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We propose a methodology to estimate with reasonable accuracy the characteristics of
bluff-body wakes by local stability analysis under the assumption of weakly non-parallel
flows. Firstly, a generalization of the classical spatio-temporal stability analysis is shown
and applied to a fully 3D flow. Secondly, a higher-order correction term to the classical
saddle-point analysis is included in the analysis, showing that this correction is crucial
to reach a quantitatively good agreement between local and global stability analyses.
Moreover, the included correction is also shown to lead to a definitely improved prediction
of the spatial structure of the identified globally unstable mode by means of local analysis,
which is definitely less demanding than global analysis in term of computational costs.
Such procedure is first validated for the case of the flow past a circular cylinder and
then applied to the fully three-dimensional wake flow past a sphere. Both the estimated
unstable eigenvalue and the associated direct-mode structure are determined from local
stability properties and compared with results obtained from a full three-dimensional
global stability analysis. Results show excellent agreement between the numerical global
solution when the correction term is taken into account.

1. Introduction

Spatially developing open flows such as bluff-body wakes or jets may display a natural
unsteady instrinc dynamics (self-sustained oscillations or Global modes), where the flow
behaves like a global oscillators. For these flows, the fundamental concept of local absolute
frequency ω0 has been introducted in order to investigate their dynamical behaviour
(Briggs (1964),Bers (1983)). In the regions of absolute instability, i.e. ω0,i ≡ Im(ω0) > 0,
the perturbations are not convected downstream and grow in place driving the evolution
of the nonlinear dynamical system. When a sufficient large region of absolute instability
develops, a self-sustained resonances occurred as the results of the global stability
analysis. (see Chomaz et al. (1988), Huerre & Monkewitz (1985) and Monkewitz et al.
(1993)).
In this context, the dynamics of the perturbations can be analyzed both from a local or
a global point of view. In the local analysis, under the assumption of weakly non-parallel
flows, the perturbations are considered as the superimposition of normal waves on the
base-flow at each streamwise station. On the other hand, in the global approach the
time evolution of perturbations in the whole physical domain is investigated. In the past,
several works have been devoted to investigate the connection between the global stability
features and the local ones for different flow configurations (***). For instance, in the
review by Huerre & Monkewitz (1990) and in Huerre & Rossi (1998), the occurrence of
an unstable global mode in terms of the local properties of the flow field is dealt with
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the classical WKBJ asymptotic analysis (Bender & Orszag 1978). Particular attention
was devoted to the role of absolute-instability region and to the identification, in the
context of the local analysis, of the complex spatial position where the flow is most
sensitive to change in internal feedback mechanism, usually referred as wavemaker. The
possibility to perform a global stability analysis by using a local approach leads to a
substantial saving of the computational time and of the required computer resources,
since the global eigenvalue problem related to the discretization of the stability problem
on the whole domain is recast into a several small eigenvalue problems. However, the use
of the WKBJ approximation can be justified for base flows that evolve slowly in space
in comparison with the typical instability wavelength. Nevertheless, this approximation
has been successfully applied beyond the limit of its validity. For example, Giannetti &
Luchini (2007) showed a comparison between the linear global and local stability analysis
for the case of the flow past a circular cylinder, for Reynolds numbers (Re) ranging from
5 to 100 (based on the incoming velocity and diameter of the cylinder). Subsequently, in
Pier (2008) the flow past a fixed sphere is considered, where the local stability features are
obtained under a quasi-parallel flow assumption. Finally, Juniper & Pier (2015) showed
that a local analysis can be used also for the identification of the adjoint modes and
the structural sensitivity, showing the results for a slowly-developing confined wake and
for the flow past a circular cylinder at Re=50. Unfortunately, in all of these studies,
the resulting eigenvalues computed by a local approach can be only used for qualitative
analyses and, in general, the inherent errors in comparison with to the reference global
solutions (growth rate, frequency and mode structure) can be significant.
In this context, our aim is to show that by including a higher-order correction term
of the WKBJ approximation, the local approach can be used to provide a quantitative
estimation of the global eigenvalue and spatial characteristics of the corresponding mode.
Furthermore, we also show that a two-dimensional local analysis can be used to study
fully three-dimensional wakes. We underline that such two-dimensional local approach is
orders of magnitude cheaper than the global three-dimensional modal analysis.
The paper is organized as follows. In section 2 the basic concepts of the global and local
are recalled, together with the main results of the WKBJ approximation. The numerical
techniques used in this paper are briefly described in section 3, while in section 4 the
main results are presented in details.

