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Abstract 

Patients affected by autoimmune thyroiditis reached positive effects on indices of thyroid 

autoimmunity and/or thyroidal function, after following a treatment with selenomethionine (Se) alone, 

or Se in combination with Myo-inositol (Myo-Ins).  

Our purpose was to investigate if Myo-Ins alone, or a combination of Se+Myo-Ins, is effective in 

protecting thyroid cells from the effects given by cytokines, or hydrogen peroxide (H2O2). 

We assessed the interferon (IFN)-γ-inducible protein 10 (IP-10/CXCL10) secretion by stimulating 

primary thyrocytes (obtained from Hashimoto’s thyroiditis or from control patients) with cytokines in 

presence/absence of H2O2. 

Our results confirm: 1) the toxic effect of H2O2 in primary thyrocytes that leads to an increase of the 

apoptosis, to a decrease of the proliferation, and to a slight reduction of cytokines-induced CXCL10 

secretion; 2) the secretion of CXCL10 chemokine induced by IFN-γ+tumor necrosis factor alpha 

(TNF)-α has been decreased by Myo+Ins, both in presence or absence of H2O2; 3) no effect has been 

shown by the treatment with Se.  

Therefore, a protective effect of Myo-Ins on thyroid cells has been suggested by our data, which exact 

mechanisms are at the basis of this effect need to be furtherly investigated.  
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1 Introduction 

Primary hypothyroidism is a frequent disease, accounting per year an incidence of about 250/100,000 

and a prevalence of about 5% in the adult population, that are both increasing [1, 2].  

Hashimoto’s thyroiditis (HT) is the leading cause of primary hypothyroidism, whose annual frequency 

is increasing during the years starting from the beginning of 90’s [3-5]. 

Several studies showed an increase of the oxidative stress in autoimmune thyroid diseases (AITD) [6-

9]. Either the overproduction of the hydrogen peroxide (H2O2), a reactive oxygen species (ROS), as 

well as its decreased degradation, contribute to the pathogenesis of the inflammation in AITD, and to 

the apoptosis linked to AITD of thyroid cells [10, 11].  

H2O2 is actually involved in the regulation of multiple inflammation signalling pathways [12]. Indeed, 

in order to induce oxidative stress, several experiments have been performed by culturing human or 

animal cells with H2O2, including thyrocytes [11], gingival fibroblasts [13], peripheral blood 

mononuclear cells (PBMC) [9, 14, 15], neurons [16], glia cells [17, 18], cardiomyocytes [19], 

pancreatic beta-cells [20, 21], myoblasts [22], retinal pigment epithelium [23], stem cells [24], and 

embryos too [25]. Environmental factors are able to induce intrathyroidal oxidative stress [26]. 

The main features of AITD are a lymphocytic infiltration in the thyroid, and high production of 

cytokines by lymphocytes and thyrocytes, including chemokines, whose secretion is induced by pro-

inflammatory cytokines themselves [27, 28].  

The interferon gamma (IFN-γ)-inducible chemokines, such as IFN-γ-inducible protein 10 (IP-

10/CXCL10), and monokine induced by IFN-γ (MIG/CXCL9), and IFN-inducible T-cell alpha 

chemoattractant (ITAC/CXCL11), act by binding the same receptor [(C-X-C motif) receptor 3 

(CXCR3)], and contribute to the pathogenesis of several diseases [organ specific autoimmune disorders 

(as Graves’ disease (GD) and ophthalmopathy, type 1 diabetes mellitus), or systemic autoimmune 

disorders, (as Sjogren syndrome, systemic sclerosis, mixed cryoglobulinemia, or systemic lupus 

erythematosus)] [29-33].  

IFN-γ stimulates CXCL9, CXCL10, and CXCL11 secretion by CD4+, CD8+, and natural killer (NK). 

CXCL10 is also released by thyroid cells or other cell types under the IFN-γ stimulation [34, 35]. 

Elevated CXCL10 or CXCL9 levels in peripheral fluids are therefore a marker of a T helper (Th)1 

orientated immune response [36-38]. In fact, CXCR3 chemokines levels are significantly higher in HT 

patients than in those affected by non-autoimmune nodular goiter or healthy subjects [39]. 

Furthermore, these chemokines were significantly higher in HT patients affected by a more severe 

thyroiditis, particularly in presence of hypothyroidism and a hypoechoic pattern [39]. 

Several studies investigated about the use of Selenomethionine (Se) [40-43], plus Myo-inositol (Myo-

Ins) [44], or L-carnitine [45, 46]  (by a nutraceutical approach) in the management of AITD. The 

antioxidant activity is the common feature of these substances [40, 47-49]. 

