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Abstract  9 

An attempt to analyze the Deep-seated Gravitational Slope Deformation (DSGSD) ability of influencing the 10 

landslide spatial distribution was carried out in the Milia basins, Tuscany, Italy. Detailed geomorphological 11 

mapping, combined with the analysis of aerial photography, enabled us to build two landslide inventories using a 12 

time scale. The landslides related to a period before 1975 were used to create the statistical models, while those 13 

related to a period after 1975 were used to validate the models predictive power. Geology, slope angle, slope 14 

aspect, distance to hydrographic elements and distance to tectonic lineaments were considered in the analysis as 15 

landslide-predisposing factors. In order to quantify the importance of the DSGSD as landslide-influencing factor, 16 

the DSGSD-presence-absence map was introduced in the statistical analysis using a stepwise process. More 17 

specifically, the inventory landslide maps and the landslide-related factor maps were processed using a 18 

conditional analysis applied to all the possible factor combinations, producing landslide susceptibility maps with 19 

five susceptibility classes. The comparison between the distribution of the post-1975 landslides and that derived 20 

from models provided the predictive power of each factor combination, which in turn has been used to evaluate 21 

the DSGSD ability of influencing the landslide spatial distribution. 22 

Keywords Deep-seated Gravitational Slope Deformation, Landslide susceptibility, MSUE-Conditional Analysis 23 

Method, Predictive power, Central Italy. 24 

 25 

1. Introduction 26 

 27 



2 
 

Deep-seated Gravitational Slope Deformations (DSGSDs) (Dramis and Sorriso-Valvo, 1994) affect large 28 

mountain slope areas worldwide modifying the morphological characteristics of the slope itself (Bovis and 29 

Evans, 1996; Julian and Anthony, 1996; Kinakin and Stead, 2005) as well as the fracture system of the involved 30 

lithotypes (Agliardi et al., 2001; Bachmann et al., 2009; Pánek et al., 2011a). All the slope modifications relating 31 

to the formation of DSGSD and its evolution could play a non-negligible role as landslide-predisposing factors. 32 

More specifically, DSGSD could be an important predisposing factor for the slope evolution in landsliding 33 

processes. However, the link between landslides and DSGSD has not been clearly shown (Bovis and Evans, 34 

1996; Bisci et al., 1996; Sorriso-Valvo et al., 1999), although many landslides have occurred in rock mass 35 

obviously affected by DSGSDs (Crosta, 1996; Agliardi et al., 2009a,b; Kellerer-Pirklbauer et al., 2010; Pánek et 36 

al., 2011a,b). Over the last few decades, many different analysis methods have been applied to study the 37 

gravitational evolution of DSGSDs (Boukharov and Chanda, 1995; Crosta and Agliardi, 2003; Bachmann et al., 38 

2004, 2006; Stead et al., 2006; Jomard et al., 2007). However, results remained restricted to a relatively short 39 

time period of observations (several years) and to homogeneous or only slightly heterogeneous slopes (El 40 

Bedoui et al., 2009). 41 

In order to give some clues about the importance of DSGSD as landslide-influencing factor, in this study a 42 

statistical analysis approach has been applied to Unique Condition Units (UCUs) (Carrara et al., 1995). More 43 

specifically, a Landslide Susceptibility (LS) analysis has been performed in a Central-Tuscany basin where 44 

DSGSDs have strictly conditioned the landscape geomorphological evolution. The LS analysis has been carried 45 

out first not considering DSGSD as a landslide-influencing factor and then introducing the DSGSD as 46 

independent variable. This procedure has been used to evaluate if the introduction of DSGSD into the analysis 47 

could imply a likelihood degree improvement of the LS best model, with an appreciable statistical significant 48 

level.  49 

In this study, the conditional analysis method has been chosen among the methods of statistical analysis used 50 

to create LS maps, because it appears to be one of the easiest to understand and to read for non-specialists 51 

(Carrara et al., 1995; Chung et al., 1995). Moreover, the conditional analysis method applied to factor 52 

combinations has fewer limitations than other systems of statistical analysis (Clerici et al., 2006, 2010). More 53 
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specifically, the bivariate analysis and the logistic regression analysis need independence variables (Cliff and 54 

Ord, 1981; Dey et al., 2000; Neuhӓuser and Terhorst, 2007), while discriminant analysis requires normal 55 

distribution of the covariates (Hosmer and Lemeshow, 1999; Giudici, 2005; Hӓrdle and Simar, 2007). 56 

In order to achieve the study goal rigorously, it was also considered necessary to perform the LS analysis 57 

using two landslide inventories relating to a period preceding and succeeding a fixed date (Chung and Fabbri, 58 

