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Abstract

We consider the N -body problem with interaction potential Uα = 1
|xi−xj |α for

α > 1. We assume that the particles have all the same mass and that N is the order
|R| of the rotation group R of one of the five Platonic polyhedra. We study motions
that, up to a relabeling of the N particles, are invariant under R. By variational
techniques we prove the existence of periodic and chaotic motions.

1 Introduction

In a previous paper with Piero Negrini [10] we focused on the rotation groups T ,O, I1 of
the Platonic polyhedra and, for R ∈ {T ,O, I}, we studied periodic motions of N = |R|
equal particles u = {uR}R∈R that, at each time t, satisfy the symmetry condition

uR(t) = RuI(t), R ∈ R, t ∈ R, (1.1)

that is, for each t ∈ R the configuration of the system coincides with the orbit {RuI(t)}R∈R,
under the group R, of the particle uI associated to the identity I ∈ R. By condition (1.1)
uI determines the motion of the whole system, therefore we refer to uI as to the motion
of the generating particle.

From (1.1) we have that

uR1(t) = uR2(t) ⇔ uI(t) = R−1
1 R2uI(t).

Therefore the system has a collision at time t if and only if uI(t) belongs to the rotation
axis a(R) of some R ∈ R \ {I}. It follows that a motion of the system is free of collisions
if and only if

uI(R) ∩ Γ = ∅, where Γ = ∪R∈R\{I}a(R). (1.2)

Each uI which is periodic and satisfies (1.2) belongs to a well defined free homotopy class
in R3 \Γ represented by uI . In [10] we proved the existence of periodic motions of |R| unit
masses subject to Newtonian interaction for uI in various homotopy classes of R3 \ Γ. To
state the result proved in [10] we recall how the free homotopy classes of R3\Γ can be coded
by periodic sequences of vertexes of an Archimedean polyhedron naturally associated to
R. We denote by S2 the unit sphere in R3 and let P = Γ ∩ S2 be the set of poles of R.
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1T the rotation group of the Tetrahedron of order 12, O the rotation group of Hexahedron and Octa-

hedron of order 24 and I the group of Icosahedron and Dodecahedron of order 60.
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The poles are the vertexes of a tessellation of S2 with 2|R| congruent rectangular spherical
triangles (cfr. Fig. 1). Let τ be one of these triangles and let s be the side of τ opposite to
the vertex p ∈ P of τ corresponding to the right angle. There is a choice of q ∈ s such that
q and the corresponding points qi of the three triangles τi, i = 1, 2, 3 having the vertex p in
common with τ are the vertexes of a square. For this particular choice of q ∈ s, a special
case of the classical Wythoff construction [7], the convex hull co({Rq}R∈R) of the orbit
of q under R is an Archimedean polyhedron QR. QR has |R| vertexes, 2|R| equal edges,
]P = |R|+ 2 faces, and the axis of each face is one of the axes a(R) of some R ∈ R \ {I}.
R3 \Γ is homotopically equivalent to S2 \P and therefore to the union LR of the edges of
QR.

Figure 1: Tessellation of S2. R = O.

QT QO

QI

Figure 2: The Archimedean polyhedra QT ,QO,QI .
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Consider the set of sequences ν = {νk}Kk=0 of vertexes of QR that satisfy the conditions

(i) νK = ν0

(ii) for each k ∈ {0, . . . ,K − 1} the segment [νk, νk+1] coincides with one of the edges of
QR.

(iii) νk−1 6= νk+1, for k ∈ {0, . . . ,K − 1}, with ν−1 = νK−1.

Two such sequences ν and ν ′ are said to be equivalent if

K = K ′, (1.3)

and the periodic extensions ν̃, ν̃ ′ of ν, ν ′ coincide up to translation. The homotopic
equivalence of R3 \ Γ and LR implies that the free homotopy classes of R3 \ Γ are in one
to one correspondence with the equivalence classes of sequences ν that satisfy (i),(ii),(iii).
With reference to the numbering of vertexes of QR in Fig. 2 the result proved in [10] is

Theorem 1.1. For each sequence ν listed in Table 1 there exists a T -periodic solution
u∗ = {u∗R}R∈R of the classical Newtonian N -body problem. Moreover u∗ satisfies the
symmetry condition (1.1) and u∗I is a minimizer of the action integral

A(uI) =
1

2

∫ T

0

(
|u̇I |2 +

∑
R∈R\{I}

1

|(R− I)uI |

)
dt,

in the set of T -periodic H1 maps in the homotopy class determined by ν.

Table 1: The sequences are given with reference to the enumeration of vertexes of QR in
Figure 2.

R ν

ν1 = [1, 8, 5, 2, 6, 7, 1]

T ν2 = [2, 7, 9, 12, 3, 10, 2]

ν3 = [1, 8, 5, 10, 2, 6, 7, 9, 1]

ν4 = [1, 7, 6, 4, 9, 1, 5, 2, 7, 9, 12, 8, 1]

ν5 = [1, 5, 8, 12, 3, 10, 11, 4, 6, 2, 7, 9, 1]

ν1 = [1, 14, 23, 11, 5, 16, 1]

O ν2 = [1, 16, 10, 3, 7, 20, 23, 14, 1]

ν3 = [1, 5, 16, 1, 3, 7, 18, 20, 7, 14, 1]

ν4 = [16, 10, 3, 8, 18, 20, 23, 14, 11, 5, 16]

ν5 = [1, 16, 10, 8, 18, 7, 3, 10, 6, 15, 8, 3, 1]

ν6 = [9, 22, 6, 15, 8, 3, 7, 20, 23, 11, 19, 17, 9]

ν7 = [11, 5, 2, 22, 16, 10, 6, 15, 8, 18, 13, 24, 20, 23, 21, 19, 11]

ν8 = [4, 15, 8, 10, 3, 7, 18, 20, 23, 14, 11, 19, 21, 17, 9, 2, 22, 6, 4]

ν9 = [1, 5, 16, 1, 3, 7, 14, 23, 11, 14, 1, 3, 7, 18, 20, 7, 14, 1, 3, 10, 8, 3, 7, 14, 1]

ν1 = [11, 48, 34, 14, 42, 28, 11]

I ν2 = [11, 48, 34, 42, 28, 11, 6, 15, 48, 28, 45, 19, 11]

ν3 = [11, 19, 43, 50, 1, 3, 7, 47, 6, 11, 28, 45, 19, 1, 54, 59, 3, 6, 15, 48, 11]

ν4 = [1, 54, 59, 3, 6, 11, 28, 42, 14, 24, 2, 58, 60, 4, 8, 14, 34, 48, 11, 19, 1]

ν5 = [15, 48, 34, 42, 28, 45, 31, 32, 43, 50, 36, 51, 54, 59, 52, 12, 7, 47, 33, 25, 15]

ν6 = [26, 49, 38, 34, 14, 8, 20, 31, 27, 16, 37, 36, 35, 23, 53, 52, 13, 40, 21, 33, 26]

ν7 = [26, 49, 24, 38, 34, 42, 14, 8, 41, 20, 31, 32, 27, 16, 46, 37, 36, 51, 35, 23, 22,
53, 52, 12, 13, 40, 39, 21, 33, 25, 26]

ν8 = [11, 19, 43, 50, 54, 59, 3, 6, 11, 19, 1, 54, 59, 7, 47, 6, 11, 19, 1, 3, 7, 47, 15,
48, 11, 19, 1, 3, 6, 15, 48, 28, 45, 19, 1, 3, 6, 11, 28, 45, 43, 50, 1, 3, 6, 11]

For animations of some of the motions in Theorem 1.1 click here:2

(T , ν4) , (O, ν7) , (I, ν3) .

