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Abstract. We study the problem of the rigorous computation of the sta-

tionary measure of an IFS described by a stochastic mixture of two or more
dynamical systems which are either all uniformly expanding on the interval,
either all contractive.

In the expanding case, the associated transfer operators satisfy a Lasota-
Yorke inequality, and we compute rigorously the approximations in the L1

norm. The rigorous computation requires a computer-aided proof of the con-
traction of the transfer operators for the maps, and we show that this property

propagates to the transfer operators of the IFS.
In the contractive case we perform a rigorous approximation of the station-

ary measure in the Wasserstein-Kantorovich distance, using the same func-
tional analytic approach.

We show that a finite computation can produce a realistic computation
of all contraction rates for the whole parameter space. We conclude with a
description of the implementation and numerical experiments.

1. Introduction

The reliable simulation and forecasting of the statistical properties of a chaotic
dynamical model is a difficult and important task. We investigate in the direction
of the rigorous approximation of the stationary measure of random dynamical sys-
tems. By rigorous approximation we mean a computation for wich the result is
mathematically certified up an explicitly given error of approximation. We show
how this can be achieved in the approximation of the stationary measure for some
class of Iterated Function System.

An iterated function system (IFS) is the datum of a space X and a finite col-
lection of transformations Ti : X → X for i ∈ I, plus a set of positive parameters
(probabilities) pi for i ∈ I, summing to 1. Iteratively, one of the maps Ti is applied
on the set X, chosen with probability pi independently of the previous steps.

In this article we study the problem of computing effectively (with rigorous error)
the stationary (invariant) measure of an iterated function systems.

We will use the functional analytic approach, assuming the space X to be
equipped with a σ-algebra (which we assume to be preserved by the inverse of
the Ti maps), and considering the transfer operator acting on Borel signed mea-
sures. For a transformation T the corresponding transfer operator L acting on
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probability measures is defined as

(Lµ)(A) = µ(T−1(A)),

and when µ represents a probability distribution in X, then Lµ represents the
probability distribution on X after one application of the transformation T .

Let us consider an IFS constructed with the maps Ti having associated transfer
operators Li and probabilities pi. The transfer operator associated to such an IFS
is defined by ∑

i∈I

piLi.

A fixed point for this transfer operator is called stationary measure for the IFS
(see [KL06, MR09]).

We point out that we do not assume the maps Ti to be contractive, but on the
other hand we will need the operators Li to be contractions in a suitable sense on a
suitable space. This will be illustrated by the two main cases, but we will develop
this machinery abstractly and specialize to a particular space only when necessary.

Let us introduce some notation: on a suitable space of measures B, we will denote
by VB (or just V when no confusion is possible) the set of zero-average measures,
that is

VB =

{
µ ∈ B :

∫
X

1dµ = 0

}
.

When working on the interval, we denote by ∥ · ∥BV the norm on measures defined
as

∥µ∥BV = sup
ϕ∈C1:∥ϕ∥∞=1

∫
X

ϕ′dµ,

the measures having finite norm are absolutely continuous with bounded variation
density (see [Liv04]).

We will abuse of notation extending the L1 norm to signed measures as

(1) ∥µ∥L1 = µ+(X) + µ−(X)

for a Hahn decomposition µ = µ+ − µ− [Hal13], it coincides with the L1 norm of
the density of µ is absolutely continuous.

• The first case we consider is the case of uniformly expanding transforma-
tions in the interval, in such a case for a transformation T which is piecewise
C2 we have a Lasota-Yorke inequality with respect to the BV and L1 norms

(2) ∥Lµ∥BV ≤ λ∥µ∥BV +B∥µ∥L1

for explicit constants λ < 1 and B. If the system has a unique absolutely
continuous invariant measure, then the iterates of L eventually contracts
VBV and the invariant measure is approximated iterating L on some abso-
lutely continuous probability measure. It is possible to find a suitable finite
rank approximation of L satisfying the same property (Equation 2) and
having a unique fixed point which is close to the unique invariant measure
of L.

• The second case is the classic case of contracting maps, on a generic bounded
subset of Rn. In such a case the transfer operator is a contraction in the
dual space of Lipschitz function, that is, the space of measures with respect
to the Wasserstein-Kantorovich norm.
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There has been a recent surge of interest on the topic of computation applied
to dynamical systems, arising from the availability of high performance computing,
and looking forward to explore up to which extent it is possible to analyze a dy-
namical system in an automated way, computing long time invariants and more in
general any rigorous information that can be useful for computer-aided proofs.

All software developed in this work is publicly available as free software, as
detailed in section 6.

