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ABSTRACT 

This paper deals with the need of extending results of deterministic rocking analyses to stochastic analyses on 

restrained masonry façades in one-sided motion. The purpose is to define the level of improvement achieved 

with any anti-seismic device of a given stiffness and strength, in terms of reduction of probability of 

exceedance of a certain limit state. The most efficient intensity measures (IMs) are identified for three masonry 

façades of churches in free and restrained conditions. A reliability analysis is carried out by considering over 

70 earthquakes, of which 50 recorded during the recent 2016-2017 Central Italy Earthquake. Four limit states 

are taken into account: rocking initiation, limited rocking, moderate rocking and near-collapse condition. The 

yielding limit state is considered for the analysis with anti-seismic devices. Univariate and bivariate fragility 

curves (FCs) are compared in free and restrained configurations, to discuss the reduction of probability of 

exceedance depending on 15 intensity measures. The results show that the best IMs are velocity-based 

parameters, in particular the Fajfar Index and Peak Ground Velocity, together with Peak Ground Acceleration. 

In one-sided motion without restraints, the higher the compression stiffness of the sidewalls, the more unstable 

the wall is in probabilistic terms. Practical curves show, for each IM, the reduction of probability of exceedance 

obtained thanks to assumed horizontal restraints. These help to understand, in a stochastic perspective, to what 

extent the anti-seismic device can be beneficial or detrimental (in case of amplifications of motion) for given 

earthquake intensities. The comparison of univariate and bivariate FCs confirms the superiority of bivariate 

FCs. Indeed, often the univariate curves sensitively underestimate the probability of exceedance, especially 

for low-medium intensity earthquakes, and are not able to offer any information regarding the influence of 

other IMs. 

KEYWORDS: rocking; one-sided motion; fragility curves; horizontal restraints; masonry façades; intensity 

measures 
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1 INTRODUCTION 

The out-of-plane behavior of masonry walls involves the rocking motion of rigid blocks, considered as single 

(SDOF) or multi (MDOF) degree-of-freedom systems. The possible tools currently used to assess their seismic 

vulnerability are deeply discussed in [1], [2], covering force-based, displacement-based, standard and rocking 

approaches. These procedures can be adopted to evaluate the behavior of many types of structural and non-

structural elements such as parapets, gable ends, chimneys and masonry walls, often struck by earthquakes [3], 

[4]. Observations on past earthquakes occurred in New Zealand [5] showed that the majority of parapets that 

exhibited no damage were properly restrained to limit out-of-plane. The risk associated to these mechanism is 

relevant, not only for the safeguard of human life, but also for adjacent structures. Indeed, from the 

observations sometimes the only damage to a structure was the fall of chimneys or parapets onto or through 

the roof of a  parapet  or neighboring building [5]. Other observations regarded masonry façades of churches 

damaged by the 2011 Christchurch Earthquake [6] and by the 2012 Emilia Romagna Earthquake [7]. 

Numerous uncertainties affect the MDOF models, such as the energy dissipation during each impact or the 

boundary conditions to assume. In order to stochastically assess the influence of anti-seismic devices,  it is 

necessary to simplify the topic as much as possible. For instance, the incipient overturning of a masonry wall 

may be considered by assuming a SDOF rigid block rotating around a base hinge [8]. However, also the rocking 

motion of a SDOF block is strongly influenced by the restitution coefficient, related to the dissipative 

properties, and by the boundary conditions [9], [10]. The first issue, although, in principle, extremely relevant 

is here neglected since the comparison is made between free and restrained conditions assuming for them the 

same restitution coefficients, the analytical one [11]. In a more realistic analysis, experimental values of 

restitution coefficients should be taken into account. For this purpose, several experimental tests on masonry 

walls confirm that generally the real value is about 90% of that analytical [12], [13]. In this sense, the performed 

analyses are on the safe side, as a higher restitution coefficient generally implies larger rotation amplitudes. 

Moreover, the type of input motion plays a crucial role in the dynamic response. The earthquake that causes 

motion is characterized by many parameters, all of them affecting the output in a combined way. As a 

consequence, it is relevant to identify the most meaningful parameters to consider when the stability of the 

block has to be assessed. 

These issues are commonly addressed by using deterministic or probabilistic approaches [1]. Based on the 

integration of the equation of motion, the former is generally aimed at defining the peak value of the motion 

amplitude that defines the stability of the block, given its deterministic geometric parameters and the type of 

excitation. Traditional deterministic approaches are those proposed by Makris and Konstantinidis [14], that 

introduced rocking spectrum as a distinct and valuable intensity measure of earthquakes. Other deterministic 

approaches are based on the identification of the worst input scenario corresponding to the resonant response 

of the rigid blocks [15]–[21]. In this line, Casapulla et al. [15], [21] and Casapulla [17] proposed a simplified 

representation of the seismic input as a superposition of two sequences of instantaneous Dirac impulses of 

acceleration and identified the resonant condition with a time interval between the main impulses coincident 

with the amplitude-dependent durations of the half-cycles of the motion. DeJong [22] defined a theoretical 

accelerogram with the condition of maximization of the input energy, dealing with a step function with 

alternate sign, always opposite to the current rotational velocity of the block. Alongside these studies, the 

probabilistic approaches attracted increasing attention over the last years. These procedures started to be 

applied in seismic field almost twenty years ago, with the introduction of the concept of fragility, or conditional 

probability of failure [23]. Sorrentino et al. [24] numerically investigated how the parameters of real seismic 

records (Peak Ground Acceleration, PGA, Peak Ground Velocity, PGV, Peak Ground Displacement, PGD, 

mechanical energy, etc) are meaningful in defining the seismic hazard of a free rocking block. They stated that 

PGV is the most significant parameter as it takes into account both amplitude and frequency. Referring to 

fragility applied to rocking, Dimitrakopoulos and Paraskeva [25] investigated the response of rocking 

structures to near-fault seismic actions and highlighted the most important Intensity Measures (IMs) 
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characterizing the rocking response and the relevance of bivariate fragility curves. PGA and Peak Total Roof 

Velocity (PTRV) were assumed as intensity measures in the determination of damage fragility functions for 

parapets and rooftop chimneys [26]. Other authors  performed a seismic reliability assessment of classical 

columns, by using synthetic or recorded ground motions [27], [28]. Generally, the adopted Engineering 

Demand Parameter (EDP) is the maximum amplitude ratio, whereas the peak ground velocity is one of the 

most reliable IMs [25]. Performance levels can then be assigned to each EDP, together with the values of the 

corresponding thresholds, to generate fragility curves. Therefore, these tools are more reliable than a simple 

deterministic analysis, mainly for the extremely high sensitivity of the response to the input motion.  

In this paper, the stochastic approach is adopted to define fragility curves of masonry walls regarded as rigid 

blocks under one-sided rocking motion. The probability of exceedance of specific limit states in the rocking 

response is calculated when the walls are both in free conditions and in restrained conditions. The latter 

situation refers to the state of the walls strengthened by proper anti-seismic devices simulated by horizontal 

springs. These springs can reproduce the common steel tie-rods usually adopted as strengthening techniques 

for impeding or limiting the out-of-plane behavior of masonry structures. Three masonry façades of churches, 

struck by the 2016-17 Central Italy Earthquake, are considered as case studies. To calculate the structural 

reliability, there is the need of computing first the structural failure and then the failure probability. The  

structural  failure  is  estimated by performing  non-linear transient analyses  that  evaluate  whether  the  EDP 

has been exceeded. The calculation is made for over 70 earthquakes, each of them defined by 15 IMs. On the 

other hand, the structural reliability is estimated by determining the failure probability associated to limit states 

that define safe and unsafe domains. Four limit states are taken into account for one-sided rocking without 

restraints: rocking initiation, limited rocking, moderate rocking and near-collapse condition. For one-sided 

rocking with restraints, only rocking initiation and limited rocking corresponding to yielding of the steel tie-

rod are significant and therefore considered. The basic scheme of the structural rocking system and the three 

façades are presented in Section 2. The reliability analysis is illustrated in Section 3, introducing the seismic 

input parameters and the IMs. Section 4 discusses the correlation between EDP and IMs by analyzing Pearson’s 

and Spearman’s coefficients. Afterwards, univariate and bivariate fragility curves are obtained for the case 

with and without horizontal restraints acting as anti-seismic devices, and the resulting curves are compared 

(Section 5, 6). Such comparison allows quantitatively assessing the seismic improvement achieved with the 

anti-seismic devices in a stochastic perspective. 

2 STRUCTURAL ASSESSMENT  

2.1 Rocking analysis for one-sided motion of free and restrained walls 

The considered model is a rectangular block of mass � rocking around O or O’ (Figure 1), defined in size by 

a semi-diagonal � that connects the center of mass to the pivot point, and in shape by the slenderness ratio �, 

arctangent of the ratio thickness � to height ℎ (Figure 1a). The boundary conditions in the rocking motion are 

relevant as they strongly influence the dynamic response [29]–[31]. The sidewalls (or transverse walls) can be 

modelled as spring bed with specific stiffness per unit of length. When the masonry façade rotates inward, it 

impacts the sidewalls (Figure 1a). In this case, a compression stiffness has to be considered. When the wall 

rocks outward and is not restrained by any device, a spring bed in tension should be taken into account. Being 

masonry poorly resistant in tension, in this work the spring bed is supposed to be active only in compression, 

and its compression stiffness is [9]: 

���	
� = � �
� �� = E� �

�  (1) 
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where E� is the masonry elastic modulus in horizontal direction, t and ℎ� respectively thickness and effective 

depth of the transverse walls, whereas A=t ℎ� is the side walls cross section. This condition is called one-sided 

(1S) motion. When the spring bed can be assumed to act in tension, the stiffness to consider is related to the 

dissipated energy due to friction in the sidewalls [32]. The restrained configuration is that where steel-tie rods 

tend to recenter the wall in outward motion. The steel tie-rods, modelled as individual springs (b), are supposed 

to be active only in tension (Figure 1b).  

