
Suppression of von Kármán vortex streets past porous

rectangular cylinders

P. G. Ledda1,2, L. Siconolfi1, F. Viola1, F. Gallaire1, S. Camarri2

1Laboratory of Fluid Mechanics and Instabilities,
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Abstract

Although the stability properties of the wake past impervious bluff bodies have been widely

examined in the literature, similar analyses regarding the flow around and through porous ones

are still lacking. In this work, the effect of the porosity and permeability on the wake patterns of

porous rectangular cylinders is numerically investigated at low to moderate Reynolds numbers in

the framework of direct numerical simulation combined with local and global stability analyses.

A modified Darcy-Brinkman formulation [1] is employed here so as to describe the flow behavior

inside the porous media, where also the convective terms are retained to correctly account for the

inertial effects at high values of permeability. Different aspect ratios of the cylinder are considered,

varying the thickness-to-height ratios, t/d, from 0.01 (flat plate) to 1.0 (square cylinder).

The results show that the permeability of the bodies has a strong effect in modifying the char-

acteristics of the wakes and of the associated flow instabilities, while the porosity weakly affects

the resulting flow patterns. In particular, the fluid flows through the porous bodies and, thus, as

the permeability is progressively increased, the recirculation regions, initially attached to the rear

part of the bodies, at first detach from the body and, eventually, disappear even in the near wakes.

Global stability analyses lead to the identification of critical values of the permeability above which

any linear instability is prevented. Moreover, a different scaling of the non-dimensional permeabil-

ity allows to identify a general threshold for all the configurations here studied that ensures the

suppression of vortex shedding, at least in the considered parameter space.
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I. INTRODUCTION

The flow of a liquid phase through a body containing interconnected patterns of voids

is frequently encountered in engineering applications as well as in nature. Examples in-

clude filtration, where it is necessary to separate solid particles from fluids, cooling systems,

where the presence of a porous medium can enhance the heat exchange thus increasing the

efficiency, or water penetration in a sand substrate. Additionally, several minute insects

such as the thrips (Thysanoptera) use hairy appendages for feeding and locomotion. These

filaments-made wings have convenient lift to weight and lift to drag ratios with respect an

impervious wing [2] and are typically modeled as porous rectangular cylinders [3]. In a

similar fashion, the seeds of taraxacum (commonly known as dandelions) and of tragopon,

are transported by the wind thanks to a particular umbrella-like extensions called pappus,

which can be seen as the equivalent of a parachute. Also in this case, the flow pattern past

these seeds advected by wind gust can be explained using the model of a porous disk [4],

with a Reynolds number based on the pappus diameter around Re = 100.

Inspired by nature and motivated by engineering applications, the fluid dynamics of

porous media has received a growing interest over the years. At the beginning of the last

century, based on the concept that the permeability modifies the flow around a solid object,

Prandtl [5] designed a passive blowing system to control the flow past a circular cylinder.

Subsequently, Castro [6] studied experimentally the flow around perforated flat plates ob-

serving two different flow behaviors: a configuration in which the von Karman vortex street

dominates the wake, and another in which it is inhibited due to the air bleeding from the

holes. Furthermore, in some cases, the mean flow is characterized by the presence of a de-

tached recirculation bubble. He also observerd that the transition between these two states,

i.e. with attached or detached recirculation region, is quite sudden.

Successively, the turbulent wake past a nominally two-dimensional porous cylinder has

been investigated [7], identifying two wake regions: a steady wake region that extends for

several cylinder diameters behind the body and a region further downstream associated with

the formation of large-scale wake oscillation (von Karman street). Increasing the porosity,

and so the permeability, the vortex street formation moves further downstream. More re-

cently, the problem of the flow around porous square cylinders [8, 9] and porous disks [3] has

been approached numerically. In the latter case, by increasing the disk permeability three
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different flow regimes have been recognized: (i) first an effectively impervious regime, which

is characterized by the presence of a toroidal vortex recirculation region located close to

the disk, is observed at low permeability; (ii) Subsequently a transition regime in which the

recirculation region shortens and moves downstream occurs for intermediate permeability;

(iii) At high permeability regime where the recirculation region is no more present.

The scenario described above, however, has been portrayed for the case of steady and

stable flow around a porous bluff body at moderate Reynolds numbers, thus overlooking the

occurrence of flow instabilities. In truth, although the stability properties of the wake past

impervious cylinders [10, 11] and axisymmetric bodies [12, 13] have been extensively inves-

tigated in the literature, this is not yet the case for porous objects. In this work, the flow

patterns around porous rectangular cylinders and their corresponding stability characteris-

tics have been investigated systematically for low-moderate Reynolds numbers by varying

the thickness-to-heigh ratio t and the porous medium properties in terms of permeability and

porosity. Firstly, the steady baseflows around permeable rectangular cylinders are computed

by solving numerically the incompressible Navier-Stokes equation in the pure fluid domain

that are dynamically coupled with a modified Darcy-Brinkman formulation [1]. In this for-

mulation, which has been validated against benchmark results available in the literature,

the convective terms are retained to correctly account for the inertia effects at high values

of permeability. The global stability analysis is then performed as the permeability of the

porous medium is progressively changed, finding for each case the marginal stability curve

and studying the evolution of the associated eigenvectors. The sensitivity of the base flow

in different permeability regimes is also evaluated by means of structural sensitivity analysis

[14]. The regions where the structural sensitivity is stronger define the so called wavemaker,

where the instability mechanism acts on the baseflow and, with the aim of controlling the in-

stability, which identifies a region where a localized perturbation has an important effect on

the eigenvalues. The onset of a globally unstable mode in the wake of porous cylinders and

the possible stabilization effect of the permeability are then connected to the local stability

properties of the flow with emphasis on the relation between the streamwise extension of the

absolute region and the one of the recirculation relation. This connection is here explored

in detail, showing that global instability can persist even when recirculation are absent in

the wake but, nevertheless, the wake velocity defect is sufficiently large.