2see also [11].
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Special motions satisfying (1.1) were considered in [8], [12]. Many other interesting
motions of the N -body problem subjected to various kinds of symmetry and topological
constraints were discovered in the last ten years. See for instance [3], [4], [6], [9], [13], [15],
[16], [17], [14] and the references therein.

In this paper we consider interaction potentials of the form

Uα(r) =
1

rα
, α > 0, r > 0the inter-particle distance,

which includes as a special case the Newtonian potential (α = 1).
Here we concentrate on the case α > 1. Simple computations indicate that the contri-

bution of collisions to the action integral increases with α and diverges to +∞ as α↗ 2.
For example, if we consider two unit masses moving on a line and colliding in the center
of mass 0 at t = 0, from the conservation of energy we have

ẋ2 =
1

2αxα
+ h (1.4)

where x is the distance from 0. Since the constant h has a negligible effect on the behavior

of x near x = 0 we set h = 0 in (1.4), which then yields x(t) = 1
2 [(2 + α)t]

2
2+α . It follows∫ 1

0
2
(
ẋ2 +

1

2αxα
)
dt =

4

2− α
(2 + α)

2−α
2+α → +∞ as α↗ 2. (1.5)

Therefore we can expect that for each free homotopy class of R3 \Γ which is tied to Γ (see
(1.6)) there is a critical value αcr < 2 of α such that, if u∗I is a minimizer of the action

Aα(uI) =
1

2

∫ T

0

(
|u̇I |2 +

∑
R∈R\{I}

1

|(R− I)uI |α
)
dt,

then u∗I is smooth for α > αcr, while has collisions for α ≤ αcr. We prove

Theorem 1.2. For each sequence ν that satisfies conditions (i),(ii),(iii) above and

ν 6⊂ F , for all the faces F of QR, (1.6)

there exists αν < 2 such that for each α > αν there is a classical solution uα∗ = {uα∗R}R∈R
of the N -body problem with interaction potential Uα. Moreover uα∗ satisfies the symmetry
condition (1.1) and uα∗I is a minimizer of the action integral

Aα(uI) =
1

2

∫ T

0

(
|u̇I |2 +

∑
R∈R\{I}

1

|(R− I)uI |α
)
dt,

in the set H1
T (R;R3) of T -periodic maps in the homotopy class determined by ν.

For animations of orbits in Theorem 1.2 for the sequences in Table 2 click here:

(O, ν1) , (O, ν2) , (I, ν1) .

Condition (1.6) ensures that the orbit of uI ∈ H1
ν is tied to Γ in the sense that does

not winds around a single axis of rotation in Γ. This implies the geometric inequality

‖uI‖∞ ≤ c0

∫ T

0
|u̇I |dt (1.7)
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Table 2: The sequences refer to the enumeration of vertexes of QR in Figure 2.

R ν
O ν1 = [10, 3, 1, 16, 10, 3, 7, 14, 1, 3, 8, 18, 7, 3, 8, 15, 13, 18, 8, 10, 6, 15, 8, 10, 16, 22, 6, 10]

ν2 = [1, 16, 10, 3, 1, 16, 10, 3, 1, 14, 7, 3, 1, 14, 7, 20, 23, 14, 7, 20, 23, 14, 7, 3, 1, 14, 7, 3, 1]
I ν1 = [1, 54, 50, 1, 3, 7, 59, 3, 6, 15, 47, 6, 11, 28, 48, 11, 19, 43, 45, 19, 1]

for some constant c0 > 0 independent of R ∈ {T ,O, I} and of ν satisfying (1.6).
It is natural to investigate the asymptotic behavior for α→ +∞ of the motions given

in Theorem 1.2. We analyze this question in Section 3. In particular we show that there
exists an asymptotic shape of the trajectory of uI which is determined by a geometric
minimization with unilateral constraints, see Theorem 3.2.

Since if α < 2 collisions give a finite contribution to the action integral, we may
conjecture that, for fixed α < 2, the sequences ν corresponding to free homotopy classes
that contain a smooth minimizer of Aα have a bounded length

K < Kα,

where Kα > 0 is determined by α. Indeed it can be expected that to minimize Aα, if K
is too large, it may be more convenient to crash part of the orbit into a collision rather
than to keep wandering around the axes of the rotations in R.

For α ≥ 2, the so called strong force case, there are no collisions and therefore no upper
bound for the length K of ν should be expected. This suggests the existence of aperiodic
orbits of infinite length obtained as limit of sequences of periodic orbits corresponding to
sequences νj of length Kj converging to +∞. Our next theorem states that this is indeed
the case. To state the theorem we utilize a different way of coding the free homotopy
classes of R3 \ Γ. We have already remarked that R3 \ Γ is homotopically equivalent to
S2 \ P and therefore to the plane ΠQ punctured with Q = ]P − 1 distinct points.
ΠQ is homotopically equivalent to the union ΣQ ofQ copies S1

1, . . . ,S1
Q of S1 with a common

point O.
Each free homotopy class of ΣQ determines, up to translation, a periodic sequence

ω = {ωi}i∈Z with 2Q symbols

ωi ∈ {σ1, . . . , σQ, σ
−1
1 , . . . , σ−1

Q },

where σi corresponds to traveling S1
i from O and back to O in a preassigned positive

direction and σ−1
i to the inverse path. We assume that ω is reduced in the sense that it

does not contain expressions like σiσ
−1
i corresponding to loops homotopic to O. Beside

ω, each free homotopy class of ΣQ uniquely determines a number M ∈ N, which coincides
with one of the periods of ω. Indeed the same ω can be associated to different homotopy
classes that can be distinguished by the period attributed to ω. For example we can
consider a closed loop that coincides with S1

1 and a loop that describes S1
1 more than once,

say M > 1 times before closing up. All these loops have the same ω but are topologically
distinct and can be classified by the value of M . In conclusion: each free homotopy class of
ΣQ determines (an equivalence class of) ω and a particular period M of ω and viceversa.
We let Ω be the set of these sequences with the associated period and define a distance in
Ω by setting

d(ω, ω′) = |f(M)− f(M ′)|+ min
h∈Z

∑
i∈Z

δ(ωi+h, ω
′
i)

2|i|
, (1.8)
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where f : [0,+∞) → R, f(0) = 0, is a strictly increasing bounded function and δ is the
discrete metric. We let Ω̂ be the completion of Ω with respect to the metric (1.8).

We need to characterize the subset Ω0 ⊂ Ω of the sequences corresponding to orbits
that coil around just one of the axes in Γ. We identify ΠQ with the stereographic projection
of S2 \ P, from some p0 ∈ P, on the plane tangent to S2 at −p0.

If we consider the constant sequence ω = {ωi}i∈Z, with ωi = σ̃ ∀i for some σ̃ ∈
{σ1, . . . , σQ, σ

−1
1 , . . . , σ−1

Q }, then ω ∈ Ω0 and corresponds to an orbit winding around the
axis ap through some p ∈ P \ {p0}. The remaining ω ∈ Ω0 correspond to orbits winding
around ap0 . These are the sequences ω which have M = nQ for some n ≥ 1, and satisfy
(up to translations) ωi = σi for i = 1, . . . , Q, or ωi = σ−1

i for i = 1, . . . , Q and ωi+jQ = ωi
for j = 1, . . . , n− 1.

For each ω ∈ Ω we let H1
ω be the set of H1

loc(R;R3) periodic maps in the free homotopy
class determined by ω. Given α > 0 and H ∈ R, for each H1

loc periodic map vI : R→ R3

we define

Aα,H(vI) =

∫ TvI

0

(
H +

1

2

[
|v̇I |2 +

∑
R∈R\{I}

1

|(R− I)vI |α
])

dt. (1.9)

Notice that in (1.9) the period TvI is not a fixed constant but it is allowed to depend on
vI . We are now in the position to state our main result.

