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Abstract

The objective of this work is the development of a learning system for the automatic assessment of balance abilities in elderly
people. The system is based on estimating the Berg Balance Scale (BBS) score from the stream of sensor data gathered by a Wii
Balance Board. The scientific challenge tackled by our investigation is to assess the feasibility of exploiting the richness of the
temporal signals gathered by the balance board for inferring the complete BBS score based on data from a single BBS exercise.
The relation between the data collected by the balance board and the BBS score is inferred by neural networks for temporal data,
modeled in particular as Echo State Networks within the Reservoir Computing (RC) paradigm, as a result of a comprehensive
comparison among different learning models. The proposed system results to be able to estimate the complete BBS score directly
from temporal data on exercise #10 of the BBS test, with = 10 seconds of duration. Experimental results on real-world data show
an absolute error below 4 BBS score points (i.e. below the 7 % of the whole BBS range), resulting in a favorable trade-off between
predictive performance and user’s required time with respect to previous works in literature. Results achieved by RC models
compare well also with respect to different related learning models.

Overall, the proposed system puts forward as an effective tool for an accurate automated assessment of balance abilities in the
elderly and it is characterized by being unobtrusive, easy to use and suitable for autonomous usage.

Keywords: Balance Assessment, Reservoir Computing, Echo State Network, Learning with Temporal Data, Berg Balance Scale.

1. Introduction

All European countries are experiencing aging of their popu-
lations, with a decrease in the number of people of working age
per retiree. By 2050, an estimated 35% of the European pop-
ulation will be over the age of 60, compared to 20% in 2005.
Health trends among older people are mixed: severe disability
is declining in some countries but increasing in others, while
mild disabilities and chronic diseases are generally increas-
ing. The aging process is characterized by a constant decline
of body functions and is frequently associated to a series of
impairments involving reduction in mobility and cognitive de-
cline [1]: these aspects work synergistically increasing the risk
of falls. These, and related injuries, represent one of the ma-
jor causes of morbidity/mortality [2] and decline of elderlies’
quality of life [3, 4]. Commonly, falls are considered the re-
sult of multifactorial elements working synergistically together,
such as vision problems, lower limb weakness, altered mobility
and somatosensory function alterations [5, 6, 7]. Prevention of
falls should be one of the first defense lines to support an ac-
tive aging. Accordingly, the balance assessment of elderly is
assuming great relevance in clinical practice, with the develop-
ment of several screening tools and tests that are used to assess
stability or its deterioration: these include both simple clinical
measures and also sophisticated technologies [8]. One of the
common and casiest functional tests frequently used in medi-
cal practice is the Berg Balance Scale (BBS) test. Initially, this
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was proposed for balance assessment in elderly population but
it has been frequently used in subjects with stroke [9], Parkin-
son’s disease [10], brain injury [11], and multiple sclerosis [12].
The test is composed by 14 items, in the following also referred
to as exercises, with a score ranging from O to 4 points. The
maximum BBS score is 56 and the test duration time is ~ 15-20
minutes. A score of 45 is indicated as a threshold for subjects
at high risk of fall [13]; each reduction of 1 point in BBS score
is correlated to an increased risk of 6-8% to fall [14].

Recently, within the aims of the DOREMI European project!,
a technological platform to support and motivate elderly people
to perform physical activity has been developed, targeted at a
reduction in sedentariness, cognitive decline and malnutrition,
at the same time promoting an improvement in the quality of
life and social inclusion. The general architecture of DOREMI
is described in [15], whereas an analysis of the platform reli-
ability under the influence of human factors in the real setting
is provided in [16]. The DOREMI project is focused on the
development of a systemic solution for healthy aging able to
prolong the functional capacities of the elderly. Trough an inte-
grated control of psychologically related socio-physical disabil-
ities, vital signs combined with nutritional behavior, physical
activity and social interaction, it should be possible to counter-
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act cognitive and physical decline. This hardware and software-
based platform is able to monitor users physical activity levels,
integrating this information with nutritional parameters. One
of the main innovative objectives of the DOREMI platform
consists in the development of an automated system for bal-
ance assessment. In the proposed approach, the balance assess-
ment system is an easy-to-use, cost-effective and unobtrusive
solution for early pre-frail risk detection and frailty prevention.
This system, being part of elderly daily activities, could support
the remote identification of potential negative evolution of the
physical health status, thus favoring the development of user-
specific treatments. This innovative DOREMI solution lever-
ages the Wii Balance Board, a low-cost, portable and widely
available force platform, able to evaluate the user weight distri-
bution at the four corners of its surface, developed by Nintendo
for the Wii gaming console. This device has been compared
to laboratory-grade force platforms [17][18] and its accuracy
proved to be acceptable for the employment in numerous sci-
entific studies involving balance assessment [17][19] and gait
or balance rehabilitation [20][21][22]. In [22], the Wii Balance
Board device accuracy was tested against a laboratory grade
device on the measurement of COP (Center of Pressure) path
length. The authors have shown that the Wii Balance Board ex-
hibits excellent test-retest reliability for COP path length, also
proving concurrent validity with laboratory-grade force plat-
forms. In [18], the authors compared the Wii Balance Board
against a gold-standard force plate produced by AMTI on the
simultaneous measurement of COP displacement, also imple-
menting an improved device calibration algorithm. The relation
between COP related features (e.g. mean location, root-mean-
square displacement and mean frequency) and the evaluation
of the balance stability in elderly patients has been investigated
in [23], which presents a comparative study on stability-related
measures using regression methods on data collected from a
force platform with the aim of estimating the probability of pa-
tients’ fall. However, it is worth to note that the whole temporal
signal generated by a force platform, such as the Wii Balance
Board, potentially contains richer information than the above
mentioned static parameters, thereby allowing to envisage ap-
proaches that try to directly and automatically exploit such rich-
ness of signal dynamics.

In this paper we propose a novel system for automatic assess-
ment of balance abilities in elderly, able to estimate the overall
BBS score of a user based on the stream of input signals gath-
ered from the Wii Balance Board during the execution of only 1
BBS exercise out of 14. The major scientific goal of this work
is to assess the feasibility of accurately estimating the overall
BBS score by exploiting the temporal series from pressure sen-
sors gathered during a single exercise execution by the user, and
to provide an experimental validation of the proposed system on
real-world data.

Such a scientific challenge requires to address the fundamen-
tal questions of whether such temporal series contain enough
information to be correlated with the full BBS score and
whether a machine learning model can efficiently exploit such
an information to automatically estimate the score. Keeping
in mind these objectives, we resort to the class of Recurrent

Neural Networks (RNNs) [24], which is widely recognized as
particularly appropriate for processing and extracting relevant
dynamic knowledge from noisy temporal data. In particular, as
a result of an extensive and comprehensive comparison among
different learning models, we take into consideration the Reser-
voir Computing (RC) paradigm [25, 26] and specifically the
Echo State Network (ESN) model [27, 28], which represents
a state-of-the-art approach in the context of efficient learning
in temporal domains [29]. Moreover, in our analysis, we in-
vestigate specific approaches aiming at tailoring the proposed
system to the learning task at hand and to its challenges. On
the side of the learning model design and settings, this includes
taking into consideration the possible left-right symmetry dur-
ing the execution of the balance exercise, as well as the integra-
tion of the temporal input pressure signals with static clinical
data of the subjects. Besides, another relevant aspect of analy-
sis concerns the careful selection of the physical exercise to be
performed, in order to account for both safety of exercise exe-
cution, under a clinical perspective, and richness of the gathered
signals, on the information processing side. The proposed ap-
proach is experimentally validated on real-world data collected
through a measurement campaign on 21 volunteer users, also
through a performance comparison with alternative learning
models in the field of machine learning and neuro-computing.

Overall, the system described in this paper represents an
automatic solution for the assessment of balance abilities in
elderly people, which is unobtrusive, safe, easy-to-use (even
without the supervision by clinicians), and requires the execu-
tion of only 1 of the 14 BBS exercises, thereby allowing to
practically save time for monitoring the balance stability. To
the best of our knowledge, the approach proposed in this pa-
per represents the first attempt to estimate the BBS score of a
subject from temporal data collected by using a non-intrusive
external (unworn) device during the execution of a single bal-
ance exercise of very short duration (= 10 seconds). Alternative
recent literature approaches are based on more intrusive solu-
tions in the sense that they require the use of wearable devices
and the execution by the user of a wider set of exercises for the
BBS score estimation. Moreover, they did not explore machine
learning models tailored to the direct treatment of the temporal
dimension of the gathered signals, such as RNN. In particular,
among the contributes for the automatic (unobtrusive and ob-
jective) BBS score estimation, the pioneering work described
in [30] proposes a k nearest neighbor (k-NN) approach to esti-
mate the BBS score of a subject by using data collected from
a tri-axial accelerometer placed on the lower back, during the
consecutive execution of various items of the BBS test. In [31]
it is proposed an automatic system in which the BBS score of
a subject is estimated by summing up the output of 14 Multi
Layer Perceptrons, each of which is individually and specifi-
cally trained on data pertaining to one of the different BBS ex-
ercises. The system described in [31] uses feature-based data
from 5 inertial body-fixed sensors (3-axial accelerometers and
angular velocity) and requires the subject to execute the com-
plete BBS test (i.e. all the 14 balance exercises), thereby result-
ing in a comprehensive but more intrusive and time-consuming
approach.