The paper is organized as follows. The flow configuration along with the governing equa-
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tions for the direct numerical simulations, global and local stability analyses are introduced

in section II. The numerical method and its validation are detailed in section III. In IV

the baseflow morphology and its global and local stability properties are first presented as

a function of the Reynolds number and permeability. Successively, the effect of porosity

and aspect ratios is investigated. Conclusions are outlined in section IV. Further details

on the theoretical formulation and numerical convergence are provided in the appendices

appendix A and appendix B, respectively.

II. PROBLEM FORMULATION

In this section the theoretical framework and the governing equations for the direct nu-

merical simulations, global and local stability analyses are presented.

A. Flow configuration and governing equations

We study the stability of two-dimensional (2D) wakes past porous rectangular cylinders

invested by a uniform stream of velocity U∞ (Fig. 1) aligned with one of their symmetry

axis and orthogonal to their longest sides. The rectangular cylinders, characterized by

a thickness-to-height ratio t/d, are assumed to be made by a homogeneous and isotropic

Porous
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Figure 1. (a) Representation of an elementary porous volume V . VS and VF are the solid and the

fluid portions of the volume V , respectively. (b) Sketch of the flow configuration: d is the reference

dimension of the body, t is its thickness. L1 is the distance between the body and the recirculation

bubble when this is detached and ∆L the length of the recirculation region, both measured on the

symmetry line y = 0.
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porous material with porosity φ and permeability k (as defined in Appendix A). The poros-

ity allows the flow to partially pass through the bodies, thus modifying the characteristics

of the resulting wakes. It will be shown that the recirculation bubbles can assume different

lengths, here labelled as ∆L, depending on the permeability and, for specific configurations,

recirculation regions can be detached from body, i.e. L1 > 0 (see Fig. 1b). It is important

to highlight that, although the present work is focused on the study of the wake past 2D

rectangular cylinders, the procedure described in the following can be considered as a gen-

eral approach to study the instability of the flow past a generic porous bluff body.

The fluid motion in the pure fluid region of the domain is described by the velocity field

u = (ux, uy) and the pressure field p, which satisfy the unsteady incompressible Navier-

Stokes equations:

∇ · u = 0, (1a)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u (1b)

where µ and ρ are the dynamic viscosity and the density of the fluid, respectively. The set

of equations (1) are solved in a closed rectangular domain with suitable inlet, lateral and

outlet boundaries, which are specified at the end of this section.

Concerning the flow inside the body, the porous medium is modelled as a rigid medium

completely saturated with fluid. In the literature, different mathematical approaches have

been proposed to describe the motion of the fluid inside the pure fluid volume Vf (Fig. 1)

of the porous medium [1, 15, 16, 17]. In the present work, the approach proposed in [18],

which is based on an averaging technique, is adopted. Referring to Fig. 1a, the superficial

volume averaged velocity can be defined as follows:

〈ub〉|x =
1

V

∫
Vf

ub(x + xf ) dΩ, (2)

where x represents the position vector of the centroid of the averaging volume V and xf

the position vector of the fluid phase relative to the centroid. Concerning the pressure, it is

convenient to define an intrinsic volume averaged pressure at the centroid x as follows:

〈pb〉β|x =
1

Vf

∫
Vf

pb(x + xf ) dΩ, (3)
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where the average is now made only considering the volume of the fluid phase inside the

porous medium. The intrinsic definition of the pressure 〈pb〉β, linked with the corresponding

superficial one 〈pb〉 by the porosity φ, i.e. 〈pb〉 = φ〈pb〉β, results to be convenient since it

is a better representation of the pressure that can be measured at the boundary of porous

bodies in experiments. Thus, using the relations (2) and (3), the average fluid motion inside

the porous medium is seen to be governed by the following system of equations:

∇ · 〈ub〉 = 0, (4a)

ρ

φ

∂〈ub〉
∂t

+
ρ

φ2
〈ub〉 · ∇〈ub〉 = −∇〈pb〉β +

µ

φ
∇2〈ub〉 −

µ

k
〈ub〉. (4b)

Finally, considering d and U∞ as reference length and velocity scales, respectively, the

overall system of equations can be written in non-dimensional form as follows:

• Pure flow:

∇ · ũ = 0 (5a)

∂ũ

∂t̃
+ ũ · ∇ũ = −∇p̃+

1

Re
∇2ũ (5b)

• Inside the porous medium:

∇ · 〈ũb〉 = 0 (6a)

1

φ

∂〈ũb〉
∂t̃

+
1

φ2
〈ũb〉 · ∇〈ũb〉 = −∇〈p̃b〉β +

1

φRe
∇2〈ũb〉 −

1

ReDa
〈ũb〉 (6b)

where Re = ρU∞d/µ is the Reynolds number and Da = k/d2 is the Darcy number. The sys-

tems of equations (5,6) are then completed by appropriate boundary conditions. Referring

to Fig. 2, non-homogeneous Dirichlet boundary conditions specifying the undisturbed in-

coming flow are applied at the inflow, Ωin, and on the lateral boundaries, Ωlat, i.e. ũ = [1, 0].

Stress-free condition is imposed at the outflow boundary, Ωout, i.e. n · [µ∇ũ− p̃I] = 0. Con-

cerning the interface between the cylinder and the outer flow field, the quantities (ũ, p̃) and

(〈ũb〉, 〈p̃b〉) can be linked considering that, outside the porous body, the average velocity

and pressure correspond, in the present case, to the punctual velocity, i.e. 〈ũ〉 = ũ and

〈p̃〉 = 〈p̃〉β = p̃. In particular, assuming a homogeneous porous interface [18], velocity and

stress continuity are imposed on Ωcyl, i.e. ũ = ũb and n·[µ∇ũ−p̃I] = n·[µφ−1∇〈ũb〉−〈p̃b〉βI].
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It is important to highlight that the use of different averaging definitions for the velocity (2)

and for the pressure (3) in the continuity of the stresses results to be appropriate thanks to

presence of the porosity φ in the expression of the boundary condition. In the following, the

superscript ·̃ , which indicate non-dimensional quantities, and the average brackets 〈·〉 will

be omitted for sake of brevity.