HT patients treated with Se (usually at 200 µg/d) for three to twelve months, showed a decline in 

thyroperoxidase autoantibodies (AbTPO) [40], even if thyroid function was not changed. A better 

outcome was reached by the supplementation with Se in comparison to that of sodium selenite.  

Positive effects on indices of thyroidal function and autoimmunity have been reported in AbTPO 

positive women in treatment with Se plus Myo-Ins [42, 44].   
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Therefore, the aim of this study was to stress thyroid primary cells (ThyC) from healthy patients (c-

ThyC), or Hashimoto’s thyroiditis patients (HT-ThyC), with cytokines, or H2O2, and then to check 

whether, in the presence of cytokines, or H2O2, the addition of equimolar concentrations of Se alone, 

Myo-Ins alone, or their combination could protect ThyC from the effects given by cytokines, or H2O2.   

 

 

2 METHODS 

 

2.1 General outline of the experiments  

Experiments were carried out in order to stress ThyC from c-ThyC, or HT-ThyC, with cytokines, or 

H2O2, and then assess whether, in the presence of cytokines, or H2O2, equimolar concentrations of Se 

alone, Myo-Ins alone or combined could protect ThyC from the effects given by cytokines, or H2O2. Se 

was purchased from Sigma-Aldrich (Merck KGaA, Darmstadt, Germany), and Myo-Ins was obtained 

by LO.LI Pharma S.r.l (Italy). Both Se and Myo-Ins were prepared in sterile phosphate buffered saline 

(PBS) before the utilization. 

We evaluated ThyC viability, proliferation, and apoptosis, and also CXCL10 secretion. 

 

2.2 Thyroid follicular cells  

Surgical thyroid tissue was obtained from 3 patients with HT and 3 benign nodular thyroid, 

euthyroid at the time of surgery. Thyroidectomy was adviced to these patients mainly because of the 

presence of a large goiter and/or thyroid nodules. The study has been conducted along the lines of the 

Declaration of Helsinki (2000) on the ethic in clinical study. The study was conducted in accordance 

with the ethical principles of the Declaration of Helsinki and national laws; the patients gave their 

informed consent to it [50]. 

Thyrocytes were prepared as reported previously [51, 52].  

Surgical tissues were minced with scissors and digested with collagenase (1 mg/mL; Roche, 

Mannheim, Germany) in RPMI 1640 (Gibco BRL, Paisley, UK) for 1 h at 37 °C. Semi-digested 

follicles were removed, sedimented for 2 min, washed, and cultured in RPMI 1640 medium with 10% 

fetal bovine serum (FBS) (Sigma-Aldrich), 2 mM glutamine, and 50 µg/mL penicillin/streptomycin at 

37 °C and 5% CO2 in plastic 75 cm2 flasks (Sarstedt, Verona, Italy).  

 

2.3 CXCL10 secretion assay 

For CXCL10 secretion assays, 3000 cells were plated in 96-well plates in growth medium. After 

24 h, the growth medium was removed, cells were accurately washed in PBS, and incubated in 

phenol red and serum-free medium. Cells were incubated (24 h) with IFN-γ  (R&D Systems, 

Minneapolis, MN; 500, 1000, 5000, 10000 IU/ml) and 10 ng/mL tumor necrosis factor (TNF)-α  

(R&D Systems), alone or in combination [53].  
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The concentration of TNF-α  was chosen to obtain the highest responses, according to previously 

conducted experiments. After 24 h, the supernatant was collected and frozen at -20 °C until 

chemokines assay.  

To investigate the effect of Myo-Ins and Se on cytokines, we used three concentrations for each of 

them (0.1, 0.25 and 1.0 µM) (alone or in combination), in presence or absence of IFN-γ  and/or 

TNF-α  (see above). 

To investigate the effect of Myo-Ins and Se on H2O2, we used three concentrations for each of 

them (0.1, 0.25 and 1.0 µM) (alone or in combination), in presence or absence of cytokines, or 200 

µM H2O2 (see above), added at the same time as cytokines, for 24 h. 

We used a quantitative sandwich immunoassay (R&D Systems), with a sensitivity range of 0.41–

4.46 pg/mL, to assess the CXCL10 levels in cell culture supernatant. 

The absorbance was evaluated at 450 nm (with 540 nm as correction wavelength), by a plate 

reader (VICTOR™ X4, Perkin Elmer, Waltham, Massachusetts, USA). Experiments were 

performed in triplicate. The intra- and inter-assay coefficients of variation were 4.5 and 7.3% for 

CXCL10.  