This paper consistently extends the preliminary work pre-
sented in [32], i) by introducing a complete description of the
system including the hardware, the modules for data collection
and the pre-processing; ii) by considering a larger set of BBS
exercises individually used for system assessment, iii) by mak-
ing publicly available a dataset for BBS estimation from tempo-
ral data collected by the pressure sensors on a balance board?;
iv) by discussing the relevant clinical aspects of interest for the
application; v) by providing a complete and extensive exper-
imental analysis of the proposed approach for the problem of
BBS score estimation, taking into account also specifically de-
vised methodologies based on the characteristics of the prob-
lem?; vi) by extending the experimental investigation to alter-
native models in the area of neural networks for temporal data
processing. All the above mentioned aspects were lacking in
[32] and represent a scientific support to the provided results.

The rest of this paper is organized as follows. Section 2
describes the Wii Balance Board and the software infrastruc-
ture used for data gathering, whereas Section 3 illustrates the
pre-processing techniques employed to prepare the real-world
dataset used in this work. Section 4 presents a complete
overview of the proposed system for automatic assessment of
balance abilities and the description of the learning models con-
sidered. The bulk of this paper’s contribution is presented in
Section 5, which describes the results of the experimental eval-
uation of the proposed approach for BBS score estimation. A
discussion on the achieved results is presented in Section 6. Fi-
nally, Section 7 draws the conclusions.

2. The Balance Board

The Wii Balance Board is a gaming device developed by Nin-
tendo for the Wii console. It was first released in Japan in 2007
along with the Wii Fit, an exercise video game consisting in
activities to be performed with the peripheral. The device is
a force platform with a width of 32,5cm, lenght of 52 cm and
height of 7,5cm, weighing ~ 4 Kg, similar to a household body
weight scale. The device, shown in Figure 1, is able to eval-
uate vertical forces at the four corner ends of its surface, i.e
front left (FL), front right (FR), back left (BL), back right (BR),
by using four strain-gauge pressure sensors placed inside the 4
feet bumpers. It is able to communicate the weight measured at
the four corners via a Bluetooth 2.0 interface to a nearby Blue-
tooth receiver. Optimal data trasmission rates can be reached
by keeping the balance board and the receiver at a distance of 4
meters maximum. Under these conditions, the device provides
a variable sample rate of ~ 100 samples/second. Data is sam-
pled by the device at a rate of 100 samples/second and stored

2Data and related description is available at the website address indicated in
[33].

3Note that with respect to the preliminary work in [32], the extended ex-
perimental assessment in this paper provides novel results under a broader set
of experimental conditions, both from the point of view of the learning model
architecture and of the design of the resulting learning task. Such results ul-
timately lead to a final setup that involves a different learning model than in
[32].

in an internal memory buffer. A Bluetooth client, paired with
the balance board, is able to read the latest sample stored in the
internal buffer over a low level interface with polled read opera-
tions. Each data sample, which consists in the weight measured
at the four corners and the binary status of the frontal button,
is usually employed to compute the CoP (Center of Pressure),
i.e. the vertical projection of the center of mass on the balance
board plane.

front left (FL)

front right (FR)

backleft (BL)

back right (BR)

Figure 1: The Wii Balance Board.

Even if the Wii Balance Board is considered a fairly cheap
force platform, the device has been employed in numerous sci-
entific studies involving balance assessment [17][19] and reha-
bilitation addressing several disabilities [20][21][22], being a
portable and widely available device with acceptable accuracy.

We developed a Java-based solution for collecting Wii board
data using a minimal set of devices with a scarce set of com-
puting resources. The set of components is depicted in Fig-
ure 2. The software modules are based on the Open Service
Gateway initiative (OSGi) platform. OSGi represents a mod-
ular system and a service platform for the Java programming
language [34], allowing an casy integration with existing state-
of-the-art Ambient Assisted Living (AAL) platforms [35, 36].
In our scenario, a Linux-based system hosts an OSGi container
running a set of developed Java components. The WiiBoard
Abstraction layer bundle performs a Bluetooth device search
when started, looking for devices in the Bluetooth transmission
range (10m). This component leverages a WiiBoard Java Driver
library sourced from the Wiibrew project * and customized in
order to improve communication channel reliability and per-
formance. The driver library implements the device-specific
communication protocol. It connects to the Wii Balance Board
via a Bluetooth Logical Link Control and Adaptation (L2CAP)
connection, also performing the initial device pairing and cal-
ibration. Bluetooth communication capabilities are provided
by the BlueZ official Linux Bluetooth protocol stack BlueZ >
and a Bluetooth Class 2 interface dongle. When a Wii Balance
Board is found by the Wiiboard Abstraction Layer, the com-
ponent generates a proxy software instance (WiiBoard OSGi
service), i.e. a software component providing an Application
Programming Interface (API) that allows clients to listen for
data being generated by the physical device. The component is

4http://wiibrew.org/
Shttp://www.bluez.org/
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Figure 2: WiiBoard Data collection system deployment diagram.
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registered as an OSGi service in the container, making it avail-
able to multiple software modules running in the OSGi environ-
ment. Data produced by the Wii Balance board is recorded on a
MongoDB © non relational database for later analysis. The Wi-
iBoard Data Recorder component starts recording data as soon
as a WiiBoard OSGi service is available. The system is able
to run on low-end computing devices, such as credit card-sized
computing devices (c.g., the Raspberry Pi 7). In our laboratory
setup, we used a laptop with the aforementioned software stack.
The source code of the components is released with open source

license and available from public repositories 8.

3. Dataset and Pre-processing

In the proposed system, the user BBS score is estimated from
data gencrated by the execution on the Wii Balance Board of a
single BBS exercise. For the design and validation of our sys-
tem we restricted our attention on 3 out of the 14 exercises of
the complete BBS test, namely exercises #6, #7, and #10. Such
exercises have been chosen because they showed high inter-
group variability in scores, greater difficulty to maintain stabil-
ity during clinical examination, absence of technical issues for
data acquisition with the balance board system (e.g. #11, #12,
#13, #14 cannot be performed on a balance board), and do not
require additional objects to be performed by subjects (e.g. the
execution of exercises #1, #3, #4, #5, #9 and #12 requires addi-
tional objects). In order to train and validate our approach, we
therefore set up a measurement campaign, conducted on 21 vol-
unteers aged between 65 and 80 years. We collected the weight
signal measured at the four corners of the balance board during
the execution of the selected BSS exercises, which proved to
be safe in all the 21 volunteers. Morcover, to take into account
possible variations in the exercise execution, for each user we
gathered data pertaining to a maximum of 10 repetitions of each

6https://Www.mongodb.com/
7https://www.raspberrypi.org/
8http://ala.isti.cnr.it/svn/wnlab/wiiboard/

exercise. More details on the recruitment process and the pro-
tocols used during the measurement campaign are reported in
Appendix A.

Data gathered from the Wii balance board presents a variable
frequency of  100Hz. In order to obtain a fixed frequency
to be used as input for the learning modules (see Section 4),
the time series relative to each exercise are resampled with
a linear interpolation, avoiding aliasing or distortion to input
data [37]. We denote the obtained weight signals at time step
1 by ul; (), pp (1), ug, (1), upp(t) € R, where the subscripts FL,
FR, BL and BR indicate the corresponding balance board cor-
ner, i.e. front left, front right, back left and back right, respec-
tively. For each resampled sequence (at 100Hz) of each board
corner, we computed the Central Moving Average (CMA) over
Neya = 20 samples, as shown in Equation 1:

Nema /2

fic(1) = ue(t +1), 1

N,
CMA i _Neun)2

where for each corner C € {FL,FR,BL,BR}, iic(t) is the
un-weighted mean of the signal taken from an equal number
Ncma/2 of data on either side of a central value u(¢). This
ensures that variations in the mean are aligned with the input
data rather than being shifted in time, as in the case of using
only “past” data. Hence, a central moving average can be com-
puted, using data equally spaced on either side of the point in
the time series where the mean is calculated [38]. The main
advantage of the CMA over other techniques, as Exponential
Moving Average (EMA), is that it offers a smoothed resulting
timeseries, less prone to whipsawing up and down in response
to slight or temporary changes in weight. The biggest CMA
weakness is that it is slower to respond to rapid changes in data,
but, in the considered scenario, this cannot happen due to the
dynamics of the selected exercise [39]. The sequence of weight
values corresponding to each exercise execution is then sub-
sampled at a fixed frequency of 5Hz in order to achieve a trade-
off among transmission rate (affecting the available bandwidth
in real home installations), storage space, and signal resolution.
For each time step ¢, the obtained weight values are collected
into a column vector u(f) = [up(t) upg(t) ug(t) ugr(H)]” € R*.