The full equation of motion of the non-smooth contact problem is [9]: 

���� + ��� �!��� sin %& + 

+��� �! �'(�( cos %�,&  ,sin �� − sin %�,&. + ��� �! ���	
� ℎ�  /% + 0ℎ�
2 + 2ℎ�(

3 4
− � 5�6� cos %& = 0 

 

(2) 

 

where %& = � − ��� �!� and %�,& = �� − ��� �!�. �� is the polar inertia moment with respect to the 

oscillation line O’-O, �� = 8
9 m h( + s(! = 8

9 mR(, for perpendicular blocks. However, inertia moments have to be 

calculated from the real geometry of the actual masonry façade. �� is the single spring radius vector and ' 

defines the single spring position (2.2). The terms multiplied by ���	
� are [9]: 

% = ��� �! �( sin � cos �  1 − cos �!; 

0 = �  sin( � cos � − cos9 � + cos( �!; 

2 = ��� �! sin � cos( �. 

5�6 is the acceleration time-history (in gravity acceleration � units), which can be artificially generated or 

recorded. This work considers only natural seismic records, as specified in § 3.3. During each impact, that is 

for � = 0, the velocity after impact �> ?is assumed as the velocity before impact �> @ reduced by a restitution 

coefficient A: 

�> ? = e �> @. (3) 

 

The restitution coefficient defined by Housner [11] for rectangular block is function of the slenderness ratio 

�:  

A = 1 − 9
( sin( �. (4) 

 

This theoretical value in real conditions, e.g. for masonry walls, should be generally reduced for considering 

larger dissipation due to non-perfect conditions of the base hinge, generally a mortar layer. A reduction by 80-

90% was generally obtained for common masonry parapets [12], [33], [34]. However, in this work such a 

reduction does not apply, to get results in favor of safety and to simplify the assumptions made. Moreover, as 

the façades have been associated to rectangular blocks (2.3), the analytical expression of restitution coefficient 

is assumed in the calculations. 
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(a)                                                                                         (b) 

Figure 1. Rocking block assumed in the physical model for a masonry façade: inward rotation, wall impacts 

sidewalls, one-sided motion (a); outward rotation, tie-rods restraint the wall (b). 

 

The analysis results, obtained from a specifically developed MATLAB code, are expressed in terms of 

normalized rotation �/� time-histories. The code uses a 4th-5th order Runge-Kutta integration technique. The 

maximum value of the normalized rotation time-history represents the individual output or realization, taken 

as engineering demand parameter, for each earthquake. Afterwards, the results are filtered by the performance 

criteria related to the limit states defined in § 2.2 and further processed in the reliability analysis step.  

2.2 Performance criteria and limit states 

The assumed performance criteria define four possible limit states for wall without restraints: rocking 

initiation, limited rocking, moderate rocking and near-collapse condition (Table 1). For the restrained wall, 

only rocking initiation and yielding limit can be considered. The second one, LSY, corresponds to yielding of 

the steel tie-rod. Although the displacement capacity of a steel tie-rod can be higher, this limit state is taken 

into account because, after plasticization, the modelling of the tie in the return phase would be problematic. 

Indeed, stress concentration in masonry or tie buckling could occur: these aspects are complex to be included 

in a simplified formulation and out of the scope of the present work. Each limit state is identified by an 

engineering demand parameter EDP, taken as the maximum normalized rotation value �	DE/�. The rocking 

initiation FG0 corresponds to a value of rotation different from zero. For this case, a straightforward check can 

assess whether the rocking initiates or not. Indeed, the uplift occurs when the peak ground acceleration is 

greater than the minimum acceleration that causes rocking, 5�6,	HI = tan �. Otherwise, the structure remains at 

rest. All the considered records cause the rocking initiation and therefore the fragility curves are trivial and not 

reported for this limit state. The limited rocking FG1 is a limit state for which the maximum normalized rotation 

attains a value of 0.10. This value, where rotation is an order of magnitude smaller than the slenderness ratio, 

is considered by Dimitrakopoulos et al. [25] as a promising balance of the benefits of rocking isolation, without 

relevant risk of overturning. Limit state FG2 is called moderate rocking ( �	DE/�!LH	 =0.4) and it is 

contemplated as most of the considered earthquakes have a high number of normalized rotations values around 

it. This occurs also for other seismic records when the rocking motion of a masonry façade is analyzed [31]. 

Limit state FG3 corresponds to a near-collapse condition, for which it is assumed  �	DE/�!LH	 = 1.5. A wall 
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can be stable even when �	DE/� > 1, up to 
&PQR

S = T
(S. This differentiates the rocking block from a SDOF 

oscillator in kinematic approach based on the limit analysis, where the threshold for stability is 
&PQR

S = 1 [29]. 

The limit states FG1, FGU and FG2 can be seen as serviceability limit states, whereas FG3 is an ultimate limit 

state. Theoretically, the maximum rotation is �	DE = V/2: a sixth limit state, corresponding to overturning, 

could be therefore investigated. In this case, structural fragility must be defined referring to a categorical 

problem, by properly modifying the way to calculated the collapse probability [25]. However, since before 

overturning the collapse mechanisms of masonry walls involve other phenomena, e.g. material crumbling, this 

limit state is not considered in this work. To summarize, all the limit states of Table 1 are considered for the 

one-sided (1S) free motion, whereas only LS0 and LSY are analyzed for the one-sided restraint motion (1S+K), 

as the values of normalized rotations greater than those corresponding to yielding are meaningless. 

Table 1 Limit states defined in the reliability analysis of rocking walls.  

 

Limit State LS 

WXY =  �	DE/�!LH	 Definition Structural behavior 

FG0 0.0 rocking initiation Uplift 

FGU* Depending on geometry tie-yielding Yielding of the tie-rods 

FG1 0.1 limited rocking Minor damages 

FG2 0.4 moderate rocking Larger damages and 

influence on the adjacent 

structures (e.g. floors) 

FG3 1.5 Near collapse Overturning 

*The unique one considered for the restrained configuration. 

 

2.3 Application of rocking on real cases  

The examined rocking structures are three masonry façades struck by the 2016-17 Central Italy Earthquake. 

Because the most of the considered seismic records belong to this event, three real cases of masonry façades 

have been investigated. They are the main façades of the San Michele Arcangelo church in Lisciano 

(municipality of Ascoli Piceno), the Santa Maria in Via’s church and the San Filippo Neri church in Camerino 

(municipality of Macerata), all in the Marche Italian region (Figure 2). From now on, they will be respectively 

called LSCH, SMVCH, SFILCH. These examples are chosen as representative of typical church typologies: 

LSCH is a single nave church, whereas SMVCH and SFILCH are an elliptical and a three-nave churches with 

greater dimensions (Figure 3). The main façade of LSCH is slender and is not restrained by any tie-rods, while 

in SMVCH the façade is strengthened by two tie-rods (Figure 2c) of diameter 20 mm, at depth 15 m from the 

base and have length of 5.3 m. LSCH exhibits a clear incipient overturning of the main façade detached from 

the sidewalls, whereas the rocking part of SMVCH involves a small part of the sidewalls.  SFILCH’s façade 

underwent complete overturning of the upper part of the façade: the horizontal hinge is located at about 14 m 

from the ground (Figure 2g). The seismic records should be applied in the analysis of SFILCH after a filtering 

process, to consider the vibration effects of the substructure. However, the records are assumed as provided by 

the database without any modification for the sake of comparison (§ 3.3).  
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Table 2 reports the geometric and mechanical parameters needed for rocking analysis. The three façades are 

not in principle rectangular, but they have been associated to a rectangular shape by calculating the radius 

vector, which connects the pivot points to the actual center of mass, from the inertia moments. It is important 

to notice that the inertia moments are obtained by considering the actual geometry of each façade. Once the 

radius vector is known, it is straightforward to calculate the equivalent height of the rectangular rocking block. 

LSCH and SMVCH have similar slenderness but the latter has the highest inertia moment. SFILCH has the 

smallest size (radius vector) and inertia moment, but the highest slenderness. In one-sided (1S) motion without 

restraints, the spring bed stiffness is considered in compression, and calculated from Eq. (1) for each façade. 

As shown in Figure 3, SMVCH has four side walls, whereas SFILCH (similarly to LSCH, not displayed) has 

two side walls. Being the spring beds in parallel, the stiffness per unit of length of each sidewall is summed up 

to obtain the values reported in Table 2.  

