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An application of the weight function technique to
inclined surface cracks under rolling contact fatigue,

assessment and parametric analysis
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Abstract

This paper proposes the use of the weight function technique to calculate mode I and mode II stress intensity
factors for a shallow surface crack typical of rolling contact fatigue, that experiences the detrimental effects of
the pressurization of lubricating fluid. The weight function technique was able to easily take the pressurization
into account just by adding the pressure term to the nominal stress component which is then integrated. The
crack closure was also modeled by introducing an assumption for the distribution of the contact pressure on
the crack face. The results were validated with the literature data and finite element analyses. Parametric
simulations were performed showing that mode I and mode II stress intensity factors strongly depend on the
crack angle with respect to the surface, and almost linearly on the size of the crack. In addition, the proposed
algorithm was able to include any residual stress distribution. Compressive residual stress hinders pressuriza-
tion and promotes the crack closure. This effect was parametrically investigated and it was found that cracks,
and especially small ones, can even remain closed, with the opening effect of the pressurization completely
suppressed.
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1 Introduction

Rolling Contact Fatigue (RCF) pitting and micropitting are common surface damage phenomena detected in
bearings and gears [1, 2, 3, 4]. These mechanisms originate on the surface and are usually observed under
mixed lubricating conditions with “as ground” surface finish [5, 6]. Subsurface spalling, on the other hand, is
typically generated under very smooth (polished) contacting surfaces and good lubrication conditions [2, 3].
The initiation and propagation of pitting surface cracks are very different from spalling subsurface cracks, as
they are directly exposed to surface contact and to the effects of the lubricating fluid. There are two phases in
the evolution of pitting, which can be confirmed by surface observation. Initially, several shallow microcracks
appear on the surface. These cracks subsequently experience “pressurization” (or “fluid pumping”) which
promotes their growth. The lubricating fluid fills the internal volume of the surface crack, where it is then
pressurized by the passing contact load. The internal fluid pressure is assumed to be as high as the pressure
due to contact, since it is in direct communication with the contact interface. Olver et al. [7] showed a typical
V–shaped (or arrow head) micropit crack that was initially filled by the lubricating fluid, after which the fluid
was expelled. During pressurization produced by the contact transit, the crack faces are pulled apart by the
fluid pressure and the mode I Stress Intensity Factor (SIF) is positive and experiences a cycle [8]. Way [9] was
the first to obtain experimental evidence that the lubricating fluid enhanced the formation of pitting damage.
After his pioneering work, the pressurization mechanism was investigated, both experimentally and analyti-
cally through numerical simulations. Datsyshyn and Marchenko [10] presented a survey of different models of
the pressurized surface crack problem loaded by a Hertz–like pressure distribution contact transit. In Bower’s
paper [11], which dealt with pressurization and entrapment phenomena, the crack SIFs were obtained by the
dislocation distribution method, previously proposed by Keer and Bryant [12]. The dislocation distribution
technique was also applied by Johnson [13] and, more recently, by Jin et al. [14]. Murakami et al. [15] used
a Finite Element (FE) 3D model that reproduces the typical arrow head shape of the crack. Even though a
plane model can not take into account the effects of the boundaries and the angle between the two fronts of
the “arrow head”, the shape of the pitting crack suggests the use of a plane (2D) model since the width is
usually much larger than the depth. Fajdiga and Glodež et al. [3, 16, 17, 18] used plane FE models (with the
virtual crack extension method) to calculate the SIFs of the fluid pressurized fatigue crack, and Ringsberg and
Bergkvist [19] also used FE simulations, by implementing the quarter point method to calculate the SIFs.
This paper proposes an alternative to FE analysis in order to solve the pressurization surface crack plane prob-
lem using the Weight Function (WF) technique to calculate both mode I and mode II SIFs. In previous works
Beghini et al. [20, 21, 22, 23] developed a parametric WF for a surface crack with a generic angle, the same
geometry as the present problem. The partially closed crack was also considered, Beghini et al. [22], and was
solved with the WF technique by introducing an extra term, on the nominal stress, equal to the contact pressure
between the partially closed crack faces. Similarly, the WF approach can model the pressurization effect just
by adding a positive term (equal to the fluid pressure) to the nominal stress. In addition, the WF formulation
can also consider a residual stress distribution, which is typically present in components subjected to RCF.
Again, a further stress term is simply added to the nominal stress before the WF integration.
This numerical technique is applied in the present paper to a classic Hertz contact pressure distribution with
friction traction, traveling over the crack. The proposed algorithm can be also applied to non Hertzian contacts
or distributions that change during the transit over the crack. In order to validate the proposed procedure,
comparisons with other research results are reported along with numerical results obtained with a dedicated
FE model.
Finally, by taking advantage of the efficiency of the WF approach, a large parametric analysis was performed
and trends of the resulting SIFs are reported and discussed. The effect of the residual stress was also investi-
gated. Obviously, a compressive residual stress state hinders the opening of the crack by reducing the range of
the mode I SIF, whereas a tensile residual stress increases the mode I cycle experienced by the surface crack
during the contact transit. This effect is extremely dependent on the size of the crack. The smaller the crack,
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the larger the closure effect, with a compressive residual stress state. A small crack can even be completely
closed by compressive residual stresses, as shown in the final section of the paper. The crack needs to increase
its size, by cyclic shear stress fatigue, before experiencing propagation supported by pressurization [24], hence
the pitting damage is delayed or even prevented.