2. Theoretical framework

Let us consider a three-dimensional flow of a viscous fluid described by the unsteady
incompressible Navier-Stokes equations

∂tu + u · ∇u +∇p−Re−1∇2u = 0 and ∇ · u = 0 (2.1)

where u = (u, v, w) is the velocity field, p is the reduced pressure and Re = U`ν−1

is the flow Reynolds number based on the reference length `, the reference velocity U
and the kinematic viscosity ν. The system (2.1) is completed by appropriate boundary
conditions. The investigation of the instability mechanism acting in a given flow relies
on the determination of a stationary solution Qb = [ub, Pb] of the system (2.1), usually
referred as base flow. Depending on the characteristics of the base flow, different stability
approaches can be used to investigate the behaviour of the fluid flow (see Theofilis (2011)
for a review).
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2.1. The global stability analysis

When no assumptions can be made on the base flow, a global stability analysis has to be
considered in order to take into account the three-dimensional flow inhomogeneities. Here,
the long-term stability properties are studied by considering the asymptotic behaviour of
a small-amplitude perturbation q′ = [u′, P ′](x, y, z, t) superimposed on the base flow Qb

and sought in the classical normal mode form q′ = q̂(x, y, z) exp {−iωGt}. Introducing
this decomposition and the normal mode ansatz in (2.1), a stationary problem for the
base flow field and a global stability eigenvalue problem for the perturbation are found.
Considering the size of the problem, a time-stepper procedure involving the linearized
Navier-Stokes operator L is usually adopted in order to solve the stability problem. The
resulting system can be recast as follows:

∂tq
′ + L(Qb, Re)q

′ = 0. (2.2)

When the system (2.2) is supplemented by appropriate homogeneous boundary condi-
tions and spatially discretized, a generalized eigenvalue problem is found. Although this
approach seems more convenient for its general application, the characteristic sizes of the
involved discrete problems require high computational resources to be solved.

In order to circumvent this problem, some assumptions on the fluid flow can be
considered to study the nature of the instability mechanisms with lower computational
costs.

2.2. The local stability analysis

When the base flow, described here in Cartesian coordinates (x, y, z), slowly evolves
along a given direction, (assumed to be aligned with the x axis), a local linear stability
analysis can be performed, as a generalization of the classical Orr-Sommerfled/Squire
theory. In the spirit of the local stability analysis, the base flow is considered to depend
only on the two direction (y, z) and independent on the streamwise x−direction, i.e.
Qb = [ub, Pb](y, z). In such cases, a small-amplitude perturbation q′ of the base flow can
be searched in the following modal form:

q′ = [u′, P ′](x, y, z, t) = q̂(y, z) exp {i(kx− ωLt)} , (2.3)

where k is the streamwise complex wavenumber and ωL is the local complex eigenvalue.
The perturbations are then three-dimensional, but a sinusoidal shape is considered
in x−direction. When the modal form 2.3 is substituted in 2.1 and linearized the
equations around the base flow, an eigenfunction problem is obtained. Because of the
local assumption, the coefficients of the resulting stability problem are independent on
the x−direction, i.e. ∂xQb = 0. Thus, once completed the mathematical problem with
the appropriate boundary conditions and discretized using a generic numerical method,
the stability problem can be formally recast as follows:

(A0 + A1k + A2k
2)q̂ = ωLBq̂, (2.4)

where A0,A1,A2,B are complex matrices given by the discretization of the linearized
Navier-Stokes equations (for further details see Siconolfi et al. (2015)). Starting from 2.4,
different generalized eigenvalue problems occur, depending on the type of the analysis.
The linear temporal analysis is carried out considering the wavenumber k ∈ Re as
parameter, while the eigenvalue ωL ∈ Im is shouted, where the real part, i.e. Re(ωL), is
the angular velocity and the imaginary part, i.e. Im(ωL), is the temporal growth rate.
In the quadratic spatial analysis, otherwise, the frequency ωL ∈ Re is the parameter and
the complex wavenumber k is shouted, where its real part, i.e. Re(k), is related with the
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periodicity length in the homogeneous x−direction and the imaginary part, i.e. Im(k), is
the corresponding spatial growth rate.