  

 
(a) 

 
(b) 



 

8 

 

 
(c) 

 
(e) 

 
(d) 

 
(f) 

 
(g)  

 
(h) 

Figure 2. San Michele Arcangelo church (LSCH) in Ascoli Piceno: main façade (a) and internal view of the 

incipient overturning (b); Santa Maria in Via’s church (SMVCH) in Camerino (Macerata): main façade (c), 

view of the side part from North (d) and zoom magnifications on the cracks (e, f); San Filippo’s church 

(SFILCH) in Camerino (Macerata): main façade before (g) and after (h) collapse. 
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Table 2 Geometric and mechanical parameters for the rocking analysis of the church façades.  

Rocking 

façade 

Equiv. 

height 

[m] 

Thickness 

[m] 

Width 

[m] 

Specific 

weight 

[kN/m3] R [m] 

a 

[rad] 

I0  

[m4] 

Kcompr 

[N/m2] 

LSCH 8.85 0.65 9.30 21.00 4.44 0.07 2.82E+06 8.08E8 

SMVCH 21.30 1.30 15.50 18.00 10.67 0.06 1.27E+08 2.04E9 

SFILCH 7.64 0.80 12.00 18.00 3.84 0.10 2.36E+06 7.50E8 
 

 

(a)                                                            (b)                                                (c) 

Figure 3. Santa Maria in Via church (SMVCH, a), San Filippo church (SFILCH, b), San Michele 

Arcangelo (LSCH, c): geometric dimensions (m) and spring bed configuration representing sidewalls. 

 

2.4 Definition of steel tie-rods as horizontal restraints  

The use of anti-seismic devices as stabilizing elements helps to reduce the rotation amplitude in the dynamic 

behavior, generally making the response safer. Such anti-seismic devices, e.g. steel tie-rods, may be modelled 

through concentrated springs with stiffness K at a specific depth of the wall (Figure 1b): 

�� = '�. (5) 

 

' is a dimensionless coefficient that defines the position of the spring with respect to the semi-diagonal �. Let 

us assume that the block is enough slender to consider the spring in the middle plane of the wall. The rocking 

analysis are performed by considering two main configurations. When the wall is free, namely is not restrained 

by any device, the value of � in Equation (2) (Figure 1a) equals zero and ���	
� assumes a finite value. By 

contrast, if the wall is strengthened by some stabilizing restraint, the value of � is different from zero and 

���	
� equals zero (Figure 1b). ���	
� values are reported in Table 2. 

The stiffness � of the horizontal restraint is taken as the actual one only for SMVCH, since in this church the 

steel tie-rods are present (Figure 3a). Instead, for LSCH and SFILCH the stiffness is obtained with a design 

procedure. In particular, the PGAs are assumed according to the Italian Technical Rules for constructions [35], 

[36] as 1.8 m/s2 and 2 m/s2 for LSCH and SFILCH, respectively. By considering type A soil with soil factor S 

= 1.5, behavior factor q = 2 and confidence factor FC = 1.35 (corresponding to the poorest knowledge level), 

the seismic demands in terms of spectral accelerations for SLV (safeguard of life limit state) respectively are 

1.35 m/s2 and 1.9 m/s2 also taking into account for SFILCH the position of the rocking wall at a certain height 

from the ground. The rotational equilibrium around the cylindrical hinge is satisfied by yielding forces of two 
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tie-rods of 82.4 kN for LSCH and 217.7 kN for SFILCH, which imply the corresponding mechanical and 

geometrical parameters shown in Table 3. Once the steel elastic modulus W , the section of the tie-rod %=
TZ[

8  

and its length F\H] are known, the stiffness of the steel tie-rods is simply given by:  

� = W%
F\H] 

(6) 

 

Table 3 Definition of the stiffness of the steel tie-rods 

Rocking façade PGA [m/s2] 

n. of 

tie-

rods Tie diameter [mm] Tie length [m] Height from the rocking hinge [m] K [N/m] 

LSCH 1.8 2 16 4.5 7.5 1.88E+07 

SMVCH - 2 20 6 15 2.20E+07 

SFILCH 2.0 2 26 8.5 3 2.56E+07 

3 RELIABILITY ANALYSIS 

3.1 Structural fragility definition 

The structural reliability is assessed through the definition of fragility (or vulnerability) as conditional 

probability of failure. The issue requires clearly defining the engineering demand parameter EDP and the 

Intensity Measure IM that describes the input acceleration history 5�6 (Equation (2)). The EDP is the simplest 

output coming from the analysis, namely the maximum normalized rotation, whereas the IMs is the intensity 

measure describing the inputs. For a detailed description of this latter point the reader is referred to § 0. The 

fragility is defined after a conditional probability that the EDP goes beyond a capacity limit 2, given an �^ 

associated to the input action: 

Y� = Y WXY > 2|�^!. (7) 

 

The capacity threshold is connected to the limit states defined in § 2.2. It is assumed that rocking occurs for 

each earthquake or, in other words, that the limit state FG0 is always exceeded to obtain significant results 

from the analysis. The fragility analysis is performed by following the procedure suggested by Padgett et al. 

[37], briefly described below. The conditional probability is expressed for the serviceability and ultimate limit 

states with the standard cumulative distribution function `: 

Y� = ` abc de@bc f
ge|hi j. 

(8) 

 

where GZ is the median structural demand (that is WXY) while 2 is the capacity related to the limit states. 'Z|kl 

is the logarithmic standard deviation, or dispersion, of the demand conditioned on the �^ level. Only demand 

uncertainties are taken into account. A power model describes the relationship between GZ and IM for the 

definition of the univariate (conventional) fragility curves: 

GZ = m �^n. (9) 

A linear regression of the logarithmic allows calculating, for each �^ level, the regression coefficients m and 

o. Therefore, the natural logarithm of the median structural demand is expressed as: 
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ln GZ = ln m + o ln �^. (10) 

In addition, bivariate fragility curves can be obtained, by expliciting the structural demand as: 

GZ = m � q̂nr ∙ �^(n[. (11) 

Similarly to what done for univariate analysis, a multi-linear regression allows computing the regression 

coefficients m, oq and o( that define the generic equation of a plane in the three dimensional space ln � q̂, 

ln �^( and ln m: 

ln GZ = ln m + oq ln � q̂ + o( ln �^(. (12) 

Once that the median structural demand GZ is calculated, Equation (8) applies to find the conditional 

probability of failure and therefore the bivariate fragility curve. 

3.2 Definition of seismic input parameters  

In the definition of a probabilistic method to apply to rocking structures, there is the need to generalize the 

concept of using significant ground motions. Most of the time, the acceleration time history has randomly 

distributed spikes and there are not distinct pulses that could largely simplify the issue. Moreover, even when 

more than one distinguishable pulses are contained in an earthquake record, it is challenging to define the 

procedure of incorporating their features in a single time scale [38]. The input function is described by 

numerous ground motion parameters, which can be either dependent or independent on the response. The 

ground motion parameters may be related to time-history, to energy content or to spectral components. 

Classical ground motion parameters related to time history are PGV (Peak Ground Velocity), PGA (Peak 

Ground Acceleration), PGD (Peak Ground Displacement). Sometimes, further parameters derived from the 

acceleration and velocity time history are considered: the third highest peak of acceleration, the third highest 

peak of velocity and the acceleration peak after filtering frequencies higher than 9 Hz [28]. In this paper, the 

ratio of PGV and PGA is considered to take into account the effects of both PGA and PGV. The spectrum 

intensity G�t, defined after Housner, is a spectrum-based parameter defined as the area under the elastic 

velocity spectrum between the periods u 0.1 and 2.5 seconds. That range was considered by Housner the 

vibration period range of interest for civil buildings. The damping coefficient v  associated to the spectrum is 

taken equal to 0.05. Other acceleration-based parameters are the Arias intensity,  
�D, and the root-mean-square acceleration, RMSA, that better describe the short period structures [38]. By 

contrast, velocity-based parameters, including PGV, such as the spectrum intensity, G�t, and the Fajfar [39] 

index, �w , better describe the response of intermediate and long period structures. The significant strong motion 

duration xZ is defined according to [40]. xZ is based on that part of the recorded strong ground motion that 

generates 90 per cent of the overall acceleration, velocity, and displacement spectral amplitudes. The duration 

can be then expressed by xZ = xyz − xz where xyz and xz are respectively the times where 95% and 5% of 

Arias intensity is reached.  

For what concerns frequency parameters, the mean period u	, derived from Fourier spectra [41], was shown 

to be one of the best ones when no distinguishable pulses can be identified in the seismic record. Another 

relevant parameter, depending on it, is the characteristic length scale of the ground excitation. This parameter, 

expressed by F	 = u	( ∙ Y{% [38], gives a measure of the persistence of the most energetic pulse capable to 

generate inelastic deformation. Moreover, the cumulative absolute velocity CAV can be considered as the sum 

of the consecutive peak-to-valley distances in the velocity time history and was shown to well express the 

destructive potential of an excitation [42].  
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Table 4 – Intensity measures used for fragility curves. m x! acceleration time-history in units of g, | x! 

velocity time-history, 5 x! displacement time-history, x} duration of the seismic record. 