2008; Guzzetti et al., 2006; Blahut et al., 2010; von Ruette et al., 2011). More detailed, the model validation 59 

procedure was based on the “wait and see” concept (Chung and Fabbri, 1999), for which, in the spatial database, 60 

it was assumed that the time of the study was the year 1975 and that all the spatial data available in 1975 were 61 

compiled, including the distribution of the landslides which occurred prior to that year. Consequently, the 62 

landslides relating to a period before 1975 were used to create the models, while those relating to a period later 63 

than 1975 were used to validate the models predictive power. 64 

 65 

2. Study area 66 

 67 

The study area is the Milia basin (Fig. 1), which has an extension of 101 km2 and an elevation ranging from 68 

39 m to 913 m above sea level, with an average of 336 m (standard deviation = 167.5 m). The basin is stretched 69 

out in a SW direction and shows a prevalent hilly character. Approximately 80% of the study area is located 70 

between the altitude of 503.5 m and the minimum value that characterizes the basin in the corresponding closing 71 

section. Only near the eastern side of the Milia basin, where the morphological-structural highland of Poggione 72 

Mountain occurs, the altitude values tend to increase until the maximum of 913 m. Most of the streams of higher 73 

order (Strahler, 1952) have a general anti-apenninic management type and show strong, vertical erosion 74 

tendencies in the north-eastern part of the basin. In the western sector, the river action evolves into prevalent 75 

lateral erosion. 76 

 77 

2.1. Main geological and geomorphological features 78 

 79 
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In the Milia basin the compressional events occurring before and during the collisional Apennine episode 80 

originated the complex sheet stack where the Ligurian and Sub-Ligurian units are emplaced above the Tuscan 81 

Domain (Costantini et al., 2000, 2002) (Fig. 1). All of these allochthonous units are characteristic of distal 82 

turbiditic and hemipelagic environments and are composed by altering siltitic, argillitic and fine arenitic 83 

formations and by argillitic with inter-bedded limestone formations. Tuscany units are represented prevalently 84 

by the Mesozoic carbonate succession, associated with very few outcrops of the cretaceous-tertiary turbiditic and 85 

hemipelagic sequence. Tuscany units are over-thrusted above the Monticiano-Roccastrada Unit, which 86 

represents the outcrop of the Tuscany “Autochthon” Metamorphic Unit. The Monticiano-Roccastrada Unit 87 

outcrops with very limited extension only in the eastern part of the basin and it is characterized by alternating 88 

phyllites and marbles. Neogene-Quaternary formations, representative of continental and coastal-marine 89 

environments, are characterized by sandy clays and sandy conglomerates deposits. 90 

All tectonic units are characterized by a complex deformation history related to the pre and post collisional 91 

events. Post collisional deformations are strictly related to the extensional tectonic, which began at the end of the 92 

Early Miocene and caused the partial collapse of the Apennines (Carmignani et al., 1994). The Pleistocene 93 

tectonic evolution was followed by a rapid sinking of the hydrographic network. The lowering of the 94 

hydrographic network is suggested by numerous fluvial terraces located at different altitudes along the basin. 95 

The morphology of the study area is also strongly conditioned by the numerous mass movements related to 96 

prevalent translational slide, rotational slide and flow types (Cruden and Varnes, 1996). DSGSDs are also 97 

present (Fig. 1) and their evolution appears strictly related to the Pleistocene tectonic evolution and the base 98 

level fluvial lowering. These morphologies are very similar in their type to those described by several authors 99 

(e.g., Zischinsky, 1966; Agliardi et al., 2001; Agliardi et al., 2009a,b). In particular, in the Milia basin, DSGSDs 100 

are characterized by sizes comparable to the whole slope, displacements relatively small in comparison to the 101 

slope itself and by evident morphological features as doubled ridges, scarps, counterscarps, trenches and toe 102 

bulging. For each of these phenomena, deformation can be consider as a large oblique “sagging” along deep, 103 

maybe confined, sliding surface. In this regard, the scarps and the counterscarps that affect the DSGSDs of the 104 

studied basin could be considered as surface expressions of those downslope- and upslope-dipping shear surfaces 105 
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which have been observed in many previous works (Agliardi et al., 2001; Agliardi et al., 2009a,b; Bachmann et 106 

al., 2009; El Bedoui et al., 2009;). Overall, 23 DSGSDs affected the Milia basin each one extending between 0.2 107 

km2 and 1.2 km2, whereas the total area involved in DSGSD is about 6.2 km2 (6.1% of the study area). About 108 

