer laccoliths (Rocchi et al. 2002) based 87 on the overall parallelism of intrusive contacts and host rock anisotropies (Fig. 2c), 88 tapering of visible terminations, and upward-convex roofs and flat to upward-convex floors 89 (Dini et al. 2006). The layers of each intrusive unit are connected by dykes (Fig. 2d), 90 generating an overall geometry typical of a nested Christmas-tree laccolith complex (Corry 91 1988). Magma was emplaced at a depth between 1.9 and 3.7 km, mostly along planar 92 anisotropies such as thrust surfaces between tectonic complexes, secondary thrusts inside 93 



complexes, and bedding within the turbidite sequence. 94 Emplacement of the laccoliths was followed by intrusion of the ~2.5 km-thick 95 monzogranitic Monte Capanne pluton (7 Ma) (Dini et al. 2002; Farina et al. 2010) and the 96 Orano mafic dyke swarm (6.95 Ma) (Dini et al. 2008). The laccolith complex, originally 97 intruded in the present western Elba area, was translated eastwards along with country 98 rock by gravitationally driven tectonic collapse along the Central Elba Fault (Fig. 1). The 99 lower section is now exposed in western Elba while the upper resides in central Elba 100 (Trevisan 1950; Pertusati et al. 1993; Daniel & Jolivet 1995; Westerman et al. 2004). 101 Following this eastward translation, west-side-up normal movement occurred along the 102 Eastern Border Fault with a throw of 2-3 km near the margin of the pluton. 103 
 104 
The San Martino Laccolith System 105  106 The laccolith consists of porphyritic rock, with prominent euhedral sanidine megacrysts  107 set in a very fine-grained groundmass (<100 µm; Fig. 2a, b). Megacrysts are dominantly 108 tabular on (010) and elongated on the c axis; minor prismatic crystals elongated on a are 109 also present. Megacryst abundance is 50-200 crystals/m2 with an average size of 5x2x1 cm 110 (max 14x6x3 cm), corresponding to 3-12 vol%. Phenocrysts also include quartz (1-20 mm), 111 plagioclase (1-5 mm) and biotite (1-5 mm). Groundmass consists of an equigranular, 112 isotropic aggregate of quartz and feldspars, along with accessory apatite, zircon and 113 monazite. Weathering and hydrothermal alteration are widespread, with replacement of 114 plagioclase by calcite+sericite, sanidine by sericite, and biotite by chlorite, plus additional 115 formation of titanite, anatase and/or rutile, and scattered late-magmatic tourmaline spots. 116 The San Martino laccolith is composed of three main, westward-dipping subparallel layers 117 cropping out in central Elba, as well as several dykes in central Elba below the laccolithic 118 layers and in western Elba as the roots of the original laccolith complex left behind after its 119 eastward translation (Fig. 1). The emplacement level for this unit is as shallow as ~2 km 120 (Rocchi et al. 2002). Contact metamorphic effects in the host rock are practically absent. 121 The filling time of the 21 km3 intrusion has been estimated around 100 years, based on the 122 size of the dykes in western Elba and assuming a conservative ascent rate of 3 x 10-3 ms-1 123 (Rocchi et al. 2002). Internal magmatic layering and/or contacts are not observed. 124 Layer 1 is topmost and most voluminous, reaching a thickness of ~700 m (tapering toward 125 both the northern and southern ends) with a N-S length of 8.3 km (Fig 3). It is 126 characterized by branching patterns toward its margins. A prominent southern branch on 127 the west shore of Marina di Campo Bay exposes a ~250 m thick bottom-top section that 128 trends N-S and dips 30° W. Its base is marked at the south end by a gently west-dipping, 129 ~300 m thick cross-section at Punta Mele; at the north end the base is well exposed at La 130 Biodola Bay as a ~500 m thick bottom-top section. Layer 2 represents less than 5% of the 131 total laccolith volume, striking NW-SE for about 1 km in the northern half of the complex. 132 Its thickness decreases from ~150 to ~100 m from south to north. The lowermost Layer 3 133 parallels Layer 2 with an exposure length of 2 km and a thickness of ~250 m. 134 Six steeply dipping dykes of San Martino porphyry are mapped in western Elba (Fig. 1). 135 The largest, the WNW-ESE Marciana dyke 1500 m long and 10 to 20 m thick, is interpreted 136 as the main feeder (Rocchi et al. 2002). In central Elba, the subvertical NE-SW oriented 137 Sansone dyke is the most significant, exposed over 400-500 m with widths of 3-20 m. Its 138 structural location below the laccolith (Figs. 1 and 2d) suggests it locally fed Layer 3. 139 With the aim of describing and interpreting the fabric data in their original geometric 140 