 

Intensity measure Description Expression Literature 

reference 

PGA Peak Ground Acceleration Y{% = �m~|m x!| [25] 

PGV Peak Ground Velocity Y{� = �m~|| x!| [25] 

PGV/PGA 
Ratio between PGV and 

PGA 
PGV/PGA  

PGD 
Peak Ground 

Displacement 
Y{X = �m~|5 x!| [25] 

G�t  
Spectrum or Housner 

intensity 
� G� u, v!�u(.z

�.q
 [43] 

�D Arias Intensity �D = V
2� � m x!(�x�

�
 [44] 

��  Energy density �� = � | x!(�x�
�

 [44] 

�w  Fajfar Index �w = Y{� ∙ xZ�.(z [39] 

xZ Strong motion duration 
xZ = 0.95 � m x!(�x\�

�
− 0.05 � m x!(�x\�

�
 

Or xZ = xyz − xz 

[40]  

 

RMSA 
Root Mean Square 

Acceleration �^G% = / 1
x} � m x!(�x\�

�
4

q(
 [45] 

RMSV 
Root Mean Square 

Velocity �^G� = / 1
x} � | x!(�x\�

�
4

q(
 [46] 

RMSD 
Root Mean Square 

Displacement �^GX = / 1
x} � 5 x!(�x\�

�
4

q(
 [46] 

CAV 
Cumulative Absolute 

Velocity 
2%� = � |m x!|�x\�

�
 [42] 

u	 Mean period u	 = ∑ 2H( a1�HjH
∑ 2H(H

 
[41] 

F	 Characteristic length scale F	 = u	( ∙ Y{% [38], [47] 

 

3.3 Selection of records  

The seismic records were mainly chosen from the database of the 2016-2017 Central Italy Earthquake. The 

2016-2017 Earthquake severely hit Central Italy with a long and strong seismic swarm, started on August, 24th 

and ended in January 2017. Corrected records of the earthquakes considered for preliminary analyses are 

available in the Engineering Strong-Motion database (ESM [48]). The selection criterion is a magnitude ML 

greater than 4.0, so 50 earthquakes are available (East-West orientation). In order to obtain more meaningful 

results, extra 24 earthquakes were taken from the same database considering PGV values higher than 45 cm/s. 

Data and seismic parameters are shown in Table 6 (synthetic with site and event) and Table 6 (detailed with 

IMs).  

Table 5 Selected earthquake records with dates and corresponding station IDs.  

 Site Date Time ML Station ID 

1 - 5 Accumuli 24/08/2016 01:36 6.0 FEMA, FOC, CLF, NRC, AMT 

6 - 10 Norcia 24/08/2016 02:33 5.4 FOC, NRC, FEMA, GUMA, AMT 
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11 - 16 C.S.Angelo 26/10/2016 17:10 5.4 FOC, FEMA, MCV, MNF, CNE, CMI 

17 - 22 Ussita 26/10/2016 19:18 5.9 MCV, FOC, CLF, MNF, CMI, CNE 

23 - 35 Norcia 30/10/2016 06:40 6.1 

T1219, MCV, MNF, FOC, T1213, CLO, 

T1214, ACC, CNE, AMT, NRC, T1201, 

NOR 

36 - 40 Amatrice_1 18/01/2017 10:14 5.4 ASP, CNE, NRC, RQT, PCB 

41 - 45 Amatrice_2 18/01/2017 10:25 5.3 RQT, ACT, AMT, CNE, MSCT 

46 - 50 Amatrice_3 18/01/2017 13:33 5.1 RQT, ACT, CNE, CSC, PCB 

      

 High PGV events Date Time Mw Station ID 

51 Southern_Iran 26/12/2003 01:56 6.6 BAM1 

52 

Northern_and_central_Ira

n 16/09/1978 15:35 7.3 TAB 

53 Turkey 13/03/1992 17:18 6.6 2402 

54 - 55 Duzce 12/11/1999 16:57 7.3 8101, 1401 

56 Romania 04/03/1977 19:21 7.5 A39 

57 Irpinia 23/11/1980 18:34 6.9 STR 

58 Friuli_2nd_shock 15/09/1976 03:15 5.9 GMN 

59 Northern_Uzbekistan 17/05/1976 02:58 6.7 GZL 

60 Turkey 13/09/1999 11:55 5.8 4107 

61 - 65 Emilia_2nd_shock 29/05/2012 07:00 6.0 MIRE, MRN, MIRH, MIR01, MIR02 

66 

Northern_Balkan_peninsu

la 15/04/1979 06:19 6.9 BAR 

67 Greece 15/06/1995 00:15 6.5 AIGA 

68 Western_Iran 20/06/1990 21:00 7.4 A6211 

69 

Northwestern_Balkan_pe

ninsula 15/04/1979 06:19 6.9 ULO 

70 Emilia_1st_shock 20/05/2012 02:03 6.1 MRN 

71 Turkey 01/10/1995 15:57 6.0 302 

72 L'Aquila 06/04/2009 01:32 6.1 AQV 

73 Northern_Italy 29/05/2012 10:55 5.5 T0819 

74 Southern_Iran 20/06/1994 09:09 5.8 A3297 

Table 6 Selected earthquake records with the corresponding IMs. 

RECORD 

PGA 

[g] 

PGV 

[cm/s] 

PGV_PGA 

[cm/s/g] 

PGD 

[cm] SIH Ia Iv 

tD 

[s] IF 

RMSA 

[cm2/s4] 

RMSV 

[cm2/s2] 

RMSD 

[cm2] 

CA

V 

T

m Lm 

19760517_GZL 0.72 63.28 87.61 20.97 

2023

28 

4.8

1 

3969.

54 

24.

35 

140.

58 1.50 16.75 7.30 

10.

95 

0.4

2 

0.1

30 

19760915_GMN 0.64 68.44 106.26 11.54 

2264

22 

2.4

0 

2706.

90 

12.

13 

127.

71 1.16 15.59 3.14 

5.2

9 

0.7

4 

0.3

57 

19770304_A39 0.17 31.13 183.49 9.63 

1301

65 

0.4

0 

1346.

71 

2.0

3 

37.1

8 0.33 7.39 2.84 

3.5

3 

1.2

1 

0.2

47 

19780916_TAB 0.84 85.99 102.44 33.41 

3050

90 

10.

72 

11468

.04 

54.

21 

233.

34 1.61 20.11 12.16 

23.

69 

0.4

9 

0.2

02 

19790415_BAR 0.36 50.42 140.06 13.79 

2458

75 

3.0

1 

3764.

47 

15.

24 

99.6

2 0.80 11.42 2.81 

13.

05 

0.7

6 

0.2

08 

19790415_ULO 0.24 47.67 201.36 13.30 

1780

45 

1.2

6 

2190.

60 

6.3

9 

75.8

0 0.50 8.08 2.26 

9.3

4 

0.8

4 

0.1

68 

19801123_STR 0.32 70.32 222.73 26.87 

1665

35 

1.4

8 

4802.

38 

7.5

0 

116.

38 0.45 10.50 5.58 

9.9

9 

0.8

5 

0.2

29 

19900620_A621

1 0.58 37.12 63.55 9.94 

1286

40 

4.6

6 

1744.

18 

23.

55 

81.7

8 0.87 6.68 2.36 

17.

27 

0.3

1 

0.0

55 

19920313_2402 0.49 76.68 157.30 28.27 
2057

11 
1.7

6 
4290.

08 
8.9

0 
132.

44 0.89 17.34 8.64 
6.3

3 
0.8

3 
0.3
39 

19940620_A329

7 1.01 32.06 31.60 4.17 

5735

7 

5.9

7 

365.3

2 

30.

23 

75.1

8 1.30 3.91 0.82 

9.9

9 

0.1

6 

0.0

26 

19950615_AIGA 0.50 39.67 79.62 8.32 

1155

68 

0.9

9 

664.5

0 

5.0

2 

59.3

8 0.60 5.83 1.40 

2.8

4 

0.5

1 

0.1

31 
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19951001_0302 0.33 43.53 133.20 9.29 

2042

19 

2.0

2 

3890.

31 

10.

22 

77.8

3 0.78 13.73 4.06 

10.

72 

0.8

9 

0.2

57 

19990913_4107 0.62 62.74 100.60 20.06 

2371

21 

1.8

3 

3346.

37 

9.2

8 

109.

50 0.54 8.69 2.38 

6.5

2 

0.9

4 

0.5

55 

19991112_1401 0.82 65.90 79.97 11.18 

2363

06 

2.5

1 

3408.

72 

12.

70 

124.

40 0.77 10.91 2.91 

6.8

9 

0.7

9 

0.5

10 

19991112_8101 0.53 82.66 157.42 55.61 

2640

81 

3.0

7 

14197

.93 

15.

52 

164.

07 1.11 30.45 22.29 

10.

44 

0.8

2 

0.3

55 

20031226_BAM

1 0.86 120.59 140.22 31.97 

3825

62 

8.7

2 

7771.

42 

44.

05 

310.

68 1.39 15.65 4.56 

15.

36 

0.4

7 

0.1

91 

20090406_AQV 0.66 40.21 61.22 6.79 

1286

09 

2.8

2 

867.6

8 

14.