87% of DSGSDs occurs in the Ligurian units, with a DSGSD density up to 16%, while 13% of DSGSD area 109 

involves Neogene-Quaternary formations (density over 8%). All the DSGSDs of the Milia basin are involved in 110 

landsliding processes. 111 

 112 

3. Methods: Basic theory, database building and procedures for LS zonation 113 

 114 

3.1. The MSUE-Conditional Analysis Method 115 

 116 

The conditional analysis method applied to factor combinations (Clerici et al., 2002) is based on Bayes' 117 

Theorem (Morgan, 1968), which states that the probability of occurrence of an event A conditioned by the 118 

occurrence of an event B is determined as the ratio between the probability of the simultaneous occurrence of the 119 

two events [P(A ∩ B)] and the probability of the occurrence of the conditioning event [P(B)]. In LS assessment 120 

the conditional probability of landslide occurrence is defined by computing the landslide density in 121 

correspondence with different combinations of the landslide-predisposing factors (conditioning events) (Carrara 122 

et al., 1995). More specifically, the method considers a number of environmental factors, which are thought to be 123 

strictly connected with landslide occurrence. The data layers in which each factor is subdivided into classes are 124 

crossed in order to obtain all the possible factor combinations (UCU-maps). For each of these factor 125 

combinations the landslide density is then quantified within each UCU by crossing the relative UCU-map with 126 

the landslides chosen as model training dataset. Considering that landslide density is assumed to be equivalent to 127 

the future landslide probability at a specific UCU (Carrara et al., 1995), from this process we obtain a number of 128 

LS models which is equal to the number of the possible factor combinations. Afterwards, the best model is 129 

chosen by comparing the distribution of landslides used as validation dataset and those derived from the models. 130 
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This method tends to assess which factor combination is more suitable to define the LS zonation with the 131 

greatest predictive ability. 132 

Since all statistical methods are based on the common assumption that landslides will be more likely to occur 133 

in areas where boundary conditions are similar to areas where landslides have occurred (Carrara et al., 1995), 134 

they necessarily require the knowledge of the factor conditions existing before the landslide occurrence. In this 135 

study, apart from the landslides used as model validation dataset, the available geo-environmental factor maps 136 

represent the post landsliding situation. Therefore, for the landslides used as model training dataset it was 137 

necessary to carry out the factor conditions existing before landsliding. In similar studies it was agreed on that 138 

the pre-landslide conditions may be similar to those found in an external neighborhood of the landslide source 139 

area (Süzen and Doyuran, 2004; Clerici et al., 2006, 2010; Havenith et al., 2006a, b; Nefeslioglu et al., 2008; 140 

Vergari et al., 2011). 141 

In this study the landslides have been identified by their Main Scarps Upper Edges (MSUEs, Clerici 2006), 142 

because they allow for easier automatic research of the factor values in the undisturbed belt external to the 143 

rupture zone of the landslide (Clerici et al., 2006; 2010). In order to consider the UCUs present in the external 144 

neighborhood of the landslide source area an upstream buffer of 20 m is used for each MSUE. Therefore the 145 

method applied to the LS zonation of the Milia basin assumes the conditional probability of landslide occurrence 146 

for a given UCU as the ratio between the sum of each area of that UCU which falls within the MSUE buffer and 147 

its total area. 148 

 149 

3.2. Landslide dataset 150 

 151 

The landslide map is the result of the two-year (2009-2010) geological and geomorphological field survey 152 

carried out in the framework of a regional project “CIPE/Regione Toscana: Carta Geologica Regione Toscana e 153 

geo-tematiche derivate” (www.regione.toscana.it). Field survey was carried out using the Tuscany Region 154 

topographic maps (at the scale 1:10.000) and the Tuscany Region orthophotos (1-m ground sample distance 155 

ortho imagery rectified to a horizontal accuracy of within ±4 m) dating back to 1975 and 2006, respectively. 156 
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Geomorphological field survey was also carried out with the aid of the stereoscopic interpretation of 1975 aerial 157 

photographs (flight EIRA75) and GPS point acquisition (Garmin 60CSx; accuracy ≤ 3m, precision ≤ 1m). 158 

The landslides of the Milia basin were split into two temporal groups with the aid of the stereoscopic analysis 159 

of the aerial photographs relating to 1975. The landslides occurred before 1975 have been used as model training 160 

set, while the landslides occurred after 1975 have been used as model validation set. In accordance to Guzzetti et 161 

al. (1999), LS analysis should be carried out for different landslide types. For this reason, the landslides were 162 

grouped into separate datasets based on their movement typology. Moreover, following the division proposed by 163 