B. Global stability and sensitivity analysis

The occurrence of bifurcations of the system that drive the flow into different flow con-

figurations is studied in the framework of linear stability analysis. Using a unified nomen-

clature for the flow field inside and outside the porous body, (u,p) we consider the flow

solution as the superposition of a steady baseflow (U, P )(x, y) and an infinitesimal unsteady

perturbation (u′, p′)(x, y, t). As concerns the flow description outside the porous body, in-

troducing this decomposition in the system (5), two mathematical problems are obtained

describing the spatial structure of the baseflow and the evolution of the unsteady pertur-

bations. The baseflow outside the porous body is governed by the steady version of the

system (5). Perturbations of the baseflow are sought in the form of normal modes, i.e.

(u′, p′)(x, y, t) = (û, p̂)(x, y) exp(σt), where σ is the eigenvalue associated with the cor-

responding eigenfunction (û, p̂)(x, y). The dynamics of an infinitesimal perturbation can

be then described by the unsteady Navier-Stokes equations, linearized around the baseflow

solution (U, P ), that can be written as:

∇ · û = 0 (7a)

σû + U · ∇û + û · ∇U = −∇p̂+
1

Re
∇2û. (7b)

The same procedure can be applied disturbance dynamics inside the porous medium. The

baseflow inside the body is given by the steady version of system (6), while the perturbation

dynamics is given by:

∇ · û = 0 (8a)

1

φ
σû +

1

φ2
(U · ∇û + û · ∇U) = −∇p̂+

1

φRe
∇2û− 1

ReDa
û (8b)
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The linearized systems (7,8) are then completed with the following boundary conditions:

homogeneous Dirichlet condition is imposed at the inlet Ωin and on the lateral boundaries

of the domain Ωlat, while the stress-free condition is considered at the outflow Ωout. At the

fluid-porous interface Ωcyl, velocity and stress continuity condition between inner and outer

disturbances are applied in similarity of the interfacial condition imposed in the systems

(5,6).

The systems (7,8), together with their boundary conditions, define an eigenvalue problem

with, possibly, complex eigenvalues σn = λn + i ωn. The real part of the eigenvalue, λn, is

the growth rate of the global mode, whereas the imaginary part, ωn, is its angular velocity.

Thus, sorting the eigenvalues by their growth rates in descending order, i.e. λ0 > λ1 > λ2, ...,

the system is considered asymptotically stable if the growth rate of the leading eigenvalue

λ0 is positive, while it is asymptotically unstable if λ0 is negative.

Following [14], the evaluation of the sensitivity of the global eigenvalue to a structural

perturbation δL of the linear operators of the systems (7,8) allows to highlight the region of

the flow field where the instability mechanism acts on the baseflow. In particular, considering

a localized forcing f(x0, y0) = A0û(x, y)δ(x−x0, y− y0) acting on equations (6,7), where A0

is a generic feedback matrix and δ is the 2D Dirac function, the induced eigenvalue variation

δσ can be maximized as follows:

|δσ(x0, y0)| ≤ ||A0|| · ||û(x0, y0)|| · ||û†(x0, y0)|| (9)

where û† is the adjoint velocity field, solution of the following system of adjoint equations:

• In the clear fluid:

∇ · û† = 0 (10a)

σû† −U · ∇û† + û† · (∇U)T = −∇p̂† +
1

Re
∇2û† (10b)

• In the porous medium:

∇ · û† = 0 (11a)

1

φ
σû† +

1

φ2
(−U · ∇û† + û† · (∇U)T ) = −∇p̂† +

1

φRe
∇2û† − 1

ReDa
û†. (11b)
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The boundary conditions that complete the systems (10,11) are the same used for the direct

problem defined in the systems (7,8), except for the outflow boundary condition that can

be written as n ·
(
Re−1û† − p̂†I

)
= − (U · n) û†.

C. Spatio-temporal stability analysis

As mentioned before, the properties of the porous bodies affect the characteristics of the

wake and therefore its stability. In order to analyze in detail the nature of the instability and

its changes with the porosity and the permeability of the body, a spatio-temporal stability

analysis is carried out. Under the assumption of weakly non-parallel flow, the velocity

profile at each streamwise section is extracted and its stability is studied inspecting the

growth rate of a local perturbation of the form u′ = u∗ exp [i(kx− ωt)], where k is the local

wavenumber and ω the angular velocity. In order the study the absolute and convective

nature of the stability, the Briggs-Bers method is used [11], which consists in defining the

saddle point k0 in the complex k-space, i.e. ∂ω/∂k(k = k0) = 0 (the absolute wavenumber).

If the imaginary part of the corresponding absolute frequency ω0 is greater then zero, i.e.

Im(ω0) > 0, the flow profile is absolutely unstable, otherwise it is convectively unstable. As

pointed out in literature [11, 19], the extension of the absolute unstable region can be linked

to the characteristics of the global stability of the wake.

III. NUMERICAL METHOD

In this section, the numerical methods employed to solve the governing equations intro-

duced in Section II are described. The evaluation of the baseflow, steady solution of the

systems of equations (5,6), and the solution of the global eigenvalue problems (7,8) over the

rectangular domain sketched in Fig. 2 are carried out using FreeFem++ [20] solver. The

spatial discretisation is then obtained by a finite-element formulation based on the Taylor-

Hood elements. The unstructured grid is made of five regions of refinement (see Fig. 2),

where the vertex densities have been chosen after a convergence study, whose results are

reported in detail in Appendix B.