28 

78.1

6 0.63 4.40 0.74 

8.4

3 

0.3

3 

0.0

73 

20120520_MRN 0.26 29.97 114.29 8.27 

9899

9 

0.7

1 

472.9

7 

3.6

2 

41.3

3 0.32 3.34 1.08 

3.6

9 

0.4

6 

0.0

56 

20120529_MIR0

1 0.42 31.33 74.70 8.25 

1319

86 

1.5

8 

973.0

2 

7.9

9 

52.6

6 0.55 5.62 1.59 

5.7

7 

0.4

6 

0.0

87 

20120529_MIR0

2 0.22 36.40 167.64 11.99 

9524

7 

0.7

0 

895.6

2 

3.5

2 

49.8

6 0.39 5.72 2.70 

4.4

0 

0.5

2 

0.0

58 

20120529_MIRE 0.18 27.49 155.66 8.27 
9017

3 
0.6

0 
569.6

2 
3.0

4 
36.3

1 0.37 4.48 1.82 
4.0

8 
0.4

9 
0.0
43 

20120529_MIR

H 0.15 24.74 165.30 8.26 

7094

5 

0.2

6 

432.6

3 

1.3

0 

26.4

0 0.24 3.83 1.80 

2.5

7 

0.6

5 

0.0

62 

20120529_MRN 0.22 28.49 127.87 9.35 

9078

5 

0.7

9 

594.4

2 

4.0

0 

40.3

0 0.40 4.52 1.91 

4.8

2 

0.4

0 

0.0

36 

20120529_T081

9 0.26 42.27 163.13 8.83 

9770

4 

0.4

9 

445.5

4 

2.5

0 

53.1

4 0.36 4.37 1.52 

2.3

6 

0.5

4 

0.0

74 

20160824_2_A

MT 0.11 3.97 36.89 0.66 

1350

9 

0.0

6 13.36 

0.2

9 2.91 0.14 0.81 0.16 

0.9

0 

0.2

9 

0.0

09 

20160824_2_FE

MA 0.06 1.96 35.42 0.17 4007 

0.0

3 2.45 

0.1

3 1.18 0.05 0.19 0.03 

0.8

5 

0.1

9 

0.0

02 

20160824_2_FO

C 0.18 2.65 14.88 0.11 2959 

0.1

9 4.48 

0.9

6 2.62 0.25 0.48 0.02 

1.7

9 

0.1

2 

0.0

02 

20160824_2_GU

MA 0.05 2.91 60.27 0.30 7712 

0.0

4 9.51 

0.1

9 1.92 0.06 0.38 0.04 

1.2

9 

0.3

5 

0.0

06 

20160824_2_NR

C 0.17 9.80 57.58 1.72 

3922

0 

0.1

9 86.31 

0.9

8 9.74 0.26 2.13 0.39 

1.9

8 

0.3

7 

0.0

23 

20160824_AMT 0.87 43.55 50.21 3.27 

7329

1 

1.8

9 

337.9

3 

9.5

3 

76.5

2 0.92 4.68 0.47 

3.8

1 

0.2

9 

0.0

73 

20160824_CLF 0.13 8.70 69.42 1.56 
3440

1 
0.1

8 
107.8

9 
0.9

2 8.51 0.21 1.94 0.39 
2.2

1 
0.5

2 
0.0
34 

20160824_FEM
A 0.25 14.56 58.93 2.59 

4219
9 

0.3
0 

128.5
7 

1.5
4 

16.2
2 0.21 1.72 0.43 

2.0
7 

0.4
2 

0.0
44 

20160824_FOC 0.26 8.10 31.01 0.83 

1706

0 

0.3

6 30.03 

1.8

3 9.42 0.33 1.11 0.24 

2.3

3 

0.1

8 

0.0

08 

20160824_NRC 0.36 29.75 82.71 5.32 

1043

68 

1.0

4 

621.7

2 

5.2

8 

45.1

0 0.61 5.76 1.44 

4.1

6 

0.4

4 

0.0

71 

20161026_2_C

MI 0.72 55.70 77.30 5.57 

1271

43 

2.4

3 

924.4

7 

12.

30 

104.

31 1.12 8.78 0.90 

4.3

6 

0.4

4 

0.1

39 

20161026_2_CN

E 0.56 17.34 31.18 1.23 

3305

2 

1.1

8 

138.5

0 

5.9

7 

27.1

0 0.75 3.23 0.25 

3.6

2 

0.2

6 

0.0

36 

20161026_2_FE

MA 0.20 8.77 44.34 0.84 

2273

4 

0.2

3 44.13 

1.1

9 9.15 0.22 1.21 0.13 

1.7

6 

0.2

9 

0.0

16 

20161026_2_FO

C 0.34 13.04 38.63 0.47 

1543

3 

0.5

0 37.01 

2.5

3 

16.4

5 0.44 1.50 0.09 

2.2

9 

0.2

0 

0.0

13 

20161026_2_M

CV 0.21 4.78 23.31 0.31 7874 

0.2

1 10.00 

1.0

8 4.87 0.30 0.81 0.07 

1.6

2 

0.1

5 

0.0

05 

20161026_2_M

NF 0.06 1.66 27.12 0.19 4836 

0.0

1 1.92 

0.0

7 0.85 0.07 0.31 0.04 

0.4

6 

0.2

5 

0.0

04 

20161026_CLF 0.12 11.90 95.44 2.48 

4180

7 

0.2

2 

192.5

0 

1.0

9 

12.1

7 0.23 2.69 0.51 

3.0

2 

0.6

8 

0.0

58 

20161026_CMI 0.65 43.76 67.26 6.64 
1386

87 
2.2

7 
926.5

5 
11.
51 

80.6
2 0.93 7.34 1.13 

5.7
5 

0.4
3 

0.1
20 

20161026_CNE 0.54 23.08 42.96 2.73 

7794

7 

1.1

7 

343.8

0 

5.9

0 

35.9

6 0.74 4.94 0.79 

3.8

8 

0.3

5 

0.0

67 

20161026_FOC 0.62 19.99 32.05 1.33 

3063

5 

2.0

3 

160.6

0 

10.

27 

35.7

9 0.56 2.00 0.22 

5.5

4 

0.2

1 

0.0

27 

20161026_MCV 0.38 12.70 33.02 1.47 

2716

8 

0.8

6 60.08 

4.3

4 

18.3

2 0.57 1.89 0.36 

3.6

2 

0.1

6 

0.0

10 

20161026_MNF 0.12 8.26 68.37 3.01 

2342

1 

0.0

9 35.73 

0.4

3 6.71 0.13 1.11 0.81 

1.3

0 

0.2

8 

0.0

10 

20161030_ACC 0.43 44.08 101.53 14.30 

1365

77 

2.0

1 

1146.

55 

10.

18 

78.7

3 0.66 6.34 2.33 

6.2

7 

0.4

0 

0.0

69 

20161030_AMT 0.53 37.91 71.31 6.02 

8869

3 

1.5

6 

667.0

5 

7.9

1 

63.5

9 0.71 5.23 1.72 

4.8

6 

0.3

8 

0.0

77 

20161030_CLO 0.43 52.23 122.40 14.13 

2293

35 

2.4

6 

2849.

94 

12.

42 

98.0

6 0.71 8.27 2.59 

8.9

7 

0.6

6 

0.1

84 

20161030_CNE 0.48 38.24 80.37 11.24 

1253

39 

1.7

7 

1153.

56 

8.9

6 

66.1

5 0.64 6.61 2.83 

5.3

3 

0.5

4 

0.1

36 

20161030_FOC 0.38 12.55 33.08 3.79 

2734

3 

2.2

7 

177.0

6 

11.

50 

23.1

2 0.75 2.62 1.05 

9.0

2 

0.1

8 

0.0

12 
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20161030_MCV 0.29 8.35 28.63 2.75 

2381

4 

0.9

6 73.13 

4.8

7 

12.4

1 0.42 1.45 0.73 

6.0

3 

0.1

6 

0.0

07 

20161030_MNF 0.13 6.42 48.21 3.30 

1886

8 

0.1

6 51.08 

0.8

2 6.10 0.17 1.15 0.89 

2.3

6 

0.2

7 

0.0

10 

20161030_NOR 0.31 56.24 180.45 23.02 

2478

49 

2.8

9 

5522.

98 

14.

60 

109.

94 0.68 11.81 5.15 

11.

71 

0.9

4 

0.2

76 

20161030_NRC 0.49 48.29 99.44 17.98 

1987

58 

3.6

3 

3240.

99 

18.

36 

99.9

7 1.02 11.94 4.40 

11.

16 

0.5

8 

0.1

63 

20161030_T120

1 0.35 20.42 59.04 9.71 

7379

7 

0.9

2 

720.2

6 

4.6

3 

29.9

5 0.43 4.65 2.32 

4.5

3 

0.4

3 

0.0

65 

20161030_T121

3 0.79 60.73 76.45 12.42 

1485

96 

5.5

6 

1432.

70 

28.

11 

139.

84 1.09 7.12 3.47 

10.

97 

0.2

6 

0.0

54 

20161030_T121

4 0.60 53.95 89.21 21.28 

1283

57 

3.8

4 

1566.

69 

19.

41 

113.