Keefer (1984), only deep-seated (≥ 3m) landslides were considered to avoid the introduction of shallow and 164 

easily degradable landslides into the model validation dataset. 165 

In the Milia basin a total of 2,039 landslides were identified. The landslides cover a surface of about 22.6 166 

km2, representing 22.4% of the whole study area. Based on the observations during field work these 2,039 167 

landslides were divided into three typologies: translational slide (1,577), flow (155), and rotational slide (307). 168 

Among these, 128 translational slides, 31 flow and 46 rotational slides have occurred after 1975. 169 

Overall, the Milia basin is affected mainly by translational slide-type landslides. Since the aim of this study 170 

was to analyze the DSGSD ability of influencing the landslide spatial distribution using a statistical approach, 171 

only these translational slides are used for the analysis because this assures that the predictive model can be 172 

adequately trained due to their abundance. 173 

The MSUEs relative to the training and validation dataset were carried out from the geomorphological map 174 

previously digitized in ArcGIS. Afterwards, the maps depicting the buffers were carried out from the MSUE 175 

maps using Buffer tool of ArcInfo 9.2 (ESRI). 176 

 177 

3.3. Instability factors 178 

 179 

In the scientific literature, many factors are considered predisposing landslide occurrence (Soeters and Van 180 

Westen, 1996; van Westen et al., 2008). Considering that among the landslide-predisposing factors usually used 181 

in the LS assessment, with high benefit value / cost, lithology, slope angle and slope aspect are the most common 182 
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(Rodriguez et al., 2008; Nefeslioglu et al., 2008; Rotigliano et al., 2012), and that the evolution of the study 183 

basin is strictly connected to the Pliocene-Pleistocene tectonic activity as well as to the fluvial erosion phases, in 184 

this study, lithology, slope angle, slope aspect, distance to hydrographic elements and to tectonic lineaments 185 

have been considered as predisposing factors. Moreover, for the purpose of this study, DSGSD has additionally 186 

been introduced to the LS analysis as a possible landslide-inducing factor. 187 

The factor maps relating to lithology as well as to distance from hydrographic elements and from tectonic 188 

lineaments, have been derived from the geological map performed for the “CIPE” Tuscany project. For 189 

lithology, different classes have been extracted from geological map on the basis of their lithological and 190 

structural analogies (Fig. 2). Furthermore, considering that in the study areas many landslides have occurred 191 

from the body of precedent landslides, it was also necessary to insert the landslide body into a specific class. The 192 

maps related to the distance from hydrographic elements and from tectonic lineaments have been carried out 193 

subjecting the relative linear feature-class to a process of buffering with the construction of four distance classes 194 

based on percentile criteria. 195 

By exploiting the 3D Analyst and Spatial Analyst extensions of ArcInfo 9.2 the slope angle and the slope 196 

aspect maps have been derived from the 5×5 m2 pixel resolution DEM, obtained by transforming a TIN into a 197 

GRID. The TIN was generated by the interpolation of digital contour lines and elevation points extracted from 198 

the Tuscany Region topographic maps (scale 1:10.000) dating back to 1975. Slope angle has been reclassified 199 

into six classes with similar areas (percentile criteria), while slope aspect has been reclassified into the eight 200 

most frequently adopted classes corresponding to the angular sectors, 45° wide and clockwise from north (equal 201 

interval criteria).  202 

The DSGSD-presence-absence map was carried out from the geomorphological map of the “CIPE” Tuscany 203 

project. The free-landslide slope affected by DSGSD and the free-landslide slope not affected by DSGSD were 204 

digitalized in a polygonal vector format and codified with a respective unique value (1, DSGSD-presence; 0, 205 

DSGSD-absence). 206 

The class extension for each factor and their relative MSUE density are showed in the table 1. 207 

 208 
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3.4. Selection of the best model 209 

 210 

A Python program in the Model-Builder of ArcInfo has been created, in which all the geoprocessing steps 211 

necessary for the model builds and their validation have been automatized. In the Python script all the possible 212 

combinations of landslide-related factors (UCU maps) are initially computed. The UCU maps are then 213 

intersected with the buffer maps of the MSUEs belonging to the pre-1975 dataset. For each UCU the ratio of the 214 

sum of the UCU area that falls within the MSUE buffer and the total area for that UCU is calculated. Afterwards, 215 

the UCUs are grouped into five density classes (LS classes) on the basis of their ratio value (UCU density). For 216 

the class definition a similar method already applied by Clerici et al. (2010) is used. The classes are defined on 217 

the basis of the MSUE mean density (If, prior probability) carried out by dividing the total MSUE buffer area by 218 

the basin area. This value is the middle point of the middle class. More precisely, the class interval on which LS 219 

maps are created is Ci= (If/5)×2 and the susceptibility class intervals are: 0-Ci (Very Low), Ci-2Ci (Low), 2Ci-220 