During the measurement campaign, users were asked to step
up onto the balance board and do the various exercises with the
balance board continuously collecting data. This generates data
also when not needed. For this reason, pre-processing included
a segmentation phase to eliminate data corresponding to a to-
tal weight under a threshold 7,, (equal to 4 kilograms in our
setting). Figure 3 shows an excerpt of the data gathered in cor-
respondence of an exccution of exercise #10 before and after
pre-processing, where it can be seen that the pre-processed se-
quence starts when the total weight is over 7,,. Figure 3 also
shows that the application of the CMA filter smooths out the
irregular roughness of the raw input providing a clearer signal.

An example of the temporal signals gathered in correspon-
dence of a complete exercise execution (including the phases
of getting on and off the balance board) is reported in Figure
4, which illustrates the temporal evolution of the user weight
values at the four corners of the balance board during three rep-
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Figure 3: Plots of (a) the raw user weights from an exercise sequence and (b) the corresponding sequence after pre-processing.

etitions by the same user of exercise #10. Note that these three
exercise repetitions correspond to the same ground-truth BBS
score. Figure 4 shows how difficult would be to identify a pat-
tern for the specific BSS score by human visual inspection, also
due to the noisy nature of the signal. This is further complicated
by the different ways the same exercise can be executed by the
user, e.g. the way they step up onto the balance board (in terms
of which foot is used first to step up and step down the board),
the physical conditions of the users that can lead to lurching
during the exercise, and the total duration of the execution.

As a result of the measurement campaign and data pre-
processing we obtained Balance datasets for the definition
of 3 regression tasks on sequences, one for each BBS ex-
ercise considered. The datasets contain couples of the type
(S, Yiarger)» where s = [u(1)u(2) ... u(L)] is the pre-processed 4-
dimensional input sequence of length L containing the stream
of weight values recorded by the balance board during the ex-
ercise exccution, and Yy € [0,56] is the corresponding tar-
get BBS score of the user, representing the ground-truth infor-
mation evaluated by a clinician during the measurement cam-
paign (by summing up the scores for all the 14 BBS exercises).
Overall, the Balance datasets contain a total number of 470 se-
quences. The length of the collected sequences varies in the
range ol an average ol 15 seconds for exercise #6, 65 seconds
for exercise #7, and 10 seconds for exercise #10. The Bal-
ance datasets and their description arc made publicly available
at [33].

4. Learning the BBS Score using RC

The overall operation of the proposed system for auto-
matic BBS score estimation is graphically sketched in Figure
5. While a subject executes a BBS exercise on the Wii Bal-
ance Board, the sensor stream is gathered and collected into a
database as described in Section 2. Afterwards, data are pre-
processed as described in Section 3 and then used as input for
the neural network model that computes the overall BBS score
estimate.

After pre-processing, the balance signals are processed by
RNNSs [24], and in this context we take as reference modeling
approach the randomized neural networks [29] RC paradigm
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Figure 4: Plot of the pre-processed data from three repetitions of BBS exercise
#10 by the same user with different ways of execution. Plot (a): exercise #10
performed placing the right foot first while stepping up onto the balance board
and the right foot first while stepping down. Plot (b): exercise #10 performed
placing the left foot first while stepping up onto the balance board and the right
foot first while stepping down. Plot (c): Exercise #10 performed placing the
left foot first while stepping up onto the balance board and the right foot first
while stepping down. The exercise lasted less than usual.
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Figure 5: Graphical sketch of the overall operation of the proposed system for automatic BBS score estimation.

[25, 26]. Within the RC paradigm, we take into consideration
the ESN [27, 28], which is an effective yet extremely efficient
neural network model for learning in temporal domains, with a
solid theoretical support (see e.g. [40, 41]) and great success in
practical applications, with hundreds of successful experimen-
tal studies reported in literature [42, 26]. In particular, in this
paper we use the Leaky Integrator ESN (LI-ESN) [43], a variant
of the standard ESN characterized by an experimentally proved
ability to effectively process temporal noisy information gener-
ated by heterogeneous sensor sources, as comparatively inves-
tigated with respect to the standard ESN model in [44]. Recent
works have indeed reported successful applications of LI-ESNs
in the areas of ambient assisted living, including learning tasks
related to human activity recognition [45, 46, 47], prediction of
the user’s environmental context [48, 49], and indoor robot lo-
calization [50, 51], as also experimentally shown by the results
of the RUBICON European project’ [52, 53].

LI-ESNs implement discrete-time dynamical systems, ex-
ploiting the memory over past inputs provided by a reservoir
of non-linear neurons encoding signal dynamics, whose activa-
tions are then linearly combined by an output function. The
general architecture of a LI-ESN, shown in Figure 6, con-
sists of an input layer with Ny units, a non-linear recurrent
reservoir layer with Ni sparsely connected units and a lin-
ear feed-forward output layer with Ny units. In our appli-
cation, the input is represented by the 4-dimensional stream
of values gathered by the balance board, whereas the output
consists in the estimated BBS overall score, thereby we use
Ny = 4 and Ny = 1. Given an input sequence of length L,
ie. s = [u(Du(2)...u(L)], at each time step ¢, the reservoir
computes the state x(f) € R according to the following state
transition function:

x(t) = (1 — a)x( — 1) + a tanh(Wju(®) + Wx(z — 1)) (2)

where u(z) € RV is the input at time ¢, W;,, € RV<*V g the in-
put weight matrix (possibly including a bias term), W € RNV«
is the recurrent reservoir weight matrix, and tanh denotes the

9EU FP7 RUBICON project (contract no. 269914), http://fp7rubicon.eu/
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Figure 6: Architecture of a LI-ESN.

element-wise applied hyperbolic tangent non-linearity. The pa-
rameter a in equation 2 is the leaking rate parameter, taking
values in the range [0, 1], and controlling the speed of reservoir
dynamics in reaction to the input [43, 25]. Note thatif a = 1,
equation 2 reduces to the case of standard ESN, while in the
case of a < 1 an exponential moving average is applied to the
reservoir states over time, acting as a low-pass filter on the net-
work dynamics. This filtering effect is modulated by the value
of the leaking rate parameter a, such that smaller values of a
correspond to reservoir dynamics that respond more slowly to
the input signal. As such, LI-ESNs provide a suitable mean of
dealing with temporal data gathered from sensor devices, cov-
ering a whole spectrum of different rates at which the input sig-
nals can change with respect to the sampling frequency.

For regression tasks in which only one output value is re-
quired in correspondence of an entire input sequence, such is
the case of our application to the BBS score estimation, the
output corresponding to s is computed from a state y(s) € RVx
that encodes the entire input sequence as processed by the reser-
voir. We consider two approaches to compute y(s). In the first
one, referred to as root state mapping, the last reservoir state
computed for s is considered as representative of the whole en-
coding process, i.e.

x(s) = x(L). 3



A second approach consists in averaging the states computed
for every time step of the input sequence, referred to as mean
state mapping and representing a technique that has proved to
be effective in several application contexts [54, 55]. The mean
state mapping is computed according to:

1 L
X6) = 7 le X(1). 4

In the following, when we want to indicate the use of a specific
state mapping we use the notations LI-ESN-R and LI-ESN-M,
respectively, for root state mapping and mean state mapping.

The output of the LI-ESN is computed by the readout compo-
nent as a linear combination of the elements of y(s), according
to the following equation:

¥(8) = Woux(s) %)

where W, € RN*Nz jg the readout-to-reservoir weight matrix
(possibly including a bias term). The readout is the only trained
component of the LI-ESN architecture, typically by means of
efficient linear methods such as ridge regression [25]. The
reservoir is initialized under the constraints of the echo state
property (ESP) [27, 28, 40] and then it is left untrained. The
ESP is related to contractivity conditions of the state transition
function in equation 2, which bounds the network state dynam-
ics within a region of the state space characterized by Marko-
vian properties [40, 56]. A reservoir initialization condition re-
lated to the spectral radius of matrix W = (1 —a) + aW is often
used in literature [25] for practical applications:

p(W) <1 (6)

where, in the following, we use the symbol p to refer to the
spectral radius of matrix W. Thereby, a widely adopted pro-
cess to initialize the reservoir of a LI-ESN consists in randomly
choosing the values in W from a uniform distribution, and then
re-scaling them such that equation 6 is satisfied. Morcover, the
weight values in W, are typically randomly chosen from a uni-
form distribution over [—scale;,, scale;,], where scale;, € R is
an input scaling parameter. Further details concerning initial-
ization, characterization of state dynamics and readout training
of RC networks can be found in [25, 40].