2.3. The evaluation of the linear global mode from the local analysis

A connection between global and local instability characteristics is available using a
WKBJ-type analysis when the base flow can be considered weakly non-parallel, i.e. the
ratio ε between the characteristic instability wavelength λ and the characteristic spatial
length scale L of the base flow is small (ε� 1) (Huerre & Monkewitz 1990). Thus a new
slow space scale X ≡ εx can be introduced and the dispersion relation is then recovered
by freezing the new X-coordinate: D[k, ω;X,Re] = 0 (in the following the dependence
from Re is omitted for brevity).
First of all, the saddle point of this dispersion relation in the complex k-plane at each
X streamwise station identifies the absolute complex eigenvalue ω0(X) = ω(k0;X), such
that ∂ω/∂k(k0;X) = 0. The existence of a finite region where the absolute growth
rate ω0,i > 0, i.e. ω0,i = Im(ω0(X)), is a necessary condition for the onset of self-
sustained global oscillations (Chomaz et al. 1988). Considering a double infinite flow
domain and under the assumption of the regularity of the D[k, ω;X] = 0, the unknown
global eigenvalue ωG can be written as (Monkewitz et al. 1993):

ωG = ωs + εωε with : ωs = ω0(Xs) (2.5)

where Xs is the complex saddle point, or second-order turning point, such that
∂ω0/∂X(Xs) = 0 and εωε is a small high-order correction term. Once ωG has been
identified at leading order, thus neglecting the term εωε, the distribution of the direct
global mode q̂(x, y, z) can be expressed, in the region away from the turning point Xs,
as:

q̂(x, y, z) ∼ A∓(X)q̂(y, z;X) exp

[
iε−1

∫ X

Xs

k∓(ωs;X
′)dX ′

]
(2.6)

where A(X) is a slowly evolving amplitude, q̂(y, z;X) is the local eigenfunction of
problem (2.4) and the superscripts − and + refer respectively to the region upstream
and downstream of the saddle point Xs.
The identification of the frequency of the self-sustained flow oscillations is one of the
main objective of a global stability analysis. In order to obtain an accurate estimation of
the global eigenvalue, the correction term εωε in (2.5) can be also considered.
In a small region of size O(ε1/2) around the turning point Xs, the WKBJ approximation
breaks down. If a new inner streamwise scaling X̄ ≡ (X − Xs)ε

−1/2 is considered, the
perturbation in the region near Xs can be sought as follows:

q̄ ∼ Ā(X̄) exp
[
iε−1k0,s(X −Xs)

]
with : k0,s = k0(Xs) (2.7)

where the Ā(X̄) is found by imposing a suitable orthogonality condition (Fredholm
alternative) at higher-order (see Huerre & Monkewitz (1990)). Finally, the eigenvalue
correction term ωε is evaluated by the asymptotic matching of the outer WKBJ solution
with that in the inner double turning point region. In particular, ωε is restricted to
assume discrete values such that (Huerre & Monkewitz 1990):

ωG ∼ ωs + εωε with ωε =

[
δω − i

2
ωkkk0X +

√
ω0XXωkk

(
n+

1

2

)]
, (2.8)

where n is an integer and δω takes into account truly non-local effects. All the quantities
ωkk = ∂2ω/∂k2, k0X = ∂k0/∂X, ω0XX = ∂2ω0/∂X

2 are evaluated at the complex saddle
point Xs. Except for the constant δω, all the quantities involved in (??) can be extracted
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from the behavior of the dispersion relation around Xs and k0.
In the following, the complex global eigenvalue from the global stability analysis is
labelled ωG(glob). The global eigenvalue evaluated from the WKBJ approximation at
order O(ε0), equivalent to the saddle point condition, is labelled ωG,0(loc), i.e. ωG,0(loc) =
ωs, and the value at order O(ε1) is designed ωG,1(loc), i.e. ωG,1(loc) = ωs + εωε. Finally,
the expressions without correction and with correction will be used in the body of the
text for the quantities evaluated considering ωG,0(loc) and ωG,1(loc), respectively.