3Ci (Medium), 3Ci-4Ci (High) and 4Ci-5Ci (Very High). For each of the possible combinations of the landslide-221 

related factors, the LS models have been built. 222 

The validation procedure has been performed in the Model-Builder to choose the best model. Considering 223 

that the validation procedure is based on the “wait and see” concept, the distribution of the pre-1975 MSUEs 224 

(training set) is compared with that of the post-1975 MSUEs (validation set). More specifically, for each LS 225 

class the absolute value of the difference between the pre-1975 and post-1975 MSUE percentage is computed. 226 

The sum of the latter values, the Validation Error (VE), is reported for each LS model. The VE assesses the 227 

predictive power of each model built and its value ranging from 0 (the best predictive power) to 200 (the worst 228 

predictive power). 229 

According to Clerici et al. (2010), a good validation is a necessary but not a sufficient prerequisite for 230 

assessing the model efficiency. A good model should have a great dispersion around the landslide mean density 231 

value to distinguish between significantly different landslide density conditions. Therefore the mean deviation 232 

(MD) of the UCU density has been computed for each model and the ratio MD/VE (Best Model Index, BMI) has 233 

been utilized to choose the best LS model, which should have the highest BMI value. 234 
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 235 

3.5. Statistical significance of the best model 236 

 237 

In order to define how the predictive ability of the best model actually represents the maximum likelihood 238 

between the landslide groups used for the model construction and validation, an analysis of the reduced chi-239 

square (Ӽ2) was performed. 240 

The Ӽ2 value for a model defines the probability of finding a likelihood between the observed and the 241 

expected probability of a certain event A, which is better than that defined by the model itself (Pugh and 242 

Winslow, 1966, Kendall and Stuart, 1979; Buccianti et al., 2003). Considering that the forecasting model should 243 

be made using an older landslide inventory, and more recent landslides should be used for the evaluation of the 244 

prediction (Chung and Fabbri, 1999, 2008; Guzzetti et al., 2006; Blahut et al., 2010; von Ruette et al., 2011), for 245 

each model the percentage of landslides belonging to the validation group that fall into a susceptibility class 246 

must be necessarily considered as expected value of the landsliding probability in that class. 247 

Therefore, in this study the chi-square value is calculated from: 248 

 249 

Ӽ2  =
1

4
∑

[(% MSUE buffer area pre − 75)𝑖 − (% MSUE buffer area post − 75)𝑖]2

(% MSUE buffer area post − 75)𝑖

5

𝑖=1
 250 

 251 

4. Results and discussion 252 

 253 

4.1. The best LS model 254 

 255 

The LS analysis of the Milia basin initially has been performed without considering DSGSD as landslide-256 

influencing factor (case I) and then introducing the DSGSD as independent variable (case II). For both cases the 257 

10 models with the highest BMI are shown in the table 2. The best model for each case is related to the model 258 

factor combination (MFC) that characterizes the table first row.  259 
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For case I, the Lithology-Slope angle factor combination (LS) represents the best model with a BMI = 260 

8,238.3 and VE = 5.2. The error is prevalently concentrated in correspondence of the medium (class 3) and high 261 

(class 4) susceptibility classes, where the model tends to overestimate and underestimate respectively the 262 

landslide probability occurrence (Fig. 3). In fact, in these two classes we have approximately 76% of the overall 263 

validation error, with a sum of respective absolute errors (│ (% landslide area Post-75) - (% landslide area Pre-264 

75) │) that reaches the value of 3.9%. In the medium susceptibility class the relative error (% landslide area 265 

Post-75 - % landslide area Pre-75) assumes a value of 1.6%, while in the high susceptibility class it has a 266 

negative value equal to - 2.4%.  267 

The best model relating to the case II is characterized by the Lithology-Slope angle-DSGSD factor 268 

combination (LSDs) and it shows the lowest validation error (VE = 3.7) among all those created for both cases. 269 

The error is concentrated in correspondence with the medium (class 3) and very high (class 5) susceptibility 270 

classes, where the model tends to lightly overestimate and underestimate respectively the probability of 271 

landsliding (Fig. 3). In these two classes, we have approximately 75% of the overall validation error, with a sum 272 

of absolute errors that reaches the value of 2.8%. In the medium susceptibility class the relative error assumes a 273 

value of 1.47%, while in the very high susceptibility class it has a negative value equal to - 1.31%. Finally the 274 

model shows a good capacity in the differentiation of the landslide density (MD = 4,297) between the various 275 

classes. This is also visible from the comparison of the areas that characterize the susceptibility classes for which 276 

we have statistically significant extensions. The medium-class has an extension of 19.7 km2, strictly comparable 277 

to that of the extreme classes that have values of about 29.3 km2 (class 1) and 24.5 km2 (class 5). 278 