2 Fluid pressurization of shallow surface cracks

The formation of a pit crack has a preliminarily phase in which microcracks initiate on the surface, Fig. 1.
The orientation of these microcracks is related to the sliding direction and is independent of the direction of
the rolling motion. The small surface angle between the microcrack and the surface is typically in the range
20◦−30◦ [5, 8].
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Figure 1: Shallow surface microcracks, opposite to the sliding direction (or the friction traction).

Once a surface crack has been nucleated and if the crack is kept open while the contact is approaching, the
lubricating fluid fills the open volume between the crack faces. This fluid inside the crack undergoes a strong
pressure increase (pressurization) while the contact region passes over the crack mouth. As a consequence
the crack experience a mode I stress intensity factor transient. Pressurization is effective only if the sliding
direction is opposite to the contact motion [7]. This condition is referred to as a negative Slide to Roll ratio
(S/R < 0), and is experienced by the slower of the two mating surfaces [7], e.g. the follower in a (twin) disc
experiment, Fig. 2(a), while S/R > 0 is experienced by the faster surface, Fig. 2(b). The intensity of the slide
to roll ratio S/R is defined as the ratio between the difference of the velocities of the two mating surfaces,
over the velocity of one surface compared to the contact, which is the rolling velocity [25]. Alternatively, the
average velocity of the two bodies can be considered (the entrainment velocity) [7], in order to have the same
S/R intensity for the two mating bodies, and only have a different sign between the follower and the driver. In
this paper just the sign of the S/R ratio was considered.
Under the two conditions: negative S/R and opposite surface crack orientation to the sliding, it was hypoth-
esized (and confirmed by experiments) that shallow cracks are kept open while the contact is approaching,
thus the pressurization is active. If any of these two conditions is not satisfied, e.g. if the S/R is positive,
the crack remains closed, it is not filled by the fluid and pressurization does not happen. As a consequence,
more pronounced pitting is experienced by the follower surface. In gears, surface pitting is usually found on
dedendum tooth flanks (both for driven and driver gears) where the S/R ratio is negative [7, 13, 26, 27].
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Figure 2: S/R ratio on twin disc testing: (a) follower S/R < 0, (b) driver S/R > 0.