context, i.e. before eastward translation and rotation (Fig. 1) (Westerman et al. 2004), all 141 central Elba data has been rotated west-side-up by 30° around a N-S horizontal axis. Data 142 discussed in the text, therefore, refers to a body having sub-horizontal basal contacts and 143 slightly upward convex tops, with steeply-dipping dykes below. 144  145 
Fabric results 146  147 Two approaches were taken to establish the igneous fabric within the San Martino laccolith 148 complex: direct determination by measuring the orientation of sanidine megacrysts (Fig. 149 3a), and indirect determination by measuring anisotropy of magnetic susceptibility (AMS) 150 parameters (Fig. 3b). The use of multiple independent fabric determinations is of 151 fundamental importance in validating fabric analysis. 152  153 
Megacryst fabric 154  155 Shape-preferred orientations of sanidine megacrysts have been measured using (010) 156 faces of tabular crystals, while magmatic lineations were determined using the c axes of 157 elongated/tabular crystals or the a axes of prism-like crystals elongated on a. Tabular 158 crystals with weak elongation yielded only foliation data. These crystallographic features 159 are best recognized where crystals show 3D exposures (Fig. 2a, b), such as along 160 weathered shorelines cliffs. Statistically controlled foliation values were determined at 48 161 stations and lineation at 36 stations, with both values measured at 34 of those sites (Table 162 1S). Foliation measurements were made on 25 to 99 contiguous crystals at each station, 163 while lineation measurements derived from 30 to 97 crystals. Foliation measurements 164 based on average crystal patterns were made at an additional 19 sites. 165 Throughout the laccolith system, the investigation of megacryst attitudes points out well-166 defined magmatic foliations along with weak magmatic lineations. In fact, foliation poles in 167 85% of the stations (41/48) have the main eigenvalue (E1) > 0.6 and almost 60% (28/48) 168 have E1 > 0.7. In contrast, magmatic lineations in 50% of the stations have the main 169 eigenvalue > 0.6 and in only the 13% (5/36) have E1 > 0.7 (Table 1S). 170 Taken together, magmatic foliations within Layer 1 (Fig. 3a) show distinctive patterns that 171 change progressively, emanating from the west-central part of the layer where a distinct N-172 S striking foliation has been measured. This N-S attitude continues to the east, but foliation 173 attitudes rotate clockwise toward the south and anticlockwise toward the north. In the 174 southern part of this layer, foliations rotate progressively to a NE-SW attitude, then to E-W, 175 and finally to NW-SE at the south-westernmost exposures. A detailed study at the southern 176 edge of Layer 1 (“Casa Ischia”; Fig. 2S) shows changes in orientation from NW-SE in the 177 lower portions, to N-S in the central part, to NE-SW in the upper portion, all with variable 178 dips. In the northern part, the rotation shows a mirrored pattern, progressing through a 179 widespread NW-SE orientation, to E-W attitudes along the northernmost margin of the 180 layer. A second detailed study of sanidine megacryst fabric in the north (“Lamaia sheet”; 181 Fig. 3S) reveals homogeneous fabric from bottom to the top. Dips of foliation throughout 182 Layer 1 are highly variable with no clear spatial patterns. 183 Two lower laccolith sheets are exposed in the northern part of the system. Layer 2 has a 184 dominant fabric with foliation and lineation trending predominantly NE-SW, while fabric in 185 Layer 3 is generally NW-SE for much of the unit but transitions anticlockwise through E-W 186 toward the NW terminus of the laccolith. Lineations are distributed at various attitudes, 187 