In the following Section 5, the effectiveness of the proposed
approach is assessed also in comparison to other neural net-
work models, taking into consideration a complete pool of ap-
proaches characterized by a progressively increasing ability to
represent the temporal information involved in the task. On the
general side, approaches based on neural networks for process-
ing temporal information proved successful in a broad range of
real-world application domains (see e.g. [24, 57, 58, 59, 60, 61,
62]). In particular, in this work we considered Multi Layer Per-
ceptrons (MLPs) [57], Time Delay Neural Networks (TDNNs)
[63] and Simple Recurrent Networks (SRNs), also known as El-
man networks [64, 65, 66]. MLPs are suitable for treating static
information only, i.e. vectors of fixed-length, thus in order to
deal with sequential data a preliminary process of data concate-
nation with ad-hoc padding to a maximum possible length is

required. TDNNs are networks based on the same MLP archi-
tecture used in conjunction with a buffering approach for treat-
ing temporal data. Accordingly, TDNNs implement time delay
lines with a window of finite dimension that is directly related
to the extent of the model’s finite memory (a larger window
leads to a longer memory) and to the number of model’s free
(trainable) parameters (a larger window leads to an increase in
the number of free parameters). Instead of resorting to a fixed-
size a-priori decided window, SRN networks implement dis-
crete time dynamical systems by representing the temporal con-
text through state variables formed in a recurrent architecture
with feedback connections, allowing the system to potentially
maintain input history information for arbitrary periods of time.
Differently from the RC approach, MLPs, TDNNs and SRNs
require a training process that involves all the weights in the
network’s architecture. This process is typically implemented
by means of gradient descent algorithms, whose specialization
for recurrent models is know as back-propagation through time
(BPTT) [67]. As a result, these models are characterized by
a higher computational cost during training than RC networks.
Moreover, due to the potentially higher number of free parame-
ters (with respect to RC), such architectures can be more prone
to training data overfitting, leading to an increased risk of loos-
ing generalization in the predictive performance.

For a further comparison with literature results, in Section 5
we also consider a k nearest neighbor (k-NN) algorithm similar
to the method proposed in [30], using a preliminary data pro-
cessing approach in line with the one in [30] in order to treat
sequential input data through a fixed-size vectorial representa-
tion.

5. Experimental Results

The predictive performance of the learning models taken into
account is evaluated through a 7-fold cross validation process,
splitting the available data according to a 3 persons-out ap-
proach, i.e. such that each fold contains all the data pertaining
to 3 out of the 21 volunteer users. Note that the persons-out
approach adopted in the cross-validation scheme is of particu-
lar relevance for the purposes of this type of real-world appli-
cations. Such approach has indeed the advantage of enabling
the estimation of the performance of future assessments on new
subjects during the real operational use of the proposed system
(and thus completely unseen in the training phase).

In our computational experiments with LI-ESNs, we used
reservoirs with 10% of connectivity and spectral radius p =
0.99. The values of the other relevant LI-ESN hyper-
parameters, including the reservoir dimension Ng, the input
scaling scale;,, the leaking rate a, and the readout regularization
for ridge regression training A, were chosen from the ranges
reported in Table 1 through a model selection process on a vali-
dation set, by means of an extra level of 6-fold cross validation
on the training set of each external fold. For each reservoir
hyper-parametrization, we independently generated 5 reservoir
guesses, and the predictive performance in the different cases
has been averaged over such guesses.



Hyper-parameter Values considered for model
selection

reservoir dimension Ng 10, 20, 50, 100, 200

input scaling scale;, 0.1,0.5,1

0.1,0.3,0.5,0.7, 1.0
0.001, 0.01, 0.1, 1, 10

leaking rate a
readout regularization A,

Table 1: Range of LI-ESN hyper-parameters values considered for model se-
lection.

For what concerns the values of the hyper-parameters used
for MLP, TDNN, SRN and k-NN were selected from the ranges
reported in Table 2, according to the same double cross-fold
validation scheme used for the LI-ESN models, and generally
resulting in a number of networks free parameters in a range
that is compatible with the case of LI-ESN. In particular, for
MLP we considered an input size of maximum dimension (i.e.
96), whereas for TDNN we considered a variable length of the
input delay order (i.e. of the input window) and a maximum
possible size of the hidden delay order (i.e. of the window for
hidden units). As a general experimental setup for MLP, TDNN
and SRN, we considered different sizes of the hidden layers,
and trained the networks using gradient descent algorithm with
momentum, varying the weight-decay regularization coefficient
as specified in Table 2, and using learning rate and momentum
coefficient respectively equal to 0.001 and 0.5. As in the ex-
perimental setting for LI-ESNs, also for MLPs, TDNNs and
SRNs for each hyper-parametrization we generated 5 network
guesses (from random weights initialization) and averaged the
results over them. For what concerns the k-NN, as specified in
Table 2, we considered values of k in the range 3-10 and we
implemented the distance measures considering the Euclidean
distance (ED), the Tanimoto coefficient (TC) and the correla-
tion coefficient (CC), in order to allow a direct and complete
comparison with the results of the approach reported in [30].

| Hyper-parameter | MLP| TDNN | SRN | k-NN |
Input delay order 96 5, 25,50 - -
Hidden delay order - 96 - -
Output delay order - - - -
Hidden units 10, 20, 30 -
Regularization 0.1,0.5, 1 -
k - 3,5,7,
10
Distance function - ED, TC,
CC

Table 2: Range of hyper-parameters values considered for MLP, IDNN, TDNN,
SRN and k-NN for model selection with double cross-fold validation. The
distance functions considered for the k-NN model were the Euclidean distance
(ED), the Tanimoto coefficient (TC) and the correlation coefficient (CC).

Regarding the experimental setup adopted for static models
able to treat input information only in form of vectorial data of
fixed size, we adopted the following pre-processing strategies.

For MLPs, the time steps elements of each input sequence were
concatenated into a vector of fixed size equal to the maximum
possible sequence length in the dataset, i.e. 96, where shorter
sequences were completed by left-padding with zero values.
For k-NN, in order to be able to compare the sequences us-
ing a distance measure, an approach similar to the one adopted
in [30] was used, i.e. all the sequences were normalized to the
average length in the dataset (i.e. 52) by means of either in-
terpolation or decimation, subsequently concatenating all the
elements to form a (1-dimensional) vectorial representation.

We considered 3 regression tasks (see Section 3) on the data
collected during the execution of exercises #6, #7 and #10 of
the BBS test, in the following referred to as BBS-6, BBS-7 and
BBS-10, respectively. The performance achieved by the learn-
ing models on the considered regression tasks has been com-
puted by means of the Mean Absolute Error (MAE) and of the
correlation coeflicient R, respectively providing a measure of
the absolute deviation and of the strength of linear relationship
between the estimated and the ground-truth BBS score. More-
over, such a choice on the one hand also allows a direct compar-
ison with the literature results in [30, 31], and on the other hand
it enables the results evaluation from a clinical viewpoint. As-
suming the dataset under consideration contains N sequences,
MAE and R are defined by the following equations:

1
MAE = N Zs: Iytarget(s) - y(s)l 7

R= \/1 _ Zs(y'target(s) —y(s))?
Zs(ymrget(s) - 1%/ > ¥(s))? ’

where in correspondence of each input sequence s, y(s) and
Yiaree:() denote the output of the learning model and the
(ground-truth) target, respectively.

A preliminary experimental analysis of the results achieved
on BBS-6, BBS-7 and BBS-10 allowed us to choose some com-
mon aspects of the experimental setting concerning the input
sampling frequency and normalization. As regards the sam-
pling frequency of the input signals gathered from the Wii Bal-
ance Board, as described in Section 3, the pre-processing phase
has made available data at both the frequencies of 100Hz and
S5Hz. Between these two possibilities we selected the SHz fre-
quency as it allowed us to achieve a considerable reduction in
terms of the required training time, without a loss of fitting
compared to the 100Hz case, at the same time relieving the
overall system load in terms of data storage and transmission
(see Section 3). As regards the normalization of the input data,
we found out that the absolute weight of the subjects at the 4
corners of the balance board can greatly affect the amplitude
of the oscillations of the balance signals. Therefore, each sig-
nal dimension in each input sequence s has been individually
normalized to zero mean and unitary standard deviation before
being used as input for the learning model. This normalization
process allowed us to deal with time-series data in which sig-
nals amplitudes are in the same order of magnitude, so that the
postural sways and the shape of pattern of the input sequences
are no longer dependent on the absolute user weight.