As regards the identification of the absolute and spatio-temporal analysis, the 1D velocity

profile extracted form the baseflow at several streamwise positions is considered parallel as
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Figure 2. Sketch of the computational domain. The porous cylinder corresponds to the gray area

whereas the dashed line rectangles depict the mesh refinement regions. The spatial extent of the

computational domain is defined by the location of the boundaries x−∞, x+∞ and y∞ and the level

of the mesh refinement is controlled by the vertex densities nL, nC n1, n2, n3 and ns.

in the local stability analysis [11]. The resulting parallel linear equations are then discretized

using a pseudo-spectral method employing Gauss-Lobatto-Legendre collocation points. The

saddle-point in the complex wavelength space k of the local angular velocity ω is then

localized using a Newton iterative method.

1. Validation of the model and its implementation against the literature

In this section, the mathematical and numerical approaches described in Sec.(II) and (III)

are validated against the results reported in [21]. The test case consists in the DNS of the 2D

flow in a square cavity of dimension L, where homogeneous Dirichlet boundary conditions

are applied at all the boundaries except for the top one, where a uniform tangential velocity,

i.e. ux = Ū , is considered. For a height (y−direction) of 0.33L the cavity is occupied

by a porous medium, whose porosity is fixed at φ = 0.8 and its permeability in the x−

and y−direction is k = 1.052 × 10−5 and k = 2.196 × 10−5, respectively. Exploiting the

formulations described in equations (5) and (6), direct numerical simulations (DNSs) are

carried out at ReL = ρŪL/µ = 100 and the results are reported in Fig. 3, together with

the reference ones from [21], which are reported as red points. A good agreement has
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been found between the two sets of data, especially at the fluid-porous interface, where the

velocity gradients are correctly estimated. This good agreement results from having retained

the convective terms in the equations (6), that allows the inertial effects to penetrate inside

the porous medium, according to the discussion of [21]. In summary, since the DNS data

in [21] have been obtained using a numerical method and resolution which are different and

independent from the ones adopted here, we can state that results in Fig. 3 validate (i)

the model employed for the porous media, (ii) the interface boundary conditions between

the porous body and the external flow and, lastly, (iii) the numerical implementation of the

proposed sets of equations.
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Figure 3. Velocity profiles (solid lines) of (a) ux and (b) uy extracted at half of the cavity, i.e.

x = 0.5, compared to the results of [21] (red dots).

IV. RESULTS

In this section, the results of the present work in terms of base flow characterization

and stability analysis are described in detail. In particular, different rectangular cylinders

are considered, varying the thickness-to-height ratio t/d from 0.01, i.e. a flat plate in good

approximation, to 1.0, i.e. a square cylinder. We anticipate that the baseflow morphology

and stability properties of the flow weakly depend on the ratio t/d and the porosity φ. For

11



this reason, we first focus on the the effect of the permeability, k, and of the Reynolds

number, Re, on the flow field in the case t/d = 0.25 and φ = 0.65. Subsequently, the effect

of the aspect ratio, t/d and of the porosity, φ on the results will be discussed.

A. Rectangular cylinder with t/d=0.25

1. Base flow

The base flow consists, for all the Reynolds numbers here considered, in two perfectly

symmetric and counter-rotating recirculation bubbles located in the wake of the cylinder.

The geometric characteristics of the recirculation regions depend, however, on the considered

Reynolds number, Re, and on the permeability, k, of the body. In particular, let us first

study the effect of the permeability, keeping fixed the Reynolds number at Re = 30. At low

values of the permeability, e.g. Da ≈ 10−10, the resulting flow field is very similar to the one

that occurs around a solid cylinder, where the recirculation bubbles lie in the near wake of

the cylinder and remain attached at its base (see Fig. 4a). Increasing the permeability, i.e.

increasing the Darcy number, the flow field inside the cylinder becomes not negligible and,

for a critical value of the Darcy number, Dacr1, the recirculation bubbles detach from the

base of the cylinder, as visible form the streamline patterns reported in Fig. 4b,c. Finally,

further increasing the Darcy number, a second critical value is present, Dacr2, such that

recirculation regions disappear, as shown in Fig. 4d and only a wake velocity defect is

present past the cylinder. In particular, for Re = 30 the critical values are Dacr1 = 1× 10−7

and Dacr2 = 1.5× 10−3.
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Figure 4. Baseflow. Flow streamlines at Re = 30, and (a) Da = 10−10, (b) Da = 5 × 10−4, (c)

Da = 1.1× 10−3, (d) Da = 5× 10−3 (only half of the domain, i.e. y ≥ 0, is shown).

As visible in Fig. 4, the streamlines at the upper, i.e. x = 0 and y = 0.5, and lower

corners, i.e. x = t and y = 0.5, of the cylinder are modified, due to the characteristics

of the material that allows the flow to pass through the body (see Fig. 5). In particular,

the resulting shapes and dimensions of the recirculation bubbles can be related, then, to

the vorticity field. Increasing the permeability, the intensity of the vorticity at the two

separation points decreses. This is clearly visible in Fig. 6, where the colour-contours of

vorticity in the neighbourhood of the upper corner are depicted. The less intense vorticity

observed in the porous case leads to a reduction of the induced counter velocity in the wake,

leading to a smaller recirculation length in the streamwise direction and lower backwards

velocity intensity. Moreover, since the two vorticity layers are closer to the centre line as the

Da number is increased, a consequent reduction of the width of the recirculation bubbles in

y−direction is also found (see Fig. 4).
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Solid cylinder Porous cylinder
(a) (b)

Figure 5. Representative behaviour of the velocity field for the flow past a (a) solid and (b) porous

rectangular cylinder (Da = 5× 10−3) at Re = 30. The colours represents the velocity magnutude.
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Figure 6. Distribution of vorticity in the upper part of the body, at Re = 30 and (a) Da = 10−10,

(b) Da = 5× 10−4, (c) Da = 5× 10−3.