within the plane of foliation and, more commonly than not, either close to strike or running 188 down dip. Where observed, sanidine foliation in both the Sansone and Marciana dykes are 189 sub-parallel to the steeply inclined dyke walls. 190 
 191 
Magnetic parameters 192  193 The second approach to determining the internal fabric of the San Martino laccolith was to 194 determine anisotropy of magnetic susceptibility (AMS) parameters, which is controlled by 195 the orientation of crystals of the mineral(s) dominating the magnetic signal. AMS is a 196 technique that gives a quantitative description of the crystalline fabric of a rock by 197 determining the variation of magnetic susceptibility with direction such that the 198 eigenvector K1 represents the magnetic lineation while K3 is the pole of the magnetic 199 foliation (Tarling & Hrouda 1993; O'Driscoll et al. 2008). 200 We sampled 150 sites in the laccolith horizons and their feeder dykes (Fig. 4S). In addition, 201 clusters of samples were collected at selected locations to investigate the distribution of 202 magnetic parameters at a very local scale (e.g., thin branches of the layers, outer and inner 203 parts of dykes). The relationship between the mineral preferred orientation and magnetic 204 fabric depends on the nature of the magnetic mineralogy, here represented by biotite, with 205 rare tourmaline and very minor Ti-rich oxides. Biotite is commonly chloritised, but no 206 significant formation of Fe-oxides is also supported by: (1) low measured susceptibilities 207 (1.9 x 10-4 ÷ 2.2 x 10-5 SI units), typical of rocks characterized by paramagnetic mineralogy 208 (Tarling & Hrouda 1993); (2) Km for altered/weathered samples similar to Km of the 209 freshest rocks (Table 2S); (3) heating/cooling experiments on fresh, chloritised, and 210 chloritised/weathered samples all showing an overall paramagnetic behaviour (Fig. 4). 211  212 
Magnetic fabric in dykes 213  214 Data for all the dykes indicate that both the shape parameter T and the anisotropy degree 215 Pj are quite variable (Fig. 5). Site mean values of T vary from -0.554 to 0.918 while Pj values 216 are general low (1.009 to 1.129). The map of the Marciana dyke in western Elba (Fig. 6) 217 suggests an overall parallelism between magnetic fabric and dyke walls. The 218 perpendicularity of the best-fit great circles of lineations and poles to foliation confirms 219 that K1 (lineation) lies within the plane of foliation. Detailed fabric analysis shows local 220 “normal” fabric (Rochette et al. 1992) with K3 sub-orthogonal and K1 sub-parallel to the 221 outer walls; fabric close to the walls shows upward-SE imbrication in both horizontal and 222 vertical sections. Lineations near dyke walls are generally oblique with imbrication 223 plunging toward the walls; interior lineations are sub-horizontal. Elsewhere, strong fabric 224 asymmetry occurs with no reversal of imbrication across the dyke.  Magnetic foliation and 225 lineation in the Sansone dyke in central Elba (Fig. 6) commonly parallel the overall N55E 226 strike of the dyke, with dips less steep than dyke walls.  227 
 228 
Magnetic fabric in the main laccolith body 229  230 In the main laccolith body, the shape parameter T ranges from -0.836 to 0.891 (Fig. 5; 231 Table 2S). Data from the middle and lower parts the laccolith reveals oblate range of 232 ellipsoid shapes, while shapes for the upper part are predominantly oblate, illustrating that 233 fabrics are dominated by foliation (flattening) rather than lineation (constriction). The T 234 



parameter is highly variable at both the laccolith and local scale. Values of the degree of 235 anisotropy (Pj) in the laccolith are fairly low, ranging from 1.006 to 1.081 (Fig. 5) as is 236 typical in granitic rocks (Horsman et al. 2005). The use of AMS allowed recognition of a 237 well-defined magnetic fabric that is almost everywhere quite strong: 86% of the samples 238 (129/150) have e3 < 25° while 75% of the samples (113/150) have e1 < 25°, where e1 and 239 e3 are the semi-angles (measured in degrees) of the confidence ellipses around the mean-240 value of K1 (magnetic lineation) and K3 (pole of magnetic foliation). Only 6% of the samples 241 (9/150) have both e1 and e3 > 25°. 242 Magnetic fabrics (Fig. 3b) are decidedly similar to those revealed by sanidine megacryst 243 analyses (Fig. 3a), with clockwise rotation of AMS fabric in Layer 1S, mirrored by an 244 anticlockwise rotation in Layer 1N. Detailed study at Casa Ischia on the southern coast 245 (cross-section southern termination of the main body; Fig. 2S) shows the same progressive 246 bottom to top changes described above for magmatic fabric. The lowermost 100 m has 247 magnetic foliations striking NNW-SSE with dips 35-70° NE, while foliations in the 248 uppermost 150 m strike NE-SW and dip variably. Results of a similar detailed study in the 249 Lamaia sheet on the north shore (Fig. 3S) show E-W strikes of magnetic foliation like their 250 sanidine counterparts, but dips increase progressively from <30° at the base, to 30-60° in 251 the core, to sub-vertical near the upper contact. Data for Layer 2 show consistently NE-SW-252 striking foliation, with gentle SE dips at the southern termination and steep dips further 253 north. In the lowermost Layer 3 the foliation has NW-SE mean strike with variable dip. 254  255 
Discussion 256 
 257 
Correlation of AMS and megacryst fabric data 258  259 AMS fabric data and shape-preferred orientations of sanidine megacrysts, along with 260 structural reconstructions, allow development of an internally consistent model of magma 261 flow and laccolith growth. Before presenting the model, some concerns will be addressed. 262 First, some recent work suggests caution in interpreting flow structures in intrusive rocks, 263 owing to possible subsolidus development of phenocryst-bearing texture in cases of 264 thermal cycling (Mills et al. 2011). However, this doesn't apply to the San Martino laccolith, 265 which suffered unidirectional quick cooling as supported by the sanidine structure of its K-266 feldspar megacrysts. 267 Secondly, many previous studies did illustrate how AMS can be used successfully to 268 determine magmatic fabric patterns by direct correlation between fabrics from mineral 269 shape-preferred measurements and AMS fabrics (Bouillin et al. 1993; Saint-Blanquat et al. 270 2001; Saint-Blanquat et al. 2006; Horsman et al. 2005; Guillet et al. 1983; Darrozes et al. 271 1994). Nevertheless, we tested the correlation of igneous foliation preserved by sanidine 272 megacryst attitudes and that of biotite as revealed by AMS for the San Martino laccolith. 273 Results from 25 sites where both AMS and detailed megacryst fabric data were collected 274 reveal general concordance (Table 1): the angle between magnetic foliation and the 275 megacryst foliation is <30° in 16/25 (65%) stations and the angle between magnetic and 276 megacryst lineation is <30° in 6/7 (85%) stations. Given that highly oblate biotite crystals 277 generate the AMS fabric, the observed parallelism of tabular sanidine and AMS fabrics 278 indicates that both crystal sets recorded similar strains (magmatic flow). 279 Correlations between lineations derived from the two methods are not so easily explained, 280 since the AMS lineation comes from biotite crystals, that are not elongated. We conclude 281 