3. Numerical approach

DNS simulations documented here are carried out using Nek5000 (http://nek5000.
mcs.anl.gov), which is a spectral-element code based on Lagrange polynomial inter-
polants in the PN−PN−2 formulation, based on tensor-product arrays of Gauss-Lobatto-
Legendre (GLL) quadrature points in each hexahedral element. A third-order backward
differentiation formula is used for the time discretization. The viscous terms are treated
implicitly while an explicit scheme in time is considered for the non-linear convective ones
by a third-order forward extrapolation. In global stability analysis, the linearized direct
and adjoint Navier-Stokes equations for a small-amplitude disturbance is solved using
Nek5000. The code is used as a time-stepper and it is coupled with the IRAM eigenvalue
solver implemented in ParPACK. For the local stability analysis, spatial discretization is
obtained by the Taylor-Hood finite element method using the code FreeFem++ (http:
//www.freefem.org). Both the resulting temporal and the spatial stability problems are
solved by a Krylov-Schur method with a shift-invert technique, using the implementation
already available in the SLEPc library (http://slepc.upv.es). Higher order WKBJ
correction terms can be included to increase the accuracy of the approximation. In
particular the eigenvalue drift ωε can be computed by evaluating the expression in square
brackets in formula (2.8). Particular attention must be paid when evaluating such terms.
Indeed, the determination of the complex saddle point and the calculation of the other
terms appearing in (2.8) must be performed by analytic continuation of the dispersion
relation in the complex X plane. Such procedure is generally performed by fitting the
available data with a simple polynomial (Pier 2002) or rational function (Cooper &
Crighton 2000) and successively by evaluating the interpolant for complex X values.
While the leading order term ωs has been evaluated without problems by several authors
by using different procedures, the choice of an appropriate interpolation/extrapolation
technique becomes crucial to accurately evaluate the correction ωε. Such term is in fact
small compared to ωs so that special attention must be paid in selecting a procedure
that minimizes high-frequency errors. The presence of such components, in fact, can lead
to errors even larger than the correction itself. In this paper, we adopted a particularly
accurate reconstruction procedure. First, the data available for real X value are fitted
using cubic splines in order to smooth out the high-frequency error terms. Secondly,
Chebyshev rational approximation is used for the function reconstruction in the complex
X plane as implemented in the Matlab library Chebfun (http://www.chebfun.org).
Such procedure allows for an accurate determination of the global eigenvalue ωG. The
spatial evolution of the global mode structure can be determined by inspecting equation
(2.6). Non-parallel effects are accounted for by the amplitude function A(X) which
can be determined by solving the compatibility equation for the second order WKBJ
approximation. Another possibility, which is equivalent (up to higher order terms) is to
evaluate the eigenfunction at every streamwise location using the corrected value ωG in
place of the saddle point eigenvalue ωs: in this way it is possible to include the amplitude

http://nek5000.mcs.anl.gov
http://nek5000.mcs.anl.gov
http://www.freefem.org
http://www.freefem.org
http://slepc.upv.es
http://www.chebfun.org
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term directly in the eigenfunction shape. Such procedure has been adopted in this paper
to accurately reconstruct the direct global mode.

4. Results

In this section, we show the results obtained in estimating the global stability properties
of a globally unstable flow using the local stability analysis as detailed in sections 2. To
this purpose, we consider three different flow configurations: the two-dimensional flow
past a circular cylinder, the laminar boundary layer (BL) flow over a hemispherical
roughness element placed on a flat plate and the flow past a fixed sphere invested
by a uniform stream. The flow past a circular cylinder is a well documented case in
the literature and, for this reason, it also provides us with a validation of the used
tools. Conversely, the other two cases are complex fully three-dimensional configurations.
Results pertaining to the flow configurations are discussed in the following sections.

4.1. Flow past a circular cylinder

The two-dimensional flow past a circular cylinder is considered here. All flow quantities
are normalized using the uniform incoming velocity U∞ and the diameter D of the
cylinder, which are the reference quantities used for the definition of the flow Reynolds
number. Considering a frame of reference centered with the cylinder, with the x-axis
aligned with the free-stream velocity and the z-axis with the cross-stream velocity, the
dimensions of the computational domain used are : −15 6 x/D 6 35 and −15 6 z/D 6
15. The velocity is imposed at the inflow (x/D = −15), while stress-free conditions are
applied on the lateral boundaries (z/D = ±15) and on the outflow (x/D = 35).

The two-dimensional base flow is computed by Nek5000 using about 1500 spectral
elements of degree Np = 7. This grid is also considered for the global stability analysis
that allows to characterize the onset of the primary instability. In particular, the predicted
value of the critical Reynolds number is equal to Recr ' 46.2, which compares very well
with the literature. For instance, in Giannetti & Luchini (2007) Recr is estimated to be
equal to Recr ' 46.7.

In order to show how the improved local stability analysis (with second-order correction
effects included) performs in estimating the global stability properties, we consider the
flow in supercritical conditions at Re = 50. The corresponding unstable steady state is
depicted in figure 1, where the streamline pattern around the cylinder is shown together
with the y−vorticity. Performing the global stability analysis using Nek5000, the leading
unstable global eigenvalue is ωG(glob) = 0.759+0.016i, well in agreement with Giannetti
& Luchini (2007). This value is also reported in table 1, put in comparison with other
results from the literature, evaluated both with a global or a local stability approach.