(®)



The following sub-sections describe the experimental results
achieved by the considered learning models. First, we show
the progressive performance improvement brought about by the
considered features of the experimental settings. In particular,
in order to avoid cluttering of the presented results, we focus
on showing the impact on the performance achieved by the best
(i.e. the selected) model'’. Then, we provide a complete com-
parison among all the learning models with respect to the use
of the experimental features.

Specifically, the proposed performance assessment is tar-
geted at the following aspects: the selection of the BBS ex-
ercise to be performed among the 3 considered (Section 5.1),
the experimental assessment of the use of a weight sharing ar-
chitectural variant (Section 5.2), the impact on the predictive
performance of augmenting the input with users’ clinical data
(Section 5.3) and the joint use of weight sharing and clinical in-
formation (Section 5.4). A performance comparison among the
considered learning models under the general final experimen-
tal settings is performed in Section 5.5. Finally, a discussion on
the selected model and on the analysis of the BBS score esti-
mation on subjects is provided in Section 5.6.

5.1. Selection of the BBS Exercise

As described in Section 3, exercises #6, #7 and #10 of the
BBS test were chosen by clinical staff for reasons of safety and
feasibility of execution on the Wii Balance Board, while in the
considered models we require the user to perform only one BBS
exercise.

Being the most important aspect in this regard, we first ob-
serve that from a clinical point of view, exercise #10 is par-
ticularly relevant since it integrates voluntary motor ability of
the trunk and head, testing amplitude, gross quality, rapidity
and independence in mobility, together with ability to maintain
position or complete movement tasks. Moreover, as demon-
strated by Kornetti et al. in [68], #10 is one of the BBS ex-
ercises, together with exercise #13 “tandem stance”, exercise
#12 “alternating foot” and exercise #14 “standing on one leg”,
that identify people who are able to reach cut-off value of 45
and successfully complete the test. Given such clinical con-
siderations, we selected exercise #10 for our proposed system
implementation.

In addition to this, it is also interesting to point out that, for
what regards the generated data streams, exercise #10 is charac-
terized by a richer temporal signal than #6 and #7. Indeed, per-
forming of exercise #10 involves the execution of multiple mo-
tion patterns, including both static phases of standing (as in the
cases of exercises #6 and #7) and phases of dynamism (which
are missing in exercises #6 and #7). This aspect is further un-
derpinned by the inherent discriminating ability that is allowed
among different users in the three cases, quantitatively assessed,
for instance, through the computation of the values of Pearson
coefficients. Specifically, we computed inter-subject Pearson

10Further information, including exhaustive details on the performance
achieved by all the models in all the experimental settings are reported in the
supplementary material document [33] accompanying the dataset.

correlation between signals gathered during exercise execution
by the different subjects (averaged over the exercise repetitions
in the datasets). The mean correlation values achieved for exer-
cises #6, #7 and #10 are respectively 0.42, 0.44 and 0.40, clearly
showing that exercise #10 is featured by a lower inter-subject
correlation.

As a further support to the clinical considerations, we com-
pared the predictive performance achieved by the learning mod-
els on the 3 tasks BBS-6, BBS-7 and BBS-10. Results gener-
ally show that a better validation performance is achieved on the
BBS-10 task, providing experimental evidences that BBS exer-
cise #10 enables a more accurate estimation of the total BBS
score. While a complete view of the results can be found in the
supplementary material [33], for the sake of conciseness here
we show the impact of the different BBS exercises on the se-
lected model, i.e. LI-ESN. We could also note that LI-ESN-R
led to better results than LI-ESN-M, allowing us to focus the
report of the experimental analysis in the rest of this Section
to the case of root state mapping. Table 3 reports the values
of MAE and R obtained by LI-ESN-R on the BBS-6, BBS-7
and BBS-10 tasks. From such results we can see that the best
performance on the validation set was achieved on the BBS-
10 task, which also corresponded to the smallest generalization
MAE and the larger R value.

[ Task | TRMAE | VLMAE | TSMAE | ISR |
BBS-10 [ 3.56 = 0.12 | 4.21 = 0.14 | 480 = 0.40 | 0.68
BBS-7 | 374 0.11 | 474£0.17 | 5.05=0.32 | 0.51
BBS-6 | 443=0.13 | 5.04=0.19 | 553 £ 0.43 | 0.53

Table 3: Training (TR), validation (VL) and test (TS) MAE obtained by LI-
ESN-R on the BBS-6, BBS-7 and BBS-10 tasks. R values on the test set are
reported as well.

Overall, the clinical and experimental considerations de-
scribed in this sub-section testify the goodness of the choice
of the BBS exercise #10 as balance exercise to be performed by
the user, thereby allowing us to restrict the focus of the follow-
ing experimental assessment on the task BBS-10 only.

5.2. Weight Sharing Approach on Input Connections

During the exercise execution, the user can get on and off the
balance board with the right or with the left foot in an arbitrary
manner. The way in which the user gets on and off the board
affects the shape of the input signals at the beginning and at
the end of each input sequence (see e.g. Figure 4 for a graph-
ical example). This type of information is only related to the
measurement campaign and the corresponding real-world data
sampling, and it is not relevant to the aim of postural balance
assessment. Accordingly, we do not want the learning models
to specialize on this information. A neural network architec-
tural variant that can be adopted to reach this purpose makes
use of a weight sharing (WS) approach applied to the input
connections, such that the influence of the input signals coming
from the left and right sides of the board is the same. Such ap-
proach enables to embed a left-right invariance in the process-
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Figure 7: Graphical illustration of the adopted weight sharing approach (in the
RC setting). The input weights pertaining to signals coming from the left and
the right side of the balance board are shared.

ing of the input signals. Considering a row-wise aggregation
of the input weights pertaining to the signals at the 4 corners
of the balance board, the input weight matrix can be written
as Wy, = [Wgr WrrWg, Wil In this case the adopted WS
approach, graphically depicted in Figure 7, consists in sharing
the Weights in W;, such that Wy, = Wgg and Wy, = Wpg.
The performance achieved by selected model, i.e. LI-ESN-R,
on the BBS-10 task by adopting the WS technique is reported
in Table 4. The positive effect of the WS approach in this ap-
plication is testified by the fact that the predictive performance
with respect to the case in which WS is not adopted is improved
both on the validation and on the test sets. Indeed, through a
comparison between Tables 4 and 3 it can be seen that the val-
idation MAE is reduced by 0.12 BBS score points (0.21% over
the whole BBS score range), corresponding to an average er-
ror reduction of 2.85% , while the test MAE is reduced by 0.77
BBS score points (i.e. 1.38% of the BBS score range), leading
to an average error reduction of 16.04%.

[ Task [ TRMAE | VLMAE | TSMAE | TSR |
BBS-10+ WS | 343= | 409+ | 403z | 071
0.04 0.08 0.13

Table 4: Training (TR), validation (VL) and test (TS) MAE obtained by LI-
ESN-R on the BBS-10 task using the WS technique. The R value on the test
set are reported as well.

5.3. Use of Clinical Data

A further significant experimental assessment consisted in
the evaluation of the influence on the predictive performance
of users’ clinical data such as height, weight, age and gender.
The values of such clinical data were used as input to the model
by considering the height expressed in meters, the weight ex-
pressed in hundreds of Kg (i.e. dividing the weight in Kg by

10

100), the age expressed in hundreds of years (i.e. dividing the
age in years by 100), and the gender expressed as a binary value
(-1 for women and +1 for men) '!.

To avoid the introduction of artifacts related to the specific
dataset on which we trained the learning models, we excluded
the use of the clinical features that resulted in a high correlation
with the BBS scores of the users in our sample data (without
however having a known correlation in the general case or in
literature). This analysis allowed us to exclude from consider-
ation users’ height and gender, restricting the focus on users’
weight and age only. The augmented input has been imple-
mented by appending at each time step of each sequence in the
dataset the value of the clinical parameter of the correspond-
ing user as a further input element. This process resulted in
input sequences consisting of 5 elements per time steps, i.e.
U(Daugmentea = urrOupr(Oupr(Oupr(Oiciinicall” € R, where
Ueiinicar 18 the clinical feature (weight or age). We accordingly
prepared two variants of the BBS-10 task, corresponding to the
cases of augmenting with users’ weight or age, in the following
referred to as tasks BBB-10-W and BBB-10-A, respectively.
Table 5 reports the performance achieved by the selected model,
i.e. LI-ESN-R, on these two tasks, showing that the best result
is achieved in correspondence of the BBS-10-W task!2. Com-
paring Tables 5 and 3, it is possible to observe that augmenting
the input data with the user weight information ultimately leads
to a reduction in the validation MAE of 0.13 BBS score points
(0.23% of the BBS score range), corresponding to an average
error reduction of 3.09%, whereas the improvement in the test
MAE is quantifiable in 0.18 BBS score points (the 0.32% of the
BBS score range), with an average error reduction of 3.75%.