2.4 Cell viability and proliferation assay  

To determine cell proliferation, we used the WST-1 assay (Roche Diagnostics, Almere, The 

Netherlands), a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide used in the MTT assay 

[54-56]. To investigate the effect of Myo-Ins and Se we used three concentrations for each of them 

(0.1, 0.25 and 1.0 µM) (alone or in combination), in presence or absence of cytokines, or 200 µM H2O2 

(see above), all added at the same time to cell cultures. The treatments were conducted for 24 h. 

The absorbance was measured after 2 h from the start of the tetrazolium reaction. All experiments were 

performed in triplicate for each cell preparation.  

2.5 Proliferation assay: cell counting  

The proliferation was evaluated also using the cell number counting [54-56]. 

2.6 Apoptosis determination- Hoechst uptake  

ThyC were seeded (35000 cells/mL in a final volume of 100 µL) in each well of a 96-well plates. Then, 

cultures were incubated for 48 h with Myo-Ins and Se [for each of them we used three concentrations 

(0.1, 0.25 and 1.0 µM) (alone or in combination)], in presence or absence of cytokines, or 200 µM 

H2O2 (see above)] in a humidified atmosphere (37 °C, 5% CO2), and stained with Hoechst 33342 [56]. 

The apoptosis index (ratio between apoptotic and total cells) x100 was calculated.  

2.7 Statistics 

Data was reported as mean ± SD for normally distributed variables or as the median and interquartile 

range. Mean group values were compared using one-way ANOVA for normally distributed variables or 

by the Mann-Whitney U or Kruskal-Wallis test. Proportions were compared by the χ2 test. Post hoc 
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comparisons of normally distributed variables were carried out using the Bonferroni-Dunn test. P 

values lower than 0.05 were considered statistically significant, whereas between 0.10 and 0.05 as 

borderline significant. 

 

3. RESULTS 

3.1 IFN-γ and TNF-α modulation of CXCL10  

In the supernatants obtained from cultures of HT-ThyC or c-ThyC, the levels of CXCL10 were 

undetectable. 

CXCL10 was released in a dose-dependent manner by IFN-γ in HT-ThyC (CXCL10: 0, 141±54, 

376±67, 421± 84, and 495±96 pg/mL at the following IFN-γ concentrations of 0, 500, 1000, 5000, and 

10,000 IU/mL, respectively; ANOVA, p < 0.001). Similar results were observed in c-ThyC, without 

any significant difference with respect to HT-ThyC (data not shown).  

TNF-α had no effect on CXCL10 secretion, indeed it remained undetectable after addition of TNF-α in 

the cultures. The combination of IFN-γ (1000 IU/mL) plus TNF-α (10 ng/mL) had a significant 

synergistic effect on the CXCL10 secretion by HT-ThyC [CXCL10, 1541±77 vs 289±69 pg/mL with 

IFN-γ (1000 IU/mL) alone; ANOVA, p < 0.0001], in agreement with previous results [57]. Similar 

results were observed in c-ThyC, without any significant difference with respect to HT-ThyC (data not 

shown).  

 

3.2 CXCL10 Modulation by H2O2, Se, Myo-Ins 

CXCL10 secretion induced by IFN-γ+TNF-α was significantly reduced by H2O2 (200 µM) in HT-

ThyC (Figure 1).  

Se (0.1, 0.25 and 1.0 µM) had no effect on CXCL10 secretion induced by IFN-γ+TNF-α, in presence 

(Figure 2A) or absence (Figure 2B) of H2O2 (200 µM) in HT-ThyC.  

Myo-Ins (0.1, 0.25 and 1.0 µM) reduced dose dependently and significantly CXCL10 secretion 

induced by IFN-γ+TNF-α, in presence (Figure 3A) or absence (Figure 3B) of H2O2 (200 µM) in HT-

ThyC.  

The combination of Myo-Ins (1.0 µM) plus Se (1.0 µM) reduced significantly CXCL10 secretion 

induced by IFN-γ+TNF-α, in presence (Figure 4A) or absence (Figure 4B) of H2O2 (200 µM). 

However the CXCL10 reduction induced by Myo-Ins (1.0 µM) plus Se (1.0 µM) was not significantly 

different from that obtained with Myo-Ins (1.0 µM) alone in HT-ThyC (Figure 4).  

The c-ThyC cells subjected to similar experiments behaved in the same way as the HT-ThyC. 
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3.3 Proliferation and apoptosis 

IFN-γ+TNF-α had no effect on proliferation (cell growth 99% with respect to control, expressed as 

100%) or apopotosis (2.4% of control cells were apoptotic, and the percentage was 2.6% after the 

treatment with IFN-γ+TNF-α; P > 0.05, ANOVA) in HT-ThyC.  