Theorem 1.3. Let α > 2 and H > 0 be fixed. Then

(I) For each ω ∈ Ω \ Ω0 there is a periodic solution uα,H∗ = {uα,H∗R }R∈R of the N -body

problem with interaction potential Uα. Moreover uα,H∗ satisfies (1.1) and uα,H∗I ∈ H1
ω

lies on the surface of constant energy

|v̇I |2 −
∑

R∈R\{I}

1

|(R− I)vI |α
= 2H, (1.10)

and minimizes Aα,H on H1
ω.

(II) Given a sequence {ωj}j∈N ⊂ Ω\Ω0 and the corresponding sequence {uα,H,j∗ }j∈N from

(I), there exist a subsequence {jh}h∈N, ω̂ ∈ Ω̂ and a C∞ bounded solution ûα,H∗ of
the N -body problem such that

ûα,H∗ (t) = lim
h→∞

uα,H,jh∗ (t), (1.11)

locally in C2+ 1
2 , and

ω̂ = lim
h→∞

ωjh . (1.12)

Moreover ûα,H∗ satisfies (1.1) and ûα,H∗I lies on the surface of constant energy (1.10).

(III) Given ω̂ ∈ Ω̂ \ Ω0 there exist a sequence {ωj}j∈N ⊂ Ω \ Ω0 and a bounded solution

ûα,H∗ of the N -body problem such that ωj → ω̂ and uα,H,j∗ → ûα,H∗ , where uα,H,j∗ is
the map associated to ωj by (I).

In the following we drop the subscript I and we write simply u, v in place of uI , vI .
The paper is organized as follows. In Section 2 we prove Theorem 1.2, in Section 3

we investigate the asymptotic behavior of the motions in Theorem 1.2 for α → +∞. In
Section 4 we prove Theorem 1.3.
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2 The proof of Theorem 1.2

Given a sequence ν that satisfies (i), (ii), (iii), we let H1
ν be the set of T -periodic maps

u ∈ H1
loc(R;R3) in the free homotopy class of R3 \Γ determined by ν. We prove Theorem

1.2 by a variational technique: we show that if ν satisfies (i), (ii), (iii) and also condition
(1.6), then the action integral

Aα(u) =
1

2

∫ T

0

(
|u̇|2 +

∑
R∈R\{I}

1

|(R− I)u|α
)
dt

possesses a minimizer uα∗ in H1
ν . We then show that there is αν < 2 such that α > αν

implies uα∗ is free of collisions and therefore is in the interior of H1
ν and thus a smooth

solution of the Euler-Lagrange equations. The possibility that, when α < 2, a minimizer
of the action presents collisions is one of the main obstructions to the variational approach
to the existence of periodic motions for the N -body problem. We refer to [1], [5] and [9]
for various results on the problem of collisions.

Lemma 2.1. Given a sequence ν that satisfies (i), (ii), (iii) there is a constant Aν > 0
with the property that for each α ∈ (0,+∞) there exists a map ūα ∈ H1

ν such that

Aα(ūα) ≤ Aν . (2.1)

Proof. We define the orbit of ū to be the orbit Oν defined by ν on LR (see Section 1)
and assume that the generating particle moves on Oν with constant speed. We can choose
λ > 1 such that λ|(R − I)ū| > 1 for R ∈ R \ {I}. Set ūα = λū. Then the action Aα(ūα)
is well defined and bounded in α ∈ (0,+∞).

Remark. From (2.1) and Hölder’s inequality it follows an L∞ bound independent of α:

‖u‖∞ ≤ c0T
1/2A1/2

ν ,

which is valid for each u ∈ H1
ν satisfying Aα(u) ≤ Aν .

Lemma 2.2. Assume that ν satisfies (i), (ii), (iii) and condition (1.6). Then Aα is
coercive on H1

ν .

Proof. It follows immediately from (1.7) and Hölder’s inequality.

Lemma 2.3. Assume that ν satisfies (i), (ii), (iii) and let Aν be as in Lemma 2.1. Then
there exists αν < 2 such that

α > αν , u ∈ H1
ν , and Aα(u) ≤ Aν ⇒ u(R) ∩ Γ = ∅.

Proof. Let r = minR∈R\{I}{|(R− I)u|} and r̄ = maxt∈[0,T ) r(t). Then

Aν ≥ Aα(u) ≥ 1

2

∫ T

0

∑
R∈R\{I}

1

|(R− I)u|α
dt ≥

∫ T

0

1

2rα
dt ≥ T

2r̄α
,
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and therefore

r̄ ≥
( T

2Aν

) 1
α
. (2.2)

Moreover we have

Aα(u) ≥
∫ T

0

√√√√ ∑
R∈R\{I}

1

|(R− I)u|α
|u̇|dt =

∫ L

0

√√√√ ∑
R∈R\{I}

1

|(R− I)u|α
ds, (2.3)

where s is arc-length and L =
∫ T

0 |u̇|dt. Now we observe that from∣∣∣dr
ds

∣∣∣ =
∣∣∣ d
ds

min
R∈R\{I}

|(R− I)u|
∣∣∣ ≤ max

R∈R\{I}

∣∣∣ d
ds
|(R− I)u|

∣∣∣, a.e.

∣∣∣ d
ds
|(R− I)u|

∣∣∣ =
∣∣∣〈(R− I)

du

ds
,

(R− I)u

|(R− I)u|
〉
∣∣∣ ≤ ∣∣∣(R− I)

du

ds

∣∣∣
≤ max

R ∈ R \ {I}
η ∈ S2

|(R− I)η| =: kR, a.e.

where kR depends on the group R. It follows that∣∣∣dr
ds

∣∣∣ ≤ kR. (2.4)

Assume that there is an arc of length s̄ > 0 such that r(0) = 0 and r(s̄) = r̄. Then, from
(2.3), the definition of r and (2.4) we have

Aν ≥
∫ s̄

0

√√√√ ∑
R∈R\{I}

1

|(R− I)u|α
ds ≥

∫ s̄

0
r−

α
2 ds ≥ 1

kR

∫ r̄

0
r−

α
2 dr.

This and (2.2) imply

2
3α−2
2α

kR(2− α)

T
2−α
2α

A
2+α
2α
ν

≤ 1. (2.5)

Inequality (2.5) is violated for α > αν , for some αν < 2 that can be estimated from
(2.5).

We can now complete the proof of Theorem 1.2. Lemma 2.1 and Lemma 2.2 and
standard arguments of variational calculus show that, provided ν satisfies (i), (ii), (iii)
and (1.6), there exists uα∗ ∈ H1

ν that satisfies

Aα(u∗) = min
u∈H1

ν

Aα(u).

Lemma 2.3 implies that there exists αν < 2 such that, for α > αν , uα∗ is collision free and
therefore, by elliptic regularity, is a smooth solution of the equation of motion

ü = α
∑

R∈R\{I}

(R− I)u

|(R− I)u|α+2
. (2.6)

The proof of Theorem 1.2 is complete.
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3 Asymptotic behavior of minimizers for α→ +∞
In this section we fix a sequence ν as in Theorem 1.2. We discuss the asymptotic behavior
for α → +∞ of the solution uα∗ of the N -body problem determined in that theorem.
If α � 1 the force of attraction between particles is very small (very large) when the
inter-particle distance is larger than 1 (smaller than 1). This observation suggests that

1) the limit behavior of minimizers uα∗ for α → +∞ is constrained to the sub-region
Y ⊂ R3 of the configuration space defined by

Y = {x ∈ R3 : |(R− I)x| ≥ 1 ∀R ∈ R \ {I}} .