2. Summary

We present here an outline of the results. Our main aim is using the a priori
knowledge about the IFS to reduce to the minimum the amount of checking nec-
essary, in particular we will show how most checking can be done once and for all
at the level of the maps Ti, and later be used to compute the invariant measure for
all the values of the {pi}.

The computational verification that an operator is a contraction on a high-
dimensional vector space is a very time-consuming check, so it is desirable to avoid
having to repeat such checks for all the values of the parameters {pi}.

In Section 3 we work out the abstract approximation strategy, that can be used
in both the expanding and contractive case.

In Section 4 we prove that contraction properties are preserved for nearby op-
erators, and that that proving contraction on the operators Li is indeed enough to
get a contraction of the IFS for any choice of the probabilities. In practice the esti-
mation of the contraction rate obtained without checking can be quite pessimistic,
but still, it can be used to have a usable estimate, as it will be shown in an example.

In Section 5 we demonstrate the application of the above results in the case of the
L1 approximation of the invariant measure for IFS formed by uniformly expanding
transformations of the interval.

In Section 8 we treat the more classical case of contracting transformations,
approximating the invariant measure in the Wasserstein-Kantorovich metric.

3. Strategy for rigorous estimation

We describe here the general strategy for the rigorous computation of the invari-
ant measure of dynamical system, see [GN14] for more details (in particular about
systems satisfying a Lasota-Yorke inequality).

Let L be a transfer operator acting on a Banach space B of Borel measures and
having fixed point µ. We will use a finite-rank projection πδ : B → B (describing a
finite dimensional approximation of measures), and denote by Lδ the approximated
operator πδLπδ, and by µδ its fixed point. While performing a computation, Lδ is
computable with rigorous error and representable in a suitable basis as a matrix of
floating point numbers on computer, and µδ can be rigorously approximated as a
vector.

The following Theorem can be used to compute rigorously the error of approx-
imating µ by µδ with respect to the norm ∥ · ∥B, it is essentially Theorem 1 of
[GN14].

Theorem 3.1. Suppose that

(1) ∥(Lδ − L)µ∥B < ∞,
(2) ∃N such that ∥LN

δ ∥B→B ≤ α < 1,
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(3) ∥Li
δ∥B→B ≤ Ci for i = 0, . . . , N − 1.

Then

∥µδ − µ∥B ≤ ∥(Lδ − L)µ∥B · 1

1− α

N−1∑
i=0

Ci

Proof. See [GN14]. □
It easily follows

Corollary 3.2. If Lδ is a contraction and ∥Lδ∥B ≤ γ < 1, then

∥µδ − µ∥B ≤ 1

1− γ
∥(Lδ − L)µ∥B.

Remark 3.3. Both Theorem 3.1 and Corollary 3.2 are still valid when ∥ · ∥B is only
defined on the space of measures of zero average. This is very useful for working
with Wasserstein-Kantorovich distance, which only defines a norm on measures
with zero average.

Item 1 in the theorem requires an estimation that depends on the properties of
the invariant density f and on the goodness of the approximation of L by Lδ.

In practice, this can be done using a stronger norm B′ that can be used to esti-
mate the invariant measure µ, and such that ∥Lδ−L∥B′→B can be made arbitrarily
small, so that

∥Lδf − Lf∥B ≤ ∥Lδ − L∥B′→B · ∥µ∥B′ .

Such hypotheses are available when a Lasota-Yorke inequality involving B′ and B
is satisfied.

Remark 3.4. Note that in this estimation it was important the use of the regularity
of µ in an auxiliary norm. In general we have no hope of making ∥Lδ − L∥B→B
arbitrarily small, as Lδ has finite rank.

Items 2 and 3 of Theorem 3.1 can be verified computationally, but their estima-
tion is neither trivial nor rapid, so we developed a strategy that permits to give a
priori bound for these items for any combination of the {pi} once we have estimated
items 2 and 3 for some specific choices of the parameters; next section explains this
strategy.

Informally, the algorithm can be described as follows:

• Input the maps {Ti}, the probabilities {pi}, and the partition.
• For each map Ti compute the matrix Pi approximating Li,δ.
• Compute Lδ as linear combination of the {Li,δ} with the {pi} as coefficients.
• Compute the approximated fixed point µδ of Lδ up to some required ap-
proximation ϵ1.

• Compute an estimation for ∥Lδµ − Lµ∥B up to some error ϵ2, as required
by 1 of Theorem 3.1.

• Compute N such that item 2 of Theorem 3.1 is verified, in practice we com-
pute the smallest N such that ∥(Pi|V )N∥B→B ≤ 1

2 (alternatively estimate
such N via Theorem 4.2).