The paper by Bower [11] widely describes the phenomenon and identified two phases: pressurization and the
entrapment of the fluid inside the crack. During pressurization, the fluid inside the crack is connected with the
contact region, while the entrapment is obtained afterwards, when a certain volume of fluid is stored inside
the crack and the crack mouth is closed by the contact. The fluid inside the entrapment volume experiences a
pressure peak, which can be even higher than the contact pressure during pressurization. Finally, the fluid is
expelled when the contact transit recedes. The entrapment mechanism is possible only if the crack has a com-
parable size or is larger than the width of the contact region, as shown by Bower [11]. If the crack is relatively
long, compared to the contact width, the crack mouth experiences a strong closing pressure, while the action
is much weaker at the crack tip, thus the volume of fluid in the lower part of the crack remains isolated. On
the other hand, if the crack is smaller than the contact width, the entrapment is not expected to happen being
the fluid already expelled before crack closure, Fig. 3. The typical size of pitting cracks, experienced by high
strength steel for bearings and gears, is usually in the order of 10−2 mm, Fig. 1. They are therefore quite small
compared to the typical contact width that is usually in the order of 10−1 mm. As a consequence, the numerical
analysis reported in this paper was based on the assumption of no fluid entrapment. The crack was either open
(communicating with the contact pressure) or simply closed without any pressurization, and no transient was
modeled between the two situations. During pressurization, the distribution on the pressurized crack faces was
considered to be uniform, as usual in the literature [3, 11, 16, 17, 18]. The friction between the crack faces
was neglected, and perfect lubrication was assumed. Though this hypothesis is questionable and overcome in
other studies, crack face friction would introduce stick & slip on different areas along the crack length, and the
partial open crack condition should be considered. The value of the coefficient of friction, between the crack
faces, is impossible to measure, thus an estimated value is needed. In addition, the main detrimental effect
produced by pressurization is the positive mode I transient, during which the crack faces are not in contact.

3 Weight function model

The Weight Function (WF) is a powerful computational tool used in linear elastic fracture mechanics to cal-
culate crack Stress Intensity Factors (SIFs) and also crack opening displacement. The main assumption is that
any non linear effect, such as large plasticity, is absent or negligible [28]. The SIFs are obtained by integrating,
over the crack domain, the nominal stress distribution, multiplied by the WF as a kernel. The nominal stress
distribution is the stress acting on the crack assuming an uncracked body (or before the crack formation), i.e.
the local stress acting on the crack region. Another fundamental assumption is that the presence of the crack
does not significantly modify the external load, with respect to the uncracked geometry. This assumption,
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Figure 3: Steps of the lubricating fluid pressurization.

applied for the present problem, requires that the Hertz normal pressure and friction shear keep the same dis-
tributions even with the surface crack, which is reasonable when the crack is small compared to the contact
area. The WF only depends on the crack geometry, and is unaffected by the nominal stress distribution. WF
closed forms are known for a few simple cases, however, approximated but accurate enough expressions can be
found for specific geometries. Approximate analytical expressions can be obtained by assuming a parametric
general form of the WF, and by fitting the parameters with specific accurate FE solutions.

3.1 Surface inclined crack weight function

As previously mentioned, surface microcracks have a large width over depth ratio, thus they can be reasonably
well modeled as straight cracks in a half–plane (2–D model), even though they show some irregularities, Fig.
1. The geometry parameters to define the crack are, therefore, the angle θ and the crack length c, Fig. 4.
Beghini et al. [20, 21, 22, 23] obtained the WF for a plane surface crack, inclined of a general angle. In order
to obtain the fracture parameters, the nominal stress components need to be expressed in the local coordinates
x′,y′, Fig. 4 (a). Both the stress components σy′y′ ,σx′y′ (normal and shear) affect the two SIFs KI,KII, while the
stress component σx′x′ and out of plane normal stress have no effect.
If the angle θ is different from π/2, the nominal normal stress σy′y′ primarily contributes to mode I SIF but also
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Figure 4: (a) Nominal stress distribution: the stress at the crack line, assuming uncracked body. (b) Plane
model crack SIFs.

to mode II. Similarly, the nominal shear stress σx′y′ contributes more intensively to mode II, but also to mode
I. The coupling effect, due to the asymmetry of the problem, can be accounted for by a matrix formulation of
the WF. The integration of the WF matrix is expressed by Eq. 1.[

KI
KII

]
=

∫ c

0

[
h11(x′,c,θ) h12(x′,c,θ)
h21(x′,c,θ) h22(x′,c,θ)

][
σy′y′(x′)
σx′y′(x′)

]
dx′ (1)

where x′ = 0 is the crack mouth and x′ = c is the crack tip position. The out of diagonal WF components
h12(x′,c,θ),h21(x′,c,θ) vanish, and the matrix integration is reduced to scalar integrations, only for θ = π/2.
The WF components hhk(x′,c,θ) can be accurately approximated by Eq. 2, the WF component coefficients
αhk

i (θ) can be expressed by Eq. 3 and the dimensionless coefficients λ hk
i j are reported in Tab. 1.

