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REGULARITY PROPERTIES OF SPHERES IN HOMOGENEOUS

GROUPS

ENRICO LE DONNE AND SEBASTIANO NICOLUSSI GOLO

Abstract. We study left-invariant distances on Lie groups for which there

exists a one-parameter family of homothetic automorphisms. The main exam-
ples are Carnot groups, in particular the Heisenberg group with the standard

dilations. We are interested in criteria implying that, locally and away from

the diagonal, the distance is Euclidean Lipschitz and, consequently, that the
metric spheres are boundaries of Lipschitz domains in the Euclidean sense. In

the first part of the paper, we consider geodesic distances. In this case, we

actually prove the regularity of the distance in the more general context of sub-
Finsler manifolds with no abnormal geodesics. Secondly, for general groups we

identify an algebraic criterium in terms of the dilating automorphisms, which

for example makes us conclude the regularity of every homogeneous distance
on the Heisenberg group. In such a group, we analyze in more details the

geometry of metric spheres. We also provide examples of homogeneous groups
where spheres present cusps.
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1. Introduction

The study of the asymptotic geometry of groups lead us to investigate spheres in
homogeneous groups, examples of which are asymptotic cones of finitely generated
nilpotent groups. A homogeneous group is a Lie group G endowed with a family
of Lie group automorphisms {δλ}λ>0 and a left-invariant distance d for which each
δλ multiplies the distance by λ, see Section 2.2. An algebraic characterization of
these groups is known by [29]. In fact, the Lie algebra g of G admits a grading, i.e.,
a decomposition g =

⊕
i≥1 Vi such that [Vi, Vj ] ⊂ Vi+j . For simplicity, we assume

that the dilations are the ones induced by the grading. Namely, the dilation of
factor λ relative to the grading is the one such that (δλ)∗(v) = λiv for all v ∈ Vi.
We denote by 0 the neutral element of G and by Sd the unit sphere at 0 for a
distance d on G, i.e., Sd := {p ∈ G : d(0, p) = 1}.

In this paper we want to exclude cusps in spheres since their presence in the
asymptotic cone of a finitely generated nilpotent group may give a slower rate of
convergence in the blow down, see [8]. We find criteria implying that the metric
spheres are boundaries of Lipschitz domains and in fact that the distance function
from a point is a locally Lipschitz function with respect to a Riemannian metric.

First, we address the case where the distance d is a length distance. Thanks to
a characterization of Carnot groups, see [18], the group G is in this case a stratified
group and d is a sub-Finsler distance. Being a stratified group means that the
grading of g is such that the first layer V1 generates g. Being a sub-Finsler distance
means that there are a left-invariant subbundle ∆ ⊂ TG and a left-invariant norm
‖ · ‖ on ∆ such that the length induced by d of an absolutely continuous curve

γ : [0, 1] → G is equal to
∫ 1

0
‖γ′(t)‖ dt, where ‖γ′(t)‖ = +∞ if γ′(t) /∈ ∆. The

left-invariant subbundle ∆ is in fact the one generated by V1.
In the sub-Finsler case, an obstruction to Lipschitz regularity of the sphere comes

from the presence of length-minimizing curves (also called geodesics) that are not
regular, in the sense that the first variation parallel to the subbundle ∆ does not
have maximal rank, see Definition 2.6.

Theorem 1.1. Let G be a stratified group endowed with a sub-Finsler metric d.
Let d0 : G→ [0,+∞), p 7→ d(0, p). Let p ∈ G be such that all geodesics from 0 to p
are regular. Then for any Riemannian metric ρ on G the function d0 is Lipschitz
with respect to ρ in some neighborhood of p.

We will actually state and prove Theorem 1.1 in the more general setting of
sub-Finsler manifolds of constant-type norm, see Section 2.1.
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In case of homogeneity, the regularity of the distance implies also the regularity
of the spheres. Hence, using Theorem 1.1 we easily get the second result for sub-
Finsler homogeneous groups.

Theorem 1.2. Let G be a stratified group endowed with a sub-Finsler metric d.
Let p ∈ Sd be such that all geodesics from 0 to p are regular. Then, in smooth
coordinates, the set Sd is a Lipschitz graph in some neighborhood of p. In particular,
if all non-constant geodesics are regular, then metric balls are Lipschitz domains.

Notice that a ball may be a Lipschitz domain even if the distance from a point
is not Lipschitz (we give an example in Remark 5.5). In Section 5 we also present
examples of sub-Riemannian and sub-Finsler distances whose balls have a cusp.

At a second stage, we drop the hypothesis of d being a length distance and we
present a result similar to the previous Theorem 1.2 in the context of homogeneous
groups. Hereafter we denote by Lp and Rp the left and the right translations on

G, respectively, and by δ̄(p) the vector d
dtδt(p)

∣∣
t=1
∈ TpG, where {δt}t>0 are the

dilations relative to a grading.

Theorem 1.3. Let (G, d) be a homogeneous group with dilations relative to a grad-
ing, see Definition 2.12. Assume p ∈ Sd is such that

(1.1) dLp(V1) + dRp(V1) + span{δ̄(p)} = TpG.

Then, in some neighborhood of p we have that the sphere Sd is a Lipschitz graph
and the distance d0 from the identity is Lipschitz with respect to any Riemannian
metric ρ.

The similarity between Theorem 1.2 and Theorem 1.3 consists in the fact that,
if d is a sub-Finsler distance, then condition (1.1) implies that all geodesics from 0
to p are regular, see Remark 4.5.

The equality (1.1) or the absence of non-regular geodesics are actually quite
strong conditions. However, in general we can give an upper bound for the Hausdorff
dimension of spheres. In fact, if d is a homogeneous distance on a graded group of
maximal degree s, then

(1.2) dimρ
H(G)− 1 ≤ dimρ

H(Sd) ≤ dimρ
H(G)− 1

s
,

where dimρ
H is the Hausdorff dimension with respect to some (therefore any) Rie-

mannian metric ρ. We show with Proposition 5.1 that this estimate is sharp.

In the last part of the paper, we analyze in more details an important specific
example: the Heisenberg group. In this graded group we consider all possible
homogeneous distances and prove that in exponential coordinates

(i) the unit ball is a star-shaped Lipschitz domain (Proposition 6.1);
(ii) the unit sphere is a locally Lipschitz graph with respect to the direction of

the center of the group (Proposition 6.2).

We also give a method to construct homogeneous distances in the Heisenberg group
with arbitrary Lipschitz regularity of the sphere. Namely, the graph of each Lips-
chitz function defined on the unit disk, up to adding to it a constant, is the sphere of
some homogeneous distance, see Proposition 6.3. The investigation of this class of
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examples is meaningful in connection to Besicovitch’s covering property as studied
in [21] and [22].

The paper is organized as follows. In section 2 we will present all preliminary
notions needed in the paper. We introduce sub-Finsler manifolds of constant-type
norm, graded and homogeneous groups and Carnot groups. Section 3 is devoted
to the proof of Theorem 1.1; first in the setting of sub-Finsler manifolds, see The-
orem 3.1 proved in Section 3.4, then with a more specific result for Carnot groups,
see Proposition 3.3. In Section 4 we see metric spheres as graphs over smooth
spheres. Hence, we show Theorem 1.2, the inequalities (1.2), and Theorem 1.3. In
Section 5 we present six examples: three different grading of R2, the Heisenberg
group, a sub-Finsler sphere with a cusp and a sub-Riemannian sphere with a cusp.
In Section 6 we prove stronger properties for spheres of homogeneous distances on
the Heisenberg group.

2. Preliminaries

2.1. Sub-Finsler structures. Let M be a manifold of dimension n. We will write
TM for the tangent bundle and Vec(M) for the space of smooth vector fields on
M .

Definition 2.1 (Sub-Finsler structure). A sub-Finsler structure (of constant-type
norm) of rank r on a manifold M is a triple (E, ‖ · ‖, f), where (E, ‖ · ‖) is a normed
vector space of dimension r and f : M × E → TM is a smooth bundle morphism
with f({p} × E) ⊂ TpM , for all p ∈M .

We added the specification “of constant-type norm” because the norm ‖·‖ defined
on the fibers of M × E does not depend on the base point of each fiber.

Definition 2.2 (Horizontal curve). A curve γ : [0, 1]→M is a horizontal curve if
it is absolutely continuous and there is u : [0, 1]→ E measurable, which is called a
control of γ, such that

γ′(t) = f(γ(t), u(t)) for a.e. t ∈ [0, 1].

In this case γ is called integral curve of u and we write γu.

Definition 2.3 (Space of controls). The space of L∞-controls is defined as1

L∞([0, 1];E) :=

{
u : [0, 1]→ E measurable, ess sup

t∈[0,1]
‖u(t)‖ <∞

}
.

This is a Banach space with norm ‖u‖L∞ := ess supt∈[0,1] ‖u(t)‖.

Thanks to known results for ordinary differential equations, see [27], given a
control u ∈ L∞([0, 1];E) and a point p ∈ M there is a unique solution γu,p to the
Cauchy problem{

γu,p(0) = p

γ′u,p(t) = f(γu,p(t), u(t)) for a.e. t in a neighborhood of 0.

1 Among the three norms L1, L2 and L∞ for controls, we chose the latter because the unit ball
in L1([0, 1];E) is not weakly compact and the L2-space is not a Hilbert space in our context.
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Remark 2.4. We will always assume that every u ∈ L∞([0, 1];E) and every p ∈ M
the curve γu,p is defined on the interval [0, 1]. This happens in many cases, for
example for left-invariant sub-Finsler structures on Lie groups, in particular in
Carnot groups.

Definition 2.5 (End-point map). Fix o ∈M . Define the End-point map with base
point o, Endo : L∞([0, 1];E)→M , as

Endo(u) = γu,o(1).

By standard result of ODE the map Endo is of class C 1, see [27].