Indeed violating this condition generates, if α � 1, a large contribution of the
potential term to the action integral;

2) in the limit α→ +∞ the trajectory of the minimizer uα∗ tends to the shortest path
compatible with condition |(R − I)x| ≥ 1, ∀R ∈ R \ {I} and with the topological
constraint defined by ν.

For α → +∞ the inter-particle attraction should act as a unilateral holonomic con-
straint and the limit motion should be a kind of geodesic motion with constant kinetic
energy. Then minimizing the action should be equivalent to minimizing the length of the
trajectory of the generating particle.

For each p ∈ P let Cylp ⊂ R3 be the open cylinder with axis the line through O and
P and radius rp = 1

2 sin(π/op) , where op is the order of the pole p.3 Then we have

Y = R3 \
⋃
p∈P

Cylp .

We first characterize the asymptotic behavior of the actionAα in the sense of Γ-convergence,
see [2].

Definition. Let X be a metric space. We say that a sequence {Fε}ε>0, Fε : X → R∪{+∞}
Γ-converges in X to F : X → R ∪ {+∞} if for each x ∈ X

(LB) for every sequence {xε} that converges to x as ε→ 0

lim inf
ε→0

Fε(xε) ≥ F(x); (3.1)

(UB) there exists a sequence {xε} converging to x as ε→ 0 such that

lim sup
ε→0

Fε(xε) ≤ F(x). (3.2)

The functional F is called the Γ-limit of {Fε} and we write

Γ
X
− lim

ε→0
Fε = F .

3rp is the radius of the circumcircle of a regular polygon with o(p) sides of unitary length.
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Theorem 3.1. Let L2
ν be the L2-closure of H1

ν , and let Aα : L2
ν → R∪{+∞}, A∞ : L2

ν →
R ∪ {+∞} be defined by

Aα(u) =


1

2

∫ T

0
(|u̇|2 +

∑
R∈R\{I}

1

|(R− I)u|α
)dt, u ∈ H1

ν ,

+∞, u ∈ L2
ν \ H1

ν ,

A∞(u) =


1

2

∫ T

0
|u̇|2dt, u ∈ H1

ν , u(R) ∩ (∪p∈PCylp) = ∅

+∞, u ∈ L2
ν \ H1

ν or u(R) ∩ (∪p∈PCylp) 6= ∅

Then

Γ
L2

− lim
α→+∞

Aα = A∞

Proof. We apply Definition 3 with X = L2
ν and ε = 1/α. Fix u ∈ L2

ν .

Proof of (LB). Let uα
L2

→ u. If lim infα→+∞Aα(uα) = +∞ there is nothing to prove.
Therefore we assume lim infα→+∞Aα(uα) = A∞ < +∞. It follows that there is a sequence
uαj such that

i) limα→+∞Aα(uαj ) = A∞;

ii) uαj converges weakly in H1 to u;

iii) uαj converges to u also in L∞.

By the lower semicontinuity of the L2 norm we have

A∞ ≥ lim inf
j→∞

1

2

∫ T

0
|u̇αj |2dt ≥ 1

2

∫ T

0
|u̇|2dt = A∞(u).

This concludes the proof of (LB).
Proof of (UB). If A∞(u) = +∞ then there is nothing to prove. Assume A∞(u) < +∞

and consider the sequence

uα = (1 +
1√
α

)u. (3.3)

Then from

lim
α→+∞

1

2

∫ T

0
(1 +

1√
α

)2|u̇|2dt = A∞(u),

lim
α→+∞

1

(1 + 1√
α

)α

∑
R∈R\{I}

1

|(R− I)u|α
dt = 0

it follows that
lim

α→+∞
Aα(uα) = A∞(u).

This concludes the proofs of (UB) and of the theorem.

As far as the limit behavior of the minimizers uα∗ for α→ +∞ is concerned we have
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Theorem 3.2. Let {αj}j∈N be a sequence that converges to +∞. Then there is a subse-

quence {uαjh∗ }h∈N such that

lim
h→∞

‖uαjh∗ − u∞∗ ‖L∞(R;R3) = 0,

where u∞∗ is a minimizer of A∞ in H1
ν . Moreover

lim
h→∞

Aαjh (u
αjh
∗ ) = A∞(u∞∗ ). (3.4)

Proof. Let ū∞∗ ∈ H1
ν be a minimizer of A∞ and set

ūα = (1 +
1√
α

)ū∞∗ . (3.5)

As in the proof of Theorem 3.1 we have

lim
α→+∞

Aα(ūα) = A∞(ū∞∗ ), (3.6)

therefore
Aα(ūα) ≤ A

for some A independent of α ∈ [2,+∞). To conclude the proof we need the following
lemmas.

Lemma 3.3. Given δ ∈ (0, 1) there is αδ > 0 such that for α > αδ, given R ∈ R \ {I}
and uI ∈ H1

ν with Aα(uI) ≤ A, we have

|(R− I)uI(t̄)| > 1− δ,

for some t̄ ∈ [0, T ) depending on α,R, u.

Proof. Assume that |(R− I)uI(t)| ≤ 1− δ for all t ∈ [0, T ). Then

T

(1− δ)α
≤
∫ T

0

1

|(R− I)uI |α
dt ≤ Aα(uI) ≤ A

which is not true for α large enough.

Lemma 3.4. Given δ ∈ (0, 1) there is αδ > 0 such that for α > αδ we have

min
t∈[0,T ]

|(R− I)uI(t)| > 1− δ (3.7)

for each R ∈ R \ {I} and for each uI ∈ H1
ν such that Aα(uI) ≤ A.

Proof. Fix δ > 0. From Lemma 3.3 there exist αδ/2 > 0 and t̄ such that

|(R− I)uI(t̄)| > 1− δ/2

for each α > αδ/2. If (3.7) does not hold there are t1, t2, 0 < t2 − t1 < T such that
|(R− I)uI(t1)| = 1− δ, |(R− I)uI(t2)| = 1− δ

2
,

1− δ ≤ |(R− I)uI(t)| ≤ 1− δ

2
, for all t ∈ [t1, t2].
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We have
τ

(1− δ/2)α
≤

∑
R∈R\{I}

∫ T

0

1

|(R− I)uI |α
dt, (3.8)

where τ = t2 − t1. On the other hand

δ

2
= |(R− I)uI(t2)| − |(R− I)uI(t1)| ≤ ‖R− I‖|uI(t2)− uI(t1)|

≤ 2|uI(t2)− uI(t1)| ≤ 2

∫ τ

0
|u̇|dt ≤ 2

(
τ

∫ T

0
|u̇|2dt

)1/2

From this and (3.8) it follows

1

2

τ

(1− δ/2)α
+

δ2

32τ
≤ Aα(u) ≤ A. (3.9)

Therefore

min
τ∈[0,T ]

(1

2

τ

(1− δ/2)α
+

δ2

32τ

)
=

δ

8(1− δ/2)α/2
≤ A,

which is not true for α large enough.

For a minimizer uα∗ ∈ H1
ν we have

Aα(uα∗ ) ≤ Aα(ūα) ≤ A (3.10)

From this and the remark after Lemma 2.1 it follows that the family {uα∗ }α is bounded in
H1
T . Therefore there exists a sequence αj → +∞, and v∞ ∈ H1

ν such that {uαj∗ }j weakly
converges in H1

T to v∞ . We can also assume that {uαj∗ }j converges to v∞ in L∞.
From Lemma 3.4 the map v∞ satisfies the constraint

v∞(R) ∩ (∪p∈PCylp) = ∅.