Overall, in the Milia LS analysis, the introduction of the DSGSD-presence-absence map has given us an 279 

improvement of the best model VE which moves from 5.2 (case I) to 3.7 (case II) with a VE reduction of 28.8%. 280 

Therefore, in the Milia basin, lithology, slope angle and DSGSD-presence-absence maps gave more satisfactory 281 

results as landslide-predicting factors. More than 60% of the slope area affected by DSGSD is characterized by 282 

LS greater than that a priori (Fig. 4a).  283 

In the best LS-model the comparison between the slope conditions (UCUs) affected by DSGSD and those 284 

non-affected by DSGSD gives us some clues about how the translational slide distribution in the Milia basin has 285 
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been conditioned by DSGSD. In DSGSD-free areas, translational slide susceptibility map outlines hillslope 286 

sections where both ligurian and gravelly (Pleistocene) formations outcrop as very prone to landslides, with a 287 

slope angle above 12° and 10°, respectively (Table 3). In slopes affected by DSGSDs, the very-high translational 288 

slide susceptibility zone is concentrated in shale and marly limestone within slope angle interval of ]20-90°] and 289 

of ]15-20°], respectively, while in gravelly formations the very-high translational slide susceptibility zone is 290 

located within slope angle intervals of ]12-15°] and ]20-90°]. By comparing the LS of the lithology-slope angle 291 

UCUs that are affected and non-affected by DSGSDs (Fig. 4b), it is possible to note how DSGSD has lightly 292 

acted over ligurian formations as a slope-stabilizing geo-environmental factor. Only for the gravelly formations 293 

with slope angle values between ]4-10°] we assist to an increasing of the LS, which moves from medium-294 

susceptibility class (areas non-affected by DSGSD) to high-susceptibility class (areas affected by DSGSD) 295 

(Table 3). 296 

This different effects of the DSGSDs on different lithotypes is not surprising considering that ligurian units 297 

are strongly tectonically anisotropic with several different-axial fold, joint and fault populations. The LS 298 

decrease observed for these formations could be related to all structural modifications that occur during DSGSD 299 

evolution (Bachmann et al., 2009, El Bedoui et al., 2009; Pánek et al., 2011a,b), which could facilitate a deeper 300 

water circulation and a predisposition of deeper landslides (Delgado et al., 2011), i.e., rotational slides. 301 

Conversely, in the gravelly formations, which outcrop with a generally sub-horizontal stratification, the 302 

development of DSGSD-fracture systems may facilitate translational sliding processes in basin sectors without 303 

very steep slopes. 304 

 305 

4.2. Statistical significance of the best model-VE improvement 306 

 307 

The improvement of the best model VE implies that for the translational slide-type landslides of the Milia 308 

basin, DSGSD has probably played a non-negligible role as landsliding-predisposing factor. On the other hand 309 

the following questions occur: In which degree is the improvement of the model power prediction statistically 310 

significant? And in which degree is the assertion statistically significant, that the DSGSDs have conditioned the 311 
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spatial distribution of the translational slide-type landslides in the Milia basin?  In order to answer to these 312 

questions an analysis of the reduced chi-square (Ӽ2) was performed (Table 4). 313 

Considering that all the best models have been created with the same number of degrees-of-freedom (number 314 

of classes of susceptibility - 1), the analysis of Ӽ2 allows us to compare the predictive capabilities of each of 315 

these models. In fact, regardless of how the territory was divided and reclassified into five classes of 316 

susceptibility, the likelihood degree of the models is always calculated on the same Ӽ2 probability distribution 317 

curve (integral function of Pugh and Winslow, 1966), which is related to systems with four degrees-of-freedom.  318 

The obtained values were compared to the probability table of Ӽ2 with four degrees-of-freedom (Pugh and 319 

Winslow, 1966; Buccianti et al., 2003), and the probabilities P(Ӽ2 < Ӽ2 observed.) have been determined for each 320 

of the two-case best models (Table 4). 321 

From the model likelihood chi-square test it is possible to see that, if we consider a p-value of P(Ӽ2 < Ӽ2 322 

observed.) < 0.05, both models can be considered as the best. Contrariwise, if we consider a p-value of P(Ӽ2 < 323 