hhk(x′,c,θ) =
√

2
πc

[(
1− x′

c

)−1/2

+
4

∑
i=1

αhk
i (θ)

(
1− x′

c

)i−1/2
]
, for hk = 11 or hk = 22

hhk(x′,c,θ) =
√

2
πc

[
4

∑
i=1

αhk
i (θ)

(
1− x′

c

)i−1/2
]
, for hk = 12 or hk = 21

(2)

αhk
i (θ) = λ hk

i1 tan2(θ −π/2)+∑5
j=2 λ hk

i j cos(( j−2)(θ −π/2)), for hk = 11 or hk = 22

αhk
i (θ) = λ hk

i1 tan2(θ −π/2)sin(θ −π/2)+∑5
j=2 λ hk

i j sin(( j−1)(θ −π/2)), for hk = 12 or hk = 21
(3)

The overall accuracy of this WF calculation is in the order of 1%, provided that the angle θ is within the range
15◦−165◦. This angle limitation is caused by the form of the analytical approximation, however, it does not
introduce a limitation for the present problem, since the crack angle is never lower than 15◦. Further details
regarding the proposed WF are reported in Ref. [20].

3.2 Calculation of the SIFs both with pressurization and crack faces in contact

The weight function technique can be used to model the fluid pressurization very efficiently. When there is
pressurization, the SIFs (KI,KII) are the result of Eq. 1 integration, where the pressure evaluated at the surface
contact crack mouth position p′ is added to the normal nominal stress σy′y′ . In general the surface contact
load produces a negative (closing) nominal stress contribution, while the fluid pressure produces a positive
(opening) nominal stress contribution. Intuitively, the surface contact pressure tends to close the crack, while
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λ 11
i j i = 1 2 3 4

j = 1 0.352260648 0.561740777 0.002757774 −0.082522228
2 20.12858867 −6.75915207 14.69890758 −6.555566564
3 −28.35443914 12.21105233 −24.64961078 10.87434602
4 10.61781505 −6.721903843 13.14073974 −5.893279322
5 −1.794159914 1.272090422 −2.589806357 1.200996132

λ 12
i j i = 1 2 3 4

j = 1 0.04401007 −0.088936286 0.09297728 −0.035669115
2 5.730314603 −11.04002435 12.13325221 −4.883436003
3 −4.413898809 10.19534617 −11.84935675 4.856493593
4 1.598258465 −3.559021699 4.07900429 −1.676244823
5 −0.257065332 0.515781329 −0.548201846 0.214198514

λ 21
i j i = 1 2 3 4

j = 1 0.177883032 0.728488774 −0.248806075 0.023045677
2 0.808784091 17.6992381 −10.7581263 3.112044367
3 0.101895496 −16.00705368 11.92486888 −4.026999105
4 −0.023285672 5.675420857 −3.879295621 1.234486015
5 0.001237758 −0.851326701 0.497548624 −0.133053283

λ 22
i j i = 1 2 3 4

j = 1 0.114487102 −0.22899214 0.242228468 −0.093044459
2 8.781169684 −11.51130605 11.0665334 −4.245644102
3 −12.02782951 19.63198074 −19.64671793 7.575469487
4 4.571171695 −9.876681231 11.38812338 −4.668556109
5 −0.723370423 1.708779212 −2.077090179 0.884130668

Table 1: Angle coefficients to calculate the weight function components, after Beghini et al. [20].

the fluid pressure tends to separate the crack faces. The pressurization may dominate in particular positions
of the contact during the transit. Nominal stresses are not applied to the faces of the crack in the real physical
problem, while pressurization is actually applied to the faces of the crack (reproducing the exact loading
conditions of the weight function problem). Despite this distinction, these two contributions to the SIFs can
be correctly superimposed. In addition, the superimposition can be applied to the stress components before
performing the WF integral. It is also possible to take any residual stress distribution into account, which is
common in bodies used for contact loads. This contribution of residual stress is added to both the nominal
stress components σy′y′ ,σx′y′ which are then inputted in Eq. 1. The overall nominal stresses are given by Eq.
4.