From the lower semicontinuity of the L2-norm we have

lim inf
j→∞

Aα(u
αj
∗ ) ≥ lim inf

j→∞

1

2

∫ T

0
|u̇αj∗ |2dt ≥

1

2

∫ T

0
|v̇∞I |2dt = A∞(v∞). (3.11)

On the other hand, from (3.10) and (3.6) it follows that

lim sup
j→∞

Aα(u
αj
∗ ) ≤ lim sup

j→∞
Aα(ūαj ) = A∞(ū∞∗ ) (3.12)

It follows that
A∞(v∞) ≤ A∞(ū∞∗ ) (3.13)

therefore in (3.13) the equality holds and v∞ is a minimizer of A∞. Moreover, from (3.11),
(3.12) follows the existence of the limit (3.4). Therefore we take u∞∗ = v∞. The proof of
Theorem 3.2 is concluded.

For animations of orbits in Theorem 3.2 for the sequences in Table 3 click here:

(O, ν1) , (O, ν2) .
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Table 3: The sequences refer to the enumeration of vertexes of QR in Figure 2.

R ν
O ν1 = [3, 10, 8, 3, 1, 5, 16, 1, 14, 23, 11, 14, 7, 18, 20, 7, 3]

ν2 = [3, 10, 8, 3, 1, 14, 7, 3, 1, 5, 16, 1, 14, 7, 3, 1, 14, 23, 11, 14, 7, 3, 1, 14, 7, 18, 20, 7, 3, 1, 14, 7, 3]

4 The proof of Theorem 1.3

4.1 Minimizing the action in a given homotopy class

In the following lemmas we set Aωα,H = Aα,H(v) for a test function v ∈ H1
ω that satisfies

(1.10).

Lemma 4.1. Let α > 2, H > 0 and ω ∈ Ω \ Ω0 be given. Then there exist rωα > 0 and
Tωα > τωα > 0 such that each u ∈ H1

ω with Aα,H(u) ≤ Aωα,H satisfies

d(u(R),Γ) > rωα . (4.1)

τωα ≤ Tu ≤ Tωα . (4.2)

Proof. Let
r = min

R∈R\{I}
|(R− I)u|.

Then from the fact that the Lagrangian is the sum of two non-negative terms we have

Aα,H(u) =

∫ Tu

0

[
H +

1

2

(
|u̇|2 +

∑
R∈R\{I}

1

|(R− I)u|α
)]
dt

≥
√

2

∫ Tu

0

√√√√H +
1

2

∑
R∈R\{I}

1

|(R− I)u|α
|u̇|dt

≥
√

2

∫ Tu

0

√
H +

1

2rα
|u̇|dt >

∫ Tu

0
r−

α
2 |u̇|dt. (4.3)

Set
r̄ = inf

[0,Tu]
r.

Assume r̄ = 0. Then, for each r0 > 0 small enough, there is an interval [τ, τ ′] such that
r0
2 ≤ r ≤ r0, for t ∈ [τ, τ ′], with r = r0 for t = τ and r = r0

2 for t = τ ′. Therefore, in

this case, if we set L0 =
∫ τ ′
τ |u̇|dt, (4.3) implies

Aα,H(u) ≥
∫ τ ′

τ
r−

α
2 |u̇|dt =

∫ L0

0
r−

α
2 ds ≥ 1

kR

∫ r0

r0
2

r−
α
2 dr, (4.4)

where s is arc-length and we have used (2.4).
Since α > 2 the last integral in (4.4) diverges to +∞ as r0 → 0+ in contradiction

with the bound Aα,H(u) ≤ Aωα,H . It follows that r̄ > 0. Since ω ∈ Ω \ Ω0 the length
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Lu =
∫ Tu

0 |u̇|dt of the orbit of u has a lower bound of the form Lu ≥ cω r̄ for some cω > 0.
By utilizing this and (4.3) we get

Aωα,H ≥
∫ Lu

0
r−

α
2 ds ≥ 1

kR

∫ (1+cω)r̄

r̄
r−

α
2 dr =

2

kR(α− 2)

[(1 + cω)
α−2
2 − 1]

(1 + cω)
α−2
2

1

r̄
α−2
2

.

This inequality shows the existence of a lower bound rωα > 0 for r̄ and establishes (4.1).
To prove (4.2) we observe that, by Hölder’s inequality, we obtain

Aωα,H ≥
∫ Tu

0

1

2
|u̇|2dt ≥ 1

2

c2
ω(rωα)2

Tu
, (4.5)

that is Tu ≥ 1
2
c2ω(rωα)2

Aωα,H
. The other inequality follows from

Aωα,H ≥ HTu. (4.6)

The proof is concluded.

Lemma 4.2. Assume α > 0, H > 0 and ω ∈ Ω \ Ω0. Then Aα,H is coercive on H1
ω, that

is

Aα,H(u) ≥ cH‖u‖L∞(R;R3), u ∈ H1
ω (4.7)

for some constant cH > 0 independent of ω and u.

Proof. From (1.7) it follows

√
2

c0
H

1
2 ‖u‖L∞ ≤

1

2c2
0

‖u‖2L∞
Tu

+HTu ≤
∫ Tu

0

[
H +

1

2
|u̇|2
]
dt ≤ Aα,H(u).

This concludes the proof.

Lemma 4.3. Assume α > 2 and H > 0. Then for each ω ∈ Ω\Ω0 there exists uα,H∗ ∈ H1
ω

such that

Aα,H(uα,H∗ ) = inf
ui∈H1

ω

Aα,H(u). (4.8)

Proof. Let {uj} ⊂ H1
ω be a minimizing sequence and let Tj be the minimal period of uj .

We can assume

Aα,H(uj) ≤ Aωα,H , j ∈ N (4.9)

and, up to subsequences, we can also assume

(i) The sequence {Tj} is monotone and

τω ≤ lim
j→∞

Tj = T ≤ Tω. (4.10)

where we have also made use of Lemma 4.1
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(ii) There exists a T -periodic map uα,H∗ ∈ C0, 1
2 (R;R3) such that

lim
j→∞

uj(t) = uα,H∗ (t), t ∈ R

uniformly on compact sets. This follows from Ascoli-Arzelà’s theorem after observing
that (4.9) and (4.7) in Lemma 4.2 imply

‖uj‖L∞ ≤ CAωα,H , for j ∈ N, C = 1/cH (4.11)

while (4.9) and Hölder’s inequality yield

|uj(t1)− uj(t2)| ≤ |t1 − t2|
1
2

∣∣∣∫ t2

t1

|u̇j |2dt
∣∣∣ 12 ≤ |t1 − t2| 12√2Aωα,H .

(iii) From (4.9) and (4.11) it follows that the sequence {uj} is uniformly bounded in
H1

loc(R;R3). Therefore we can assume that uα,H∗ is the weak H1-limit of uj as

j →∞ and conclude that uα,H∗ is a H1 map:

uα,H∗ ∈ H1
ω.

To prove (4.8) we distinguish two cases:

a) Tj+1 ≤ Tj . In this case it results

Aα,H(uj) ≥
∫ T

0

[
H +

1

2

(
|u̇j |2 +

∑
R∈R\{I}

1

|(R− I)uj |α
)]

dt (4.12)

and we have

lim
j→∞

∫ T

0

∑
R∈R\{I}

1

|(R− I)uj |α
dt =

∫ T

0

∑
R∈R\{I}

1

|(R− I)uα,H∗ |α
dt (4.13)

since uj → uα,H∗ uniformly in compacts and

lim inf
j→∞

∫ T

0
|u̇j |2dt ≥

∫ T

0
|u̇α,H∗ |2dt (4.14)

by lower semi-continuity of the L2 norm with respect to weak convergence. This
concludes the proof in case a).

b) Tj+1 ≥ Tj . Define

vj(t) =

{
uj(t), for t ∈ [0, Tj ],
uj(Tj), for t ∈ (Tj , T ].