that the K1 lineation is most likely due to the platy biotite crystals being preferentially 282 oriented along a “zone axis” within the plane of mineral foliation (Bouchez 1997). This 283 requires that the highly oblate biotite wobble within the plane of foliation, and also that 284 this line be coincident with the line along which elongated sanidine crystals trend, most 285 probably corresponding to the axis of maximum stretching during magma flow. 286  287 
Relation of magmatic fabric to magma flow 288  289 Having established that AMS fabric in the San Martino system mimics megacryst attitudes, 290 the next assessment concerns how such petrofabric data can preserve evidence of magma 291 flow paths. This is problematic since (i) fabric can result from multiple events (flow, 292 tectonic deformation, hydrothermal activity, etc.), and (ii) fabric reflects finite strain 293 generated by differential stress due to progressive magmatic flow (Paterson et al. 1998). 294 Based on the absence of appreciable signs of solid-state deformation, an overprint of 295 igneous AMS fabrics by regional deformation can be ruled out, even though the post 296 emplacement history included tectonic translation from western to central Elba. 297 Additionally, regularly varying patterns of fabric within the intrusions show that stresses 298 were local and, therefore, not a record of regional paleostress. Other processes able to 299 impart a fabric, such as filter pressing or porous flow, are also unrealistic in this case due to 300 the low percentage and homogeneous distribution of phenocrysts in the magma during 301 emplacement flow. Additionally, this laccolith was emplaced rapidly (Rocchi et al. 2002) 302 and was quickly solidified (very fine-grained matrix). We can thus infer that the observed 303 fabrics reflect the final increments of strain as the magma was moving and solidifying. 304 The lack of magmatic layering, internal magmatic contacts and/or internal shear zones in 305 the laccolith suggests that the magma was injected to form the different layers as either a 306 single pulse or as batches coalescing shortly after or during injection. In the latter 307 hypothesis, the time gap between pulses had to be shorter than the solidification time of 308 the preceding pulse. While this thermal requirement is more feasible for slowly cooling, 309 deep-seated igneous bodies (Farina et al. 2010), there are examples of such processes in 310 shallower, but more mafic, igneous bodies (depth ~2.5 km) such as the Black Mesa 311 intrusion (Saint-Blanquat et al. 2006). These constraints suggest that our fabric markers 312 formed during the waning stages of a single episode of flow: the fabric represents only the 313 strain occurring in the final stages of emplacement making it difficult to test the two-stage 314 (horizontal spreading then vertical inflation) model for this system (Rocchi et al. 2002).  315 Given these conditions, it is fundamental to define which fabrics can be generated by the 316 different types of magmatic flow (Paterson et al. 1998). If magma flows in any way other 317 than with a uniform velocity field, such that crystals are not forced to rotate to a preferred 318 orientation, then a stress field will be produced that will orient tabular and linear crystals. 319 Tabular crystals become oriented perpendicular to the direction of maximum shortening 320 and linear crystals get aligned parallel to the direction of maximum stretching. Three end-321 members of non-uniform flow may be considered here: (i) convergent flow, occurring 322 when magma moves to a progressively narrowing region with associated velocity increase; 323 crystals align their longest axes and largest crystal faces with the particle path; (ii) 324 divergent flow, occurring when magma spreads in progressively widening regions with 325 divergence of flow lines and velocity decrease; planar fabrics develop in the plane of 326 flattening perpendicular to particle paths, while lineation develops in the flattening plane, 327 parallel to the stretching direction; (iii) non-coaxial flow, generated by drag along a 328 