23 0.85 5.89 3.91 

9.3

7 

0.2

8 

0.0

49 

20161030_T121

9 0.16 6.97 44.77 2.11 

1800

1 

0.4

9 62.14 

2.4

6 8.72 0.23 1.01 0.46 

4.1

7 

0.2

2 

0.0

07 

20170118_2_AC

T 0.08 1.73 22.75 0.11 2698 

0.0

2 0.70 

0.0

9 0.94 0.08 0.20 0.02 

0.4

8 

0.1

4 

0.0

01 

20170118_2_CN
E 0.06 1.52 24.41 0.09 2802 

0.0
2 1.32 

0.0
9 0.84 0.07 0.23 0.01 

0.6
3 

0.2
0 

0.0
02 

20170118_2_CS

C 0.04 1.26 30.29 0.14 2953 

0.0

1 0.84 

0.0

3 0.51 0.04 0.20 0.02 

0.2

9 

0.2

4 

0.0

02 

20170118_2_PC

B 0.27 5.03 18.93 0.53 9013 

0.2

7 8.03 

1.3

7 5.44 0.29 0.60 0.06 

1.2

6 

0.1

1 

0.0

03 

20170118_2_RQ

T 0.09 1.58 18.54 0.13 3284 

0.0

2 1.14 

0.1

2 0.94 0.09 0.24 0.03 

0.6

1 

0.1

3 

0.0

01 

20170118_3_AC

T 0.10 3.22 32.03 0.20 4102 

0.0

4 1.47 

0.1

9 2.12 0.11 0.28 0.05 

0.7

8 

0.1

3 

0.0

02 

20170118_3_A

MT 0.16 10.18 63.99 0.89 

1943

8 

0.1

5 26.79 

0.7

6 9.51 0.21 1.08 0.16 

1.2

6 

0.2

9 

0.0

13 

20170118_3_CN

E 0.05 1.47 30.86 0.09 2524 

0.0

2 1.27 

0.1

0 0.82 0.07 0.21 0.03 

0.7

7 

0.1

8 

0.0

02 

20170118_3_MS

CT 0.23 17.03 75.52 2.38 

4895

3 

0.2

7 

111.0

1 

1.3

9 

18.4

8 0.35 2.86 0.64 

1.9

5 

0.4

6 

0.0

47 

20170118_3_RQ

T 0.07 1.92 27.88 0.22 3808 

0.0

4 1.57 

0.1

9 1.28 0.11 0.27 0.06 

0.9

6 

0.1

2 

0.0

01 

20170118_ASP 0.11 2.97 27.75 0.57 7537 

0.0

4 5.98 

0.1

8 1.93 0.10 0.48 0.17 

0.7

8 

0.1

9 

0.0

04 

20170118_CNE 0.07 2.23 33.11 0.14 3944 
0.0

4 2.65 
0.2

0 1.48 0.10 0.31 0.04 
1.0

0 
0.1

8 
0.0
02 

20170118_NRC 0.04 2.38 61.01 0.60 
1182

4 
0.0

2 15.36 
0.0

9 1.30 0.06 0.65 0.16 
1.0

1 
0.5

5 
0.0
12 

20170118_PCB 0.41 16.91 41.44 1.32 

4013

6 

0.9

5 

122.6

0 

4.8

0 

25.0

4 0.71 3.21 0.28 

3.0

0 

0.2

4 

0.0

24 

20170118_RQT 0.11 3.28 29.54 0.53 7818 
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4 SENSITIVITY ANALYSIS AND CORRELATION CURVES 

To distinguish the most significant IMs, it is useful to calculate specific correlation coefficients. Indeed, a 

correlation analysis states the strength of association between the considered variables. The selection of an 

optimal IM is based upon the characteristics illustrated in [37]: efficiency, proficiency, practicality, sufficiency 

and hazard computability. While the latter two serve as secondary factors to support the selection of an optimal 

IM, the first ones are of primary importance. Efficiency is related to the amount of variation in the estimated 

demand for a given IM value [49]. The lower the dispersion coefficient 'Z|kl, the more efficient the 

corresponding IM.  Practicality is measured by the regression parameter o (Equations (9)-(10)): if this 

parameter approaches zero, the corresponding IM is not significant for the demand estimation. Finally, the 

proficiency measures the composite effect of practicality and efficiency [37], and is given by � = 'Z|kl/o. A 

better IM corresponds to lower values of � and 'Z|kl and to higher values of  o. Pearson’s and Spearman’s 

coefficients are used to have preliminary information on the relevance of each IM on the response. Indeed, the 

higher the correlation coefficient, the minor the dispersion and therefore the relevance of the IM. The Pearson’s 

coefficient ��]D���I expresses the linear dependency between the variables, according to the formula: 
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��]D���I = ∑  ��@��! ��@��!���r
�∑  ��@��![ ∑  ��@��![���r���r

. 
(13) 

where � is the number of coupled variables, whereas the Spearman’s coefficient �d
]D�	DI denotes the 

corresponding monotonic trends of the two variables to correlate: 

�d
]D�	DI = 1 − � ∑ �����r� �[@q!. 
(14) 

where �H is the difference between the ranks of two corresponding variables.  

(a) (b) 
Figure 4. One realization of the stochastic analyses in one-sided, two-sided without restraints (a) and with 

restraints (b)-LSCH, earthquake 20120529_MIRH. 
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(b) 

Figure 5. San Michele church (LSCH): Pearson’s (a) and Spearman’s (b) coefficients. 

 

One realization of the stochastic analyses is reported in Figure 4. For the sake of comparison, the results in 

case of one-sided motion (taking into account the stiffness in compression of the sidewalls) and of two-sided 

motion (neglecting the sidewalls) are reported in Figure 4a. It is clear the rebound effect shown in the one-

sided motion due to the presence of the sidewalls. The behavior of the restrained configuration is displayed in 

Figure 4b. With the steel tie-rods the maximum normalized rotation is two orders of magnitude lower than that 

of the case without restraints. 

For LSCH,  with intermediate values of slenderness ratio α=0.07 and radius vector R=4.4 m, the linear 

correlation is generally good, with most of the Pearson’s coefficients higher than 0.70 for the free case. In this 

configuration, the most representative IMs are: the Fajfar Index �w  (��]D���I = 0.82), Peak Ground 

Acceleration PGA (0.83) and Peak Ground Velocity PGV (0.82). For the restrained case, the most relevant 

IMs are: PGA (0.80), Root Mean Square Acceleration RMSA (0.72) and PGV (0.69). The calculation has been 

performed for the free case in both one-sided (realistic case) and two-sided motion (absence of sidewalls or 

bed spring). It is interesting to notice that the correlation is sensitively better when the sidewalls are considered 

in the formulation (Figure 6). 

In general, the restrained case is less linearly correlated than the free case, showing values always lower than 

those in the free case. Nevertheless, such reduction is generally negligible for the most relevant IMs. The 

Pearson’s values have the higher differences between the case of free or restrained façade for Energy Density 

Iv (percentage reduction from free to restrained by 44%), Root Mean Square Displacement RMSD (48%) and 

Peak Ground Displacement PGD (35%). However, this reduction is not significant being the values of 

Pearson’s coefficients  in free condition equal to 0.63, 0.48 and 0.55 respectively, and therefore not so 

representative. The latter ones, together with mean period Tm and ratio PGV/PGA, are for both cases the IMs 

associated to the worst correlation. 
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Figure 6. San Michele church (LSCH): comparison of Pearson’s coefficients between one-sided (sidewalls 

included in the formulation) and two-sided (sidewalls neglected). 

 

Figure 7 shows linear regressions associated to the coefficients with good (Figure 7b-d) and bad correlations 

(Figure 7a-c).  

 

(a) SFILCH 1 sided – bad correlation 

 

(b) SFILCH  1 sided – good correlation 

  
(c) SFILCH  1 sided+K – bad correlation 

 

 
(d) SFILCH  1 sided+K – good correlation 
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Figure 7 Linear regressions between demand and IMs (Equation (9)): SFILCH free - Tm (a) and PGV (b); 

SFILCH restrained- Tm (c) and PGV (d).  

PGA and PGV are the best IMs to correlate the response after Spearman in both cases. For what concerns the 

Spearman’s coefficients, they are similar independently from the considered case with percentage differences 

lower than 15%. In particular, the greatest difference, equal to 26%, is referred to PGV/PGA. The worst IM is 

the mean period Tm, greater in the free case (0.41) than in the restrained one (0.35). 

The trend for SFILCH, the smaller and stockier rocking block, is opposite with respect to the previous one: 

now, the restrained case is better linearly correlated than the free case, showing values always greater than 

those in the free case (Figure 9). This makes reliable such an analysis for retrofitting purposes. The Pearson’s 

values have the higher differences between the case of free or restrained façade for the PGV/PGA (percentage 

increase from free to restrained by 200%) and Tm (190%). Although these percentages are much greater than 

LSCH, they are not so meaningful being the values of Pearson’s coefficients in restrained condition equal to 

0.59 and 0.41 respectively. Also for this church, the most representative IMs are for one-sided motion of free 

configuration: the PGV (��]D���I = 0.82), PGA (0.79), �w  (0.79) and RMSA (0.79). For the restrained case, the 

most relevant IMs are: PGA (0.91), RMSA (0.94) and PGV (0.84). PGV and �w are velocity based parameters, 

and it confirms the results available in the literature for which velocity is often more significant than 

acceleration or displacement [25]. Nevertheless, in this case acceleration plays a significant role as well as 

velocity. The worst IMs are the Energy Density Iv, PGV/PGA, RMSD, PGD, Tm (as in LSCH) and the 

characteristic length scale Lm. For instance, the minimum Pearson’s coefficient is the mean period Tm, which 

is 0.14 (free) and 0.41 (restrained). Between Pearson’s and Spearman’s coefficients, the latter ones are much 

closer to one, expressing that the variables are well monotonically related. 