Since the sequence {vj} is bounded in H1([0, T ];R3) we can assume that vj ⇀ uα,H∗
weakly in H1([0, T ];R3). This and the uniform convergence of vj to uα,H∗ imply

lim inf
j→∞

Aα,H(vj) = lim inf
j→∞

∫ T

0

[
H +

1

2

(
|v̇j |2 +

∑
R∈R\{I}

1

|(R− I)vj |α
)]

dt

≥ Aα,H(uα,H∗ ).
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This and the identity

Aα,H(vj) =

∫ T

0

1

2

[
H +

(
|v̇j |2 +

∑
R∈R\{I}

1

|(R− I)vj |α
)]

dt

= Aα,H(uj) +
[
H +

1

2

∑
R∈R\{I}

1

|(R− I)uj(Tj)|α
]
(T − Tj)

conclude the proof.

Lemma 4.4. Assume α > 2, H > 0 and ω ∈ Ω \ Ω0 and let uα,H∗ ∈ H1
ω be the minimizer

of Aα,H |H1
ω

in Lemma 4.3. Then uα,H∗ ∈ C∞(R;R3) and uα,H∗ satisfies (1.10).

Proof. From (4.1) in Lemma 4.1 uα,H∗ (R) has a positive distance from the singular set Γ.
This implies that we can regard the potential

Uα(z) =
∑

R∈R\{I}

1

|(R− I)z|α

as a C∞ bounded function. Using this and the fact that, being uα,H∗ a minimizer of
Aα,H |H1

ω
, the first variation of Aα,H at uα,H∗ in the class of H1

ω maps of period T = T
uα,H∗

vanishes we deduce that uα,H∗ ∈ C∞(R,R3) by elliptic regularity. Then it follows that
uα,H∗ satisfies the equation of motion and therefore also (1.10) for some value H∗ of the
constant H. We now show that H∗ is exactly the constant H in the definition of Aα,H .

We temporarily write u for uα,H∗ and let v : R × (−s0, s0) → R3, T : (−s0, s0) → R be
smooth maps defined in a neighborhood (−s0, s0) of s = 0. We assume that

1. For each s ∈ (−s0, s0), v(·, s) is periodic with period T (s).

2. T (0) = T and v(·, 0) = u.

Set

A(s) = Aα,H(v(·, s)) =

∫ T (s)

0

(
H +

1

2

[
|v̇(t, s)|2 + Uα(v(t, s))

])
dt.

ThenA(s) is a smooth function in (−s0, s0) and the minimality of v implies that d
dsA(s)|s=0 =

0. Differentiating the identity

v(t+ T (s), s) = v(t, s), t ∈ R, s ∈ (−s0, s0)

with respect to s yields

v̇(t+ T (s), s)Ts(s) + vs(t+ T (s), s) = vs(t, s).

If we set s = 0 in this identity we obtain

u̇(t+ T )Ts(0) + vs(t+ T, 0) = vs(t, 0). (4.15)

Differentiating A(s) yields

d

ds
A(s) =

∫ T (s)

0
(〈v̇, v̇s〉+

1

2
〈Uα,z(v), vs〉)dt

+
(
H +

1

2

[
|v̇(T (s), s)|2 + Uα(v(T (s), s))

])
Ts(s),

16



which for s = 0 becomes

d

ds
A(s)|s=0 =

∫ T

0
(〈u̇, v̇s〉+

1

2
〈Uα,z(u), vs〉)dt

+
(
H +

1

2

[
|u̇(T )|2 + Uα(u(T ))

])
Ts(0)

=

∫ T

0
〈−ü+

1

2
Uα,z(u), vs〉dt+ 〈u̇, vs〉|t=Tt=0

+
(
H +

1

2

[
|u̇(T )|2 + Uα(u(T ))

])
Ts(0). (4.16)

Note that

〈u̇, vs〉|t=Tt=0 = 〈u̇(T ), vs(T, 0)〉 − 〈u̇(0), vs(0, 0)〉
= 〈u̇(T ), vs(T, 0)− vs(0, 0)〉 = −|u̇(T )|2Ts(0),

where we have used (4.15) for t = 0. From this and (4.16) it follows

d

ds
A(s)

∣∣∣
s=0

=

∫ T

0
〈−ü+

1

2
Uα,z(u), vs〉dt

+
(
H +

1

2

[
−|u̇(T )|2 + Uα(u(T ))

])
Ts(0). (4.17)

Since the minimality of u implies d
dsA(s)

∣∣
s=0

= 0 for any choice of the map v introduced
above, we can regard vs and Ts(0) as arbitrary quantities and deduce from (4.17) that

1

2
|u̇(T )|2 = H +

1

2
Uα(u(T ))

which, since the choice of the initial time t = 0 is arbitrary, concludes the proof.

4.2 L∞ bounds independent of ω ∈ Ω \ Ω0.

From Lemma 4.4 we have that, provided α > 2 and H > 0, for each ω ∈ Ω \ Ω0 the
minimizer uα,H∗ ∈ H1

ω given by Lemma 4.3 is a smooth map that satisfies (1.10). Since
uα,H∗ minimizes Aα,H on the whole of H1

ω, uα,H∗ is obviously a minimizer of Aα,H in the
subset H1

ω,H of H1
ω of the maps that satisfy (1.10). On the basis of Lemma 4.1 we can also

assume that maps in H1
ω,H satisfy (4.1). For u ∈ H1

ω,H , using (1.10) we can write Aα,H in
Jacobi form:

A(u) =
√

2

∫ Tu

0

√√√√H +
1

2

∑
R∈R\{I}

1

|(R− I)u|α
|u̇|dt

=
√

2

∫ Lu

0

√√√√H +
1

2

∑
R∈R\{I}

1

|(R− I)u|α
ds

where we have simply written A instead of Aα,H and set Lu =
∫ Tu

0 |u̇|dt.
Given a pole p ∈ P and z ∈ R3 we set z = zp + zp⊥ where zp = 〈z, p〉p and zp⊥ =

z − 〈z, p〉p.
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Proposition 4.5. Assume α > 2, H > 0 and ω ∈ Ω \ Ω0. Then there exist r̄ > 0 and
ρ̄ > 0 independent of ω ∈ Ω \ Ω0 such that if u ∈ H1

ω,H satisfies

u(R) ∩ (∪p∈P{z ∈ R3 : |zp⊥| < ρ̄} ∪Br̄) 6= ∅,

then there exists v ∈ H1
ω,H such that{
v(R) ∩ (∪p∈P{z ∈ R3 : |zp⊥| < ρ̄} ∪Br̄) = ∅,
A(v) < A(u).

(4.18)

Proof. For each z ∈ S2 the map r 7→ r
√
H + 1

2rα
∑

R∈R\{I}
1

|(R−I)z|α is strictly decreasing

in (0, r(z)), and strictly increasing in (r(z),+∞), where

r(z) = (
α− 2

4H

∑
R∈R\{I}

1

|(R− I)z|α
)

1
α . (4.19)

Let r̄ = minz∈S2 r(z) and define w ∈ H1
ω,H by setting

w(s) =


u(s), if |u(s)| ≥ r̄,

r̄ u(s)
|u(s)| , if |u(s)| < r̄ ,

(4.20)

where s is arc-length along the orbit of u. Note that, for |u(s)| < r̄,∣∣∣dw
ds

(s)
∣∣∣ =

r̄

|u(s)|

∣∣∣du
ds

(s)− 〈du
ds

(s),
u(s)

|u(s)|
〉 u(s)

|u(s)|

∣∣∣ ≤ r̄

|u(s)|
,

where we have used |duds (s)| = 1. Therefore, if s ∈ R is such that |u(s)| < r̄ we have√√√√H +
1

2

∑
R∈R\{I}

1

|(R− I)w(s)|α
|dw
ds

(s)| ≤

√√√√H +
1

2r̄α

∑
R∈R\{I}

1

|(R− I) u(s)
|u(s)| |α

r̄

|u(s)|

<

√√√√H +
1

2|u(s)|α
∑

R∈R\{I}

1

|(R− I) u(s)
|u(s)| |α

|u(s)|
|u(s)|

=

√√√√H +
1

2

∑
R∈R\{I}

1

|(R− I)u(s)|α
.