σy′y′(x′) = σ p,τ
y′y′ (x

′)+σ RS
y′y′(x

′)

σx′y′(x′) = σ p,τ
x′y′ (x

′)+σRS
x′y′(x

′)
(4)

The stresses σRS
y′y′(x

′),σ RS
x′y′(x

′) are the residual stress contributions, while σ p,τ
y′y′ (x

′),σ p,τ
x′y′ (x

′) are the nominal
stress components produced by surface contact pressure and friction traction. These stress distributions need
to be calculated from the contact pressure and friction, at different times during the contact transit. This
problem can be solved numerically, by approximating the applied pressure and traction as a traveling discrete
sequence of uniform distributions, Fig. 5.
The stress components at any position A(x,y) below the surface can be calculated in closed form for any
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Figure 5: Stress distribution at any position below the surface, produced by uniform pressure plus uniform
shear traction.

uniform distribution, Eq. 5 [29].

σ p,τ
xx,i =− pi

2π
(2(ϑ1 −ϑ2)+(sin2ϑ1 − sin2ϑ2))+

τf,i

2π

(
4ln

r1

r2
− (cos2ϑ1 − cos2ϑ2)

)

σ p,τ
yy,i =− pi

2π
(2(ϑ1 −ϑ2)− (sin2ϑ1 − sin2ϑ2))+

τf,i

2π
(cos2ϑ1 − cos2ϑ2)

σ p,τ
xy,i =− pi

2π
(cos2ϑ1 − cos2ϑ2)+

τf,i

2π
(2(ϑ1 −ϑ2)+(sin2ϑ1 − sin2ϑ2))

(5)

Obviously, the stresses σ p,τ
y′y′ ,σ

p,τ
x′y′ are obtained by summing up all the terms σ p,τ

xx,i ,σ
p,τ
yy,i ,σ

p,τ
xy,i , and then applying

the (plane) tensorial rotation. Any contact pressure and friction traction distributions can be approximated
as a step function with a reasonable number of divisions, and the stress components σ p,τ

xx ,σ p,τ
yy ,σ p,τ

xy can be
obtained at any point, and at any position of the traveling load, by updating the coordinates ϑ1,ϑ2,r1,r2.
The Hertz pressure distribution is defined by the half–width of contact a, the pressure distribution center
position xc and the maximum pressure value p0. The discretization is performed by calculating the Hertz
pressure value at the mid point of each i–th segment xi:

pi = p0

√
1−

(
xi − xc

a

)2

, if |xi − xc| ≤ a

pi = 0, if |xi − xc|> a

τf,i = f pi

(6)

Fig. 6(a) shows a Hertz like contact distribution at different locations during the contact transit, and Fig.
6(b) shows the σ p,τ

yy component calculated in a whole rectangular domain, for a given position of the traveling
contact pressure and shear friction distributions, though the stresses are only required along the crack line for
the WF integration.
Although this paper only considers the Hertz pressure distribution, and proportional friction, the contact distri-
bution can be more general by following this step function discretization. For instance, the elastohydrodynamic
contact distribution can also be considered [30], or any not Hertzian pressure distribution generated by discon-
tinuous curvature contacting profiles [31].
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Figure 6: (a) Hertz distribution as a step function. (b) Normal stress component distribution below the surface
when the pressure maximum is at the reference point.

Two different crack loading contact conditions need to be distinguished before calculating the WF integrals:
pressurization, and closed crack. The pressure value p′ is added to the nominal normal stress σy′y′(x′) when
the crack is pressurized, Eq. 7:[

KI
KII

]
=

∫ c

0

[
h11(x′,c,θ) h12(x′,c,θ)
h21(x′,c,θ) h22(x′,c,θ)

][
σy′y′(x′)+ p′

σx′y′(x′)

]
dx′ (7)

If the crack is closed (and as a consequence not pressurized) the first SIF is null, and the crack faces contact
pressure distribution pc(x′) is included instead of p′ to calculate the mode II SIF, Eq. 8:[

0
KII

]
=

∫ c

0

[
h11(x′,c,θ) h12(x′,c,θ)
h21(x′,c,θ) h22(x′,c,θ)

][
σy′y′(x′)+ pc(x′)

σx′y′(x′)

]
dx′ (8)
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The integration of Eq. 7, or Eq. 8, can be solved numerically with a computer program, at any load position
during the contact transit, using the proposed numerical forms of the WF components and the nominal stress
calculations as described above. The two conditions, pressurization or closed crack, can be distinguished
according to the following algorithm:

1. The contact transit is divided into steps. As initial step, a position which is approaching and sufficiently
away from the crack mouth is assumed where pressurization does not apply, since the pressure distri-
bution is not over the crack. The procedure is repeated for each step that the contact transit is divided
into, until the contact distribution is at the other side, away from the crack mouth and its effect on SIFs
is vanishingly small.