Proliferation was slightly reduced by H2O2 (Figure 5A; 50 µM, 100 µM, or 200 µM), while apoptosis 

increased (Figure 5B), in HT-ThyC.  

Se (1.0 µM) had no effect on proliferation or apoptosis changes, induced by H2O2 (200 µM), in 

presence or absence, of IFN-γ+TNF-α, in HT-ThyC [Se (1.0 µM) + H2O2 (200 µM), 98% vs H2O2 (200 

µM) alone].  

Myo-Ins (1.0 µM) had no effect on proliferation or apoptosis changes, induced by H2O2 (200 µM), in 

presence or absence, of IFN-γ+TNF-α, in HT-ThyC [Myo-Ins (1.0 µM) + H2O2 (200 µM), 97% vs 

H2O2 (200 µM) alone].  

The combination of Myo-Ins (1.0 µM) plus Se (1.0 µM) had no effect on proliferation or apoptosis 

changes, induced by H2O2 (200 µM), in presence or absence, of IFN-γ+TNF-α, in HT-ThyC [Myo-Ins 

(1.0 µM) + Se (1.0 µM) + H2O2 (200 µM), 96% vs H2O2 (200 µM) alone].  

The c-ThyC cells subjected to similar experiments behaved in the same way as the HT-ThyC. 

The proliferation was evaluated also using the cell number counting, that confirmed the above 

mentioned results (data not shown). 

 

4. Discussion 

Our findings confirm the toxic effect of H2O2 in primary thyrocytes, leading to a decreased 

proliferation, increased apoptosis, and a slight reduction of cytokines-induced CXCL10 secretion. 

Moreover, we first show that Myo-Ins reduces the secretion of CXCL10 chemokine induced by IFN-

γ+TNF-α, in presence or absence of H2O2, while Se has no effect, in HT-ThyC, or in c-ThyC. These 

data suggest a protective effect of Myo-Ins on thyroid cells.   

The fact that H2O2 reduces the secretion of CXCL10 chemokine under the influence of cytokines, can 

be explained by the reduction of proliferation, and increase of apoptosis in ThyC. In this specific case, 

the results on chemokine production can be accounted on the toxic effect of H2O2 on ThyC vitality. On 

the contrary, since Myo-Ins is not inducing any change in proliferation or apoptosis of ThyC, the 

reduction of the CXCL10 secretion under the influence of the pro-inflammatory cytokines IFN-γ, and 

TNF-α, can be accounted as a protective effect of Myo-Ins on the thyroid cells themselves. 

The involvement of Myo-Ins and phosphatidylinositol(s) (PtdIns) in physiological and pathological 

conditions of the thyroid gland has been shown by various experimental researches and clinical trials. 
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PtdIns have a significant role in the intracellular signaling linked with thyroid-stimulating hormone 

(TSH) in thyrocytes [58]. Two different signals are related to the TSH intracellular signaling pathway, 

one involving cyclic AMP (cAMP) as second messenger, implicated in thyroxine (T4), 

triiodothyronine (T3) release, and in cell growth and differentiation, the second one depending on 

inositol [59, 60], and regulates the iodination mediated by H2O2 [59]. Furthermore PtdIns is involved in 

thyroid autoimmunity [61, 62].  

The important role performed by iodine and Se in thyroid autoimmunity has been shown [27, 63]. 

Indeed, an elevated prevalence of autoimmune thyroiditis (AT) has been observed in regions with 

severe Se deficiency. This is caused by a reduced activity of Se-dependent glutathione peroxidase 

activity in thyroid cells. In addition, Se-dependent enzymes are important in the regulation of the 

immune system. A number of papers have shown that even mild Se deficiency could play a role in the 

development and maintenance of AITD [40, 64, 65]. Some investigations have been carried out in 

AITD patients treated with sodium selenite, or Se, showing the reduction of AbTPO [40].  

Other studies showed that patients with subclinical hypothyroidism, due to AT, after treatment with 

Myo-Ins+Se obtained a significantly decline of the TSH levels as well as of the antithyroid 

autoantibodies levels [44, 66-68]. The Myo-Ins treatment showed also the reduction of the CXCL10 

serum levels, confirming the immune-modulatory effect of this substance [67]. This finding agrees with 

the present in vitro results, showing that Myo-Ins reduces the secretion of CXCL10 chemokine induced 

by IFN-γ + TNF-α, in presence or absence of H2O2, in thyroid cells. 