These inequalities and (4.20) imply

A(w) < A(u).

To complete the proof of Proposition 4.5 we need the following Lemmas.

Lemma 4.6. Let H > 0 and ζ̄ > 0 be fixed. Given p ∈ P, ζ ≥ ζ̄ and a unit vector n
orthogonal to p, let ϕp,n,ζ be the map defined by

ρ
ϕp,n,ζ7→ ρ

√√√√H +
1

2

∑
R∈R\{I}

1

|(R− I)(ζp+ ρn)|α
.

Then there is ρ̄ > 0 such that ϕp,n,ζ is strictly decreasing in (0, ρ̄]. Moreover ρ̄ can be
chosen independent of p ∈ P, ζ and n.
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Proof. let Cp ⊂ R be the cyclic subgroup of the rotations that leave p fixed. For R ∈ Cp
it results

(R− I)(ζp+ ρn) = ρ(R− I)n, ⇒
∑

R∈Cp\{I}

1

|(R− I)(ζp+ ρn)|α
=
cp
ρα
,

where, denoting by op the order of Cp, we have

cp =
∑

R∈Cp\{I}

1

|(R− I)n|α
=

op−1∑
j=1

1

|2 sin( jπop )|α
.

The condition ϕ′p,n,ζ(ρ) < 0 is equivalent to

α− 2

4

cp
ρα

> H+
1

2

∑
R∈R\Cp

1

|(R− I)(ζp+ ρn)|α
− αρ

4

∑
R∈R\Cp

〈(R− I)n, (R− I)(ζp+ ρn)〉
|(R− I)(ζp+ ρn)|α+2

.

(4.21)
Let

d = min
p,q∈P
p6=q

|p− q|

and let ρ̄′ > 0 be a fixed number which is small with respect to dζ̄. Set

K = max
p,n,ζ≥ζ̄,ρ≤ρ̄′

∣∣∣1
2

∑
R∈R\Cp

1

|(R− I)(ζp+ ρn)|α
−αρ

4

∑
R∈R\Cp

〈(R− I)n, (R− I)(ζp+ ρn)〉
|(R− I)(ζp+ ρn)|α+2

∣∣∣.
(4.22)

Let c = minp∈P cp and let ρ̄ > 0 be a number smaller than min{ρ̄′, ρ0} where ρ0 is the
root of the equation

(α− 2)

4

c

ρα
= H +K. (4.23)

Then ρ ∈ (0, ρ̄] is a sufficient condition in order that (4.21) holds and therefore in order
that ϕ′p,n,ζ(ρ) < 0.

Lemma 4.7. Let r̄ be as before and ρ̄ be the number corresponding to ζ̄ = r̄/2 defined in
Lemma 4.6. Assume that u ∈ H1

ω,H satisfies{
u(R) ∩Br̄ = ∅,
u(R) ∩ (∪p∈P{z ∈ R3 : |zp⊥| < ρ̄}) 6= ∅. (4.24)

Then there exists v ∈ H1
ω,H such that{

v(R) ∩ (∪p∈P{z ∈ R3 : |zp⊥| < ρ̄} ∪Br̄) = ∅
A(v) < A(u).

(4.25)

Proof. Define v ∈ H1
ω,H by

v(s) =

{
u(s), if u(s) 6∈ ∪p∈P{z ∈ R3 : |zp⊥| < ρ̄}

up(s) + ρ̄ up⊥(s)
|up⊥(s)| , for |up⊥(s)| < ρ̄.
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For |up⊥(s)| < ρ̄ we have

dvp⊥

ds
=

ρ̄

|up⊥|

(dup⊥
ds
− 〈du

p⊥

ds
,
up⊥

|up⊥|
〉 u

p⊥

|up⊥|

)
⇒
∣∣∣dvp⊥
ds

∣∣∣ ≤ ρ̄

|up⊥|

∣∣∣dup⊥
ds

∣∣∣. (4.26)

Set

φp(x) =

√√√√H +
1

2

∑
R∈R\{I}

1

|(R− I)(up + x)|α

where x ∈ R3 satisfies 〈x, p〉 = 0. From (4.26) and Lemma 4.6 it follows, for |up⊥(s)| < ρ̄,

φp(u
p⊥)
∣∣∣dup⊥
ds

∣∣∣ ≥ φp(up⊥)
|up⊥|
ρ̄

∣∣∣dvp⊥
ds

∣∣∣
> φp

(
ρ̄
up⊥

|up⊥|

)∣∣∣dvp⊥
ds

∣∣∣ = φp(v
p⊥)
∣∣∣dvp⊥
ds

∣∣∣. (4.27)

We also have, for |up⊥(s)| < ρ̄,

φp(u
p⊥)
∣∣∣dup
ds

∣∣∣ > φp

(
ρ̄
up⊥

|up⊥|

)∣∣∣dup
ds

∣∣∣ = φp(v
p⊥)
∣∣∣dvp
ds

∣∣∣, (4.28)

where we have used that |x| < ρ̄⇒ φp(ρ̄
x
|x|) < φp(x).

Inequalities (4.27) and (4.28) imply that, for each s such that u(s) ∈ ∪p∈P{z ∈ R3 :
|zp⊥| < ρ̄}, we have√√√√H +

1

2

∑
R∈R\{I}

1

|(R− I)u|α
|du
ds
| >

√√√√H +
1

2

∑
R∈R\{I}

1

|(R− I)v|α
|dv
ds
|.

This concludes the proof of the lemma.

The map w ∈ H1
ω,H , constructed in the first part of the proof, satisfies w(R) ∩ Br̄ = ∅.

Therefore Lemma 4.7 with u = w yields a map v such that (4.18) holds. The proof of
Proposition 4.5 is complete.

We now show that minimizing orbits are contained in a fixed ball.

Proposition 4.8. Assume α > 2 and H > 0. Then there exists r0 > 0 independent of
ω ∈ Ω \ Ω0 such that

u ∈ H1
ω,H and u(R) \Br0 6= ∅ (4.29)

imply the existence of v ∈ H1
ω,H which satisfies

v(R) ⊂ Br0 and A(v) < A(u).
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Proof. Let r̄ and ρ̄ be as in Proposition 4.5. Define

Σ = {z ∈ R3 : |z| ≥ r( z
|z|

)},

with r(z) as in (4.19), and let

Dr,ρ = R3 \ [(∪p∈P{z : |zp⊥| < ρ}) ∪Br].

Fix ρ̄1 ∈ (0, ρ̄) and let
Dr = Dr,ρ̄1

for r ≥ r̄. From (4.19) it follows that there exists r̄1 > r̄ such that

Dr ⊂ Σ for all r ≥ r̄1.

From Proposition 4.5 we can assume

u(R) ⊂ D, (4.30)

where
D = Dr̄,ρ̄. (4.31)

Define ϕ0 > 0 by

sinϕ0 =
ρ̄1

r̄1
.