When standard local analysis, i.e. without correction, is applied following the indi-
cations provided in section 2.2, a region of absolute instability, where ω0,i(X) > 0, is
found in the near wake of the cylinder (not shown here for brevity), which extends in
streamwise direction up to X ' 3.8. Since an analytical continuation of the local absolute
frequency in the complex X−plane is required, the curve ω0(X) is first interpolated with
cubic splines to smooth out the numerical data and then analytically continued from
the real X-axis into the complex space using an accurate Chebyshev rational polynomial
approximation of order N . The saddle point is then identified using a Newton method,
for values of N ranging from 6 to 12 and no significant variations of the Xs and ωs are
found. For instance, a comparison of the saddle point Xs and ωs is reported in the first
two rows of table 2, increasing the polynomial order N between 5 to 9. As is clear, no
significant discrepancies are shown varying the order of the polynomial extrapolation. In
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Figure 1. Vorticity (color) and streamlines of the flow past the circular cylinder at Re = 50
(spacing in the y-direction of 0.2D outside the separation bubble and of 0.04D in the recirculating
region).
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Figure 2. (a) Estimation of the Recr for the primary wake instability of the flow past a circular
cylinder. Green triangles: global analysis; red circles: local analysis not corrected; blue squares:
local analysis with correction. Spatial position of the saddle point with Re: real (b) and imaginary
(c) part of Xs, considering a rational function of N=7.

Reference ωg |ωref − ω|/|ωref |

Global Analysis
Present ωG(glob) ≡ ωref 0.759+0.016i -
Giannetti & Luchini (2007) 0.750+0.013i 0.4%

Local analysis

Pier (2002) 0.785+0.091i 10.9%
Juniper & Pier (2015) 0.791+0.083i 10.4%
Present ωG,0(loc) 0.750+0.084i 9.1%
Present ωG,1(loc) 0.729+0.012i 3.1%

Table 1. Flow past a circular cylinder at Re = 50: globally unstable eigenvalue and its
prediction by corrected and uncorrected local stability analysis.
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N=5 N=7 N=9

Xs +2.1130 + 0.8590i +2.1109 + 0.8613i +2.1110 + 0.8628i
ωG,0(loc) = ωs +0.7497 + 0.0842i +0.7498 + 0.0842i +0.7498 + 0.0842i
ωG,1(loc) = ωs + εωε +0.7298 + 0.0100i +0.7289 + 0.0126i +0.7294 + 0.0113i

ω0XX +0.0271− 0.0582i +0.0261− 0.0573i +0.0261− 0.0567i
ωkk −0.1679− 0.5686i −0.1803− 0.5496i −0.1664− 0.5699i
k0K +0.1100− 0.0486i +0.1113− 0.0496i +0.1106− 0.0489i

Table 2. Comparison of coefficients in equation 2.8 (ω0XX , ωkk, k0K) and complex global
eigenvalues at different order of approximation (ωG,0(loc), ωG,1(loc)) with increasing N , i.e. the
order of rational function.

addition, following Juniper & Pier (2015), these calculations have been repeated including
progressively all points that satisfy the condition ω0,i > ξ, varying ξ from 0.1 to−0.1. This
convergence test, whose results are not reported here for brevity, substantially confirmed
the values reported in table 2, with a discrepancy less than 2% for all of the cases.

The location of the complex saddle point is thus found at ωs = ωG,0(loc) = 0.750 +
0.084i, Xs = 2.112 + 0.863i. These results are in agreement with Pier (2002); Juniper
& Pier (2015), as can be also evinced by table 1, thus validating the procedure and
the numerical tools used for this study. The local approach predicts the global unstable
eigenvalue within an error of 9.1%. In this particular case, the error is larger for the
complex part of the unstable eigenvalue, i.e. for the temporal growth factor. As a
consequence, the standard local stability analysis estimates the critical Reynolds number
Recr ' 27.3, which differs significantly from that one determined by a global stability
analysis, with a percentage error of about 42%.

The results of the local stability analysis can be corrected as detailed in section 2.3.
First, the coefficients in equation 2.8 have to be evaluated at the complex saddle point
Xs. Table 2 shows a comparison of coefficients appearing in 2.8 for increasing values of
the order of rational function. Also for those quantities, a substantial independence of the
results by changing the value of N is found. Using the equation (2.8), the approximated
global eigenvalue is found equal to ωG,1(loc) = 0.729 + 0.012i, with a decreased error
around 3% compared to that from the global stability analysis, as also reported in table
1. Here the accuracy on the predicted growth factor is largely improved and this leads
to an accurate estimation of Recr, which is now estimated to be Recr ' 45.2, with an
error of only 3.2% compared to that from the global stability analysis. Moreover, the
complex eigenvalues ωG,1(loc) evaluated with different order N of the rational function
is reported in the third row in table 2. As a further assessment of the beneficial effects
of the proposed correction, we report in Figure 2a the values of the global growth rate
estimated by the local stability analysis with and without correction, i.e. ωG,1(loc) and
ωG,0(loc) respectively, in comparison with the equivalent values estimated by the global
stability analysis, for values of Reynolds number ranging from Re=25 to Re=75. The
figure clearly shows that the applied correction systematically improves the predictions
of the local stability analysis over the range of considered Reynolds numbers and, as
already commented, significantly improves the prediction of the critical conditions for
the onset of the wake instability. In addition, the position of the saddle point Xs as a
function of the Reynolds number is also reported in figures 2b-c. Since the length of the
recirculation region in the near wake of the cylinder increased with the Reynolds number,
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Figure 3. Flow past a wall-mounted hemispherical roughness: configuration and frame of
reference (not in scale).