Definition 2.6 (Regular curves). Given o ∈M , a control u ∈ L∞([0, 1];E) is said to
be regular if it is a regular point of Endo, i.e., if dEndo(u) : L∞([0, 1];E)→ TEndo(u)M
is surjective. A singular control is a control that is not regular.

Definition 2.7 (Sub-Finsler distance). The sub-Finsler distance, also called Carnot-
Carathéodory distance, between two points p, q ∈M is

d(p, q) := inf

{∫ 1

0

‖u(t)‖ dt : u ∈ L∞([0, 1];E) with Endp(u) = q

}
.

Clearly (M,d) is a metric space, even though it might happen d(p, q) =∞. Let
`d(γ) be the length of a curve γ with respect to d, see [4]. It can be proven that a
curve γ : [0, 1] → (M,d) is Lipschitz if and only if it is horizontal and it admits a
control in L∞([0, 1];E). Moreover, if γ is Lipschitz, then

`d(γ) = inf

{∫ 1

0

‖u(t)‖ dt : u ∈ L∞([0, 1];E) control of γ

}
.

We will use the term geodesic as a synonym of length-minimizer.
The distance can be expressed by using the L∞-norm, i.e., for every p, q ∈M

d(p, q) = inf {‖u‖L∞ : u ∈ L∞([0, 1];E) with Endp(u) = q} .
Moreover, if u realizes the infimum above, then its integral curve γu starting from
p is a length-minimizing curve parametrized by constant velocity, i.e.,

d(p, q) = ‖u‖L∞ = `d(γu) = ‖u(t)‖, for a.e.t ∈ [0, 1].

Notice that the L∞-norm plays a similar role here as the L2-energy in sub-Riemannian
geometry.

Definition 2.8 (Bracket-generating condition). Let A be the Lie algebra generated
by the set

{p 7→ f(p,X(p)) with X : M → E smooth} ⊂ Vec(M).

We say that the sub-Finsler structure (E, ‖·‖, f) onM satisfies the bracket-generating
condition if for all p ∈M

{V (p) : V ∈ A } = TpM.

As a consequence of the Orbit Theorem [17], we have the following basic well-
known fact.

Lemma 2.9. If (E, ‖ · ‖, f) satisfies the bracket-generating condition, then the dis-
tance d induces the original topology of M and (M,d) is a locally compact and
locally geodesic length space.

By the Hopf-Rinow Theorem, see [9], the assumption in Remark 2.4 implies that
(M,d) is a complete, boundedly compact metric space.
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2.2. Graded groups. All Lie algebras considered here are over R and finite-
dimensional.

Definition 2.10 (Graded group). A Lie algebra g is graded if it is equipped with
a grading, i.e., with a vector-space decomposition g =

⊕
i>0 Vi, where i > 0 means

i ∈ (0,∞), such that for all i, j > 0 it holds [Vi, Vj ] ⊂ Vi+j . A graded Lie group is
a simply connected Lie group G whose Lie algebra is graded. The maximal degree
of a graded group G is the maximum i such that Vi 6= {0}.

Graded groups are nilpotent and the exponential map exp : g → G is a global
diffeomorphism. We will denote by 0 the neutral element of G and identify g = T0G.

Definition 2.11 (Dilations). In a graded group for which the Lie algebra has the
grading g =

⊕
i>0 Vi, the dilations relative to the grading are the group homomor-

phisms δλ : G→ G, for λ ∈ (0,∞), such that (δλ)∗(v) = λiv for all v ∈ Vi.

In the definition above, φ∗ denotes the Lie algebra homomorphism associated to
a Lie group homomorphism φ, in particular, φ◦exp = exp ◦φ∗. Since a graded group
is simply connected, δλ is well defined. Notice that, for any λ, µ > 0, δλ ◦ δµ = δλµ.

Definition 2.12 (Homogeneous distances). Let G be a graded group with a dila-
tions {δλ}λ>0, relative to the grading. We say that a distance d onG is homogeneous
if it is left-invariant, i.e., for every g, x, y ∈ G we have d(gx, gy) = d(x, y), and one-
homogeneous with respect to the dilations, i.e., for all λ > 0 and all x, y ∈ G
we have d(δλx, δλy) = λd(x, y). If d is one such a distance, then (G, d) is called
homogeneous group (with dilations relative to the grading).

Remark 2.13. A graded group admits a homogeneous distance if and only if for
i ∈ (0, 1) we have Vi = {0}, see [16].

Given a homogeneous distance d, the function p 7→ d0(p) := d(0, p) is a ho-
mogeneous norm. Here with the term homogeneous norm we mean a function
N : G→ [0,+∞) such that for all p, q ∈ G and all λ > 0 it holds

(1) N(p) = 0 ⇔ p = 0;
(2) N(pq) ≤ N(p) +N(q);
(3) N(p−1) = N(p);
(4) N(δλp) = λN(p).

In fact, homogeneous distances are in bijection with homogeneous norms on G
through the formula d(p, q) = N(p−1q).

Homogeneous distances induce the original topology of G, see [22]. Moreover,
given two homogeneous distances d1, d2 on G, there is a constant C > 0 such that
for all p, q ∈ G

(2.1)
1

C
d1(p, q) ≤ d2(p, q) ≤ Cd1(p, q).

Lemma 2.14. Let G be a graded group and 0 < k1 ≤ k2 such that Vi = {0} for
all i < k1 and all i > k2. Let d be a homogeneous distance and ρ a left-invariant
Riemannian metric on G. Then there are C, ε > 0 such that for all p, q ∈ G with
ρ(p, q) < ε it holds

(2.2)
1

C
ρ(p, q)

1
k1 ≤ d(p, q) ≤ Cρ(p, q)

1
k2 .

In particular, the homogeneous norm d0 is locally 1
k2

-Hölder.
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Proof. We identify G = g via the exponential map. So, if p ∈ G, we denote by pi
the i-th component in the decomposition p =

∑
i pi with pi ∈ Vi. Fix a norm | · |

on g. For any pair (p, q) ∈ G×G define

η(p, q) := η(0, p−1q), where η(0, p) := max
i

(|pi|)
1
i .

The function η is a so-called quasi-distance, see [22]. In particular, η is continuous,
left-invariant and one-homogeneous with respect to the dilations δλ. Therefore, if
d is a homogeneous distance, then there is C > 0 such that

1

C
η(p, q) ≤ d(p, q) ≤ Cη(p, q).

So, we can prove (2.2) only for η.
Let C, ε > 0 be with Cε < 1 and such that, if ρ(0, p) < ε, then

(2.3)
1

C
ρ(0, p) ≤ max

i
|pi| ≤ Cρ(0, p).

Therefore, if ρ(p, q) < ε, then |(p−1q)i| ≤ Cρ(p, q) < 1 for all i and

(2.4) max
i
|(p−1q)i|

1
k1 ≤ max

i
(|(p−1q)i|)

1
i = η(p, q) ≤ max

i
|(p−1q)i|

1
k2 ,

thanks to the monotonicity of the function x 7→ ax for 0 < a < 1. The thesis follows
immediately from (2.3) and (2.4) combined. �

Next lemma gives a characterization of sets that are the unit ball of a homoge-
neous distance. In this paper, we denote by int(B) the interior of a subset B.

Lemma 2.15. Let G be a graded group with dilations δλ, λ > 0. A set B ⊂ G
is the unit ball with center 0 of a homogeneous distance on G if and only if B is
compact, 0 ∈ int(B), B = B−1 and

(2.5) ∀p, q ∈ B, ∀t ∈ [0, 1] δt(p)δ1−t(q) ∈ B.

The proof of the latter fact is straightforward and hence omitted. One only needs
to show that the function N(p) := inf{t ≥ 0 : δt−1p ∈ B} is a homogeneous norm
and B = {p : N(p) ≤ 1}.

Definition 2.16 (Stratified group). A stratified group is a graded group G such
that its Lie algebra g is generated by the layer V1 of the grading of g.

Notice that in a stratified group G the maximal degree s of the grading equals
the nilpotency step of G and it holds g =

⊕s
i=1 Vi with [V1, Vi] = Vi+1 for all

i ∈ {1, . . . , s}, with Vs+1 = {0}. We also remark that all stratifications of a group

G are isomorphic to each other, i.e., if g =
⊕s′

i=1Wi is a second stratification, then
there is a Lie group automorphism φ : G→ G such that φ∗(Wi) = Vi for all i, see
[19].

In a stratified group, the map f : G × V1 → TG, f(g, v) := dLg(v), is a bundle
morphism with f(g, v) ∈ TgG. So, if ‖ · ‖ is any norm on V1, the triple (V1, ‖ ·
‖, f) is a sub-Finsler structure on G. The stratified group G endowed with the
corresponding sub-Finsler distance d is called Carnot group. Such a d is an example
of a homogeneous distance on G.

Remark 2.17. As already stated, singular curves play a central role in our analysis,
because they disrupt the Lipschitz regularity of the distance function. We recall that
every Carnot group of nilpotency step s ≥ 3 has singular geodesics, see Appendix A.
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More precisely, there is X ∈ V1 such that the curve t 7→ exp(tX) is a singular
geodesic. In particular, if all non-constant length-minimizing curves are regular,
then the step of the group is necessarily at most 2.

3. Regularity of sub-Finsler distances

We will prove in this section that sub-Finsler distances are Lipschitz whenever
all length-minimizing curves are regular, see Theorem 3.1. Theorem 1.1 expresses
this result for Carnot groups.

It is important to remind what is known in the sub-Riemannian case. A sub-
Riemannian distance is a sub-Finsler distance whose norm on the bundle E is
induced by a scalar product. Rifford proved in [26] that, if there are no singular
length-minimizers, for all o ∈ M , not only do is locally Lipschitz, but also the
spheres centered at o are Lipschitz hypersurfaces for almost all radii. The key points
of his proof are the tools of Clarke’s non-smooth calculus (see [12]) and a version
of Sard’s Lemma for the distance function (see [25]). An exhaustive exposition of
this topic can be found in [2].