• Estimate the Ci of 3 of Theorem 3.1 (for B = L1 they are all ≤ 1, so this
step can be skipped).

• If all computations end successfully, output µδ and the error rigorously
estimated via Theorem 3.1.

We will illustrate the algorithm in particular cases in Sections 7 and 9.
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4. Decay time estimations

In order to make a bounded number of checks valid for the whole parameter
space, we need the contraction of the (discretized) operator on the zero-average
subspace to be preserved in a neighborhood. We will work with a general norm
∥ · ∥, that we will take to be L1 in the expanding case, and Wasserstein norm in the
contractive case.

Assume n to be such that ∥Ln∥ < 1/4. In our application we will assume L to be
the discretized transfer operator restricted to the space of zero-average functions.
Assume M be a nearby (discretized) operator, in the sense that the operator norm
∥L−M∥ is small. Then

Proposition 4.1. Assume ∥Ln∥ < 1
4 , and that ∥Li∥ < C for each i. If M is

another operator such that ∥M − L∥ < 1
n4C2 , and such that ∥M i∥ < C for each i,

then ∥Mn∥ ≤ 1
2 .

Proof. Indeed:

∥Mn∥ = ∥Ln + (Mn − Ln)∥
≤ ∥Ln∥+ ∥Mn − Ln∥

≤ ∥Ln∥+
n−1∑
i=0

∥M i(M − L)Ln−i−1∥

≤ ∥Ln∥+
n−1∑
i=0

∥M i∥ · ∥M − L∥ · ∥Ln−i−1∥

≤ ∥Ln∥+ nC2 · ∥M − L∥

≤ 1

2
. □

The above proposition ensures that for each contracting operator, all nearby
operators are also contractions. The space describing all possibile probabilities is
compact, and consequently assuming all combinations of the operators Li to be
contractions (taking a power if necessary), we could use compactness to prove it in
a finite number of steps for a sufficiently fine grid of possibilities, each step granting
the contraction in a neighborhood.

However, we have that in the IFS case all operators are convex combinations of
contractions (in a certain number of steps), and this information can be used at
once to bound the contraction time of a combination. We start working with the
combination of two operators. We remark that a combination of any finite number
of operator can be seen as obtained taking inductively a convex combination of two
operators that are contractions, so it is possible to use the theorem that follows to
work with any finite number of operators.

Assume L0 and L1 to be operators on a Banach space, and for a sequence
ω = (ω1, ω2, . . . , ωk) with ωi ∈ {0, 1}, denote Lω = Lω1Lω2 . . . Lωk

. We also denote
by |ω| its length k, and by |ω|0, |ω|1 the number of occurrences of 0 or 1 in ω,
respectively. Assume that

∀ω∥Lω∥ < C, ∥Ln0
0 ∥ <

1

2C
, ∥Ln1

1 ∥ <
1

2C
.

for some C > 0 and n0, n1 big enough.
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Theorem 4.2. Let p ∈ [0, 1], then∥∥(pL0 + (1− p)L1)
M
∥∥ <

1

2

for all M satisfying the lower bound

M ≥ N − 1 +N
log 2C

− log
(
1− pn0

2 − (1−p)n1

2

) .
for N = max{n0, n1}.

Proof. Let’s expand the M -th power in all possible compositions of L0 and L1,
indexed by all words ω of length M :

LM = (pL0 + (1− p)L1)
M =

∑
ω:|ω|=M

p|ω|0(1− p)|ω|1Lω.

Estimating the norm of Lω for a given ω, we can start with the uniform estimation
C, and for each occurrence of 0n0 or 1n1 in ω we can account a contribution of an
extra factor 1

2C · C = 1
2 to the estimate. That is, ∥Lω∥ ≤ C · 2−H(ω), where H(ω)

denotes the number of occurrences of either 0n0 or 1n1 in ω. Consequently, the
norm in the claim can be estimated with

S(M) = C ·
∑

ω:|ω|=M

p|ω|0(1− p)|ω|12−H(ω).

To estimate S(M), we will proceed by induction on M and denote by S0(M)
and S1(M) the same sum restricted to the ω satisfying ω1 = 0 or 1 respectively.
Decomposing the sum depending on the biggest number of initial 0’s or 1’s in ω,
we have

S(M) ≤
n0−1∑
i=1

piS1(M − i) +
1

2
pn0S(M − n0)

+

n1−1∑
i=1

(1− p)iS0(M − i) +
1

2
(1− p)n1S(M − n1).