the saddle point moves slightly downstream, i.e. Re(Xs) increases. On the contrary, the
distance of Xs from the real X − axis, i.e. Im(Xs), remains substantially unchanged, at
least for the considered range of Reynolds numbers.

4.2. Boundary-layer flows past a hemispherical roughness element

The first three-dimensional configuration here presented is the boundary-layer flows
(BL) over a wall-mounted roughness element, sketched in figures 3a-b together with
the considered Cartesian coordinate system. The roughness element is composed by a
hemisphere of radius R connected to the wall by a thin circular cylinder with the same
radius and a height of h = 0.1R (for further geometrical details see Citro et al. (2015)).
For this case, the Reynolds number, Rek, is based on the total height k of the obstacle
(see figure 3b) and the flow velocity Uk, i.e. the streamwise velocity at a distance y = k
from the wall that we would have inside the BL in the absence of the hemispherical
obstacle at the same streamwise position. With reference to figure 3a, the computational
domain is characterized by Linx = 7R, Loutx = 30R, Ly = 8R, Lz = 10R (labelled M1 in
Citro et al. (2015)) and the inherent mesh has about 9 ·103 spectral elements. Validation
and convergence tests are reported in section §2D in Citro et al. (2015). Concerning the
boundary conditions for the DNS, homogeneous velocity (u = (0, 0, 0)) is considered at
the solid boundaries, a fully developed Blasius BL velocity profile is imposed at the inlet
of the domain and, finally, outflow conditions, i.e. pn−Re−1∇u · n = 0, are imposed on
the other boundaries.

For this flow configuration, the results from the WKBJ at higher order are presented
and compared with those from the global analysis, considering the unsteady supercritical
solution at Rek = 450. The wall-normal vorticity and the velocity streamlines of the base
flow in the near-wake of the roughness element are reported in figure 5a. At this value of
Rek, the flow is characterized by the shedding of periodic hairpin vortices inside the BL,
with a Strouhal number St = ωk

2πUk
' 0.16 (for further details, see Citro et al. (2015)).

As reported in figure 7b, the streamwise evolution of the absolute growth rate ω0,i shows
that the flow is absolutely unstable in the region 0.77 < X < 1.73 This is reasonable
in agreement with the dimensions of the recirculation region in the near wake of the
hemispherical element, that extends in streamwise direction up to X = 2 (see figure 7a).

Following the same procedure detailed in section §4.1 for the circular cylinder, the
saddle point is found at ωs = ωG,0(loc) = 1.6322 + 0.1994i, Xs = 1.2923 − 0.047i
(figure 8a). For a further verification, the location (ωs,Xs) is also found by a graphical
method seeking the cusp point in the ω0-plane. Referring to figure 5b, the streamwise
evolution of ω0 is plotted at different value of the imaginary part of the complex X-
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Figure 4. Streamlines of the flow past the hemispherical roughness element at Rek = 450 in the
plane y = 0.03 and z = 0. Color contours depict the wall-normal vorticity in the plane y = 0.03.
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Figure 5. (a) Spatial evolution of the absolute growth rate ω0i (CU=convectively unstable
flow, AU=absolutely unstable flow); (b) Evolution of the ω0 for different values of the complex
X with a 7th order rational function. The red line corresponds at the saddle point value,
Im(X) = −0.047 and the successive lines are evaluated at different Im(X), with intervals
of -0.009.

plane, Xs,i. The saddle point is then identified by the values for which a cusp formation
is visible in the absolute frequency plane. The global analysis provides, for this flow
configuration, a complex eigenfrequency of ωG(glob) = 1.858114 + 0.087148i (Citro et al.
2015), which is slightly more stable than the local one. However, the over-prediction
of the global growth-rate is a common characteristics of the local analysis, as already
highlighted, for example, in Juniper et al. (2011). Moreover, the formula in equation
2.8 is here considered in order to obtain a better estimation of the global eigenvalue,
taking into account the correction term ωε in the WKBJ expansion at order O(ε1). In
particular, following the same extrapolation procedure used for the circular cylinder flow
configuration presented in §4.1, the resulting complex global frequency is found equal to
ωG,1(loc) = 1.6781 + 0.0376i. This result shows that, for this specific case, the correction
procedure allows to obtain a better estimation of the global frequency, especially for the
imaginary part of the eigenvalue. The correction coefficients appearing in equation 2.8,
using N = 7 as order of the rational function, are: ω0XX = 1.8418 − 1.6684i, ωkk =
0.0235− 0.0715i, k0K = 1.6445− 1.0907i.
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Figure 6. Flow past a spherical body: configuration and frame of reference (not in scale).