[ Task [ TRMAE | VLMAE | TS MAE | TSR |
BBS-10-W 350+ | 408+ | 462 | 0.69
0.08 0.09 0.30
BBS-10-A 367+ | 423 | 452= | 065
0.12 0.13 0.27

Table 5: Training (TR), validation (VL), test (TS) MAEs, obtained by LI-ESN-
R on the BBS-10-W and BBS-10-A tasks. R values on the test set are reported
as well.

5.4. Joint Use of Weight Sharing and Clinical Data

Results discussed in Sections 5.2 and 5.3 have shown the
practical advantage in terms of improved performance that is
singly brought about by the use of strategies related to net-
work architectural design such as an appropriate WS technique,
or when the learning model receives in input the overall user
weight in addition to the time series data gathered by the bal-
ance board. In this Section, we explore the synergy of these
two approaches to provide a final setup of the learning model

'These choices were made as simple scaling approaches, in order to have
values approximately in the same range of the signals coming from the balance
board.

2Detailed results on all the learning models are reported in the supplemen-
tary material [33].



for BBS score estimation. Accordingly, Table 6 shows the re-
sults obtained by the selected model, i.c. LI-ESN-R, using the
WS approach on the BBS-10-W task, i.e. augmenting the in-
put with the user weight information. Table 6 also recalls the
performance achieved by LI-ESN-R without the WS approach
and the augmented input information to facilitate performance
comparison.

| Task | TRMAE | VLMAE | TSMAE | TSR |
BBS-10 (no | 3.56 421+ [ 480+ [ 0.68
WS) +0.12 0.14 0.40
BBS-10-W + | 311+ | 385+ | 380+ | 0.76
WS 0.05 0.08 0.17

Table 6: Training (TR), validation (VL) and test (TS) MAE obtained by LI-
ESN-R on the BBS-10 task (without WS) and on the BBS-10-W task (with
WS). R values on the test set are reported as well.

Results in Table 6 show that the joint effect of using WS and
user weight input information is indeed superior to the single
improvements due to the use of the two approaches alone. In-
deed, LI-ESN-R with WS and users’ weight in input achieved
very close values of validation and a test MAE, respectively
equal to 3.85 + 0.08 and 3.80 + 0.17, corresponding to an im-
provement of 0.37 BBS score points in the validation set (0.66%
of the BBS score range), i.e. an average performance improve-
ment of 8.79%, and of 1 point in test set (1.79% of BBS score
range), with an average performance improvement of 20.83%.
Moreover, the R value on the test set is overall improved of
0.08, i.e. of the 11.76%.

5.5. Comparison among the Learning Models

In this sub-section we provide a summary of the compari-
son among the results obtained on the BBS score estimation
task, including all the learning models considered, i.e. LI-ESN,
MLP, TDNN, SRN and k-NN. Specifically, whereas a detailed
report on the performance achieved in all the experimental con-
ditions is provided as part of the supplementary material [33], in
light of the considerations made in previous sub-sections here
we focus on the basic and on the full settings of the BBS-10
task, as described below.

A first performance comparison was conducted on the basic
BBS-10 settings, i.e. without using the WS technique and the
augmented input with users’ overall weight. Table 7 reports the
performance achieved by LI-ESN-R, MLP, TDNN, SRN and
k-NN on the BBS-10 task, while Figures 8 and 9 graphically
show the MAE obtained by such models on the validation and
test set, respectively.
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| Model

| TRMAE | VLMAE | TSMAE | TSR |

[LI-ESN-R [ 3.56+0.12 | 4.21+0.14 | 4.80+0.40 | 0.68 |

MLP 221+£0.21 | 3.96+0.28 | 4.96+0.49 | 0.57
TDNN 2.79+0.16 | 3.72+0.34 | 4.69+0.70 | 0.54
SRN 3.85+0.34 | 4.02+0.42 | 4.86+£0.56 | 0.57
k-NN 1.93+0.00 | 4.61+0.00 | 7.03+0.00 | 0.16

Table 7: Training (TR), validation (VL), test (TS) MAEs, achieved by LI-ESN-
R, MLP, TDNN, SRN and k-NN on the BBS-10 task. R values on the test set
are reported as well.
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Figure 8: Validation MAE (and standard deviation represented by vertical in-
tervals) obtained by LI-ESN-R, MLP, TDNN, SRN and k-NN on the BBS-10
task.
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Figure 9: Test MAE (and standard deviation represented by vertical intervals)
obtained by LI-ESN-R, MLP, TDNN, SRN and k-NN on the BBS-10 task.

From these results it is possible to observe that LI-ESN,
MLP, TDNN and SRN show similar results on the validation
set, all falling in the range of variability of each other. How-
ever, in order to select a model on the validation set (Figure 8),
we note that LI-ESN shows a substantially lower performance
variability (in terms of standard deviation) and a favorable ra-
tio between the training and the validation MAE. The results
are reflected on the test set performance (Figure 9), where the
models show closer results on this basic setting. As can be seen
from Table 7, MLP, TDNN and k-NN resulted in overfitting,
whereas SRN achieved a performance close to the one of LI-
ESN, but at the price of a higher standard deviation (on both
validation and test sets). As a further evidence of the suitability
of the LI-ESN approach for this task, it is worth noticing that



even on this basic (partial) configuration of the data representa-
tion it achieves the best R result on the test set, with a value of
0.68.

A second more significant performance comparison is re-
ported for the complete configuration of data representation,
i.e. under experimental settings analogous to those described
in Section 5.4, which use WS and the input time-series aug-
mented by the users’ weight information. For what concerns
the use of the WS approach on the input connections, note that
this architectural variant, described in Section 5.2 in the RC set-
ting, can be used also for MLP, TDNN and SRN, while it is not
designed for the k-NN approach. The performance achieved
by the considered models on the BBS-10-W task is reported in
Table 8, while Figures 10 and 11 show the validation and test
MAE errors, respectively. Note that for LI-ESN, MLP, TDNN
and SRN, such results are referred to the use of WS.

| Model | TRMAE | VLMAE | TSMAE | TSR |

LI-ESN-R | 3.11= 3.85+ 380+ [ 0.76
0.05 0.08 0.17

MLP 3.36 + 4.62 + 576+ | 0.56
0.16 0.48 0.66

TDNN 2.99 + 3.89 + 519+ [ 057
0.26 0.69 0.91

SRN 372+ 3.69 + 434+ | 0.68
0.38 0.45 0.69

k-NN 2.89 + 4.68 + 6.05+ [ 023
0.00 0.00 0.00

Table 8: Training (TR), validation (VL), test (TS) MAEs, achieved by LI-ESN-
R, MLP, TDNN, SRN (with WS) and k-NN on the BBS-10-W task. R values
on the test set are reported as well.
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Figure 10: Validation MAE (and standard deviation represented by vertical in-
tervals) obtained by LI-ESN-R, MLP, TDNN, SRN (using WS) and k-NN on
the BBS-10-W task.
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Figure 11: Test MAE (and standard deviation represented by vertical intervals)
obtained by LI-ESN-R, MLP, TDNN, SRN (using WS) and k-NN on the BBS-
10-W task.

The comparative performance analysis shows that the MAE
achieved by LI-ESN, TDNN and SRN on the validation set are
in the same range of variability (with values even closer than
in the basic setting of the task), while MLP and k-NN obtained
worse results. Furthermore, from Figure 10 and Table 8, we ob-
serve that in this setting LI-ESN presents the smallest standard
deviation on the validation set (even smaller than in the basic
setting) and a good ratio between training and validation MAE,
thereby resulting in the selected model. The good performance
of LI-ESN on the validation set is also reflected on the test set
results (Figure 11), where in comparison to all the other learn-
ing models it clearly achieves the smallest MAE and the highest
R value, confirming the goodness of the choice for the learning
model in the final (complete) setting of the balance assessment
task. From Table 8 it can also be observed that, as in the ba-
sic task settings, MLP, TDNN and k-NN resulted in overfitting.
As a final remark concerning these results, it is worth noticing
that they confirmed our choice of the selected LI-ESN learning
model, also by virtue of its simplicity and efficiency, and of the
complete configuration of the task, i.e. using the WS and the
augmented input, fruitfully exploiting the improvements over
the basic setting, as discussed in Section 5.4.