In Rifford’s version of Sard’s Lemma, one uses the fact that the L2 norm in the
Hilbert space L2([0, 1];E) is smooth away from the origin. If E is equipped with
a generic norm, instead, the Lp norm on Lp([0, 1];E) with 1 ≤ p ≤ ∞ may be
non-smooth, hence the proof does not work in the sub-Finsler case.

The non-smoothness of the norm can be seen in another dissimilarity between
sub-Riemannian and sub-Finsler distances. Sub-Riemannian distances are proven
to be locally semi-concave when there are no singular length-minimizing curves. We
remind that a function f : Rn → R is semi-concave if for each p ∈ Rn there exists a
C 2 function g : Rn → R such that f ≤ g and f(p) = g(p), see [27]. Semi-concavity
is a stronger property than being Lipschitz. However, semi-concavity fails to hold
in the sub-Finsler case. For example, the `1-distance d(0, (x, y)) := |x|+ |y| on R2 is
a sub-Finsler distance that is not semi-concave along the coordinate axis, although
all curves are regular.2

We restrict our analysis to the Lipschitz regularity of the distance function, from
which we deduce regularity properties of the spheres by means of the homogeneity
of Carnot groups. With this aim in view, the core of the proof of Theorem 3.1
is the bound on the point-wise Lipschitz constant (see (3.5) at page 14), which
already appeared in the sub-Riemannian context, see [1]. Our approach differs
from the sub-Riemannian case for the fact that the set of optimal curves joining
two points on a sub-Finsler manifold may not be compact in the W 1,∞ topology.
As an example, consider the set of all length-minimizers from (0, 0) to (0, 1) for
the `∞-distance d(0, (x, y)) := max{|x|, |y|} on R2.3 However, we are still able to
obtain a bound on the pointwise Lipschitz constant, i.e., to prove (3.5), by use of
the weak* topology on controls.

2 We show that d : R2 × R2 → R is not locally semi-concave at the point ((0, 0), (1, 0)).

Suppose there is a function φ ∈ C 2(R2 × R2) with φ((0, 0), (1, 0)) = d((0, 0), (1, 0)) = 1 and
φ((x, y), (x̄, ȳ)) ≥ d((x, y), (x̄, ȳ)) for (x, y) ∼ (0, 0) and (x̄, ȳ) ∼ (1, 0). Set ψ(t) := φ((0, 0), (1, t)).
Then ψ ∈ C 2(R), ψ(0) = 1 and ψ(t) ≥ 1 + |t|, which is impossible.

3 If f : [0, 1] → R is a 1-Lipschitz map with f(0) = 0 and f(1) = 0, then γ(t) := (t, f(t))

is a length-minimizer from (0, 0) to (0, 1) for the `∞-distance on R2. Moreover, convergence in

W 1,∞([0, 1]) and in W 1,∞([0, 1];R2) are equivalent for such curves. Hence, the set of all length-
minimizers from (0, 0) to (0, 1) contains as a closed subset the unit ball of W 1,∞([0, 1]), which is

not compact.
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Theorem 3.1. Let (E, ‖ · ‖, f) be a sub-Finsler structure on M with sub-Finsler
distance d. Fix o and p in M . If all the length-minimizing curves from o to p are
regular, then for every Riemannian metric ρ on M there are a neighborhood U of
p and L > 0 such that

(3.1) ∀q1, q2 ∈ U do(q1)− do(q2) ≤ Lρ(q1, q2).

The proof is presented in Section 3.4.

Remark 3.2. Theorem 3.1 can be made more quantitative. Define

τ0 := inf {τ( dEndo(u)) : Endo(u) = p and ‖u‖L∞ = d(o, p)} ,

where, for any linear operator L, τ(L) the minimal stretching, which we will recall
in Definition 3.4. Then, for every L > 1

τ0
, there exists a neighborhood U of p such

that (3.1) holds. The hypothesis of regularity of all length-minimizing curves from
o to p is equivalent to τ0 > 0.

In the case of Carnot groups (of step 2, see Remark 2.17), we can obtain the
following more global result.

Proposition 3.3. Let (G, d) be a Carnot group without non-constant singular
geodesics. Then for every left-invariant Riemannian metric ρ and every neigh-
borhood U of 0 the function d0 : x 7→ d(0, x) is Lipschitz on G \ U . Moreover, the
function d20 : x 7→ d(0, x)2 is Lipschitz in a neighborhood of 0.

Proof. Thanks to Theorem 3.1, one easily shows that there are L > 0 and an open
neighborhood Ω of the unit sphere {p : d(0, p) = 1} such that d0 is L-Lipschitz on
Ω.

Next, we claim that d0 is locally L-Lipschitz on G \ Bd(0, 1). Indeed, let r > 0
be such that Bρ(x, r) ⊂ Ω for all x ∈ Sd(0, 1). If q1, q2 ∈ G \ Bd(0, 1) are such
that ρ(q1, q2) < r, then there is o ∈ G such that d(0, q1) = d(0, o) + d(o, q1) and
d(o, q1) = 1, therefore

d0(q2)− d0(q1) ≤ d(o, q2)− d(o, q1) ≤ Lρ(o−1q2, o
−1q1) = Lρ(q2, q1).

In the second step of the proof, we prove that d0 is L-Lipschitz on G \Bd(0, 1).
Let p, q ∈ G \ Bd(0, 1) and γ : [0, 1] → G a ρ-length minimizing curve from p to
q. If =γ ⊂ G \ Bd(0, 1), then there are 0 = t0 ≤ t1 ≤ · · · ≤ tk+1 = 1 such that
d0(γ(ti))− d0(γ(ti+1)) ≤ Lρ(γ(ti), γ(ti+1)) for all i. Hence

d0(p)− d0(q) =

k∑
i=0

d0(γ(ti))− d0(γ(ti+1))

≤ L
k∑
i=0

ρ(γ(ti), γ(ti+1)) = Lρ(p, q).

If instead =γ ∩ Bd(0, 1) 6= ∅, then there are 0 < s < t < 1 such that d0(γ(s)) =
d0(γ(t)) = 1 and γ([0, s]) ⊂ G \Bd(0, 1) and γ([t, 1]) ⊂ G \Bd(0, 1). Then

d0(p)− d0(q) = d0(p)− d0(γ(s)) + d0(γ(t))− d0(q)

≤ L (ρ(p, γ(s)) + ρ(γ(t), q)) ≤ Lρ(p, q).
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Finally, let p, q ∈ G \ Bd(0, r) for 0 < r < 1. Then δr−1p, δr−1q ∈ G \ Bd(0, 1)
and we have

(3.2) d0(p)− d0(q) = r(d0(δr−1p)− d0(δr−1q)) ≤ Lrρ(δr−1p, δr−1q) ≤ CL

r
ρ(p, q),

where we used in the last step the fact that there exists C > 0 such that

∀p, q ∈ G, ∀r ∈ (0, 1) ρ(δr−1p, δr−1q) ≤ Cr−2ρ(p, q).

Now, we need to prove that d20 is Lipschitz on Bd(0, 1). We first claim that d20 is
locally 4L-Lipschitz on Bd(0, 1) \ {0}. Indeed, if p, q ∈ Bd(0, 1) \ {0} are such that

1

2
≤ d0(p)

d0(q)
≤ 2,

then

0 < d0(p) + d0(q) ≤ 4 min{d0(p), d0(q)}.
Therefore, using (3.2),

d0(p)2 − d0(q)2 = (d0(p) + d0(q))(d0(p)− d0(q))

≤ (d0(p) + d0(q))
CL

min{d0(p), d0(q)}
ρ(p, q)

≤ (d0(p) + d0(q))
4CL

d0(p) + d0(q)
ρ(p, q) = 4CLρ(p, q).

Finally, using again the fact that ρ is a geodesic distance, we get that d20 is 4CL
Lipschitz on Bd(0, 1) \ {0} and therefore on Bd(0, 1). �

3.1. About the minimal stretching.

Definition 3.4 (Minimal Stretching). Let (X, ‖ · ‖) and (Y, ‖ · ‖) be normed vector
spaces. We define for a continuous linear map L : X → Y the minimal stretching

τ(L) := inf{‖y‖ : y ∈ Y \ L(BX(0, 1))}

where BX(p, r) = {q ∈ X : ‖q − p‖ < r}.

It is easy to prove that τ : L(X;Y ) → [0,+∞) is continuous, where L(X;Y ) is
the space of continuous linear mappings X → Y endowed with the operator norm.

The next proposition applies this notion to smooth functions and it is a restate-
ment of [15, Theorem 1].

Proposition 3.5. Let (X, ‖ · ‖) and (Y, ‖ · ‖) be two Banach spaces and F : Ω→ Y
a C 1 map, where Ω ⊂ X is open. Fix x̂ ∈ Ω and let τ0 := τ( dF (x̂)) > 0. Then for
every C > 1 there is ε̂ > 0, such that for all 0 < ε < ε̂ it holds

BY (F (x̂), ε) ⊂ F
(
BX(x̂,

C

τ0
ε)

)
.

3.2. The End-point map is weakly* continuous. As before, let (E, f, ‖·‖) be a
sub-Finsler structure on a manifold M . We want to prove the following proposition.

Proposition 3.6. Fix o ∈ M and let ok ∈ M be a sequence converging to o. Let
uk ∈ L∞([0, 1];E) be a sequence of controls weakly* converging to u ∈ L∞([0, 1];E).
Let γk (resp. γ) be the curve with control uk (resp. u) and γk(0) = ok (resp. γ(0) =
o). Then γk uniformly converge to γ.
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In particular, it follows that the End-point map Endo : L∞([0, 1];E) → M is
weakly* continuous.