Similar effects are also found by fixing the permeability and increasing the flow Reynolds

number. Fig. 7 shows the streamline patterns for different values of the Reynolds number

with constant permeability and porosity set to Da = 1.1 × 10−3 and φ = 0.65, respec-

tively. It is possible to observe that the streamwise extension of the recirculation region, as

the flow Reynolds number is increased, increases at first, successively decreases and finally

disappears. At the same time, once detached, the recirculation bubble gets progressively

more distant from the cylinder, i.e. L1 increases monotonically with Re. The dependence

of the recirculation bubble length on the flow Reynolds number depends on the competition

between the inertia terms and the Darcy terms in the systems (5) and (6). As the flow
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Reynolds number is increased, the inertial terms become more important and, at the same

time, the viscous drag effects inside the porous media are reduced. Thus, the fluid can

easier pass through the body, strongly modifying the velocity field and, as a consequence,

the vorticity field.

In particular, when Re is increased, the generated vortical structures become more intense

(see 8b,c), with a consequent elongation of the recirculation bubbles. Successively, further

increasing the Reynolds number, the vorticity magnitude decreases (as in 8c), yielding the

recirculation bubbles to shorten until they disappear.

Figure 7. Baseflow. Flow streamlines at Da = 1.1 × 10−3, and (a) Re = 40, (b) Re = 90, (c)

Re = 110, (d) Re = 140 (only half of the domain, i.e. y ≥ 0, is shown).
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Figure 8. Distribution of vorticity in the upper part of the body, at Da = 1.1 × 10−3, and (a)

Re = 40, (b) Re = 65, (c) Re = 110.
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Figure 9. Marginal stability curve (red line) in the Re-Da plane, and the different flow patterns of

the baseflow (delimited by the black lines).

The set of transitions in the flow morphology described above are explored by varying

both the flow Reynolds number and the Darcy number, and results are summarized in Fig.

9, where the type of wake flow, i.e. with attached, detached and no recirculation regions, is

delimited by the black lines in the Da − Re plane, for Reynolds numbers up to Re = 200.

It is possible to observe that the first critical Darcy value Dacr1 is almost constant at

1 × 10−7 and independent of the flow Reynolds number. On the other hand, the second
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critical Darcy number Dacr2, that separates the cases with detached recirculation regions

from cases without recirculation regions, is slightly decreasing with the Reynolds number,

reaching the value of Dacr2 = 8× 10−4 at Re = 200.

The wake modifications due to the permeability of the porous medium directly affect the

drag force FD on the body. When small values of Da are considered, the drag coefficients

CD, here defined as CD = FD/(0.5ρU
2
∞td), is very similar to the case of the solid cylinders.

Referring to Fig. 10, the drag coefficient is CD ≈ CD,solid = 2.18 at Re = 20 and it is

CD ≈ CD,solid = 1.88 at Re = 30. Increasing the Darcy number, the CD slightly decreases

first and a significant reduction is successively visible for Da > 1 × 10−3. In this range of

Da, the drag coefficient follows the scaling CD ∼ Re−1Da−1, as reported in [3].
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Figure 10. Drag coefficient CD as a function of Da for Re = 20 (red line) and Re = 30 (blue line).

2. Global stability analysis

In this section the results of the stability analysis for the wake flow of the porous rect-

angular cylinder with t/d = 0.25 are presented for Reynolds numbers up to Re=200 and

varying the Darcy number. As shown in the previous section, the characteristics of the

porous medium affect the behaviour of the wake flows and, consequently, a strong modifica-

tion of the stability properties can be expected in comparison to the solid case. In particular,

17



this latter case shows a Hopf bifurcation that drives the flow field from a symmetric solution,

presented in the previous section, to a state which is periodic in time. This transition occurs

for the solid case at a critical Reynolds number Recr ≈ 35 and the resulting flow field is

characterized by a nondimensional time frequency equal to St = fd/U∞ ≈ 0.106.

The results from the global stability analysis applied to the porous cases confirm that

the nature of the instability is preserved for a wide range of values of the permeability.

However, it is possible to identify configurations where the steady and symmetric solution

remain stable for all the Reynolds numbers in the range considered here. This behaviour

is shown in Fig. 9, which reports the neutral stability curve (red line), i.e. the curve that

corresponds to the cases with null growth rate, λ0 = 0, for different values of Da, together

with the boundary curves that identify the different base flow configurations described in

the previous section. It is clear that exists a threshold in permeability exists, Dastabcr , beyond

which the occurrence of the Hopf bifurcation is suppressed. The value of the Dastabcr depends

on the Reynolds number and it reaches a maximum value of 1.2 × 10−3 for Re ' 80, and

it decreases as Re is further increased. This behaviour is highlighted in Fig. 11, where the

neutral curve is reported together with the iso-contours of ∆L in the Re − Da plane. It

results that the lower branch of the neutral curve follows the iso-contours of ∆L for a wide

range of Da up to Da = Dastabcr . For higher Re, the neutral curve crosses the iso-contours

and enters in the area of the flow parameters where no recirculation bubbles is present in

the base flow.
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Figure 11. Marginal stability curve (red line) and (a) iso-contours of the length of the recirculation

bubble ∆L (colour lines), measured on the centerline.

Thus, for particular couples of (Da,Re), the flow is globally unstable even if no recircula-

tion regions are present, as for instance for Da = 8× 10−4 and Re=185. The possibility to

have a global instability is in fact linked to the presence of a sufficiently strong wake defect

and it is not directly related to the presence of regions of counterflow (see for example [10],

[22] for details). It is also interesting to observe from fig. 11 that, for some fixed values of

Da, e.g. Da = 10−3, the baseflow becomes first unstable and then recovers again a steady

solution when the Reynolds number is further increased. The shapes of the global modes

associated with the leading global eigenvalues are affected by the characteristics of the base

flow. In particular, the downstream displacement of the recirculation regions suggests that

also the perturbations originate in a region which moves progressively downstream as Re is

increased. This behaviour is visible in Fig. 12, where the marginal global modes for Re = 52

and Re = 132 at Da = 10−3 are reported.