boundary surface affected by simple shear, with velocity increasing away from a boundary 329 surface; fabric forms a variable angle with that surface. 330 All of these may be present over short distances to define units of flow where non-coaxial 331 flow is combined with either convergent or divergent flow, as in flow lobes (Stevenson et 332 
al. 2007). Nevertheless, laccolith emplacement is characterised by lateral spreading and 333 filling, with the cross-sectional area of the feeding system remaining quite constant (i.e. a 334 feeder dyke) while the cross-sectional area of the laccolith grows. Such conditions would 335 make divergent flow the norm within filling laccoliths. Transitions in fabric-flow 336 relationships have been documented in experiments (Kratinová et al. 2006) where 337 magnetic fabric inside the feeder (i.e. constricted) was parallel to the transport direction of 338 the "magma", but further away (i.e. diverging), the fabric rotated by 90° to become 339 perpendicular to the transport direction. On the other hand, in thin dykes where all the 340 magma is relatively close to the walls, non-coaxial flow generates an imbricated foliation 341 along dyke walls. Similarly, in sub-horizontal sheets, where the centre of each igneous 342 sheet flowed more rapidly than the edges (Correa-Gomes et al. 2001; Gil-Imaz et al. 2006), 343 symmetrical imbrication of foliation planes develops at the upper and lower contacts 344 (Komar 1972, 1976), as shown also by analog modelling (Kratinová et al. 2006). 345 This discussion on fabric-flow relationships relates to the issue that published papers 346 commonly present a seamless transition between maps showing shape-preferred 347 orientation and/or AMS fabrics, and maps or diagrams presenting the magma flow history 348 as deduced from the fabrics. However, a variety of fabric-flow relationships are used in 349 interpreting these fabric data, according to the different types of inferred magma flow. 350 
 351 
Magma flow in feeder dykes 352 
 353 Magma flow in dykes has traditionally been inferred with the assumption that K1 is 354 oriented parallel to the direction of magma flow (Rochette et al. 1991), with the sense of 355 flow determined using the symmetrical imbrication of K1 (Knight & Walker 1988). 356 However, magnetic lineation can be perpendicular to magma flow (Rochette et al. 1999; 357 Rochette et al. 1991; Dragoni et al. 1997) and the intersection of magnetic foliations can 358 result in an apparent magnetic lineation (Callot & Guichet 2003). For these reasons some 359 authors (Geoffroy et al. 2002) established that imbrication of magnetic foliation better 360 constrains magma flow direction than does simple magnetic lineation.  361 Flow histories for the Marciana and Sansone dykes  have been interpreted from both AMS 362 and sanidine petrofabric data, using the theoretical and empirical bases noted above. 363 Investigation of internal structures has mainly focused on interpretation of the attitudes of 364 foliation due to the planar and oblate nature of the magnetic carrier (biotite), along with 365 the tabular shape of most sanidine megacrysts (Fig. 6). Marciana dyke in western Elba lies 366 beneath the former location of the San Martino laccolith. The sub-vertical fabric, general 367 parallelism, and imbricated orientation of AMS foliation and lineation near the dyke walls, 368 combined with moderately inclined foliations (and lineations) in the dyke core with 369 respect to the walls, suggests that the dominant magma flow was sub-vertical. Fabrics in 370 the Sansone dyke at the base of the laccolith in central Elba are also suggestive of vertical 371 magma flow, in that foliation is typically subparallel and imbricated with respect to dyke 372 walls, while lineation is generally steeper near the dyke walls than in the core.  373  374 
Magma flow in laccolith horizons 375 