Proof. Since the sequence uk is bounded in L∞([0, 1];E) by the BanachSteinhaus
Theorem and the sequence ok is bounded in (M,d), then there is a compact set
K ⊂ M such that γk ⊂ K for all k. Let R > 0 be such that ‖uk‖L∞ ≤ R for all
k ∈ N.

Thanks to the Whitney Embedding Theorem, we can assume that M is a sub-
manifold of RN for some N ∈ N. Fix a basis e1, . . . , er of E and define the vector
fields Xi : M → RN as

Xi(p) := f(p, ei).

Since they are smooth, they are L-Lipschitz on K for some L > 0. We extend the
vector fields Xi : M → RN to smooth functions Xi : RN → RN .

Define ηk : [0, 1]→ RN as

ηk(t) := ok +

∫ t

0

uik(s)Xi(γ(s)) ds.

Since t 7→ Xi(γ(t)) ∈ RN are continuous, then uikXi(γ)
∗
⇀ uiXi(γ), for all i ∈

{1, . . . , r}. In particular, ηk(t) → γ(t) for each t ∈ [0, 1]. Moreover, since the
ηk’s have uniformly bounded derivative, they are a pre-compact family of curves
with respect to the topology of uniform convergence. This fact and the pointwise
convergence imply that ηk → γ uniformly on [0, 1].

Set εk := supt∈[0,1] |ηk(t)−γ(t)|+2|ok−o|, so that εk → 0, where | · | is the usual

norm in RN .
By Ascoli-Arzelá Theorem, the family of curves {γk}k is also precompact with

respect to the uniform convergence. Hence, if we prove that the only accumulation
curve of {γk}k is γ, then we obtain that γk uniformly converges to γ. So, we can
assume γk → ξ uniformly for some ξ : [0, 1] → M . Then we have (sums on i are
hidden)

|γk(t)− γ(t)| ≤ |ok − o|+
∣∣∣∣∫ t

0

uik(s)Xi(γk(s))− ui(s)Xi(γ(s)) ds

∣∣∣∣
≤ |ok − o|+

∫ t

0

|uik(s)Xi(γk(s))− uik(s)Xi(γ(s))|ds+

+

∣∣∣∣∫ t

0

uik(s)Xi(γ(s))− ui(s)Xi(γ(s)) ds

∣∣∣∣
≤ 2|ok − o|+ rRL

∫ t

0

|γk(s)− γ(s)|ds+ |ηk(t)− γ(t)|

≤ rRL
∫ t

0

|γk(s)− γ(s)|ds+ εk.

Passing to the limit k →∞, we get for all t ∈ [0, 1]

(3.3) |ξ(t)− γ(t)| ≤ rRL
∫ t

0

|ξ(s)− γ(s)|ds.
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Starting with the fact that ‖ξ−γ‖L∞ ≤ C for some C > 0 and iterating the previous
inequality, we claim that

|ξ(t)− γ(t)| ≤ C (rRLt)j

j!
∀j ∈ N, ∀t ∈ [0, 1].

Indeed, by induction, from (3.3) we get

|ξ(t)− γ(t)| ≤ rRL
∫ t

0

C
(rRL)j

j!
tj ds = C

(rRL)j+1

j!

tj+1

j + 1
.

Finally, since limj→∞
(rRLt)j

j! = 0, we have |ξ(t)− γ(t)| = 0 for all t. �

3.3. The differential of the End-point map is an End-point map. The End-
point map behaves like the exponential map: its differential is again an End-point
map. In order to make this statement precise, we consider the case M = Rn. Notice
that we don’t need any bracket-generating condition. In Corollary 3.8 we will use
the results on Rn to prove a statement for all manifolds.

Let f : Rn × E→ Rn be a smooth map. Given a basis e1, . . . , er of E, we define
the vector fields Xi : Rn → Rn as

Xi(p) := f(p, ei).

The differential of the End-point map with base point 0 is the map

dEnd0 : L∞([0, 1];E)× L∞([0, 1];E) → Rn
(u, v) 7→ dEnd0(u)[v].

Define Yi, Zi : Rn × Rn → Rn × Rn for i = 1, . . . , r as{
Yi(p, q) := (Xi(p), dXi(p)[q])

Zi(p, q) := (0, Xi(p))

where dXi(p) : Rn → Rn is the differential of Xi at p. These vector fields induce
a new End-point map

End00 : L∞([0, 1];E× E)→ Rn × Rn

with starting point (0, 0) ∈ Rn × Rn.

Proposition 3.7. For all u, v ∈ L∞([0, 1];E) it holds

(End0(u), dEnd0(u)[v]) = End00(u, v).

The proof is immediate, and hence omitted, once one has an explicit represen-
tation of the differential dEnd0(u)[v], see [23]. This result, together with Proposi-
tion 3.6, gives us the weakly* continuity of the differential of the End-point map.
The next corollary is an application.

Corollary 3.8. Let (E, f, ‖ ·‖) be a sub-Finsler structure on a manifold M and o ∈
M . Let ρ be a Riemannian metric on M . Then the map L∞([0, 1];E) → [0,+∞),
u 7→ τ( dEndo(u)) is weakly* lower semi-continuous, where τ is the minimal stretch-
ing computed with respect to the norm given by ρ.

Proof. Let {uk}k ⊂ L∞([0, 1];E) be a sequence such that uk
∗
⇀ u ∈ L∞([0, 1];E).

Let γu be the curve with control u and starting point o. We can pull back the
sub-Finsler structure from a neighborhood of γu to an open subset of Rn via a
covering map, so that we reduce the statement to the case M = Rn.
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We need to prove

(3.4) lim inf
k→∞

τ( dEndo(uk)) ≥ τ( dEndo(u)).

Set τ̂ := τ( dEnd0(u)). If τ̂ = 0, then (3.4) is fulfilled, so we assume τ̂ > 0. Let
τ̂ > ε > 0. Then there exists a finite-dimensional vector space W ⊂ L∞([0, 1];E)
such that

BEnd0(u)(0, τ̂ −
ε

2
) ⊂⊂ dEnd0(u)[BL∞(0, 1) ∩W ],

where, for p ∈ Rn, Bp denotes a ball in Rn = TpRn with respect to the norm given
by ρ at p, and BL∞ denotes a ball in L∞([0, 1];E) with respect to the L∞-norm
induced by ‖ · ‖. Since dimW < ∞ and by Propositions 3.6 and 3.7, the maps
dEnd0(uk)|W strongly converge to dEnd0(u)|W . Moreover, the norm on Rn = TpRn
given by ρ continuously depends on p ∈ Rn. Therefore, for k large enough we have

BEnd0(uk)(0, τ̂ − ε) ⊂ dEnd0(uk)[BL∞(0, 1) ∩W ].

Hence

lim inf
k→∞

τ( dEnd0(uk)) ≥ τ̂ − ε.

Since ε is arbitrary, (3.4) follows. �

3.4. The sub-Finsler distance is Lipschitz in absence of singular geodesics.
The proof of Theorem 3.1 is divided into the next two lemmas from which Theo-
rem 3.1 follows.

Lemma 3.9. Let o, p ∈M such that all d-minimizing curves from o to p are regular.
Then there exist a compact neighborhood K ⊂ M of p and a weakly* compact set
K ⊂ L∞([0, 1];E) such that:

(1) Endo : K → K is onto;
(2) dCC(o, Endo(u)) = ‖u‖L∞ for all u ∈ K ;
(3) every u ∈ K is a regular point for Endo.

Proof. For any compact neighborhood K of p, define the compact set

K (K) := {u ∈ L∞([0, 1];E) : Endo(u) ∈ K and d(o, Endo(u)) = ‖u‖L∞} .

Since the metric d is geodesic, the End-point map Endo : K (K) → K is surjec-
tive, for all K. Moreover, the second requirement holds by definition. Finally,
suppose that there exist a sequence pk → p and a sequence uk ∈ L∞([0, 1];E) such
that Endo(uk) = pk, d(0, pk) = ‖uk‖L∞ and uk is a singular point for Endo, for
all k. Since the sequence uk is bounded, thanks to the BanachAlaoglu Theorem

there is u ∈ L∞([0, 1];E) such that, up to a subsequence, uk
∗
⇀ u. By the con-

tinuity of Endo, we have Endo(u) = p. By Corollary 3.8, we have τ( dEndo(u)) ≤
lim infk τ( dEndo(uk)) = 0. Finally, by the lower-semicontinuity of the norm with
respect to the weak* topology, we have

‖u‖L∞ ≤ lim inf
k→∞

‖uk‖L∞ = lim inf
k→∞

d(o, pk) = d(o, p) ≤ ‖u‖L∞ .

So, u is the control of a singular length-minimizing curve from o to p, against
the assumption. Therefore, there exists a neighborhood K of p such that K (K)
contains only regular points for Endo. �
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Lemma 3.10. Let o ∈ M , and K ⊂ M compact. Suppose there is a weakly*
compact set K ⊂ L∞([0, 1];E) that satisfies all three properties listed in Lemma 3.9.
Then for every Riemannian metric ρ on M there exists L > 0 such that the function
do : p 7→ d(o, p) is locally L-Lipschitz on the interior of K.

Proof. Let ρ be a Riemannian metric on M . We first prove that

(3.5)
∃L > 0, ∀q ∈ K, ∃ε̂q > 0 ∀q′ ∈ K[

ρ(q, q′) < ε̂q ⇒ do(q
′)− do(q) ≤ Lρ(q, q′)

]
.

Since K is a weakly* compact set of regular points for Endo, then by Corollary 3.8
the function u 7→ τ( dEndo(u)) admits a minimum on K that is strictly positive.
By Proposition 3.5, there is L > 0 such that for every u ∈ K there is ε̂u > 0 such
that

(3.6) Bρ (Endo(u), ε) ⊂ Endo (BL∞(u, Lε)) ∀ε < ε̂u.