From the literature it is known that the wavemaker of the vortex shedding instability is

localised in the recirculation region past a solid bluff body (see, for example, [23]). Conse-

quently, it is expected that the wavemaker region for a porous body follows the position of

19



the recirculation region or, in general, the position of the maximum wake velocity defect.

Following [14], the wavemaker can be identified evaluating the inner product between direct

mode and adjoint global mode. As an example, the adjoint leading modes are reported in

Fig. 13, for the same cases of the direct modes shown in Fig. 12. The shape of the structural

sensitivity is finally reported in Fig. 14.

Figure 12. Real part of the streamwise component of the direct eigenvector at Da = 10−3 and (a)

Re = 52, (b) Re = 132, both on the marginal stability curve.

Figure 13. Real part of the streamwise component of the adjoint eigenvector at Da = 10−3 and

(a) Re = 52, (b)Re = 132.
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Figure 14. Sensitivity to structural perturbations of the bifurcating global mode at (a) Re = 45,

Da = 10−10, (b) Re = 54.5, Da = 9 × 10−4, (c) Re = 100, Da = 9 × 10−4, (d) Re = 160,

Da = 9× 10−4.

When low values of Da are considered, the wavemaker is located close to the body simi-

larly to the solid case (Fig. 14a). However, when Re and Da are increased, the wavemaker

moves downstream together with the recirculation regions (Fig. 14b,c). Finally, even if the

recirculation bubbles are not present anymore, the wavemaker still persists in the velocity

deficit region (Fig. 14d). The results confirm that, even without a recirculation region, a

sufficiently strong wake defect can sustain an unsteady global instability.

In order to gain more insight on this aspect the spatio-temporal stability properties of

the flow are given in the next section.

3. Spatio-temporal stability analysis

In this section, the local stability properties of the wake past porous cylinders are analyzed

in the framework of spatio-temporal stability analysis. In particular, the representative

case of Reynolds number of Re = 185 and aspect ratio t/d = 0.25 is here discussed for

three values of permeability, one globally unstable with a recirculation region, one globally

unstable but without recirculation and one which is globally stable. The objective is to

investigate the region of absolute instability in the three considered wakes so as to provide a

further viewpoint so as to explain the behavior observed by global stability analysis described
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Figure 15. Local stability properties of the wake behind a porous disk with t/d = 0.25, Re = 185

and increasing Da. From top down, the absolute growth rate ω0i at different streamwise locations,

the baseflow streamlines, and the streamwise component of the velocity evaluated at the centerline,

for (a) Da = 7× 10−4, (b) Da = 8× 10−4,(c) Da = 9× 10−4. (d) The absolute growth rate ω0i for

the three cases reported.

in the previous section. Specifically, at Da = 7 × 10−4, the base flow is globally unstable

and it is characterized by a large absolute unstable region, which includes the recirculation

region in the wake (Fig. 15a). The extension of the absolute region corresponds indeed

to the locations where the streamwise velocity at y = 0 is less then 0.05U∞, according to

the results of [10]. As anticipated, counterflow is not necessary for the wake profile to be

absolutely unstable. As a consequence, there exists a range of Da such that the recirculation

bubble is not present, but the a global unstable mode is supported by a sufficiently elongated

region of absolute instability provided that the wake deficit is stronger than approximately

5%. This scenario is confirmed in Fig. 15b, where the Darcy number is set to Da = 8×10−4.
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Finally, further increasing the permeability, the wake deficit is recovered and the absolute

region reduces or, eventually, disappears and, as a results, all the wake profiles becomes

convectively unstable. In this case the flow becomes globally stable, as in Fig. 15c for

Da = 9 × 10−4. The results in terms of absolute growth rate are then summarized in Fig.

15d, where the stabilizing effect of the permeability, k, on the absolute unstable regions can

be observed.

Summarising, the results of this section show the link between the absolute instability

region and the global instability of the considered wakes. It is shown that the region of

absolute instability moves downstream together with the recirculation region or, in general,

with the region where the wake velocity defect is concentrated. Moreover, it is clear by this

analysis that global instability is related to the velocity defect more than to recirculation

regions, providing further quantitative support to what observed by global stability analysis

for those unstable configurations where recirculations are absent.

B. Effect of the porosity and of the aspect ratios on the stability of porous rect-

angular cylinders.

The previous section shows the results for configurations at different values of the per-

meability Da but with fixed porosity φ = 0.65 and thickness-to-height ratio t/d = 0.25. In

this section, the effect of these two parameters on the flow characteristics is investigated.

Firstly, the effect of the porosity on the stability characteristics is investigated for the case

with t/d = 0.25. The marginal stability curves and the region of the parameter space where

the baseflow has not recirculation regions, i.e. ∆L = 0, have been evaluated for porosities

of φ = 0.80 and φ = 0.95. The results, reported in Fig. 16 together with the ones obtained

for φ = 0.65, show that the porosity weakly affects the stability properties and the main

discrepancies are concentred in the upper branches of the neutral curves. In general, the

qualitative behaviour is preserved and, moreover, in all the cases the iso-contours of ∆L = 0

cross the neutral curves, identifying regions in the (Re,Da) space where the self-sustained

oscillations are present even in absence of recirculation regions.

Finally, the effect of the thickness-to-height ratio t/d of the cylinder on the stability

properties is studied for the case with porosity equal to φ = 0.65 and different values of Da.