Conversely our data show Se has no effect on chemokine levels, and agree with those of a recent study 

that demonstrates that the short-term Se supplementation has a limited impact on the natural course in 

euthyroid HT, and has no effect on CXCL10 circulating levels [69].   

Our findings are in line with that of an in vitro study aiming to assess if PBMC obtained from HT and 

control women, were protected by the oxidative stress caused by H2O2 after an antioxidant treatment. 

The study involved eight HT women and three healthy women, whose PBMC were treated with the 

addition of H2O2 (200 µM) alone, then with H2O2 plus Myo-Ins (0.25, 0.5, or 1.0 µM), or Se (0.25, 0.5, 

or 1.0 µM), or their combination (0.25+0.25, 0.5+0.5, 1.0+1.0 µM) [70]. Treatment with H2O2 alone 

leads to a decrease of PBMC proliferation that is furtherly decreased in a dose-dependent manner in 

each group (especially in that with Myo-Ins+Se in HT). It has been observed a decrease of the PBMC 

vitality of 5% in the controls group and of 10% in the HT group by H2O2; while a rescue of the vitality 

has been obtained in both groups after the addition of Myo-Ins, Se, or Myo-Ins+Se. The Comet score 

rised to +505% above baseline in controls, and +707% in HT women after the addition of H2O2 alone. 

In both group, each addition contrasted genotoxicity in a dose-dependent manner. H2O2 alone increased 

chemokines concentration especially in the group of HT woman in comparison to that of the controls. 

Chemokines levels decreased dose-dependently in both groups after each addition, especially after 

Myo-Ins+Se treatment, reaching -80% of baseline. Therefore, it was concluded that the Myo-Ins and Se 

have positive effects on PBMC in presence of oxidative stress caused by H2O2 in vitro, in controls as in 

HT women; and that the Myo-Ins+Se combination is the most effective [70]. In ThyC Myo-Ins was not 

able to rescue the damage induced by H2O2, that was observed in lymphocytes in the previous study 
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[70]. However, it is of note that since the Myo-Ins, and or Se, or the combination of both, are not able 

to change the proliferation, or the apoptosis induced by H2O2, the change in the secretion of 

chemokines after cytokines stimulation, cannot be due to an interference on cell vitality, but to a 

modulation induced by Myo-Ins in ThyC responsiveness to cytokines. 

As the data obtained with Myo-Ins, and or Se, in HT-ThyC are similar to those observed in c-ThyC, 

this is in agreement with the results of other studies showing a similar behavior of chemokine 

production under cytokines stimulation in ThyC obtained from normal, or from GD, thyroid [51]. 

In conclusion, we have first shown that Myo-Ins reduces the secretion of CXCL10 chemokine induced 

by IFN-γ+TNF-α, in presence or absence of H2O2, in primary thyrocytes. These data suggest a 

protective effect of Myo-Ins on thyroid cells; other studies will be needed to evaluate the exact 

mechanisms. 
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Figure legends  

 

Figure 1. CXCL10 secretion induced by IFN-γ+TNF-α was significantly reduced by H2O2 (200 µM) in 

HT-ThyC. * = P < 0.05 by ANOVA. Bars are mean ± SEM. 

 

Figure 2. Se (0.1, 0.25 and 1.0 µM) had no effect (P > 0.05 by ANOVA) on CXCL10 secretion 

induced by IFN-γ+TNF-α, in presence (Figure 2A) or absence (Figure 2B) of H2O2 (200 µM) in HT-

ThyC. Bars are mean ± SEM. 

 

Figure 3. Myo-Ins (0.1, 0.25 and 1.0 µM) reduced dose dependently and significantly CXCL10 

secretion induced by IFN-γ+TNF-α, in presence (Figure 3A) or absence (Figure 3B) of H2O2 (200 

µM) in HT-ThyC. * = P < 0.05 by ANOVA. Bars are mean ± SEM. 

  

Figure 4. The combination of Myo-Ins (1.0 µM) plus Se (1.0 µM) reduced significantly CXCL10 

secretion induced by IFN-γ+TNF-α, in presence (Figure 4A) or absence (Figure 4B) of H2O2 (200 

µM). * = P < 0.05 by ANOVA. Bars are mean ± SEM. 

 

Figure 5. Proliferation (Figure 5A) was slightly reduced by H2O2 (50 µM, 100 µM, or 200 µM), while 

apoptosis (Figure 5B) increased, in HT-ThyC. * = P < 0.05 by ANOVA. Bars are mean ± SEM. 
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