2. If S/R < 0 and the surface load is over the crack mouth, the pressurization is taken into account. The
KI,KII values are calculated by the WF integration, with the pressurization term, Eq. 7, and the contact
pressure p′ is evaluated at the crack mouth. If S/R ≥ 0 or the surface load is away from the crack mouth,
Eq. 7 is preliminarily used with p′ = 0.

3. If KI > 0 no further modification is required and the obtained values KI,KII are recorded for the generic
i–th step. When the surface load is approaching, the crack can be open because of the friction traction
and the use of Eq. 7 with p′ = 0 (no pressurization) can give a positive, though small, KI value. With
negative KI result, on the other hand, the introduction of a crack face contact distribution pc(x′) is
required, in order to re–establish the closed crack KI = 0 condition, and a corrected value of KII needs
to be recalculated.

When KI < 0 has been obtained, there is no unique crack face contact pressure distribution producing null KI.
The correct pc(x′) pressure distribution should also satisfy the condition of zero crack opening displacement,
over the entire crack. To solve the problem without iterative calculation, an assumption on the pc(x′) trend was
introduced. The proposed hypothesis is that pc(x′) is proportional to the nominal stress normal component
σy′y′(x′), Eq. 9:

pc(x′) = λcσy′y′(x′) (9)

The reason for this assumption is that the nominal normal stress distribution would produce zero SIFs and zero
crack opening displacement (when acting with the nominal shear stress), thus it is assumed to be a good basis
for the crack face contact distribution. After this hypothesis, the pc(x′) unknown reduces to a single scalar
dimensionless factor λc. The Equation 8 can be rewritten as:[

0
K′

II

]
=

∫ c

0

[
h11(x′,c,θ) h12(x′,c,θ)
h21(x′,c,θ) h22(x′,c,θ)

][
σy′y′(x′)+λcσy′y′(x′)

σx′y′(x′)

]
dx′ (10)

and λc can be found by solving the first equation:

λc =−
∫ c

0
[
h11(x′,c,θ)σy′y′(x′)+h12(x′,c,θ)σx′y′(x′)

]
dx′∫ c

0 h11(x′,c,θ)σy′y′(x′)dx′
=−1−

∫ c
0 h12(x′,c,θ)σx′y′(x′)dx′∫ c
0 h11(x′,c,θ)σy′y′(x′)dx′

(11)

Finally, K′
II obtained with the second of Eqs. 10, introducing the λc value calculated with Eq. 11, is the

estimated value of KII, according to the proposed assumption.

4 Model validation

A parametric FE model was developed for the validation analysis. The quarter point numerical technique was
used with the software ANSYS [32]. Contact elements (frictionless) were placed at the crack faces, in order to
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model both separation (with pressurization) and crack closure, Fig. 7. A convergence analysis was performed
to verify that an accurate result can be obtained with 100 elements along the crack faces, and a comparable
element size in the crack region and in the high stress contact region, Fig. 7.
The proposed WF calculation, and the assumption to estimate KII when the crack is closed, were validated both
with the FE model and by comparing the results from the literature. Several analyses with different contact
parameters are available in the literature. Two case studies were considered: the negative S/R analysis reported
by Bower [11], where the crack experiences strong pressurization, Fig. 8, and a null friction analysis reported
by Datsyshyn and Marchenko [10], where pressurization is inactive and the crack remains closed, Fig. 9. The
data from these two studies were compared with the results obtained with the FE model and with the results
obtained with the proposed WF calculation. The SIFs are reported as dimensionless quantities. In the literature,
two definitions can be found for dimensionless SIFs: FI(II) = KI(II)/(p0