In particular, the t/d is here varied from 0.01, i.e. thin plate configuration, to 1, i.e. square
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Figure 16. Effect of the porosity on the bifurcation diagram and on the isocontour ∆L = 0, for

φ = 0.65 �, φ = 0.8 � and φ = 0.95 I; isocontours of ∆L = 0 are reported as dashed lines fo the

two cases φ = 0.8 and φ = 0.95, highlighting with a black circle its intersection with the neutral

stability curve (see the zoomed view at the center of the figure).

cylinder configuration. The results in terms of neutral stability curves, reported in Fig. 17a

normalizing the critical Reyonlds number with the corresponding values for the non-porous

cases, show that the qualitative behaviour remains the same for all the cases, although

the curves are shifted along the Da−axis. In particular, it is possible to observe that the

variation of t/d mainly modifies the contribution of the Darcy terms in the equations (6)

and, thus, the effect on the stability curve is expected to be linear with t/d. This speculation

is indeed confirmed in Fig. 17b, where the neutral stability curves are reported using the

Darcy number based on the body’s cross-section, i.e. Da∗ = Da · (t/d)−1 = k/(td). All the

curves roughly collapse onto the same curve, as clearly visibile in Fig. 17b, especially for

the cylinders with t/d < 0.5. This new definition of the non-dimesional permeability Da∗

allows, finally, to identify a sharp threshold DaT
∗ = 5 × 10−3 (Fig. 17b) valid for all the

considered geometries beyond which the baseflow is always linearly stable and, then, the

occurrence of time periodic wake solutions are unconditionally prevented in the parameter

space here considered.
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Figure 17. Effect of the thickness-to-height ratio t/d on the bifurcation diagram. (a) Neutral

stability curves in the Da−Recr plane and (b) using a modified Da∗ = Da · (t/d)−1 = k/(td). The

considered cases are: t/d = 0.01 �, t/d = 0.1 H, t/d = 0.25 •, t/d = 0.5 �, t/d = 1.0 I.

V. CONCLUSIONS

In this work the characteristics and the stability properties of the steady flow around

porous rectangular cylinders at low-moderate Reynolds numbers have been investigated.

The problem has been tackled numerically using a mathematical model for the flow inside

the porous medium that is based on the volume averaged Navier Stokes equations. The

resulting formulation, which takes into account both the viscous and inertial terms inside

the porous medium, has been validated against direct numerical simulations documented in

the literature. Once validated, the resulting numerical tools have been applied to study the

flow past rectangular cylinders by systematically varying their aspect ratio, the permeability

(by varying the Darcy number), the porosity and the flow Reynolds number. It results that

the permeability strongly affects the flow pattern. For all Reynolds numbers and thickness-

to-height-ratios investigated, the baseflow is characterized by a recirculation region that

gradually becomes smaller and detaches from the body as the value of Da is increased, up

to a critical value beyond which the recirculation region vanishes. It is also observed that the

drag coefficient rapidly decreases as Da is increased further after that the recirculation bubble

is disappeared. This behavior has been explained in terms of modification of the vorticity

field due to the suction and blowing effect from the body walls: when the permeability
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increases, the wake vorticity decreases yielding a reduction of the induced counter velocity

in the wake leading, in turn, to a smaller and weaker recirculation length in the streamwise

direction.

The position and the elongation of the recirculation region, both of which depend on the

body porosity and on the flow Reynolds number, are seen to affect the stability properties

of the baseflow. In particular, for a sufficiently low value of Da, two complex-conjugate

global modes associated with the vortex shedding become unstable when the flow Reynolds

number exceeds a critical value. As Re is further increased, depending on the value of Da,

the flow can become stable again. Moreover, if Re is kept constant and Da is varied, for

each value of Re. A critical Darcy number Dacr exists beyond which the recirculation region

vanishes and the flow becomes stable. It has been observed that the marginal stability

curve in the Da − Re plane well correlates with one iso-level of ∆L, i.e. the length of the

recirculation region. Interestingly, the flow can be unstable even without a recirculation

region if sufficiently elongated region exists with a wake defect larger than 95%. This

behaviour has been readily explained by investigating the local stability properties of the

baseflow and by identifying the region of absolute instability in the wake. This analysis

shows that when the velocity on the symmetry axis is less than the 5% of the free-stream

velocity the baseflow can sustain locally absolutely unstable perturbations. The baseflow

patterns and their stability properties are seen to only dependent weakly on the porosity

of the body for a given permeability. On the other hand, when the thickness-to-height

ratio t/d is increased the corresponding stability curves are shifted towards increasing Darcy

numbers meaning that higher permeability is needed to stabilize the wake past bodies which

are progressively more elongated in the streamwise direction. It has also been observed

that the neutral stability curves collapse on each other when they are scaled using a Darcy

number based on the body’s cross-section. Moreover, the existence of a general critical

permeability that ensure the suppression of oscillating wakes for all the cases here presented

is of fundamental importance and we expect that this feature will be identified also for wakes

of other bluff bodies that show similar bifurcation scenarios than the one here investigated.

It can be concluded that the body porosity has a significant impact not only on the

baseflow configurations, as already pointed out in the literature, but also on its stability

properties. Some flow patterns have been observed which are different from the usual picture

we have thinking about wakes past impervious bluff bodies. These are for instance separation

26



regions that are detached from the body and from which vortex shedding takes place, or

vortex shedding originating from regions of flow which is slowed by the porous body but not

recirculating and positioned downstream of the body. For all these unusual cases we have

provided here a full characterisation and explanation, using numerical simulation, local and

global stability analysis.

From the analysis described here it is clear that the permeability can be an effective con-

trol to stabilize the wake past porous bluff bodies. Permeability can be the result evolution

in nature, as it is probably the case for particular seeds as described in the introduction. In

this respect, the methods and the results provided here could help in understanding possible

optimisation criteria that nature has pursued by evolution, which is a very important topic

in research. Moreover, results here presented suggest how permeability can be designed on

purpose in specific engineering applications for flow control, at least for what concerns wakes

past plane bluff bodies. Finally the effects of permeability, that have been unraveled here

in the specific case of rectangular cylinders, have potential impact in many other flow cases

of interest, both from the fundamental and the practical viewpoints.