4.3. Flow past a fixed sphere

In this section, we detail the numerical results obtained in the case of a uniform stream
that invests a fixed sphere of radius R. Figure 6 depicts the flow configuration and
the frame of reference adopted in the present study. The reference quantities for the
normalization of the flow and for the definition of the flow Reynolds number, ReD, are the
sphere diameter D and the uniform streamwise velocity, U∞. The same flow configuration
has been characterized by DNS and global stability analysis in Citro et al. (2016). In
particular, we use here the same computational domain and discretization parameters
adopted in Citro et al. (2016). The dimensions of the computational domain used for both
the simulation and the global stability analisys are: Lx,up = 12, Lx,dwn = 35, Ly = 24,
Lz = 24; the mesh is made by approximately 13 ·103 spectral elements of degree Np = 13.
We imposed a constant velocity profile ub = 1ex on the inlet boundary ∂Ω1 and on the
lateral boundaries ∂Ω3 and a classical outflow condition is imposed on the outlet surface
∂Ω2. Validation and convergence tests leading to the adopted choice of the numerical
discretization are detailed in Citro et al. (2016). Here, we focus our attention on the
occurrence of the second bifurcation that arises at ReD = 271.8 and for ReD = 275 the
flow is characterized by an asymmetric base flow and by the shedding of periodic vortical
structures behind the bluff body, with a Strouhal number equal to St ' ωD

2πU∞
' 0.13.

An example of the steady unstable supercritical base flow is given in figure 7a, where the
modulus of the velocity field and the velocity streamlines are shown for a section x − y
plane located at z = 0.0 (the mid-plane).

When the global stability analysis is performed on the flow field in figure 7a, a globally
unstable mode is found with the corresponding complex eigenvalue ωG(glob) ' 0.8092 +
0.006i. The associated global mode (real part) is plotted in figures 9e-f.

When the classical local stability analysis, i.e considering only first order terms in the
WKBJ expansion, is applied to the wake, a region of absolute instability is identified
by inspecting where the absolute growth rate ω0,i is positive. As shown in figure 7b,
where the streamwise evolution of ω0,i is depicted, the flow is absolutely unstable in the
region 0.47 < X < 1.95. The length of this region is comparable to the extension of the
asymmetric recirculation bubble which extends in the streamwise direction from the top
of the sphere, where separation first occurs, up to X ' 2 (see figure 7a).

As described in Sec. 2.2, continuing ω0(X) in the complex X plane, the eigenvalue of
the globally unstable flow can be approximated at at the leading order ε by the eigenvalue
of the saddle point (ωs,Xs). The numerical procedure, already commented in the previuos
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Figure 7. (a) Modulus of velocity (color) and streamlines of the flow past the fixed sphere at
ReD = 275 in the midplane (z = 0.0); (b) Spatial evolution of the absolute growth rate ω0,i

(CU=convectively unstable flow, AU=absolutely unstable flow).
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Figure 8. (a) ω0, i map in the complex X plane. (b) Streamwise evolution of the local
wavenumbers k+ (blue lines) and k− (red lines) obtained from the local dispersion relation using:
imaginary components (b) and the real components (c) of the local wavenumber evaluated from
the local analysis using ω = ωG,0(loc) (•), ω = ωG,1(loc) (�) and ω = ωG(glob) (H).

sections, allows to identify the saddle point at ωs = ωG,0(loc) = 0.6259 + 0.2711i, Xs =
1.3394+0.2397i. This is shown in Figure 8a, where ω0,i is plotted in the complex X plane.
As in the case of the circular cylinder, the error (compared to ωG(glob) ' 0.8092+0.006i)
is distributed both on the frequency of the global mode and, in particular, on the growth
rate, which is overestimated by a factor approximately equal to 45.2.