√
πa) and FI(II) = KI(II)/(p0

√
a). In

this paper the definitions: FI = KI/(p0
√

πa), FII = KII/(p0
√

πa) are used. The position of the center of the
contact xc is also given in a dimensionless form by adopting the half–width of the contact a as a normalizing
quantity, as a consequence, the contact pressure is over the crack mouth when −1 ≤ xc/a ≤ 1.
The WF predictions almost perfectly match the references in the first part of Fig. 8 when the pressurization is
active. The relative difference is in the order of 1%. This result was obtained with an appropriate discretization,
which was then applied for all the other calculations. The Hertz half–width was divided into 200 uniformly
loaded cells (Fig. 6(a) shows a coarser discretization for graphical purposes only). The sequence of the contact
center position required from 100 to 200 divisions depending on the SIF trends, for example Fig. 8 shows very
steep derivatives at the beginning of the pressurization. Finally, the crack length WF was divided into 100
divisions for an accurate numerical integration. Pressurization caused a high mode I SIF maximum value. The
mode II SIF also experienced high values because of the coupling effect. In the final part of the contact transit
the crack is closed, because the pressurization reduces its intensity and the Hertz pressure closure effect is
predominant. Here KI is zero, and the crack is only loaded by KII. Bower performed a stick & slip analysis
[11], while the present calculation was limited to the frictionless contact between the crack faces. Similarly
the crack face contact was modeled as frictionless in the FE model, as mentioned above, and an excellent
comparative result between the FE and WF models was found as reported in Fig. 8(a). The relative difference
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Figure 8: Validation of the proposed WF calculation, with the FE model and the literature data. (a) Negative
S/R, f = 0.05, θ = 25◦, c/a = 0.5. (b) Null friction, θ = 150◦, c/a = 1.

of the proposed model and the trends obtained by Bower in the final part of the contact transit is small compared
to the maximum dimensionless mode I and mode II stress intensity factor values.
The crack remains closed during the entire contact transit of the second analysis, Fig. 9. When the crack
closes, the WF prediction of KII is affected by a slightly higher error, due to the assumption for finding the
distribution of crack face contact pressure pc(x′). This inaccuracy is highest for the extreme KII values. Figure
10 shows the three situations referred to as A, B, C in Figs. 8, 9. For all the three configurations the contact
pressure between the crack faces pc(x′) is shown, obtained both by the FE analysis and with the assumption
of proportionality with the nominal normal stress distribution, as previously described.
These three configurations show quite different contact pressure distributions. With the contact condition A in
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Figure 9: Validation of the proposed WF calculation, with FE model and literature data. (a) Negative S/R,
f = 0.05, θ = 25◦, c/a = 0.5. (b) Null friction, θ = 150◦, c/a = 1.

Fig. 8, similar to the contact condition A′ in Fig. 9, the Hertz load is away from the crack but its projection is
still over the crack tip. The crack is partially open, as shown by the FE simulation, indeed the contact pressure
between the crack faces is zero near the surface. Although the partially open crack was not considered, in the
present WF model, the nominal stress was found to be low in the initial part of the crack in agreement with
the partially open crack. With configuration B, on the other hand, the Hertz load is entirely over the crack,
the normal stress distribution does not show steep gradients, and thus the pc(x′) proposed in the WF model is
very similar to the FE pc(x′), consequently the relative discrepancy of KII is smaller. Finally, configuration C
shows a contact distribution at the border of the crack mouth, while the crack is in the opposite direction. The
loose contact is at the end of the crack line, thus internally the crack is partially open. In this configuration too,
the assumption proposed produces an acceptable result, both in terms of the crack contact distribution and the
mode II SIF. All the investigated configurations showed that the dimensionless factor is near unity λc ≈ −1,
as suggested by Eq. 11. The crack face contact pressure is approximately equal to the compressive nominal
stress itself, however the proposed correction led to greater accuracy.