Let q, q′ ∈ K be such that q = Endo(u) with u ∈ K and ε := ρ(q, q′) < ε̂u. Then,
by the inclusion (3.6), there is u′ ∈ BL∞(u, Lε) with Endo(u

′) = q′. So

do(q
′)− do(q) ≤ ‖u′‖L∞ − ‖u‖L∞ ≤ ‖u′ − u‖L∞ ≤ Lε = Lρ(q, q′).

This proves the claim (3.5).
Finally, if p is an interior point of K, then there is a ρ-convex neighborhood U of

p contained in K (see [24]). So, if q, q′ ∈ U , then there is a ρ-geodesic ξ : [0, 1]→ U
joining q to q′. Since the image of ξ is compact, there are 0 = t1 < s1 < t2 < s2 <
· · · < sk−1 < tk = 1 such that ρ(ξ(ti), ξ(si)) < ε̂ξ(ti) and ρ(ξ(si), ξ(ti+1)) < ε̂ξ(ti+1).
Therefore

do(q
′)− do(q) ≤

k−1∑
i=1

do(ξ(ti+1))− do(ξ(si)) + do(ξ(si))− do(ξ(ti))

≤ L
k−1∑
i=1

ρ(ξ(ti+1), ξ(si)) + ρ(ξ(si), ξ(ti)) = Lρ(q, q′).

�

4. Regularity of spheres in graded groups

This section is devoted to the proof of Theorems 1.2 and 1.3 and of the inequal-
ities (1.2).

4.1. The sphere as a graph. Let (G, d) be a homogeneous group and ρ a Rie-
mannian distance on G. Theorem 1.2 and the estimate (1.2) are both based on the
following remark.

Remark 4.1. Let g = ⊕i>0Vi be a grading for the Lie algebra of G. Let | · | be the
norm of a scalar product on g that makes the layers orthogonal to each other and
let S = exp({v : |v| = 1}) ⊂ G. The hypersurface S is smooth and transversal to
the dilations, i.e., for all p ∈ S we have d

dt |t=1δtp /∈ TpS. Define

φ : S × (0,+∞) → G \ {0}
(p, t) 7→ δ 1

t
p.
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Since S is transversal to the dilations, φ is a diffeomorphism. Moreover, if Γ :=
{(p, d0(p)) : p ∈ S} ⊂ S × (0,+∞) is the graph of the function d0 restricted to S,
then

Sd = φ(Γ).

Thanks to the last remark, the estimate (1.2) follows from the next lemma.

Lemma 4.2. Let Ω ⊂ Rn be an open set and let f : Ω → R be an α-Hölder
function, i.e., for all x, y ∈ Ω we have

|f(x)− f(y)| ≤ C|x− y|α,
for some C > 0, where α ∈ (0, 1]. Define the graph of f as

Γf := {(x, f(x)) : x ∈ Ω} ⊂ Rn+1.

Then
n ≤ dimH Γf ≤ n+ 1− α,

where dimH is the Hausdorff dimension. Moreover, this estimate is sharp, i.e.,
there exists f such that dimH Γf = n+ 1− α.

The proof is straightforward by use of a simple covering argument or by an
estimate of the Minkowski content of the graph. The sharpness of this result has
been shown in [5] for the case n = 1. The general case, as stated here, is a simple
consequence. Indeed, if g : (0, 1)→ R is a α-Hölder function such that dimH(Γg) =
2−α, then the graph of the function f(x1, . . . , xn) := g(x1) is Γf = Γg × (0, 1)n−1.
Therefore, dimH(Γf ) = n+ 1− α.

In the next easy-to-prove lemma we point out that a homogenous distance is
locally Lipschitz if and only if the spheres are Lipschitz graphs in the directions of
the dilations.

Lemma 4.3. Let d be a homogeneous distance on G. Let S and Sd be as in
Remark 4.1 and p ∈ S. Then the following conditions are equivalent:

(i) Setting p̂ := δd0(p)−1(p) ∈ Sd, the sphere Sd is a Lipschitz graph in the

direction δ̄(p̂) in some neighborhood of p;
(ii) d0|S : S → (0,+∞) is Lipschitz in some neighborhood of p in S;

(iii) d0 is Lipschitz in some neighborhood of δλp for one, hence all, λ > 0.

Thanks to Lemma 4.3, Theorem 1.2 is a consequence of Theorem 1.1.

4.2. An intrinsic approach. In this section we will prove Theorem 1.3. We define
a cone in Rn as

Cone(α, h, v) := {x ∈ Rn : |x| ≤ h and ∠(x, v) ≤ α} ⊂ Rn,
where α ∈ [0, π], h ∈ (0,+∞], v ∈ Rn is the axis of the cone, and ∠(x, v) is the
angle between x and v. The following lemma is a simple calculus exercise and it
will be used later in the proof of Theorem 1.3. Roughly speaking, it states that a
small smooth deformation of a cone still contains a cone with the same tip.

Lemma 4.4. Let m, k, n ∈ N, p ∈ Rm and y0 ∈ Rk. Let φ : Rm × Rk → Rn be a
smooth map such that d(φp)(y0) : Rk → Rn is surjective, where φx(y) := φ(x, y).
Let C ′ ⊂ Rk be a cone with axis v′ ∈ Rk. Then there exist a cone C ⊂ Rn with axis
d(φp)(y0)v′ and an open neighborhood U ⊂ Rm of p such that for all q ∈ U

φq(y0) + C ⊂ φq(y0 + C ′).
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Proof of Theorem 1.3. In this proof, we consider the dilations δλ as defined for
λ ≤ 0 too, with the same definition as for λ > 0. Notice that in this way the map
G× R→ G, (p, λ) 7→ δλp, is a smooth map.

Let v1, . . . , vr be a basis for V1 and set pi := exp(vi) ∈ G. Up to a rescaling, we
can assume d0(pi) < 1 for all i. For p ∈ G define φp : R2r+1 → G as

φp(u1, . . . , ur, s, v1, . . . , vr) = δu1p1 · · · δurpr · δsp · δv1p1 · · · δvrpr.
Let x̂ ∈ R2r+1 be the point with ui = 0, s = 1 and vi = 0, so that φp(x̂) = p. The
differential of φp at x̂ is given by the partial derivatives

∂φp
∂ui

(x̂) =
d

dt
|t=0 (δtpi · p) = dRp

(
d

dt
|t=0(δtpi)

)
= dRp(vi),

∂φp
∂s

(x̂) =
d

dt
|t=1 (δtp) = δ̄(p),

∂φp
∂vi

(x̂) =
d

dt
|t=0 (p · δtpi) = dLp

(
d

dt
|t=0(δtpi)

)
= dLp(vi).

Therefore, if p ∈ Sd is such that the condition (1.1) is true, then the differential
dφp has full rank at x̂, hence in a neighborhood of x̂.

Define

∆ := {(u1, . . . , ur, s, v1, . . . , vr) ∈ R2r+1 : s+

r∑
i=1

(|ui|+ |vi|) ≤ 1}.

We identify G with Rn through an arbitrary diffeomorphism. So, by Lemma 4.4,
there is a cone C with axis δ̄(p) and a neighborhood U of p such that for all q ∈ U

q + C ⊂ φq(∆).

Up to restricting U , for all q ∈ U there are cones Cq with axis δ̄(q), fixed amplitude
and fixed height such that q + Cq ⊂ q + C. Notice that for all q ∈ Sd we have
φq(∆) ⊂ B̄d(0, 1) and φq(∆) ∩ Sd = {q}. In particular, for all q ∈ Sd ∩ U , we have
q + Cq ⊂ B̄d(0, 1) and (q + Cq) ∩ Sd = {q}, i.e., Sd ∩ U is a Lipschitz graph in the
direction of the dilations. Thanks to Lemma 4.3, we get that d0 is Lipschitz in a
neighborhood of p. �

Finally, some considerations on condition (1.1) are due.

Remark 4.5. If (1.1) holds at p ∈ G and u ∈ L∞([0, 1];V1) is a control such that
End0(u) = p, then the differential dEnd0(u) is surjective, i.e., p is a regular value of
End. Indeed, by [20] (see (2.6) and (2.11) there), we have

dLp(V1) + dRp(V1) + span{δ̄(p)} ⊂ =( dEnd0(u)),

because q 7→ δ̄(q) is a contact vector field of G.

Proposition 4.6. Let X ∈ V1. If (1.1) holds for p = exp(X), then

g = V1 + [X,V1].

Proof. Let X1, . . . , Xr be a basis for V1 and Y1, . . . , Y` a basis for [X,V1]. Let

αij ∈ R be such that [X,Xi] =
∑`
j=1 α

i
jYj . First, notice that

T0G = dLexp(−X)

(
dLexp(X)(V1) + dRexp(X)(V1)

)
= V1 + dLexp(−X) ◦ dRexp(X)(V1)

= V1 + Adexp(X)(V1).
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Then, using the formula Adexp(X)(Y ) = eadX (Y ) =
∑∞
k=0

1
k!adkX(Y ), we have

Adexp(X)(Xi) = Xi +

( ∞∑
k=1

1

k!
adk−1X ([X,Xi])

)

= Xi +

 ∞∑
k=1

adk−1X (
∑̀
j=1

αijYj)


= Xi +

∑̀
j=1

αij

( ∞∑
k=1

adk−1X (Yj)

)
.

It follows that dim
(
V1 + Adexp(X)V1

)
≤ r + ` and therefore dim g ≤ r + `, i.e.,

g = V1 + [X,V1]. �

Proposition 4.7. Let Z ∈ Vk, where k > 0 is such that Vi = {0} for all i > k. If
(1.1) holds for p = exp(Z), then

g = V1 + span{Z}.

Proof. Since [Z, g] = {0}, we have Rp = Lp. Moreover, δ̄(p) = dLp(kZ). So,
condition (1.1) becomes dLp(V1) + dLp(span{Z}) = TpG. �

In particular, if (1.1) holds for all p ∈ G \ {0}, then g = V1⊕V2 with dimV2 ≤ 1
and [X,V1] = V2 for all non-zero X ∈ V1.