Again, the Spearman’s coefficients are similar one to each other, independently from the considered case with 

percentage differences lower than 5% (with the exception of Tm, RMSD and PGV/PGA). In addition, high 

Spearman’s values are associated to Arias Intensity  �D and strong motion duration tD (Figure 9).  The worst IM 

is again Tm (as in LSCH), lower in free case (0.28) than in the restrained one (0.39). 

Finally, the results for the façade of SMVCH, the more slender and larger façade (α=0.06 and R=10.7 m), 

characterized by an inertia moment two orders of magnitude greater than that of LSCH (Table 2), imply  higher 

dispersion. Indeed, the higher Pearson’s coefficients are lower than 0.76 for the free case and lower than 0.64 

for the restrained configuration. Anyway, the most efficient IMs for SFILCH are RMSV (��]D���I = 0.76! Ia 

(0.69) and RMSD (0.73) for the free case. With the steel tie-rods, the most relevant IMs are. IF (0.64), PGV 

(0.64) and the Housner Intensity SIH (0.60). For this façade, the differences of values of Pearson’s coefficients 

in free and restrained configurations are negligible for PGV, SIH, IF, PGA.. The coefficient when considering 

PGV increases by 30% in case of restrained configuration. The worst IMs are PGA (free 0.44, restrained 0.45), 

Lm (free 0.42, restrained 0.41), and Tm (free 0.15, restrained 0.35) and PGV/PGA (free 0.15, restrained 0.42), 

always showing a better linear correlation when tie-rods are taken into account. .IF (0.91) and PGV (0.90) in 

the free case the best IMs to reduce the dispersion of the results after Spearman.  
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(a) 

  

(b) 

Figure 8. San Filippo church (SFILCH): Pearson’s (a) and Spearman’s (b) coefficients. 
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(a) 

 

(b) 

Figure 9. Santa Maria in Via church (SMVCH): Pearson’s (a) and Spearman (b) coefficients. 

5  FRAGILITY CURVES FOR FREE WALLS IN ONE-SIDED MOTION 

5.1 Univariate fragility curves 

This paragraph presents univariate fragility curves (FCs) that allow to understand how the probability changes 

depending on the considered limit state for the façades in one-sided motion. The reliability analysis is 

performed by obtaining FCs from Equation (5), expressing the conditional probability for the serviceability 

limit states FG1 (limited rocking,  �	DE/�!LH	 =0.1), FG2 (moderate rocking,  �	DE/�!LH	 =0.4) and FG3 
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(near-collapse,  �	DE/�!LH	 =1.5) through a standard cumulative distribution function. In the curves, 

probability is plotted against the more relevant Intensity Measures (Section 4). Figure 10 shows the univariate 

FCs for the façades in one-sided motionfor the four more relevant IMs, corresponding to the greater values of 

Pearson’s coefficients. 

 
(a) 

 
(b) 

(c) (d) 
Figure 10. Univariate fragility curves for one-sided motion of the three façades with IMs corresponding to 

the greater Pearson’s coefficients: continuous line: LS1, dashed line: LS2, dotted line: LS3. 

 

It is interesting to notice that, for the first limit state LS1 ( �	DE/�!LH	 = 0.1! the behavior of San Michele 

(LSCH) and Santa Maria in Via (SMVCH) are very similar (Figure 10). Indeed, they have similar slenderness 

ratio (respectively 0.7 and 0.6) but the inertia moment of Santa Maria in Via’s façade is two orders of 

magnitude greater. As expected, this causes a reduction (although slight) of the probability of exceedance in 

all the limit states of SMVC with respect to LSCH. In fact, as stated in [50], the role of the rotational inertia 

moment is crucial for the stability of the rocking block. Nevertheless, in some cases the higher stability of the 

façade with highest inertia moment get closer to the others (e.g. when the considered IM is PGV or RMSV, 

Figure 10c,d). This is due to the fact that the rebound effect, more relevant being the compression stiffness of 

the sidewalls much higher, is such that motion is amplified. For the same reason, the façade with lower 

compression stiffness (SFILCH) is generally the safest among the three cases, in particular for the near collapse 

limit state (Figure 10c,d). Another justification for this response is that this façade is also that with higher 

slenderness ratio (0.10), and therefore more stable [2]. Despite this stability, SFILCH was actually the only 

collapsed case, but this evaluation did not take into account how the structure filtered the acceleration time-

histories, since the rotational hinge of the base wall is not on the ground (Figure 3). Therefore, more realistic 
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assumptions (considering a magnification factor of the seismic input) have been made for SFILCH and results 

discussed in 6.3. 

5.2 Bivariate fragility curves 

Bivariate FCs are also considered and obtained from the calculation of the structural demand through Equations 

(10)-(11). Bivariate FCs are often more significant than univariate curves: the superiority of bivariate IMs over 

univariate IMs was also discussed in [25]. The most efficient IMs are selected as those corresponding to the 

lowest dispersion coefficients 'Z|kl, usually those where energy-based parameters are coupled with velocity 

based parameters. This result is more than reasonable: the effects of a time history are due to the combination 

of a cumulative parameter, calculated on the entire time range, with the effects of a cinematic peak. Some 

bivariate FCs are reported for the free case of LSCH in Figure 11. Obviously, the probability associated to the 

yielding limit state (Figure 11b) is higher than that of the limit states from 1 to 3 (Figure 11a). To consider the 

Fajfar Index with the Cumulative Absolute Velocity (Figure 11a,b) or with Arias Intensity (Figure 11e,f) is 

more in favour of safety than consider it associated with the RMSA (Figure 11c,d). 

(a) (b) 

(c) (d) 
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(e) 
 

(f) 

Figure 11 Bivariate fragility curves of LSCH, free case, for the most efficient IMs: LS1, LS2 and LS3 (a) 

and LSY (b). 

For the same case, the bivariate FCs for the fourth more efficient IMs is shown in together with the regression 

diagram (Figure 12). 

(a) (b) 
Figure 12 Bivariate fragility curve (a) of LSCH, free case and corresponding regression diagram (b). 
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                                             (c)                                                                           (d) 

 

                                             (e)                                                                           (f) 

Figure 13 Comparison of bivariate with univariate fragility curves for different PGA values – LSCH free in 

one-sided motion , LS1 (a), LS2 (b), LS3 (c); – SMVCH free in one-sided motion, LS1 (d), LS2 (e), LS3 (f). 

It is useful to compare univariate and bivariate FCs to confirm the superiority of bivariate FCs. Let us consider 

the three limit states from LS1 to LS3, where the “univariate” case refers to the unique evaluation of PGV. In 

Figure 13, besides the univariate FCs also the bivariate FCs are shown with specific values of PGA (e.g. 0.6g 

and 0.8g). The univariate curve underestimates the probability of exceedance with respect than the bivariate 

curves. For instance, for LS1 (LSCH, Figure 13a), considering an earthquake of PGV=10 cm/s, the probability 

of exceedance given by the univariate curve is 20%. This value is four times higher when a PGA=0.6g is taken 

into account. Moreover, the univariate curves are not capable to offer any information dependent on the level 

of other IMs. Yet, PGA is in this case extremely relevant as produces significant changes in the probability of 

exceedance for the same value of PGV. This occurs for serviceability limit states (Figure 13a,b,d,e) to a greater 

extent than for near-collapse limit states  (Figure 13c,f). . Finally, the univariate FC is flatter c than the bivariate 

curves, which indicates higher uncertainty. 
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6 FRAGILITY CURVES FOR FREE AND RESTRAINED WALLS IN YIELDING LIMIT 

STATE 

In this section, the fragility curves in the yielding limit state LSY as defined in § 2.3 are obtained with the 

purpose of comparing one sided free and restrained configurations. First, univariate FCs are reported, and 

secondly bivariate FCs are shown to understand the difference of considering them or the former ones in the 

safety assessment. 

6.1 Univariate fragility curves 

When IMs are individually considered, the consequent univariate fragility curves are useful since comparison 

between one sided free and one sided restrained cases is straightforward. Here, only the yielding limit state is 

considered, because once yielding is attained by the steel tie-rods (whose characteristics are reported in Table 

3), the analysis stops. Some of the obtained fragility curves are reported in Figure 14 for the more relevant 

IMs, the same adopted in 5.1. There are not substantial differences with the results illustrated for the limit 

states of limited, moderate rocking and near-collapse condition when no tie-rods are taken into account. Indeed, 

the façades with similar slenderness perform again similarly (Figure 14). By contrast, the façades with closer 

inertia moment and radius vector � (namely SFILCH and LSCH) equivalently behave (red, LSCH and blue, 

SFILCH, continuous curves of Figure 14) when the tie-rods are assumed. It is interesting to notice that the 

stiffness of the tie-rods is of a similar value (about 2E7 N/m, Table 3), but its height with respect to the rocking 

hinge is doubled for LSCH. In this case, the improvement obtained (reduction of probability) is more relevant 

for high values of Intensity Measures (e.g. for PGV>40 cm/s, Figure 14). When the block is already safe in 

free conditions (for low values of IM), the inclusion of a restraint does not influence the response and does not 

sensitively reduce the attainment of the limit state. Seldom, the restrained condition gives higher response 

peaks than the free case, due to resonance effects of vibration period associated to the modified system.   