5 Applications

5.1 Parametric analysis

The proposed WF calculation algorithm was used to evaluate different contact conditions and parametric anal-
yses were performed. A negative S/R was considered, where the dominating effect was the mode I SIF which
underwent a positive cycle because of the pressurization. The dependencies investigated were coefficient of
friction, surface angle and size of the crack. A weak dependency of both the SIF trends was found in terms
of the friction coefficient f , relating the shear traction τf to the Hertz contact pressure p, in the wide range
f = 0.01− 0.2, Fig. 11. A strong dependency, on the other hand, was found in terms of the crack angle θ ,
Fig. 12. The shallower the crack, the higher the extreme values of the SIFs. The effect of the angle was more
pronounced for small values. The SIF ranges approximately doubled when the θ angle was reduced from 30◦
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Figure 10: Comparison of crack faces contact distribution: (a) configuration A of Fig. 8, (b) configuration B
of Fig. 9, (c) configuration C of Fig. 9.

to 15◦, while they changed slightly for θ > 30◦.
Finally, the effect of the crack size was also investigated. Obviously, the larger the crack, the higher the values
of KI and KII, Fig. 13. Figure 14 shows that this dependency is almost linear for different surface angles.
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5.2 Residual stresses

As mentioned above, the residual stress can be efficiently taken into account within the proposed WF calcu-
lation. The small and shallow cracks are mainly important for the fatigue surface pitting problem, thus near
surface uniform residual stress was considered, even though the proposed procedure can elaborate any residual
stress distribution along the depth. The residual stress at the surface, or slightly below the surface, is biaxial.
Moreovoer, the transversal component (perpendicular to the plane of the problem) does not influence the SIFs,
as mentioned above. Residual stress can therefore be defined here by a unique scalar value σRS, which can
be reported as a dimensionless ratio with the maximum contact pressure p0. Different residual stress levels
were considered: σRS/p0 = −1,0.5,0,0.5 (negative σRS/p0 means compressive residual stress). The open-
ing of the crack is reduced by compressive residual stress, while it is increased by tensile residual stress. A
tensile residual stress produces a higher KI maximum value, and a delayed crack closure after pressurization.
A tensile residual stress also causes a positive KI while the Hertz distribution is away from the crack, and a
reopening after the crack has closed. The residual stresses also shift the value of KII, which is not zero when
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the Hertz distribution is not near the crack, Fig. 15. The closure of the compressive stress has a different
effect depending on the size of the crack. Smaller cracks are more intensively affected. When small and with
a highly compressive residual stress state, the crack may even remain closed, Fig. 16.

6 Conclusions

The weight function technique was used to calculate stress intensity factors for inclined surface cracks loaded
by traveling Hertz pressure and proportional friction. Any different surface pressure and shear traction can
be modeled, even if such tractions vary during transit. For example involute gear tooth loading, especially
with profile modification, can show curvature changes during contact transit and pressure variation because of
teeth load sharing. Surface pressure and shear traction were modeled as uniformly loaded cell distributions in
order to accurately find the stresses below the surface. The effect of pressurization and residual stresses were
also modeled, by including these terms in the weight function integrals. High accuracy was obtained simply
by reducing the size of each uniformly loaded cell and by introducing a proper discretization of the crack
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line where a numerical integration of the weight function was performed. The high efficiency of the weight
function calculation involved very little computational time despite the high level of discretization required.
The proposed model was successfully verified on the basis of available data in the literature and also with a
dedicated finite element model. Very accurate comparative results were obtained during pressurization, which
produced a positive mode I stress intensity factor. In order to find the mode II stress intensity factor, when
the crack is closed, it was assumed that the contact pressure distribution at the crack face was proportional to
nominal stress. This hypothesis was then verified on several geometry configurations.
Parametric analyses were performed for different pressurization and results discussed. The friction coefficient
was almost non influential, while the angle of the crack was very effective, especially for small values. The
stress intensity factor ranges were found to be depend almost linearly on the crack size. The effects of the
residual stress were also parametrically investigated. As expected, a compressive residual stress produced
a smaller pressurization mode I and earlier crack closure. This effect was stronger for smaller cracks. The
compressive residual stress was able to overcome the pressurization and even keep the crack closed.
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This analysis can provide important information about any surface treatment designed to improve fatigue
strength. It thus extends the optimization of the surface treatment depth [33] to the field of rolling contact
fatigue where the mode I loading is generated by pressurization rather than any external load.
An evolution of the proposed study would be to introduce the weight function for the surface kinked crack.
This was recently proposed in Ref. [34] and it could be used in order to find the stress intensity factors of the
pitting crack after a first orientation deviation, while in this study the crack was limited to the simple straight
crack configuration.
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