5.6. Selected Model and Analysis of BBS score Estimation on
Subjects

The experimental analysis discussed in previous sub-sections
highlighted that the best learning model for the BBS score
estimation task is a LI-ESN-R with WS using board sensor
data from exercise #10 and complemented by the subject per-
sonal weight information. The values of the LI-ESN hyper-
parameters selected on the validation set for the final setup are
reported in Table 9 for completeness.

| Hyper-parameter | Selected value |
reservoir dimension Ng 50
input scaling scale;, 0.1
leaking rate a 0.1
readout regularization A, 1.0

Table 9: Values of the LI-ESN hyper-parameters chosen through model selec-
tion for the final setup.



The predictive performance results achieved in the final set-
ting are summarized in Table 10. Note that in this table, along
with the MAE and R values summarizing the results in previous
sub-sections, we also report the standard deviations computed
on the test set under different perspectives. In particular, the
uncertainty of the BBS score estimation is represented by the
standard deviation on the external folds of the cross-validation,
denoted by STDf in Table 10. The standard deviations with
respect the reservoir guesses, the different sequences (i.e. the
exercise repetitions), and the different users are respectively de-
noted by STDg, STDs and STDu.

VL TS STDg | STDs | STDf | STDu | TSR
MAE | MAE
3.85 3.80 0.17 2.92 1.64 2.01 0.76

Table 10: Performance results achieved in the final setting for BBS score es-
timation, i.e. with LI-ESN-R using WS on the BBS-10-W task. The table
reports validation (VL) and test (TS) MAE, along with the standard deviation
computed on the test set with respect to: the reservoir guesses (STDg), the
different sequences (STDs), the external folds of the double cross-validation
scheme (STDY), the different users (STDu). The R value on the test set is re-
ported as well.

As it can be seen, the selected model achieved a validation
MAE (mean of errors over the folds of the cross-validation) of
3.85 BBS score points (corresponding to the 6.88% of the total
BBS score range), a test MAE of 3.80 BBS score points (corre-
sponding to the 6.79% of total BBS score range). Such a result
is indeed extremely good, considering that the generalization
error is even below the threshold of 4 BBS score points, that
is the score range of a single BBS exercise. Moreover, as seen
in Table 10, the selected LI-ESN achieved a standard deviation
of the MAE of 0.17, 2.92, 1.64 and 2.01 BBS score points with
respect to the reservoir guesses, the different sequences (i.e. dif-
ferent exercise repetitions by the same user), the external folds
in the double cross-fold validation and the different users, re-
spectively. Note that these results are largely within the range
of tolerance for clinical interpretation. A recent study [69] has,
in fact, estimated that it is necessary to observe a difference of a
least 8 BBS score points in order to diagnose an actual change
in the postural balance ability of a subject.

The quality of the automated BSS estimate can be appreci-
ated at a subject-level by graphically summarizing the results
for all users in test. In this sense, Figure 12 shows a plot com-
paring the ground-truth BBS score measured by the clinicians
for each subject versus the corresponding estimate provided by
the LI-ESN model (computed by averaging the results obtained
for each exercise repetition by the subject and for each reservoir
guess). As can be seen, the points in the plot are generally dis-
tributed close to the bisector of the x-y axis, with MAE of 3.36
BBS score points, a correlation coefficient R equal to 0.8257,
with p-value p < 0.0001. These summarized results, looking
also at the distribution of errors, confirm the good quality of
our RC-based system for automatic BBS estimation.
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Figure 12: Real (ground-truth) versus LI-ESN estimated BBS scores plot (each
point corresponds to a different user, evaluated in the test set). Standard devia-
tions with respect to the exercise repetitions are reported in red.

Finally, it is worth mentioning that the proposed approach
compares well with the ones already reported in literature for
BBS score estimation tasks. In particular, the work in [30] de-
scribes a system based on a k-NN algorithm (similar to the one
considered in this paper for performance comparison in Sec-
tion 5.5) using data gathered during the execution of 3 BBS
exercises from a 3-axial accelerometer positioned on the lower
back of the user, achieving a MAE of 4.63 + 3.89. The system
described in [31] uses feature-based data gathered from 5 body-
fixed sensors during the execution by the user of the entire BBS
test and proposes to estimate the overall BBS score by sum-
ming up individual estimations of the 14 BBS exercises scores
obtained by MLPs, obtaining a MAE of ~ 1.5 + 1. In compar-
ison to such approaches our system outperforms the predictive
performance of the work in [30], while the one in [31] results
to be superior. In both cases, however, note that the literature
systems present a higher intrusiveness, in the sense that they
require the user to wear physical devices (1 sensor in [30], 5
sensors in [31]) and to perform a higher number of balance ex-
ercises (3 BBS exercises in [30], all the 14 BBS exercises in
[31]). Thereby, the system proposed in this paper, using data
collected during the execution of a single BBS exercise from an
unworn device (a balance platform) is characterized by a favor-
able trade-off among predictive performance, required time and
ease of use.

6. Discussion

We can draw two major lines of general considerations.
Firstly, from the perspective of clinical trial feasibility, the pro-
posed system is strongly time saving (= 10 seconds), compared



to complete BBS test (= 15-20 minutes), allowing to be repli-
cated on a huge population during clinical analysis and totally
unobtrusive also if the system is installed at user apartments.
Furthermore, exercise #10 and the use of the proposed balance
board proved to be safe in all the 21 volunteer users involved
in our measurement campaign (see Section 3 and Appendix A),
even when replicated several times. A further aspect of clinical
interest is given by the results of the experimental analysis de-
scribed in Section 5, showing an accurate estimation of the total
BBS score when using data gathered during the execution of ex-
ercise #10. This on the one hand confirms the goodness of the
choice of the BBS exercise to be performed by the users, and
on the other hand it points out that the devised system actually
represents an effective tool for automatic accurate assessment
of balance skills of elderly people in the real-world. For exam-
ple, the proposed system could be used to monitor the evolution
of subjects’ physical conditions or the effectiveness of specific
therapies, providing useful feedback to the clinicians.

For what concerns the assessment of the predictive ability
of the system, as pointed out in Section 5.6, the proposed RC-
based approach allowed to estimate the overall user BBS score
with an absolute deviation from the ground-truth value of 3.80
points on average on the test set, i.e. with a generalization error
that is even smaller than the score range of each individual exer-
cise of the BBS test. This result appears particularly promising
and of great value also in consideration of the relevant noise in
the input streams gathered from the balance board (as described
in Section 3), the tolerance in the ground-truth data due to hu-
man observations and the fact that only data pertaining to a sin-
gle BBS exercise is used as input for the estimation the overall
BBS score. Moreover, the standard deviation achieved by our
approach (see Section 5.6) is generally below 3 BBS points, a
value that is largely within the range of tolerance for clinical
interpretation. The RC models have experimentally proved to
be effectively able to detect from the input streams pertaining to
one single exercise much more information than what the clin-
ician can express by the single exercise score, thereby making
it possible to accurately learn to estimate the entire BBS score
based on a single BBS exercise.

Overall, the possibility to infer the BBS scores with a good
performance from the temporal data recorded in correspon-
dence of a single BBS exercise shows the potentiality of our
idea of exploiting the entire curve of the signal stream as a rich
source of information for balance assessment. This confirms, in
a constructive way, the positive response to the scientific chal-
lenge posed as a motivation in the Introduction. Furthermore,
the experimental results illustrated in Section 5 provide a clear
evidence of the effectiveness of the approaches introduced to
tailor the settings of the learning methodology to the problem
of balance assessment. Specifically, our results point out both
the individual and the synergistic advantages brought about by
the weight sharing approach on the input connections and by
the integration of the input streams with clinical information.

14

7. Conclusions

In this paper we proposed an innovative learning system for
the automatic assessment of balance abilities in the elderly. The
main scientific challenge tackled by this work concerned as-
sessing the feasibility of inferring the overall BBS score (based
on the clinical evaluation on all the 14 BBS exercises) on the
basis of the data streams collected by a Wii Balance Board dur-
ing the execution by the subject of a single BBS exercise. The
work described in this paper represents a positive answer to
such a question, showing that dynamical neural networks, mod-
eled according to the principles of the RC paradigm, allow to
effectively yet efficiently exploit (in an automatic fashion) the
richness of temporal dynamics contained in the data streams
gathered from the balance board to extract information that is
relevant for the task of overall BBS score estimation.

In order to train and experimentally validate the learning sys-
tem, a measurement campaign has been carried out on 21 vol-
unteer users, gathering data pertaining to the execution of a pool
of 3 BBS exercises (i.e. #6, #7 and #10), considered as the most
clinically suitable for the aims of automatic BBS score estima-
tion from balance board data, and among these exercise #10
has been selected for the final setup of the system. The result-
ing Balance dataset has been made publicly available (online at
[33]) and represents another relevant outcome of this work.