5. Examples

5.1. Three gradings on R2. We will present three examples of dilations on R2.
In particular we want to illustrate two applications of Theorem 1.3 and show the
sharpness of the dimension estimate (1.2). In Remark 5.5 we give an easy example
of a homogeneous distance whose unit ball is a Lipschitz domain, but the distance
is not locally Lipschitz away from the diagonal.

The first and the easiest is

δλ(x, y) := (λx, λy),

which gives rise to the known structure of vector space. Here, homogeneous dis-
tances are given by norms and balls are convex, hence Lipschitz domains. It’s trivial
to see that condition (1.1) holds for all p ∈ R2.

The second example is given by the dilations

δλ(x, y) := (λx, λ2y).

In this case, R2 = V1⊕V2 with V1 = R×{0} and V2 = {0}×R, and δ̄(x, y) = (x, 2y).
Condition (1.1) holds for all (x, y) ∈ R2 with y 6= 0. One can actually show that, for
any homogeneous metric on (R2, δλ) with closed unit ball B centered at 0, the set
I = {x ∈ R : (x, 0) ∈ B} is a closed interval and there exists a function f : I → R
that is locally Lipschitz on the interior of I such that

Sd ∩ {(x, y) : y ≥ 0} = {(x, f(x)) : x ∈ I}.
We will prove a similar statement in the Heisenberg group with an argument that
applies here too, see Section 6.

The third example is given by the dilations

(5.1) δλ(x, y) := (λ2x, λ2y),
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and it is interesting because of the next proposition.

Proposition 5.1. There exists a homogeneous (with respect to dilations (5.1))
distance d on R2 whose unit sphere has Euclidean Hausdorff dimension 3

2 .

Notice that 3
2 is the maximal Hausdorff dimension that one gets by the estimate

(1.2).
For proving Proposition 5.1, we need to find a set B ⊂ R2 that satisfies all four

conditions listed in Lemma 2.15, in particular

(5.2) ∀p, q ∈ B, ∀t ∈ [0, 1] t2p+ (1− t)2q ∈ B.

One easily proves the following preliminary facts.

Lemma 5.2. Let p, q ∈ R2 and γ : [0, 1]→ R2, γ(t) := t2p+ (1− t)2q.

(1) The curve γ is contained in the triangle of vertices 0, p, q.
(2) The curve γ is an arc of the parabola passing through p and q and that is

tangent to the lines span{p} and span{q}.
(3) If B satisfies (5.2) and A : R2 → R2 is a linear map, then A(B) satisfies

(5.2) as well.

Lemma 5.3. For 0 < C ≤ 1, define

YC := {(x, y) : |x| ≤ 1, y ≤ 1 + C
√
|x|}.

Then YC satisfies (5.2).

Proof. Let p, q ∈ YC and set γ(t) = (γx(t), γy(t)) := t2p+ (1− t)2q.
If both p and q stay on one side with respect to the vertical axis, then γ(t) ∈ YC

for all t ∈ [0, 1] thanks to the first point of Lemma 5.2 and because the two sets
YC ∩ {x ≥ 0} and YC ∩ {x ≤ 0} are convex.

Therefore, we suppose that

p = (−px, py) q = (qx, qy)

with px, qx > 0. Let t0 ∈ [0, 1] be the unique value such that γx(t0) = 0. Then
the curve γ lies in the union of the two triangles with vertices 0, γ(0), γ(t0) and
0, γ(1), γ(t0), respectively. Therefore, γ lies in YC if and only if γy(t0) ≤ 1. Solving
the equation γx(t0) = t20(qx − px)− 2qxt0 + qx = 0, one gets

t0 =

√
qx√

qx +
√
px
, (1− t0) =

√
px√

qx +
√
px
.

From the expression of γy(t0) = t20py + (1− t0)2qy, we notice that, px and qx fixed,
the worst case is when py and qy are maximal, i.e.,

py = 1 + C
√
px, qy = 1 + C

√
qx.
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Finally

γy(t0) = t20py + (1− t0)2qy

=
qx

(
√
qx +

√
px)2

(1 + C
√
px) +

px
(
√
qx +

√
px)2

(1 + C
√
qx)

=
1

(
√
qx +

√
px)2

(qx + px + Cqx
√
px + Cpx

√
qx)

= 1 +
−2
√
pxqx + Cqx

√
px + Cpx

√
qx

(
√
qx +

√
px)2

= 1 +
√
pxqx

−2 + C(
√
qx +

√
px)

(
√
qx +

√
px)2

.

Since −2 + C(
√
qx +

√
px) ≤ 0, then we have γy(t0) ≤ 1, as desired. �

Lemma 5.4. Let α, β > 0. For all 0 < ε ≤ α and all 0 < C ≤ β√
α

, the set

Y (ε, β, C) := {(x, y) : |x| ≤ ε, y ≤ β + C
√
|x|

satisfies (5.2).

Proof. Define the linear map A(x, y) := (αx, βy) and set C ′ := C
√
α
β ≤ 1. Then

one just needs to check that

Y (ε, β, C) = A(YC′) ∩ {(x, y) : |x| ≤ ε},

where YC′ is defined as in the previous Lemma 5.3. �

Proof of Proposition 5.1. First of all, let θ0 > 0 be such that for all |θ| ≤ θ0 it holds

(5.3)
|θ|
2
≤ | cos(

π

2
+ θ)| = | sin θ| ≤ 2|θ|.

Moreover, let L,m,M,C > 0 be such that

L
√

2√
m
≤ C ≤ m√

2Mθ0
.

Let f : R→ (0,+∞) be a function such that

(5.4) ∀s, t ∈ R |f(t)− f(s)| ≤ L
√
|t− s|,

(5.5) ∀t ∈ R m ≤ f(t) ≤M.

We claim that, for |θ| ≤ θ0, we have

(5.6) f
(π

2
+ θ
)
·
(

cos(
π

2
+ θ), sin(

π

2
+ θ)

)
∈ Y

(
2Mθ0, f(

π

2
), C

)
where Y

(
2Mθ0, f(π2 ), C

)
is defined as in Lemma 5.4. Indeed, we have on one side

|x| := |f(
π

2
+ θ) cos(

π

2
+ θ)| ≤M2|θ| ≤ 2Mθ0.
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On the other side,

y := f(
π

2
+ θ) sin(

π

2
+ θ) ≤ f(

π

2
+ θ)

≤ f(
π

2
) + f(

π

2
+ θ)− f(

π

2
) ≤ f(

π

2
) + L

√
|θ|

≤ f(
π

2
) + L

√
2 cos(π2 + θ)f(π2 + θ)√

f(π2 + θ)
≤ f(

π

2
) +

√
2L√
m

√
|x|

≤ f(
π

2
) + C

√
|x|.

So (5.6) is satisfied.
Since for α := 2Mθ0 and β := f(π2 ) we have

β√
α

=
f(π2 )
√

2Mθ0
≥ m√

2Mθ0
≥ C,

Lemma 5.4 applies and we get that Y
(
2Mθ0, f(π2 ), C

)
satisfies (5.2).

For any θ we set Aθ to be the counterclockwise rotation of angle θ:

Aθ =

(
cos θ − sin θ
sin θ cos θ

)
.

Define the curve φ(t) := f(t)(cos t, sin t). Notice that Aθφ(t) = f((t−θ)+θ)(cos(t+
θ), sin(t + θ)) and that the function s 7→ f(s + θ) is still satisfying both (5.4) and
(5.5). So we have that, for |t|, |s| < θ0

2 ,

φ(
π

2
+ t) ∈ As[Y (2Mθ0, f(

π

2
+ s), C)]

and the set As[Y (2Mθ0, f(π2 + s), C)] satisfies (5.2).
Set

B :=
⋂
|s|< θ0

2

(
As[Y (2Mθ0, f(

π

2
+ s), C)] ∩ −As[Y (2Mθ0, f(

π

2
+ s), C)]

)
.

The set B satisfies all three conditions of Lemma 2.15, hence it is the unit ball of
a homogeneous metric. Moreover,

{φ(
π

2
+ t) : |t| < θ0

2
} ⊂ ∂B.

The statement of Proposition 5.1 follows because there are functions f : R →
[0,+∞) that satisfy (5.4) and (5.5) and such that the image of the curve φ has
Hausdorff dimension 3

2 . Indeed, the image of φ has the same Hausdorff dimension
of the graph of f , and then one uses the sharpness of Lemma 4.2. �

Remark 5.5. Using the same arguments as in the proof of Lemma 5.3, one easily
shows that the set

B := {(x, y) ∈ R2 : |x| ≤ 1, −f(−x) ≤ y ≤ f(x)},
where

f(x) :=

{
1 x ≤ 0

1 +
√
x x > 0,

is the unit ball of a homogeneous distance on R2 with dilations (5.1). Notice that
such B is a Lipschitz domain, but the associated homogeneous distance is not
Lipschitz in any neighborhood of the point (0, 1), thanks to Lemma 4.3.
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5.2. The Heisenberg groups. In the Heisenberg groups Hn (for an introduction
see [10]) condition (1.1) holds at every non-zero point. Therefore, balls of any
homogeneous metric on Hn are Lipschitz domains. We will treat more in detail the
first Heisenberg group in Section 6.

5.3. A sub-Finsler sphere with a cusp. Let H be the first Heisenberg group
(see Section 6 for the definition). The group G = H× R is a stratified group with
grading (V1 × R) ⊕ V2, where V1 ⊕ V2 is a stratification for H. The line {0H} × R
is a singular curve in G. Moreover, it has been shown in [8] that there exists
a sub-Finsler distance on G whose unit sphere Sd has a cusp in the intersection
Sd ∩ ({0H} × R). However, for sub-Riemannian metrics we still have balls that are
Lipschitz domains, as the following Proposition 5.7 shows. But let us first recall a
simple fact:

Lemma 5.6. Let A and B be two stratified groups with stratifications
⊕
Vi and⊕

Wi, respectively. Endow V1 and W1 with a scalar product each and let dA, dB be
the corresponding homogeneous sub-Riemannian distances.