 376 When an intrusion grows in two stages, such as a sill inflating to a laccolith as Papoose Flat, 377 the relationships between fabric and magma flow also evolve through time (Saint-Blanquat 378 
et al. 2001). A foliation parallel to the sill shape develops during the sill formation stage. 379 During inflation and transition to laccolith shape, when flow is mainly vertical, foliation 380 develops perpendicular to flow, retaining the pattern with foliation parallel the upper 381 contact in the core of the body away from the solid-state fabric. Lineations close to the 382 contact (<1 m) are parallel to flow due to wall rock interaction and shear, while below that, 383 lineations are parallel to the stretching direction perpendicular to flow. The case of magma 384 flowing in lobes is illustrated by the Trawenagh Bay granite, where AMS fabric data define 385 frozen lobes of granitic magma (Stevenson et al. 2007). Foliations are aligned parallel to 386 the lateral margins of the lobes and wrap concentrically around lobe noses, while 387 lineations trend parallel to the elongation of lobes. In thin sills with fingers, like in the 388 Henry Mountains, magnetic foliation trends sub-parallel to contacts with lineations 389 presenting a radiating pattern in the fingers off the main body of the sill (Horsman et al. 390 2005). In a nearby small, flat pluton, strong parallelism of concentrically arranged 391 foliations from both AMS and field fabric data is reported (Saint-Blanquat et al. 2006). 392 These interpretations of flow history seem entirely plausible, yet the rules for getting from 393 fabric to flow are not generally presented. The rules used appear to vary considerably, 394 largely because the assumptions used to interpret flow patterns are not always clearly 395 stated. Our approach to interpreting the San Martino flow history has been to start with the 396 structural data (shape, geometry, location of feeders, etc.) and postulate a reasonable 397 emplacement model to be tested using multiple fabric data sets and basic fabric-flow 398 principles. We have thus far established that tabular and elongated sanidine megacrysts 399 and biotite carrying the paramagnetic AMS signal have similar shape-preferred orientation 400 that varies widely but in organized patterns. After considering available explanations for 401 this coherence of fabric, we have concluded that crystal alignment recorded the strain 402 produced by the stress field acting during the waning stages of magma flow. 403 The magnetic fabric is mainly oblate throughout the laccolith, probably linked to the 404 dominance of flattening processes during the intrusion growth. Flattening in thick sheets is 405 usually associated with divergent flow where particles align their largest faces orthogonal 406 to flow directions. For this reason it has been assumed that the magma displacement 407 direction (magma flow) in the laccolith layers was orthogonal to the foliation. On the basis 408 of these considerations, AMS and megacryst fabric data can be used together to depict 409 models for magma flow through feeder dykes and into the laccolith layers.  410 The Marciana dyke in western Elba is assumed to have been the primary feeder for the San 411 Martino Christmas-tree laccolith system above, with smaller dykes serving as connectors 412 between individual laccolith horizons. A schematic inset in Figure 7 (upper left) illustrates 413 the diverging particle paths in magma spreading horizontally from a dyke with length less 414 than the laccolith diameter. We assumed that flow within the sheets was away from the 415 centrally located E-W feeding system. Given that the cross-sectional area of the feeder dyke 416 was on the order of 0.2 km2, while the horizontal area of the laccolith sheets reached 55 417 km2 with multiple layers up to 700 m thick (Rocchi et al. 2002), divergent flow is assumed 418 to have been the norm during laccolith growth. Figure 7 presents a map of interpreted flow 419 directions assuming that flow was in the direction perpendicular to magmatic foliation (i.e. 420 the plane of flattening), and parallel to the pole to such foliations. Note that foliation values 421 on this map are corrected for subsequent tectonic rotation, while the map itself presents 422 