Appendix A: Mathematical model for the flow inside the porous medium

The body is assumed to be a homogeneous and isotropic porous medium which char-

acteristics are its porosity φ and permeability k. Referring to a representative volume

of the porous medium V (Fig. 1a), we define the superficial average velocity 〈ub〉|x =

1
V

∫
Vf

ub(x+xf ) dΩ and the intrinsic average velocity 〈ub〉β|x = 1
Vf

∫
Vf

ub(x+xf ) dΩ, and the

same definitions are valid for the pressure. Using an averaging technique, i.e. ub = 〈ub〉β+u′b

(see [17, 18]), the equations for the flow through a porous medium can be written as:

∇ · 〈ub〉 = 0, (A1)

ρ

φ

∂〈ub〉
∂t

+
ρ

φ2
〈ub〉 · ∇〈ub〉+

ρ

φ
∇ · 〈u′b · u′b〉︸ ︷︷ ︸

I−subfilter scale stress

=

= −∇〈pb〉β +
µ

φ
∇2〈ub〉 − µ/k〈ub〉︸ ︷︷ ︸

II−Darcy term

− Fµ/k〈ub〉︸ ︷︷ ︸
III−Forchheimer term

(A2)

In this problem we can neglect, without effects on the flow behaviour, the terms (I) and

(III). For what concerns the term (I), it is an additional contribution to diffusion, usually
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called mechanical dispersion. Using a similarity with turbulent stresses (see [24]):

ρ

φ
〈u′b · u′b〉ij = −µmech(

∂〈ubi〉
∂xj

+
∂〈ubj〉
∂xi

) (A3)

We can estimate the mechanical viscosity using µmech = cglβ
√
e, where e = (〈u′biu

′
bi
〉)/2 ∼

〈ubi〉2/2, lβ is the microscopic characteristic length (lβ ∼
√
k), and cg is a coefficient that

depends on the pores geometry.

Using as reference quantities the incoming velocity U and the height of the rectangle d,

we define the Reynolds number Re = ρUd/µ and the Darcy number Da = k/d2.

Defining the Reynolds number Reβ based on the microscopic characteristic length Reβ =
ρ〈ub〉β lβ

µ
∼ 〈ub〉β

U
ReDa1/2, where

〈ub〉β
U
∼ 10−1, we can evaluate the ratio between the mechan-

ical dispersion and the Darcy term,

Rm =

ρ
φ2
∇ · 〈u′b · u′b〉i
µ/k〈ubi〉

∼ ρ
√
k|〈ub〉|〈ubi〉

d2
k

µ
∼ ReβDa (A4)

As an example, Re = 200 and Da = 10−3; so Rm ∼ 10−4; so we can neglect the subfilter

scale stress.

For what concerns the Forchheimer term, according to [17] F ∼ cF ·Reβ, with cF ∼ 10−2;

the order of magnitude of the ratio between the Forchheimer term and the Darcy term is

10−3, and so we neglect also this term. In order to verify this assumption, some simulations

have been performed (which are not reported here for the sake of brevity): an appreciable

effect on the results is not observed; in particular, the variation of the pressure drop in the

body is around the 1%, for Re = 200 and Da = 10−3 .

The equations are made nondimensional using the incoming velocity U and the height of

the rectangle d and they can be written as follows:

• Pure fluid:

∇ · ũ = 0 (A5a)

∂ũ

∂t̃
+ ũ · ∇ũ = −∇p̃+

1

Re
∇2ũ (A5b)

• Porous medium:

∇ · 〈ũb〉 = 0 (A6a)

1

φ

∂〈ũb〉
∂t̃

+
1

φ2
〈ũb〉 · ∇〈ũb〉 = −∇〈p̃b〉β +

1

φRe
∇2〈ũb〉 −

1

ReDa
〈ũb〉 (A6b)
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where the superscripts ·̃ represent the nondimensional quantities.

Appendix B: Results of global stability analysis obtained using various meshes for

the cylinder with t/d=0.25

In this section, the effect of the spatial extent of the computational domain and vertex

densities on the results of the global stability analysis is presented. The vertex densities are

here controlled using different regions of refinement in the computational domain (Fig. 2).

The results of the mesh convergence are reported in Table I, for the case t/d = 0.25, Re = 160

and Da = 9× 10−4 for five different meshes, denoted M1 to M5. The meshes M1 and M2

differ only for the size of the computational domain. In particular, for M1, x−∞ = −50,

x∞ = 75 and y∞ = 40, whereas for M2, x−∞ = −25, x∞ = 50 and y∞ = 20 (Fig. 2).

Comparing the leading global eigenvalues obtained for these two meshes, it is clear that the

domain size has a negligible impact on the results, at least in the range of the parameters

here considered. Thus, keeping constant the domain size of M2, the vertex density is

progressively increased in the meshes M3, M4 and M5. The corresponding results show

that also the the vertex densities have a small impact on the global stability results and, in

Mesh x−∞ x+∞ y∞ nL nC n1 n2 n3 ns nt 103λ ω

M1 -50 75 40 160 120 6.3 4.2 3.1 0.4 86798 -1.98711 0.70191

M2 -25 50 20 160 120 6.3 4.2 3.1 0.8 43910 -1.64652 0.70959

M3 -25 50 20 160 120 9.6 7.7 3.8 1.1 81370 -1.73814 0.70984

M4 -25 50 20 160 120 12.5 8.3 6.2 1.5 131438 -1.78355 0.70973

M5 -25 50 20 160 120 15 10 7.4 1.8 169862 -1.81198 0.70984

Table I. Results of the mesh convergence for the configuration t/d = 0.25, Re = 160 and Da =

9 × 10−4. Referring to Fig. 2, the characteristic parameters of the meshes are: x−∞, x+∞ and

y∞ represent the coordinates of the computational domain, respectively; nL and nC designate the

vertex densities on the vertical and horizontal edge of the cylinder; n1, n2, n3 and ns label the

vertex densities on the different regions of refinement of the computational domain; nt is the total

number of the elements of the grid. λ and ω are, respectively, the real and imaginary part of

resulting global eigenvalues.
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particular, three significant digits remain constant for all the computations here performed.

Summarizing, the results of the convergence analysis show that the spatial discretization

employed in M2 is suitable to ensure the reliability of the results of the global stability

analysis and, thus, it has been chosen to present all the results reported in the paper.
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