Considering that for each i > 1

S0(i) < pS(i− 1), S1(i) < (1− p)S(i− 1),

we can estimate

S(M) ≤
n0−1∑
i=1

pi(1− p)S(M − i− 1) +
1

2
pn0S(M − n0)

+

n1−1∑
i=1

p(1− p)iS(M − i− 1) +
1

2
(1− p)n1S(M − n1).

We have now a sequence S(M) which satisfies a recurrence inequality. It is natu-
ral to compare it with the sequence satisfying the exact recurrence (with equality),
which will provide an upper bound on S(M).

A recurrence where each next element is defined as a positive combination of
previous terms can be estimated using the powers of the unique positive real root
of the characteristic polynomial. This technique is standard in the theory of linear
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recurrence sequences, and based on the following very simple idea: if the powers of
the real number α satisfy a linear equation

αn =

n−1∑
i=0

ciα
i

with positive coefficients ci (such α annihilates the polynomial, Xn−cn−1X
n−1 · · ·−

c0, called characteristic polynomial of the recurrence), then whenever positive real
numbers x0, . . . , xn satisfy

xn =

n−1∑
i=0

cixi

and satisfy xi ≤ Kαi for 0 ≤ i < n and some constantK, then xn ≤ Kαn. Iterating
and usingKα,Kα2, . . . in the role ofK, if the xi are defined by recurrence for i > n,
that is for each k > n we have

xk =
n−1∑
i=0

cixk−n+i,

we obtain that xi ≤ Cαi for each i ≥ 0.
Let N = max{n0, n1}. In our case, the characteristic polynomial is

XN =

n0−1∑
i=1

pi(1− p)XN−i +
1

2
pn0XN−n0 +

n1−1∑
i=1

p(1− p)iXN−i +
1

2
(1− p)n1XN−n1 ,

and such an equation has a real root which is < 1 by intermediate value, because
the LHS is smaller than the RHS for X = 0, but becomes bigger for X = 1.

Such a root α should satisfy

αN ≤
n0−1∑
i=1

pi(1− p) +
1

2
pn0 +

n1−1∑
i=1

p(1− p)i +
1

2
(1− p)n1

=

[
n0−1∑
i=1

pi(1− p) + pn0

]
− 1

2
pn0 +

[
n1−1∑
i=1

p(1− p)i + (1− p)n1

]
− 1

2
(1− p)n1

=1− 1

2
pn0 − 1

2
(1− p)n1 ,

observing that the sums telescopize to p and 1− p. Consequently, we have

α ≤
(
1− 1

2
pn0 − 1

2
(1− p)n1

)1/N

.

Furthermore, we know that S(i) ≤ C < Cαi−N+1 for 0 ≤ i < N , and this implies
that S(M) < CαM−N+1 for all M , applying the above reasoning. Consequently
S(M) < 1

2 whenever αM−N+1 ≤ 1
2C , and it will be sufficient that

(M −N − 1)log(α) ≤ −log(2C).

Dividing by log(α) (which is negative) and taking into account the estimation we
have for α we obtain the result whenever M satisfies the inequality

M ≥ N − 1 +N
log 2C

− log
(
1− pn0

2 − (1−p)n1

2

) . □
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5. Estimation of the error in the uniformly expanding case

In this section we explain how to estimate Item 1 in the uniformly expanding
case, in particular we recall what is a Lasota-Yorke inequality and how, if such an
inequality is satisfied by all the dynamics Ti such an inequality can be proved for
the convex combination of their transfer operators.

Let X be the either unit interval [0, 1], either S1 (which we still identify to the
unit interval with the additional identification 0 = 1).

Definition 5.1. We say that a map T on the interval X is piecewise expanding
if X can be partitioned in finite set of intervals where T is C2 and |T ′| > 2, and

furthermore T ′′

(T ′)2 is bounded.

We will work with transfer operators on measures satisfying a Lasota-Yorke
inequality

∥LNµ∥B′ ≤ λN
1 ∥µ∥B′ +B1∥µ∥B.

Note that if all the transfer operators of the single maps in an IFS satisfy a Lasota-
Yorke inequality, then the transfer operator of the IFS also satisfy such an inequal-
ity, as formalized in the following proposition.

Proposition 5.2. Assume the operators Li to satisfy the inequality

∥Lif∥B′ ≤ λi∥f∥B′ +Bi∥f∥B,

for i = 1, . . . , k then the convex combination L =
∑k

i=1 piLi satisfies

∥Lf∥B′ ≤
k∑

i=1

piλi∥f∥B′ +
k∑

i=1

piBi∥f∥B.

The proof is straightforward.