The evaluated global complex eigenvalue is then used in the local dispersion relation
to evaluate the shape of the global mode. From equation 2.6 and following Juniper &
Pier (2015), the direct mode can be easily rebuilt. First, considering the saddle point
complex frequency ωG,0(loc), the spatial evolution of the complex wave-numbers k∓ and
the corresponding local spatial eigenmode is evaluated from the dispersion relation for
all the available X−section downstream the spherical body, using a streamwise spacing
of ∆X = 0.1. The streamwise evolutions of the wavenumbers k∓ are shown in figures
8b-c with circle marks. The structure of the global eigenmode is then estimated using
the equation 2.6. Figures 9a-b show the spatial evolution of the velocity streamwise
component of the unstable mode The standard local analysis (WKBJ at O(ε0) as in
Juniper et al. (2011)), therefore, provides useless results being the structure of the direct
mode depicted in figure 9a-b very different from the corresponding global eigenmode
depicted in figure 9e-f. Moreover, the relative error on the eigenvalue is about of 40%.
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Figure 9. Comparison between the real part of the leading direct global mode calculated by
using the standard local analysis (top), the improved local approach (middle) and the global
stability analysis (bottom). (a,c,e) Contour plot of the streamwise velocity component û in the
plane (z = 0.0). (b,d,f) Perspective view of the inherent isocontours.

As will be clear from the following paragraphs, in this case, the inclusion of higher order
terms in the WKBJ expansion is needed to have acceptable results.

Repeating the correction procedure for the estimation of the global eigenfrequency at
higher order (WKBJ at O(ε1) for this flow configuration, the corrected global eigenvalue
is found to be ωG,1(loc) = 0.7460 + 0.0228i. The percentage error is now reduced to 8%.
For sake of completeness we provide the coefficients used in formula (2.8) to estimate
the global eigenvalue with the correction at higher order: ω0XX = 1.3135 − 0.0965i,
ωkk = −0.0334− 0.1827i and k0X = −0.7553 + 0.9142i.

However, the most significant improvement is obtained on the estimation of the mode
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spatial evolution. As remarked above, non-parallel effects can be included by determining
the slowly evolving function A(X) with a solvability condition on the O(ε) equation of the
WKBJ expansion. Another equivalent (up to higher order terms) approach is to compute
the global mode shape using the corrected eigenvalue: ωG,1(loc), i.e.

q̂(x, y, z) ∼ A∓q̂(y, z;X) exp

[
iε−1

∫ X

Xs

k∓(ωG,1(loc);X ′)dX ′

]
(4.1)

where the local wavenumbers k∓ are now evaluated considering ωG,1(loc) in the dispersion
relation. Their streamwise evolutions are depicted in figures 8b-c (square marks) together
with the branches k∓ evaluated forcing ωG(glob) in the dispersion relation (triangle
marks). ***

In a linear setting, the amplitude A∓ in 4.1 is undetermined, so that a normalization
must be chosen when representing the eigenfunctions: here we use: max |û(X, y, z)| = 1.
Figures 9c-d show the spatial distribution of the velocity streamwise component of the
unstable mode retrieved using the corrected eigenvalue ωG,1(loc). All considered cases are
depicted in figure 9, where representative isosurfaces of the mode with the same amplitude
and phase normalization are shown. Finally, we can note the excellent agreement between
the rebuilt spatial structure and the corresponding mode shape obtained by using a full
3D global stability analysis.

5. Summary

In this paper, we show that classical local spatio-temporal stability analysis of weakly
non-parallel flow can be straightforwardly applied to fully 3D base flows. Moreover, we
show that the inclusion of higher-order terms in the WKBJ analysis is a crucial ingredient
in order to obtain results which compare quantitatively well with those provided at
definitely higher computational costs through global stability analysis. In particular, in
this paper, we first consider the flow past a circular cylinder where the correction term
provides a significant improvement of the results in comparison with those obtained by
a global stability analysis. For instance, previous numerical studies (Giannetti & Luchini
2007) showed that the simple local analysis at order O(ε0) fails to predict the critical
Reynolds number for such flow. We show that the inclusion of O(ε1) terms reduces the
relative error from 42% to 3.2%.

Second, we show that an equivalent improvement in the prediction of the global
stability properties is obtained for two three-dimensional configurations, i.e. the boundary
layer flow past a wall-mounted hemispherical obstacle and the secondary instability of
the sphere wake. Indeed, the complex eigenvalues evaluated by the current improved
local approach are in good agreement with the one obtained by the global stability
analysis. For the sphere case, the inclusion of O(ε) terms in the WKBJ expansion not
only considerably reduces the eigenvalue error but also provide a drastic improvement to
the shape reconstruction of the global mode, curing in this way the large discrepancies
between the local and the global results. The present study confirms that a reasonable
good estimation of the global mode characteristics can be obtained just relying on a
local stability approach, with a computational cost of orders of magnitude lower than
that necessary for a global analysis.
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