The experimental analysis of the proposed RC-based ap-
proach on real-world data, conducted by means of rigorous
persons-out cross-fold validation, showed a very good predic-
tive performance, allowing to accurately estimate the overall
BBS score with an average generalization error of 3.80 BBS
points in test. Interestingly, such a value is below the 7% of
the whole BBS range (0-56) and it is even smaller than the
extent of the range of assignable points for each single BBS
exercise (0-4), ultimately suggesting that, with regard to the ex-
ecution of one BBS exercise, the learning models have been
able to extract more information than the one that can be pro-
vided by a clinician in terms of the score of a single exercise.
From a clinical perspective, exercise #10 is more informative
about the total BBS score and it allowed us to gather richer
signal strecams from the balance board. Therefore, it has been
selected as balance exercise to be performed by the user in our
system. Interestingly, the experimental analysis confirms the
soundness of the selection of exercise #10. Under a perspective
of RC network design, the results also provided experimental
evidences supporting the effectiveness of introducing a weight
sharing technique among the input weights for the data coming
from the two sides of the balance board. Besides, from a task
design point of view, augmenting the temporal input informa-
tion with static user’s weight data has proved useful to improve
the generalization performance of the system. The relevance of
the results achieved with RC networks has been further assessed
through a performance comparison with other learning models,
in particular in the area of neuro-computing, generally show-
ing a better generalization performance with lower variability,
and a favorable ratio among training, validation and test errors.
Moreover, in comparison with literature works, our approach
showed a favorable trade-off between predictive performance



and intrusiveness.

Overall, the system proposed in this work represents an au-
tomatic tool for the accurate estimation of a users’ score at the
BBS test (of & 15-20 minutes of duration) from the execution
of only one exercise of the test (of = 10 seconds of duration,
i.e. = 1% of the duration of the whole test), thereby resulting
in a tremendous time saving in the task of monitoring balance
stability in elderly people. The system is characterized by lim-
ited obtrusiveness since it does not require the subject to wear
any sensor. In this respect, it appears of straightforward use and
particularly suitable for autonomous usage. Clinical and exper-
imental evidence has in fact highlighted how the BBS exercise
selected for our setup is of simple and safe execution and can
be performed even without supervision by a clinician.

Finally, from a clinical perspective, it is worth to point out
that the BBS test represents one of the first choices among tests
for balance assessment, routinely used in clinical practice. Sev-
eral studies have tried to improve it to better recognize people
at risk of falls in terms of a) modify items rating or b) identify
the most sensitive/specific among these. Our solution follows
a third way: combine a specific BBS exercise with the devel-
opment of a system (exploiting Wii Balance Board data and
a learning system) for the automatic estimation of the overall
BBS score. This approach is able to perform an objective eval-
uation of balance assessment, with some specific plus as time
saving procedure and user safety. As a way of a possible further
improvement for this work, we envisage the prospect of an even
more extended data gathering campaign, e.g. by targeting also
a lower range of BBS score values, enlarging the set of physical
conditions and clinical parameters that are taken into account.
Morcover, future developments foresee a system that will be
placed in elderly people houses where it will allow daily mon-
itoring of balance in an unobtrusive manner, alerting general
practitioners or specialists if changes in the balance behavior
occur.

Acknowledgment

This work was carried out in the framework of the DOREMI
project (FP7-ICT-2013, GA no. 611650), coordinated by IFC-
CNR, and the INTESA project, co-funded by the Tuscany Re-
gion (Italy) under the Regional Implementation Programme for
Underutilized Areas Fund (PAR FAS 2007-2013) and the Re-
search Facilitation Fund (FAR) of the Ministry of Education,
University and Research (MIUR). The authors would like to
thank all the partners involved. The authors would also like
to acknowledge Dr. Cristina Laddaga and Dr. Rosaria Lanzis-
era (Dipartimento di Riabilitazione Azienda USL Toscana Nor-
dovest) and Prof. Bemi (Istituto Superiore di Istruzione C. Pi-
aggia, Viareggio) for their support and effort during the prepara-
tion and execution of tests. Finally, we would also like to thank
all the test volunteers for their support and active participation
in these activities.

15

Appendix A. Recruitment Process and Protocols for Clini-
cal Test

Cardiologists of the Institute of Clinical Physiology IFC-
CNR enrolled 21 elderly subjects. Selection was performed
following the inclusion and exclusion criteria reported below:

e Inclusion criteria

— Age between 65 and 80 years old
— Balanced rate of male and female
— No known relevant diseases

— Written informed consent

e Exclusion criteria

Advanced cancer

Hearing and vision problems, which may interfere
with physical activity

Moderate to severe aortic stenosis

Hypertrophic cardiomyopathy
— NYHA III/IV heart failure
— Chronic obstructive pulmonary disease
— Oxygen saturation below 95%
— Resting heart rate over 100 bpm
Cardiologists previously visited participants, in order to col-

lect biometric data (i.e. weight, height, BMI). Table A.11 shows
users’ characteristics.

Male Female Total
Nr. of participants 11 10 21
Age 73+5 75+5 74 +5
Weight [Kg] 85.3+15.5 | 74.0+£13.3 | 79.9+15.3
Height [m] 1.76+0.06 | 1.59+0.04 | 1.68+0.10
BMI [Kg/m?] 274 +4.1 | 295+52 | 28.4+46

Table A.11: Aggregated biometric data of study users.

After this step, each subject was evaluated through the use of
Berg Balance Scale (BBS). Table A.12 shows scores’ distribu-
tion for each item among the selected users.

Once defined the BBS score for each user, items #06, #07,

#10 were tested with the use of the balance board.

Regarding exercise #06, approximately 6 repetitions were
performed by each patient (duration of each repetition is ap-
proximately of 10 seconds; thereby the whole session has dura-
tion of approximately 60 seconds), following the protocol:

1. The operator fills a form in the Logger GUI, provided to
the specialists, with the (anonymized) information regard-
ing the patient (e.g. sex, age, weight, height, overall Berg
score, and score in the specific exercise/item). This step is
required only for the first repetition for each patient.

2. The patient stands in front of the balance board.
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Table A.12: Aggregated biometric data of study users.

. The operator clicks on the Start button of the Logger GUI,

to start the data logging.

. The patient gets on the balance board with the dominant

foot.

. The patient places both the feet on the balance board; feet

should be placed as symmetrically as possible with respect
to the vertical line in the middle of the board.

. The patient closes the eyes and stands on the balance board

for a maximum time of 10 seconds.

. The patient gets off the balance board (backwards) with

the dominant foot first.

The operator clicks on the End button of the Logger GUI
to conclude the data logging.

The operator can add further information pertaining to the

exercise repetition, filling the field notes in the Logger
GUL

Regarding exercise #07, approximately 8 repetitions were
performed by each patient (duration of each repetition is ap-
proximately of 1 minute; thereby the whole session has dura-
tion of approximately 8 minutes), following the protocol:

1.

The operator fills a form in the Logger GUI, provided to
the specialists, with the (anonymized) information regard-
ing the patient (e.g. sex, age, weight, height, overall Berg
score, and score in the specific exercise/item). This step is
required only for the first repetition for each patient.

2. The patient stands in front of the balance board.

. The operator clicks on the Start button of the Logger GUI,

to start the data logging.

. The patient gets on the balance board with the dominant

foot.

. The patient is positioned on the balance board with the feet

together; feet should be placed as close as possible to the
vertical line in the middle of the board.

. The patient remains in the same position, on the balance

board with feet together, for a maximum time of 1 minute.

. The patient gets off the balance board (backwards) with

the dominant foot first.

The operator clicks on the End button of the Logger GUI
to conclude the data logging.

The operator can add further information pertaining to the

exercise repetition, filling the field notes in the Logger
GUL
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Regarding exercise #10, approximately 8 repetitions were
performed by each users (duration of each repetition is approx-
imately of 15 seconds; thereby the whole session has duration
of approximately 120 seconds) following the protocol:

I.

The operator fills a form in the Logger GUI, provided to
the specialists, with the (anonymized) information regard-
ing the patient (e.g. sex, age, weight, height, overall Berg
score, and score in the specific exercise/item). This step is
required only for the first repetition for each patient.

2. The patient stands in front of the balance board.

The operator clicks on the Start button of the Logger GUI,
to start the data logging.

The patient gets on the balance board with the dominant
foot.

The patient places both the feet on the balance board; feet
should be placed as symmetrically as possible with respect
to the vertical line in the middle of the board.

The patient turns to look directly behind her/him over to-
ward the right shoulder and then over the left shoulder.
The patient gets off the balance board (backwards) with
the dominant foot first.

The operator clicks on the End button of the Logger GUI
to conclude the data logging.

The operator can add further information pertaining to the

exercise repetition, filling the field notes in the Logger
GUIL
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