For 0 < ϕ ≤ ϕ0 let

Cϕ = ∪p∈P{z ∈ R3 :
|zp⊥|
|z|

< sinϕ}

and let
φ(u) = sup{ϕ > 0 : u(R) ∩ (Cϕ ∪Br̄) = ∅}.

From (4.30) if follows that φ(u) > 0. For 0 < ϕ ≤ ϕ0 let

rϕ =
ρ̄1

sinϕ

and define (see Figure 3)

Eϕ = R3 \ (Cϕ ∪Brϕ),

Fϕ = Eϕ ∪ (D \Drϕ).

Observe that it results

Eϕ ⊂ Σ, for all ϕ ≤ ϕ0. (4.32)

Assume that ϕ ∈ (0, ϕ0) and w ∈ H1
ω,H , with w(R) ⊂ D, be such that

w(R) ⊂ Fϕ,
w(R) \Brϕ 6= ∅.

Let ŵ ∈ H1
ω,H be the map defined by

ŵ(s) =


w(s), if |w(s)| ≤ rϕ,

rϕ
w(s)
|w(s)| , if |w(s)| > rϕ.

(4.33)
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Fϕ

ρ̄

ρ̄1

r̄

rϕ

ϕ

φ(uI)

uI(R)

uI

h(uI)

vI

ρ̄

ρ̄1

φ(uI)

ϕ0

φ(h(uI))

rφ(uI)

r̄1

rφ(h(uI))

Figure 3: Left: the set Fϕ and the angles ϕ, φ(u). Right: the map h.

From this definition and the inclusion (4.32) it follows

A(ŵ) < A(w).

Finally define w̃ ∈ H1
ω,H by setting

w̃(s) =


ŵ(s), if |ŵp⊥(s)| ≥ ρ̄,

ŵp(s) + ρ̄ ŵp⊥(s)
|ŵp⊥(s)| , if |ŵp⊥(s)| < ρ̄.

(4.34)

From this definition and Proposition 4.5 it follows

A(w̃) < A(ŵ) < A(w).

Note also that from (4.33) and (4.34) it follows

sinφ(w̃) >
ρ̄

r∗ϕ
,

w̃(R) ⊂ Br∗ϕ .

where

r∗ϕ =
√
r2
ϕ − ρ̄2

1 + ρ̄2.

In conclusion the map w
h→ w̃ constructed by means of (4.33), (4.34) has the following

properties

w(R) ⊂ Fϕ,
w(R) \Brϕ 6= ∅,

}
⇒


sinφ(h(w)) > ρ̄

r∗ϕ
,

h(w)(R) ⊂ D ∩Br∗ϕ
A(h(w)) < A(w),

(4.35)

where we have used (4.30). Consider first the case φ(u) ≥ ϕ0. Then we have u(R) ⊂ Fϕ0

and assumption (4.29) implies u(R) \ Br̄1 6= ∅. Take φ = φ0. Then (4.35) implies that in
this case to prove the proposition we can take

v = h(u) and r0 = r∗ϕ0
.
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Assume now that φ(u) < ϕ0. In this case we define w1 = h(u), wk = h(wk−1), k =
2, . . . ; ϕ1 = φ(u), ϕk = φ(h(wk−1)), k = 2, . . . From the inequality for φ(h(w)) in (4.35)
it follows that there is a first value k0 of k such that φ(wk0) ≥ ϕ0 and we are back in the
previous case and we can take

v = hk0+1(u) ,
r0 = r∗ϕ0

.
(4.36)

This concludes the proof.

4.3 Convergence of sequences of orbits and conclusion of the proof of
Theorem 1.3

From each ω ∈ Ω\Ω0, Lemma 4.3 yields a minimizer uα,H∗ of Aα,H |H1
ω

and, by Lemma 4.4,

uα,H∗ satisfies (1.10). This proves (I).
From Proposition 4.5, Lemma 4.7 and Proposition 4.8 the minimizer uα,H∗ ∈ H1

ω satisfies

uα,H∗ (R) ⊂ BR0 ∩D, (4.37)

with D defined as in (4.31). This implies that there are constants c, C > 0, independent
of ω ∈ Ω \ Ω0 such that

c ≤
∑

R∈R\{I}

1

|(R− I)uα,H∗ |α
≤ C.

Therefore Lemma 4.4 and (1.10) imply that, independently of ω ∈ Ω \ Ω0, we have

c′ ≤ |u̇α,H∗ | ≤ C ′ (4.38)

for some constants c′, C ′ > 0. By differentiating the equation of motion (2.6) and using
(4.38) and (4.37) we obtain that the third derivative of uα,H∗ is bounded by a constant
C > 0, which is again independent of ω ∈ Ω\Ω0. Given a sequence {ωj} ⊂ Ω\Ω0, Lemma
4.3 yields a minimizer uα,H,j∗ ∈ H1

ωj
of Aα,H |H1

ωj
. The bound on the third derivative of

uα,H,j∗ established above implies the existence of a subsequence {jh} such that uα,H,jh∗
converges locally in the C2+ 1

2 sense to a map ûα,H∗ which, via (1.1), defines a solution ûα,H∗
of the equation of motion. To complete the proof of (II) let M j be the period associated
to ωj . We can assume that {M jh} converges:

lim
h→∞

M jh = M∞ ∈ N ∪ {+∞}.

If M∞ < +∞, since the number of periodic sequences with period M∞ is finite, by passing
to a subsequence if necessary, we can assume that there is ω ∈ Ω \ Ω0 with period M∞

such that
ωjh = ω, for all h ∈ N

and therefore
lim
h→∞

ωjh = ω.

Now suppose that M∞ = +∞. Then, arguing as before, we see that we can associate to
each n ∈ N a subsequence {jnh}h∈N such that

{jn+1
h }h∈N ⊂ {jnh}h∈N, for n ∈ N,

M jnh ≥ n, for h ∈ N,

for h ∈ N : ω
jnh
i = σ̃i, i ∈ {−n, . . . , 0, . . . , n}
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for some σ̃i ∈ {σ1, . . . , σQ, σ
−1
1 , . . . , σ−1

Q }. We claim that ω̂n = ωj
n
n , n ∈ N, is a Cauchy

sequence. Indeed assuming n ≥ m we have

d(ω̂m, ω̂n) = |f(M jmm )− f(M jnn )|+
∑
i∈Z

δ(ω̂mi , ω̂
n
i )

2|i|
≤ |f(m)− f(+∞)|+

∑
|i|>m

1

2|i|
, (4.39)

where we have used the implication

m ≤M jmm , M jnn < +∞ ⇒ |f(M jmm )− f(M jnn )| ≤ |f(m)− f(+∞)|.

From (4.39) it follows that there exists ω̂ ∈ Ω̂ such that

lim
n→∞

ω̂n = ω̂.

This shows that the subsequence {jh} can be chosen so that (1.12) holds and concludes
the proof of (II).
To prove (III) let ω̂ ∈ Ω̂ \ Ω0 be given. If ω̂ is periodic, then (III) holds trivially with the
constant sequence ωj = ω̂, j ∈ N, and ûα,H∗ the map defined by (1.1) via the minimizer
ûα,H∗ ∈ H1

ω̂ given by Lemma 4.3. If ω̂ is not periodic we associate to ω̂ the sequence
{ωj} ⊂ Ω \ Ω0 where ωj is the periodic extension of period M j = 2j + 1 of the sequence
{ω̂i}|i|≤j . The sequence {ωj} converges to ω̂ and, by passing to a subsequence if necessary,

we can also assume that the sequence of minimizers uα,H,j∗ ∈ H1
ωj

given by Lemma 4.3

converges to a map ûα,H∗ that via (1.1) determines a solution ûα,H∗ of the equation of
motion. This completes the proof of Theorem 1.3.
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