Then A× B is a Carnot group with stratification
⊕

i Vi ×Wi and metric

d((a, b), (a′, b′)) :=
√
dA(a, a′)2 + dB(b, b′)2,

which is the sub-Riemannian metric generated by the scalar product on V1 ×W1

induced by the scalar products on V1 and W1.

One proves this lemma by using the fact that the energy of curves on A×B (i.e.,
the integral of the squared norm of the derivative) is the sum of the energies of the
two components of the curve.

Proposition 5.7. Any homogeneous sub-Riemannian metric on H × R is locally
Lipschitz away from the diagonal.

Proof. First of all, we show that, up to isometry, there is only one homogeneous
sub-Riemannian distance on H×R. Let (X1, Y1, T1) and (X2, Y2, T2) be two bases
of V1 × R that are orthonormal for two sub-Riemannian structures, respectively.
We may assume T1, T2 ∈ {0} × R. Notice that [Xi, Yi] /∈ V1 × R. The linear map
such that X1 7→ X2, Y1 7→ Y2, T1 7→ T2, [X1, Y1] 7→ [X2, Y2] is an automorphism of
Lie algebras and induces an isometry between the two sub-Riemannian structures.

Denoting by dH and dR the standard metrics on H and R, respectively, we prove
the proposition for the product metric as in Lemma 5.6. Namely, we need to check
that the function

(5.7) (p, t) 7→ d((0, 0), (p, t)) =
√
dH(0, p)2 + t2

is locally Lipschitz at all (p̂, t̂) 6= (0, 0). This follows directly from Proposition 3.3.
�

5.4. A sub-Riemannian sphere with a cusp.

Proposition 5.8. Let G be a Carnot group of step 3 endowed with a sub-Riemannian
distance dG. Then the sub-Riemannian distance d on G× R given by

d((p, s), (q, t)) =
√
dE(p, q)2 + |t− s|2

has a unit sphere with a cusp at (0G, 1).
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Proof. Let g =
⊕3

i=1 Vi be the Lie algebra of G and fix Z ∈ V3 \ {0}. We identify
g with G through the exponential map.

The intersection of the unit sphere in (G×R, d) with the plane span{Z} ×R is
given by all points (zZ, t) such that

(5.8) dG(0, zZ)2 + t2 = 1.

Since dG is homogeneous on G, there exists C > 0 such that for all z ∈ R

(5.9) dG(0, zZ) = C|z| 13 .

Putting together (5.8) and (5.9) we obtain that this intersection consists of all the
points (zZ, t) such that

|z| =
(

1 + t

C2

) 3
2

· (1− t) 3
2 .

One then easily sees that this set in R2 has a cusp at (0, 1). �

6. A closer look at the Heisenberg group

The Heisenberg group H is the easiest example of a stratified group that is not
Abelian and for this reason it has been studied in large extend. The most common
homogeneous metrics on H are the Korányi metric and the sub-Riemannian metric.
Sub-Finsler metrics on H arise in the study of finitely-generated groups, see [7] and
references therein. The geometry of sub-Finsler spheres has been studied in [21]
and [14].

The Lie algebra h of the Heisenberg group is a three dimensional vector space
span{X,Y, Z} with a Lie bracket operation defined by the only nontrivial relation
[X,Y ] = Z.

We identify the Heisenberg group H again with span{X,Y, Z}, where we define
the group operation

p · q := p+ q +
1

2
[p, q] ∀p, q ∈ H.

Hence h is the Lie algebra of H and the exponential map h → H is the identity
map. Notice that the inverse of an element p is p−1 = −p.

The Heisenberg Lie algebra admits the stratification h = V1 ⊕ V2 with V1 =
span{X,Y } and V2 = span{Z}. Denote by π the linear projection h → V1 along
V2. Notice that this map, regarded as π : (H, ·)→ (V1,+), is a group morphism.

The dilations δλ : H→ H are explicitly expressed by

δλ(xX + yY + zZ) = xλX + yλY + zλ2Z, ∀λ > 0.

These are both Lie algebra automorphisms δλ : h→ h and Lie group automorphisms
H→ H.

Three are the main results of this section.

Proposition 6.1. Let N : H → [0,+∞) be a homogeneous norm. Then the unit
ball

B := {p ∈ H : N(p) ≤ 1}
is a star-like Lipschitz domain.
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Proof. One easily shows that condition (1.1) holds for all p ∈ H \ {0}. In order
to prove that B is star-like, one first notice that if p ∈ B, then −p ∈ B, hence
δt(p)δ1−t(−p) = (2t − 1)p ∈ B for all t ∈ [0, 1], and this is a straight line passing
through zero. �

Proposition 6.2. Let N and B as in Proposition 6.1. Set K := π(B) ⊂ V1. Then
K is a compact, convex set with K = −K and K = cl(int(K)), and there exists a
function f : K → [0,+∞), locally Lipschitz on int(K), such that

(6.1) B = {v + zZ : v ∈ K, −f(−v) ≤ z ≤ f(v)}.

The proof is postponed to Section 6.1.
We remark that homogeneous distances and sub-Finsler homogeneous distances

on H have a precise relation. Indeed, if d is a homogeneous distance on H, then it
is easy to show that the length distance generated by d is exactly the sub-Finsler
distance that has the norm on V1 generated by the set K defined in Proposition 6.2.

Proposition 6.3. Let K ⊂ V1 be a compact, convex set with −K = K and 0 ∈
int(K). Let g : K → R be Lipschitz. Then there exists b ∈ R such that for f := g+b
the set B as in (6.1) is the unit ball of a homogeneous norm.

The proof will appear in Section 6.2.
As a consequence of Proposition 6.3, we get the existence of homogeneous dis-

tances on H that are not almost convex in the sense of [13]. Indeed, one can take
the distance associated to g(xX + yY ) = |x| from Proposition 6.3.

6.1. Proof of Proposition 6.2.

Lemma 6.4. Let B ⊂ H be an arbitrary closed set satisfying (2.5). If p = v+zZ ∈
B with v = π(p) ∈ V1, then v + szZ ∈ B, for all s ∈ [0, 1]. In particular,

(1) π(B) = B ∩ V1;
(2) π(B) ⊂ V1 is convex.

Proof. We have that for all t ∈ [0, 1]

B 3 δtp · δ1−tp = v + (t2 + (1− t)2)zZ.

Since the image of [0, 1] through the map t 7→ (t2 + (1− t)2) is [ 12 , 1], then it follows

v + szZ ∈ B for all s ∈ [ 12 , 1]. Iterating this process and using the closeness of B,
we get v + szZ ∈ B for all s ∈ [0, 1]. For the last statement, take v, w ∈ π(B) ⊂ B
and notice that tv + (1− t)w = π(δtv · δ1−tw) ∈ π(B). �

Let B = {N ≤ 1} be the unit ball of a homogeneous norm and set K := π(B) ⊂
V1 and Ω := int(K). First, we check that Ω̄ = K. On the one hand, clearly
we have Ω̄ ⊂ K. On the other hand, if v ∈ K, then for any t ∈ [0, 1) we have
N(δtv) = tN(v) < 1, i.e., δtv = tv ∈ intB ∩ V ⊂ Ω. Hence v ∈ Ω̄.

If we define f : K → [0,+∞) as f(v) := max{z : v + zZ ∈ Q}, then we have
(6.1). In order to prove that f is locally Lipschitz on Ω, we need to prove

(6.2)
∀p ∈ ∂B ∩ {z ≥ 0} ∩ π−1(Ω),

∃U 3 p open ,∃C vertical cone, s.t.
∀q ∈ U ∩ ∂B it holds q + C ⊂ B.

Here a vertical cone is a Euclidean cone with axis −Z and non-empty interior.
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So, fix p ∈ ∂Q ∩ {z ≥ 0} such that π(p) ∈ Ω. Define for θ ∈ R and ε > 0

vθ := xθX + yθY := ε cos(θ)X + ε sin(θ)Y.

For ε > 0 small enough, π(p) + vθ ∈ Ω for all θ. Define

φ(t, θ) := δ(1−t)p · δt(π(p) + vθ).

Clearly φ(t, θ) ∈ B for t ∈ [0, 1] and θ ∈ R, and φ(0, θ) = p for all θ. Geometrically,
φ([0, 1] × R) is a “tent” inside B standing above the whole vertical segment from
π(p) to p. Notice that p 6= π(p), indeed N(p) = 1 while N(π(p)) < 1, because
π(p) ∈ Ω.

We only need to prove that the curves t 7→ φ(t, θ) meet this vertical segment by
an angle bounded away from 0. Some computations are needed: set p = p1X +
p2Y + p3Z, then

φ(t, θ) = π(p) + tvθ +

(
1

2
t(1− t)(p1yθ − p2xθ) + (1− t)2p3

)
Z.

We take care only of the third coordinate. Set

g(t) : =
1

2
t(1− t)(p1yθ − p2xθ) + (1− t)2p3

= t2 (−1

2
(p1yθ − p2xθ) + p3) + t (

1

2
(p1yθ − p2xθ)− 2p3) + p3.

Saying that the angle between the curve t 7→ φ(t, θ) and the vertical segment at p is
uniformly grater than zero, is equivalent to give an upper bound to the derivative
of g at 0 for all θ. Since

g′(0) =
1

2
(p1yθ − p2xθ)− 2p3,

we are done.
Finally, since both ε and g′(0) depend continuously on p, then (6.2) is satisfied.

�

6.2. Proof of Proposition 6.3. We consider the bilinear map ω : V1 × V1 → R
given by

ω(v1X + v2Y,w1X + w2Y ) := v1w2 − v2w1.