(a) (b) 
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(c) (d) 

Figure 14 Univariate fragility curves associated to yielding limit state for free and restrained façades. 

 

Figure 15 Reduction of conditional probability from univariate FCs associated to yielding limit state. 

 

An advantageous diagram to estimate the amount of improvement given by the anti-seismic device is that 

where the reduction of conditional probability, expressed as percentage, is plotted against the IM. This helps 

to understand to what extent the anti-seismic device can be beneficial or detrimental (in case of resonance 

conditions and amplifications of motion) for fixed earthquake intensities. The reductions of probability 

corresponding to Figure 14 are shown in Figure 15. It is relevant to observe that the maximum reduction of 
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probability is similar for the velocity based IMs (IF, PGV and RMSV), being about 40%. Peaks of about 60% 

are obtained in the case of intermediate slender and inertia moment (LSCH). Also when PGA is considered, a 

significant reduction of probability occurs for all cases. This result is relevant as the restraint of a masonry 

façade with simple tie-rods of common stiffness [51] is clearly beneficial for the wall stability. The reduction 

of probability of exceedance in case of anti-seismic device is evident for medium-high intensity earthquakes. 

In fact, e.g. for 10<PGV<30 cm/s, or for 180 cm/s2<PGA<380 cm/s2, one has a reduction of at least 30% of 

probability of exceedance (for LSCH and SFILCH). For 10<PGV<25 cm/s, or for 150 cm/s2<PGA<350 cm/s2, 

one has a reduction of at least 20% of probability of exceedance for all the façades. Therefore, the level of 

improvement obtained for the façade with higher probability in the free case, the most slender one, is slightly 

lower when tie-rods are considered. To conclude, the graphs showing the reduction of probability can be 

practical for engineers aimed at defining a risk reduction level with the adoption of an effective horizontal 

restraint. 

6.2 Bivariate fragility curves 

The comparison of bivariate fragility curves is made in this paragraph between the case of unrestrained and 

the case of restrained façade. Some examples of reduction of probability curves are shown in Figure 16. In 

general, a good reduction of probability is obtained when PGA is considered as one of the two IMs of the 

bivariate curves. Moreover, it is observed that, for instance, to consider as second IM RMSA instead of IF is 

in favour of safety. However, a strong reduction, from 20% to 80%, occurs for low-medium intensity 

earthquakes.  

 

  

Figure 16 Reduction of conditional probability from univariate FCs associated to yielding limit state 

(LSCH). 
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(a)                                       (b) 
(a)                   

Figure 17 Comparison of univariate FC with bivariate FC (PGA=0.6 g) (a), corresponding reduction of 

probability (LSCH). 

The possibility of underestimation of probability of exceedance of the limit state considering univariate with 

respect to bivariate curves is again confirmed in restrained conditions (Figure 17). For medium intensity 

earthquakes, the reduction of probability is strongly overestimated when only PGV is taken into account. 

When, PGA (=0.6 g) is considered in addition to PGV, the reduction of probability drops down (red curve of 

Figure 17b). The maximum peak of reduction passes from about 55% to 25%. This confirms that, as discussed 

in 5.2, the consideration of bivariate fragility curves allows a more complete information regarding the 

stochastic estimations. In addition, only a bivariate FC permits to combine an energy based IM with a cinematic 

based IM, so achieving a more reasonable measure of the time history effects.  

6.3 Comparison of stochastic analysis with actual results 

Some comparisons can be made between the results obtained from the analysis and the actually occurred 

damages in the churches. In particular, so far the unmodified acceleration time-histories have been applied as 

input signals for the three façades. No modification has been made in order to make comparisons of 

univariate and bivariate FCs with the same ground motions. Nevertheless, SFILCH has the horizontal 

rocking hinge at 14 m from the ground (Figure 3). Therefore, the filter effect exerted by the substructure has 

to be examined. By considering the indications given by the Italian Standards [36], an increment of 27% of 

the acceleration time-histories has to be taken into account. With this value, additional analyses have been 

performed by increasing the acceleration values of all the seismic records only for SFILCH. The obtained 

fragility curves are reported in Figure 18a,b, where the outcomes are also compared with the FCs valid for 

SMVCH and LSCH. In effect, it is clear that the probability of exceedance associated to SFILCH more 

realistically modelled strongly increases by considering the magnification factor of 1.27. This could explain 

why the upper portion of façade actually collapsed and the same did not occur for the other façades. The 

increased probability of collapse is particularly evident for PGA (Figure 18a) and for PGV in the domain of 

low intensity values (Figure 18b). The probability values overcome those of LSCH, which resulted to be the 

most vulnerable case. In effect, this façade showed an incipient overturning with a detachment from 

sidewalls particularly visible from inside (Figure 2b). The seismic shock for which the SFILCH façade 

collapsed, recorded in the station closest to Camerino (Matelica, MTL), has PGA=240 cm/s2, e PGV=11.68 

cm/s [48]. In fact, for this value the probability of collapse is higher, although slightly, than the other cases. 

Finally, the analysis is performed for the restrained case (with steel tie-rods, Table 3) again assuming a 
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magnification factor of the seismic input of 1.27. It is observed that the probability of exceedance of the 

yielding limit state strongly decreases (Figure 18c), and the peak of reduction is higher than 30% for 

5<PGV<30 cm/s (Figure 18d). Therefore, the so designed steel tie rods could have caused an undeniable 

improvement of response of the façade, potentially avoiding its collapse.  

 

(a)                                                                         (b) 

 

(c)                                                                         (d) 

Figure 18 Comparison of univariate FCs with unscaled acceleration time-histories with FC with amplified 

acceleration time history (a,b) with magnification factor 1.27; variation of probability of exceedance of limit 

states in case of restraints (c) and corresponding reduction of probability (d) (acceleration time-histories 

amplified by 1.27).  

 

CONCLUSIONS 

In this paper, a probabilistic approach for defining the stability of free and restrained masonry rocking façades 

is presented. The purpose is to stochastically define the level of improvement achieved with any anti-seismic 

device of a specific stiffness, in terms of reduction of probability of exceedance of a certain limit state. Indeed, 

especially when there are not negligible uncertainties about input motion, as usually occurs, a probabilistic 

analysis is recommended rather than a deterministic one. The additional restraints reproduce the common steel 
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tie-rods usually adopted as strengthening techniques for impeding or limiting the out-of-plane behavior of 

masonry structures. First, the calculation of correlation coefficients has been performed for three typical 

samples of masonry façades of monumental buildings. Independently from the considered façade and the 

boundary condition, the linear correlation defines the most relevant IMs, which are the velocity-based 

parameters, in particular the Fajfar Index and Peak Ground Velocity, but also PGA. The less representative 

IMs are generally the Root Mean Square Displacements RMSD, Peak Ground Displacement PGD, mean 

period Tm and the characteristic length scale Lm. The higher differences between the case of free and restrained 

façade in the correlation are obtained for less representative IMs. Instead, differences are negligible for the 

Pearson’s coefficients associated to the more relevant IMs, making the analysis in retrofitted configuration 

reliable. 

For what concerns the fragility curves without horizontal restraints, a higher compression stiffness of the 

sidewalls implies higher probability of exceedance. This is due to an amplified motion associated to a more 

marked rebound effect. The most efficient IMs are selected as those corresponding to the lowest dispersion 

coefficients 'Z|kl, usually those where energy-based parameters (CAV, RMSA, Ia) are coupled with velocity 

based parameters (mainly PGV). It corresponds to the fact, physically reasonable, that a time history of motions 

is identified through two categories of data: cumulative energy on the entire history and peak cinematic values 

on a specific instant. 

 

As expected, the case with lower conditional probability is the stockier one, in particular for the near-collapse 

limit state. If the slenderness of the façades is similar, a higher rotational inertia has a positive effect in the 

stability of the wall, giving lower probability of exceedance of all the limit states. The comparison of univariate 

and bivariate FCs confirms the superiority of bivariate FCs. Indeed, often the univariate curves sensitively 

underestimate the probability of exceedance with respect than the bivariate curves. Moreover, the univariate 

curves are not capable to offer any information dependent on the level of other IMs. In addition, only a bivariate 

FC permits to combine an energy based IM with a cinematic based IM, so achieving a more reasonable measure 

of the time history effects.  

When horizontal restraints are taken into account, an advantageous diagram to estimate the level of 

improvement given by the anti-seismic device is that where the reduction of conditional probability, expressed 

as percentage, is plotted against a specific IM. This helps to understand, in a stochastic perspective, to what 

extent the anti-seismic device can be beneficial or detrimental (in case of resonance conditions and 

amplifications of motion) for fixed earthquake intensities. In the considered examples, the maximum reduction 

of probability is similar for the velocity based IMs (IF, PGV and RMSV), being about 40%. This result is 

relevant as the restraint of a masonry façade realized with simple tie-rods of common stiffness is clearly 

beneficial for the wall stability. Moreover, the reduction of probability of exceedance in case of anti-seismic 

device is evident for medium-high intensity earthquakes. Finally, the possibility of overestimation of the 

probability of exceedance of the yielding limit state considering univariate with respect to bivariate curves is 

again confirmed in restrained conditions for low-medium intensity earthquakes. 
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