the current distribution of the laccolith sheets that dip 30° westward on average. 423 Nevertheless, logical patterns develop when one assumes that poles to foliation preserve 424 particle paths, and therefore, that foliation dips in the direction of upwardly inclined flow 425 but dips away during downwardly inclined flow. 426 To interpret this map and the resulting emplacement model, we start along the western 427 edge near the roof of the uppermost sheet of the system. Flow arrows plunge shallowly 428 toward the east as a result of upward flow being directed eastward near the roof of the 429 laccolith. Further east (and lower in the section), arrows diverge to show both northward 430 and southward movement of the magma near the eastern termini of the sheet. Southern 431 central Elba is dominated by southeastward flow, locally inclined upward, but 432 predominantly plunging in the direction of flow. Flow paths have been confirmed in this 433 area where strained quartz phenocrysts in the outer 1 cm skin of the sheet are aligned NW-434 SE parallel to the magmatic fabric measured several meters below. 435 Further to the south, flow rotates to predominantly due south, with local divergence. 436 Detailed study near Casa Ischia (Fig. 2S) shows southward flow in the lowermost part of 437 the sheet, with flow of the upper (western) part to the ESE. This sense is confirmed with 438 strained quartz phenocrysts in the upper contact exhibiting differential flow. Magma below 439 the skin flowed ESE to produce bookshelf structures of quartz, strained with aspect ratios 440 up to 40. Further rotation of foliation at the south-westernmost exposures of San Martino 441 porphyry indicates flow toward the SW. North of the central feeder system, flow patterns 442 show particle paths reflecting northward movement of magma, with local divergence 443 above and below a large septum of host flysch, and predominant flow toward the NE along 444 much of the base of the uppermost San Martino sheet. Two smaller underlying sheets show 445 general filling by NE-directed flow with divergence. Northernmost exposures, much like 446 their mirror counterpart to the south, show the maximum rotation of flow off to the NW. 447 Figure 7 schematically presents the relationships between fabric, flow and position in the 448 reconstructed laccolith system. Magma flowed sub-vertically within a central feeder dyke, 449 as indicated by symmetrical imbrications of the sub-vertical AMS markers in sections 450 orthogonal to the dyke plane. The dyke fed a laccolithic main body by lateral spreading of 451 the magma, during which the oblate sanidine and biotite crystals became parallel to the 452 plane of flattening that developed perpendicular to the magma displacement direction 453 before the melt solidified to form the porphyry matrix. Reconstruction of reasonable 454 patterns of filling for the laccolith horizons and the 3D patterns of flow within them was 455 based on (i) correspondence of sanidine megacryst fabric and the biotite AMS fabric, and 456 (ii) a model generated from detailed maps and reconstructions of the geology. 457  458 
Implications 459  460 The possibility of interpreting all the megacryst and AMS fabric data in a unique frame of 461 flow suggests that each laccolith layer grew in a single inflation episode. This inference 462 implies that spreading and inflation were simultaneous as suggested on a theoretical basis 463 (Michaut 2011), supporting laccolith emplacement as modelled by the elastic plate theory 464 (Michaut 2011; Bunger & Cruden 2011). Alternatively, traces of the initial horizontally 465 expanding sill are lost or yet to be documented, e.g. by collecting data along contacts where 466 quenched magma shows deformation features compatible with extreme stretching. 467 Additionally, a fabric compatible with a single inflation episode could imply that (i) 468 laccolith filling was by a single magma pulse, or alternatively, (ii) filling was by means of 469 



multiple, yet quickly coalescing pulses. Both possibilities agree with the short time scale 470 inferred for laccolith formation based on the size of the feeding system (Rocchi et al. 2002), 471 as well as on a theoretical basis (Michaut 2011). On the other hand, significantly longer 472 times are suggested by calculating minimum filling rates for magma chambers (Annen 473 2011) or by dividing a laccolith volume by isotopically determined, highly resolved 474 emplacement times (Michel et al. 2008). However, these timings have to be considered as 475 averages, likely composed of emplacement bursts separated by intervals of inactivity 476 (Cottam et al. 2010; Leuthold et al. 2012; Michel et al. 2008). 477  478 
Conclusions 479  480 The strong correlation between megacryst and magnetic fabrics strengthens the use of 481 AMS as a magma strain indicator. Furthermore, while megacrysts commonly give poor 482 lineation data, AMS provides the magmatic lineation as a “zone axis”. 483 Fabric (strain) in the rock and magma flow are closely related, thanks to fast emplacement 484 and cooling, as well as to the lack of post-emplacement tectonic deformation. The magma 485 feeding the laccolith layers flowed sub-vertically from a sizable central dyke. Magma then 486 spread laterally as a single pulse or a series of pulses that quickly coalesced. 487  488 
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Figure Captions 492  493  494 
Figure 1.  Location map: a) Location of Elba Island, b) Geological map of Elba Island 495 (Rocchi et al. 2010), c) Geological cross section illustrating the results of the tectonic 496 history of Elba Island. 497  498 
Figure 2. Images of San Martino porphyry:  a) Typical outcrop with strong alignment of the 499 megacrysts; b) Outcrop showing the typical size and shape of the megacrysts; c) Sill above 500 the San Martino main sheet at the southern termination, Marina di Campo Bay; d) Sansone 501 Dyke. 502 
 503 
Figure 3. a) Restored sanidine magmatic fabric foliation data plotted on background 504 geological map (Dini et al. 2006). Dip values as black numbers refer to detailed analyses; 505 grey numbers indicate field estimates. b) Restored magnetic data showing magnetic 506 foliation in red and magnetic lineation in blue. Numbers beside symbols are dip values. All 507 measured values have been processed using Stereonet v.6.3.3 of R.W. Allmendiger 508 (http://www.geo.cornell.edu/geology/faculty/RWA/programs).  509 
 510 
Figure 4.  a) Photomicrograph and b) SEM images of chloritised biotite. c, d, e) Results of 511 heating experiments showing homogeneous decrease of susceptibility characteristic of 512 paramagnetic minerals (biotite) during heating. Differences in paths of heating and cooling 513 curves reflect oxidization during the heating with formation of maghemite. Susceptibility 514 values are negative because the uniform influence of the sample-holder with a negative 515 susceptibility of roughly -140 E-3 has not been removed. c) Fresh sample SLC3, with 516 homogeneous decrease of susceptibility during heating (paramagnetic minerals) disturbed 517 by a small bump at 570° (T° Curie of magnetite), suggesting a very minor ferromagnetic 518 contribution; d) strongly chloritised sample ENF11; e) strongly weathered and chloritised 519 sample BAR10. 520  521 
Figure 5.  T (shape anisotropy) vs. Pj (anisotropy degree) plot (Jelinek 1981) showing that 522 flattening processes (positive T) are dominant, especially in the upper portions of the 523 laccolith. 524  525 
Figure 6. – a) Map of Marciana dyke in western Elba with strikes of K1-K2 planes (magnetic 526 foliation) in red and trends of K1 (magnetic lineation) in blue, measured at 19 sites 527 including a complete transversal section. Owing to the variable strike of the dyke and to 528 simplify reading of data, stereographic projections of foliations and lineations are plotted 529 in relation to strike of the dyke rotated to E-W orientation for every site. The Marciana 530 dyke remained in western Elba below the décollement surface of the Central Elba Fault, 531 therefore these data have not been rotated for any tectonic restoration. b) Map of Sansone 532 dyke with symbols as above, measured at 10 sites, with 3 complete transversal sections. 533 Stereographic projections of magmatic foliations and lineations have been restored by 30° 534 clockwise rotation around a horizontal N-S axis. 535  536 
Figure 7. Magmatic flow pattern based on poles of restored magmatic and magnetic 537 foliations projected on the current map pattern. Stereograms of foliations for Layer 1-538 