Ӽ2 observed) < 0.01, only the model that includes the DSGSD factor can be considered as the best. Considering 324 

that the two-case best models are different only for the presence/absence of the DSGSD factor, the improvement 325 

of the model likelihood chi-square can be attributed to the introduction of the DSGSD factor only. More 326 

specifically, the introduction of the DSGSD factor in the statistical analysis has made it possible to maximize the 327 

likelihood degree of the best model until a high level of statistical significance. In other words, the assertion that 328 

in the Milia basin the DSGSDs have conditioned the spatial distribution of the translational slide-type landslides 329 

can be accepted at the 99 percent level. 330 

Considering that we have used a conditional analysis method applied to UCUs, the improvement of the model 331 

likelihood chi-square from the best model of the case I to that of the case II appears highly relevant. In fact, the 332 

conditional analysis method applied to UCUs presents some limitations regarding the introduction in the analysis 333 

itself of small UCUs. The introduction in the conditional analysis of UCUs of small size can reduce the 334 

predictive ability of the statistical models (Carrara et al., 1995; Guzzetti et al., 1999; Clerici et al., 2010). The 335 

UCUs creating process can lead to a quantity of terrain units equal to the product between the class numbers of 336 

the environmental factors included in the analysis. Consequently, the probability of creating a considerable 337 
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number of small UCUs rises according to the increase in both the number of factors and their class number 338 

subdivisions. Although the introduction of the DSGSD factor map in the best model of the case I redoubles the 339 

possibility of creating small UCUs in relation to that derived from the factor combination of this last model, it 340 

has implied a likelihood degree improvement of the resulting LS model. Therefore, for the Milia basin we have 341 

convincing evidences that DSGSD is a significant landslide-predisposing factor. 342 

 343 

5. Conclusion 344 

 345 

The general aim of this work was to highlight some considerations that could be useful to understand the role 346 

played by DSGSD in influencing the landslide distribution. Over the last few decades many multidisciplinary 347 

investigations have been carried out in order to resolve the link between DSGSDs and landslides. In this study, 348 

the DSGSD importance as landslide-influencing factor has been investigated from a statistical point of view. In 349 

order to achieve the study goal, the conditional analysis method has been applied to a basin where DSGSDs 350 

affect large slope sectors. 351 

The analysis results, which are strictly related to the statistical link between DSGSDs and translational slides, 352 

lead us to assume that the DSGSD acts as a very important landslide-distribution conditioning factor. More 353 

specifically, the introduction of the DSGSD factor in the statistical analysis has made it possible to maximize the 354 

likelihood degree of the LS best model, until a high level of statistical significance (99%). 355 

In the studied basin, DSGSD has different influences on different lithotypes. In shale and marly-limestone 356 

formations, DSGSD has lightly promoted the slope stability, while in basin-sectors where gravelly formations 357 

crop out in addition to generally not very steep slopes DSGSD has acted as landslide-inducing factor. 358 

Overall, for translational slide-type landslides, this study stresses that DSGSDs should be included into 359 

statistical analysis to enhance the predictive power of the LS models, especially in basins where large portions of 360 

the slopes are involved in such phenomena. 361 
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However, the statistical link between DSGSDs and other landslide typologies still remains unresolved and it 362 

should be studied in future works as well as the DSGSD effects on lithotypes different from those considered in 363 

this study.  364 
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 510 

 511 

Fig. 1. Location of the study area (a) and its hydrographic (b), hypsographic (c) and geological (d) 512 

characteristics. The hydrographic elements are ordered according to Strahler (1952). 513 
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 519 

Fig. 2. Lithological factor map of the studied basin. 520 

 521 

 522 

 523 

Fig. 3. The best model for the case I (a) and for the case II (b). Landslide susceptibility class area, relative error 524 

and absolute error distributions are reported.  525 

 526 
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 527 

Fig. 4. The Milia LS-best model. a) Distribution of the LS over the free-landslide slopes affected by DSGSDs. b) 528 

LS-class difference between the lithology-slope angle UCUs that are affected and non-affected by DSGSDs.  529 
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Factor Class 
Class area 

(km2) 

MSUEs density 

(104 m2/km2) 

 
Factor 

Class Class area 

(km2) 

MSUEs density 

(104 m2/km2) 

         
Lithology (L) Sandy Complex   5.6 

 