Lemma 6.5. For any continuous function f : K → [0,+∞), the set B as in (6.1)
is the unit ball of a homogeneous norm on H if and only if

(6.3)
∀v, w ∈ K ∀t ∈ [0, 1]

f(tv + (1− t)w)− t2f(v)− (1− t)2f(w)− t(1−t)
2 ω(v, w) ≥ 0.

Proof. One easily sees that B = B−1. Notice that B is the unit ball of a homoge-
neous norm if and only if it satisfies (2.5).
⇒ Assume that B satisfies (2.5). Then for any v, w ∈ K we have

B 3 δt(v + f(v)Z) · δ(1−t)(w + f(w)Z) =

= tv + (1− t)w +

(
t2f(v) + (1− t)2f(w) +

1

2
t(1− t)ω(v, w)

)
Z,

hence

t2f(v) + (1− t)2f(w) +
1

2
t(1− t)ω(v, w) ≤ f(tv + (1− t)w).
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⇐ Suppose f satisfies (6.3). Define

B+ := {v + zZ : v ∈ K and z ≤ f(v)},
B− := {v + zZ : v ∈ K and − f(−v) ≤ z}.

We will show that both B+ and B− satisfy (2.5), from which it follows that B =
B+ ∩B− satisfies (2.5) as well.

So, let v, w ∈ K and z1, z2 ∈ R such that v+z1Z,w+z2Z ∈ B+. Then the third
coordinate of δt(v + z1Z) · δ(1−t)(w + z2Z) satisfies

t2z1 + (1− t)2z2 +
1

2
t(1− t)ω(v, w) ≤

≤ t2f(v) + (1− t)2f(w) +
1

2
t(1− t)ω(v, w) ≤ f(tw + (1− t)v),

therefore we have δt(v + z1Z) · δ(1−t)(w + z2Z) ∈ B+ for all t ∈ [0, 1].

The calculation for B− is similar. �

The verification of the next lemma is simple and therefore it is omitted.

Lemma 6.6. Suppose that g : K → R is a continuous function such that there is
a constant A ∈ R with

(6.4)
∀v, w ∈ K, ∀t ∈ [0, 1]

g(tv + (1− t)w)− t2g(v)− (1− t)2g(w) ≥ At(1− t).

Then f := g +B satisfies (6.3) with

B := sup
v,w∈K

1

2

(
1

2
ω(v, w)−A

)
=

1

4

(
sup
v,w∈K

ω(v, w)

)
− 1

2
A.

Lemma 6.7. Let g : K → R be L-Lipschitz. Then g satisfies (6.4) for

A := −2Ldiam(K)− 4 sup
p∈K
|g(p)|.

Proof. Notice that we need to show that (6.4) holds only for t ∈ (0, 1) and that (6.4)
is symmetric in t and (1− t). So, it is enough to consider only the case t ∈ (0, 12 ]:

g(tv + (1− t)w)− t2g(v)− (1− t)2g(w)

t(1− t)

=
g(w + t(v − w))− g(w)

t(1− t)
+

(1− (1− t)2)g(w)

t(1− t)
− t

1− t
g(v)

≥ −L‖v − w‖
1− t

+
2− t
1− t

g(w)− t

1− t
g(v)

≥ −2Ldiam(K)− 4 sup
p∈K
|g(p)|.

�

Putting together Lemmas 6.7, 6.6, and 6.5, we get Proposition 6.3. �
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Appendix A. Equivalence of some definitions and existence of
singular minimizers

We shall prove that on Carnot groups the absence of singular geodesics is equiva-
lent to other three well-known properties. Consequently, we will prove that Carnot
groups of step larger than 2 always have singular length minimizers, as we stated
in Remark 2.17. Corollary A.2, and hence Theorem A.1, cannot be extended to the
more general setting of sub-Finsler manifolds. Namely, it has been proven in [11]
that a generic distribution of rank m ≥ 3 on a manifold M does not have singular
curves. Note that if dim(M) ≥ 2m, then the step of all distributions of rank m is
larger than 2.

Before stating the theorem, we briefly introduce four classical properties present
in literature. Let G be a stratified group with Lie algebra g and first layer V1 of the
stratification. The stratified Lie algebra g is said to be strongly bracket generating
if for all X ∈ V1 \ {0} it holds

g = V1 + [X,V1].

A stratified step-two Lie algebra g = V1⊕V2 is of Métivier type if there is a scalar
product 〈·, ·〉 on g such that for all Z ∈ V2 \ {0} the map JZ : V1 → V1 defined by

∀X,Y ∈ V1 〈JZX,Y 〉 = 〈Z, [X,Y ]〉
is injective. The main examples of groups of Métivier type are those of H-type.
See [6] for further reference.

We write Γ(V1) for the space of all vector fields of G with values in the left-
invariant tangent subbundle of G generated by V1. A stratified group G is fat if for
every vector field X ∈ Γ(V1) with X(0) 6= 0 it holds

g = V1 + [X,Γ(V1)]0,

where [X,Γ(V1)]0 = span{[X,Y ](0) : Y ∈ Γ(V1)}. See [27, 3] for reference.
A sub-Finsler manifold is said to be ideal if, except the constant curve, there are

no singular length minimizers. The terminology is taken from [27].

Theorem A.1. If G is a Carnot group with stratified Lie algebra g, then the
following properties are equivalent:

(i) g is strongly bracket generating;
(ii) g is of Métivier type;

(iii) G is fat;
(iv) G is an ideal sub-Finsler manifold.

Moreover, these properties imply that g has step one or two.

A direct consequence of the proof of the latter theorem is the following Corollary.

Corollary A.2. In all sub-Finsler Carnot groups of step at least 3, there exists a
one-parameter subgroup that is a singular non-constant length minimizer.

Proof of Theorem A.1. (i) ⇒ (ii). We give a proof by contraposition. If g is not
a of Métivier type, then there are a scalar product 〈·, ·〉 on g and Z ∈ V2 \ {0}
such that JZ : V1 → V1 is not injective. So, there is X ∈ V1 \ {0} with JZX = 0.
Therefore, for all Y ∈ V1 we have 〈Z, [X,Y ]〉 = 〈JZ , Y 〉 = 0, i.e., Z /∈ [X,V1], so g
is not strongly bracket generating.

(ii)⇒ (i). We give a proof by contraposition. Suppose g is not strongly bracket
generating and let 〈·, ·〉 be a scalar product on g. Then there are X ∈ V1 \ {0} and
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Z ∈ V2 \ {0} such that Z is orthogonal to [X,V1]. Hence, for all Y ∈ V1 we have
〈JZX,Y 〉 = 〈Z, [X,Y ]〉 = 0, i.e., g is not of Métivier type.

(iii)⇒ (i). The implication is trivial.
(i) ⇒ (iii). Let X1, . . . , Xr be a basis for V1 and X =

∑r
i=1 aiXi ∈ Γ(V1)

with ai ∈ C∞(G) with X(0) 6= 0, where Xi are considered as left-invariant vector

fields. Set X̃ :=
∑r
i=1 ai(0)Xi ∈ V1 \ {0}. Since g is strongly bracket generating,

[X̃, V1] = V2. Since [X,Xj ] = [X̃,Xj ] +
∑n
i=i(Xja)Xi, for j ∈ {1, . . . , r}, one easily

sees that

V1 + [X,Γ(V1)]0 = V1 + span{[X,Xj ]0 : j = 1, . . . , r} = g.

(i)⇒ (iv). This implication is well known. See for example [20, Remark 2.7].
(iv) ⇒ (i). Before starting, recall that any horizontal one-parameter subgroup

in a sub-Finsler Carnot group is length minimizer.
We begin by claiming that ifG is a Carnot group, X ∈ V1\{0}, and γ : [0, 1]→ G,

γ(t) := exp(tX), is a regular curve then

(A.1) adX : Vk → Vk+1 is surjective, for all k ∈ {1, . . . , s− 1}.

Indeed, for all v ∈ V1 we have

Adexp(tX)v = eadtXv =

∞∑
k=0

tk

k!
adkXv

= v + t[X, v] +
t2

2
[X, [X, v]] +

t3

6
[X, [X, [X, v]]] + . . .

Therefore,

span
{

Adγ(t)[V1] : t ∈ [0, 1]
}
⊂ span{adkX [V1] : k ∈ {0, . . . , s}}.

Thanks to [20, Proposition 2.3] the left hand side is Lie(G), since γ is regular.

Hence, since adkX [V1] ⊂ Vk+1, then adkX [V1] = Vk+1 and we get (A.1). To conclude
the proof of the theorem, it is enough to show that if G is a stratified group of step
s such that (A.1) holds for all X ∈ V1 \ {0}, then s ≤ 2. If s > 3, we can take
the normal subgroup H = exp (

⊕s
i=4 Vi), so that the quotient G/H is a stratified

group of step 3. By taking a further quotient we may assume that the third layer
V3 has dimension 1. The quotient still satisfies (A.1) for all X ∈ V1 \ {0}.

Therefore, we just need to show that there are no stratified groups of step 3 with
dim(V3) = 1 that satisfy (A.1) for all X ∈ V1 \ {0}. Let r := dimV1. Since for any
X ∈ V1 \ {0} the map adX : V1 → V2 is surjective and has non-trivial kernel, then
m := dimV2 < r. Let Y1, . . . , Ym be a basis of V2. Since V3 ' R, we can interpret
each adYi as an element of (V1)∗. Since m < r, then span{adY1

, . . . , adYm}⊥ 6= {0},
i.e., there exists X ∈ V1 \ {0} such that adYi(X) = 0 for all i ∈ {1, . . . ,m}. We get
now a contradiction with (A.1), because

{0} 6= V3 = adX(V2) = span{[X,Yi] : i ∈ {1, . . . ,m}} = {0}.
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