northern part, Layer 1-southern part, Layer 2 and Layer 3. Blue line trending E-W marks 539 separation of N and S halves of Layer 1, with the west end representing the approximate 540 eastern terminus of the Marciana feeder system. Upper left: conceptual model of fabric-541 flow relationships in the feeder dyke and a laccolith layer. 542 
 543 
 544 
Table Captions 545  546 
Table 1 - Angles between AMS data and megacryst measurements. 547 
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AMS station Strike Dip Megacryst station Strike Dip Angle

SM-BAR2 231.7 64.1 BardellaInf2 199 20 48

SM-CBAL2 142.7 23.3 Napoleone 158 38 17

SM-CI1A 30.5 42.2 CasaIschia6a 60 50 22

SM-CI1B 62.8 53.1 CasaIschia6b 78 49 17

SM-CI1C 52.5 69.3 CasaIschia6c 74 64 20

SM-CI5 324.0 23 CasaIschia3/4 94 5 33

SM-CI4 51.0 44 CasaIschia5 45.6 42.7 7

SM-CI3 264.8 66.3 CasaIschia1 291 49 29

SM-CI6 247.0 64.0 CasaIschia2 20 46 48

SM-CI9c 229.0 3.0 CasaIschia0a 329 11 13

SM-DWF3 151.7 84.8 DykeWFonza 321 78 20

SM-ENF34 69 82 ViticcioNorth 53 69 26

SM-ENF4 59.0 61.7 ViticcioStreet 231 89 28

SM-ENF53 351 40 ViticcioSouth 15 25 19

SM-FOR2b 231.2 38.1 Forno2 208 58 26

SM-LAM6 289.0 86.0 Lamaia2 261 25 72

SM-LAM1 308.1 14.3 Lamaia3 286 16 6

SM-LAM10 264.3 56.3 Lamaia6 235 33 29

SM-LAM12 253.7 36.8 Lamaia8 242 35 7

SM-LAM2 254.9 54.3 Lamaia5 241 30 26

SM-LAM3B 253.4 24.8 Lamaia9 270 19 8

Foliation

Table 1. Angles between AMS data and megacrysts measurements



SM-LAM4 84.7 69.1 Lamaia1 238 20 87

SM-LAM9 240.4 59.6 Lamaia6 225 49 16

SM-PM1 156.4 34.2 PuntaMele1 206 27 52

SM-PM2 338.0 75.9 PuntaMele2 163 32 72

71

AMS stationBearingPlunge Megacryst station Bearing Plunge Angle

SM-ENF4 71.5 21.8 Viticcio street 227 12 40

SM-LAM9 55.5 8.2 Lamaia6 26 21 29

SM-LAM10 43.7 44.3 Lamaia7 29 18 28

SM-CI3 62.8 40.4 CasaIschia1 74 36 10

SM-PM1 328.3 5.5 PuntaMele1 354 11 27

SM-BAR1 293.6 27.8 BardellaInf1 314 14 23

83

% of stations where angle between two datasets is < 30°:

% of stations where angle between two datasets is < 30°:
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