        0  Slope aspect (A) ]0-45°] 19.6 5.25 

 Landslide body 22.4   5.11   ]45-90°] 6.3 5.74 

 Sandly-gravelly Complex   3.1   0.90   ]90-135°] 8.6 6.08 

 Gravelly Complex   9.5   9.48   ]135-180°] 12.9 6.26 

 Clayey-marly Complex   0.3 12.46   ]180-225°] 13.7 6.39 

 Shale Complex 34.5   9.18   ]225-270°] 14.0 5.41 

 Marly limestone flysch Complex   4.1   8.49   ]270-315°] 13.6 5.43 

 Sandy turbiditic Complex   1.5   3.09   ]315-0°] 12.7 6.77 

 Siliceous Complex   1.3   1.87  Distance to hydrographic  

elements (Di) 

]0-50m] 26.6 3.57 

 Carbonatic Complex 19.0   1.30   ]50-110m] 24.8 6.93 

Slope angle (S) ]0-4°] 16.5   3.01   ]110-194m] 25.4 6.44 

 ]4-10°] 16.3   4.29   ]194-793m] 24.5 6.70 

 ]10-12°] 18.1   6.77  Distance to tectonic 

 lineaments (Df) 

]0-102m] 24.6 6.44 

 ]12-15°] 16.6   7.55   ]102-275m] 26.3 6.62 

 ]15-20°] 17.7   7.34   ]275-550m] 24.4 5.79 

 ]20-90°] 16.1   6.03   ]550-2,002m] 25.1 4.60 

DSGSD (Ds) DSGSD-presence (1)   6.2   7.96      

 DSGSD-absence (0) 95.1   5.73      

 534 

Table 1. Area and MSUEs density for each class of the factors used in the analysis. 535 

 536 
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 549 

  CASE I     CASE II  

MFC VE MD BMI  MFC VE MD BMI 

 (%) (104 m2/km2) (103 km2/m2)   (%) (104 m2/km2) (103 km2/m2) 

         

LS 5.2 4.28 8.24  LSDs 3.7 4.30 11.61 

LSDi 5.9 4.85 8.23  LS 5.2 4.28 8.24 

LDiDf 5.8 4.33 7.47  LSDi 5.9 4.85 8.23 

LSDf 7.2 4.42 6.15  LSDiDs 6.9 5.27 7.63 

LDi 7.5 4.30 5.73  LDiDfDs 6.0 4.51 7.52 

LADi 9.7 5.12 5.28  LSDfDs 6.1 4.58 7.51 

LA 8.2 4.24 5.17  LDiDf 5.8 4.33 7.47 

LSA 9.6 4.77 4.97  LSDf 7.2 4.42 6.15 

LSDiDf 12.5 5.15 4.12  LDi 7.5 4.30 5.73 

LDf 10.8 4.02 3.72  LSADs 9.4 5.30 5.64 

 550 

Table 2. The 10 best models of landslide susceptibility obtained for each case and ordered by decreasing Best 551 

Model Index (BMI) values.  552 

Acronyms: MFC: Model Factor Combination, (L: Lithology, S: Slope angle, A: Slope aspect, Di: Distance to 553 

hydrographic elements, Df: Distance to tectonic lineaments, Ds: DSGSD-presence-absence map), VE: 554 

Validation error, MD: Mean deviation. 555 

 556 

 557 

 558 

 559 

 560 

 561 

 562 
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Lithology (L) Slope angle (S) DSGSD-presence (1) DSGSD-absence (0) UCU-LS class 

  LS Class LS Class difference 

     
 ]0-4°] III III  0 

 ]4-10°] IV III  1 

Gravelly ]10-12°] IV V -1 

Complex ]12-15°] V V  0 

 ]15-20°] IV V -1 

 ]20-90°] V V  0 

     

 ]0-4°] III IV -1 

 ]4-10°] III IV -1 

Shale ]10-12°] IV IV  0 

Complex ]12-15°] IV V -1 

 ]15-20°] IV V -1 

 ]20-90°] V V  0 

     

 ]0-4°] I IV -3 

 ]4-10°] I II -1 

Marly limestone ]10-12°] I IV -3 

flysch Complex ]12-15°] IV V -1 

 ]15-20°] V V  0 

 ]20-90°] III V -2 

 566 

Table 3. The Milia LS-best model: LS-class difference between the lithology-slope angle UCUs that are affected 567 

and non-affected by DSGSDs. 568 

 569 

 570 

    
Case I-LS best model VE X2obs. P (X2< X2obs.) 

LS 5.2 0.107 < 0.05 

Case II-LS best model VE X2obs. P (X2< X2obs.) 

LSDs 3.7 0.053 < 0.01 

 571 

Table 4. Chi-square statistics of the two-case best models. The chi-square test was performed with 4 degree of 572 

freedom and 0.01 confidence level (Ӽ2critic = 0.074). 573 