Remark 5.3. Please note that the fact that all the Li satisfy such inequalities is
a sufficient condition for the operator L to satisfy such an inequality: when all
Li satisfy such an inequality, then a convex combination also does. On the other
hand, this condition is not necessary. When some Li do not satisfy a Lasota-Yorke
inequality, a combination may still satisfy such inequality for a suitable choice of
the pi. An interesting case could be with one operator being the transfer operator
of an irrational rotation on the circle, and other operators satisfying a Lasota-Yorke
inequality (see a concrete example in Section 7).

Remark 5.4. Note also that if

∥Lµ∥B′ ≤ λ∥µ∥B′ +B∥µ∥B.

then applying the inequality iteratively we have

∥LNµ∥B′ ≤ λN∥µ∥B′ +
CB

1− λ
∥µ∥B.

for each N , where C is an upper bound for ∥Li∥B→B for 0 < i < N (note that
C = 1 for B = L1). Hence the Lasota-Yorke can always be recovered from the
N = 1 case, up to replacing B with a bigger constant.

We cite here a few results on the existence of such inequality in the case of
uniformly expanding maps of the interval.
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Theorem 5.5. Assume T to be continuous and piecewise expanding in the interval
X, then its transfer operator on measures of bounded variation satisfies for each N

∥LNµ∥BV ≤ λN∥µ∥BV +B∥µ∥L1

where

λ ≤ 2 ·
∥∥∥∥ 1

T

∥∥∥∥
∞

, B ≤ 2 ·
∥∥∥∥ T ′′

(T ′)2

∥∥∥∥
∞

.

For proof, see [GN14, Theorem 7 and Remark 9].
Since now on, L will be assumed to be an operator obtained considering a convex

combination L =
∑k

i=1 piLi, and satisfying

∥LNµ∥BV ≤ λN∥µ∥BV +B∥µ∥L1 .

Remark 5.6. An invariant probability measure of an operator satisfying such a
Lasota-Yorke inequality has bounded variation and satisfies ∥µ∥BV ≤ B.

We can now describe the approximation strategy. To obtain an estimate in L1 we
can take as approximation operator πδ the conditional expectation operator with
respect to a uniform partition Fδ of X in intervals of size δ:

πδ(µ) = E(µ|Fδ).

The approximated operator Lδ = πδLπδ is known as the Ulam approximation of L.

Proposition 5.7. If Lδ is defined as above then

∥Lδ − L∥BV→L1 ≤ 2δ.

For proof, we refer to Lemma 10 of [GN14] which proves the inequality for the
transfer operator of associated to a map (as each of the Li is). Thus being L
obtained as a convex combination we have

∥Lδ − L∥BV→L1 ≤
∑
i

pi∥Li,δ − Li∥BV→L1 ≤
∑
i

pi2δ = 2δ.

Since as observed in Remark 5.6 we have an estimate of µBV , thanks to the
above proposition we have an estimation sufficient for the item 1 of Theorem 3.1.

Remark 5.8. As pointed out in [BB11, GN14], similar results hold for the pair of
norms Lip and L∞, in the place of the pair BV , L1. It is hence possible to obtain
similarly a rigorous computation of the invariant density in the L∞ norm, using
essentially the same strategy. The same extension can also be done in the IFS case.

6. Some remarks on implementation

The topics in this Section apply equally to the experiments in Sections 7 and 9.
The code used in our experiments is available at

https://bitbucket.org/fph/compinvmeas-python.

To certify the numerics, we use the interval arithmetics libraries which are avail-
able with the SAGE Mathematics Software [Dev15].

The assembly of the matrix in the piecewise expanding case is done by using
interval arithmetics Newton methods while the estimates for the contraction rate
are made with double precision arithmetics with rigorous (and conservative) bounds
on the iteration error.



10 STEFANO GALATOLO, MAURIZIO MONGE, AND ISAIA NISOLI

In the contractive case the Newton method is not necessary, and we can rig-
orously assemble the approximated operator directly, using interval arithmetic to
keep track of possible numerical errors.

7. Implementation in some piecewise expanding examples

Let’s consider the smooth dynamical systems on [0, 1] given by

T2(x) = 4x+ 0.01 · sin(16πx), T2(x) = 5x+ 0.03 · sin(5πx).

Then in our case we have (not iterated) Lasota-Yorke constants that are[
λ(T1) = 0.333924
B(T1) = 11.26927

[
λ(T2) = 0.246455
B(T2) = 1.798453

and consider the sistems defined via the maps T1, T2 where the probabilities are
selected putting

p1 = 0.1, 0.3, 0.5, 0.7, 0.9

and p2 = 1 − p1. The constants λ,B we obtain by Theorem 5.5, as well as an
estimate on the BV norm of the stationary measure, are respectively given by the
pairs

p1 0.1 0.3 0.5 0.7 0.9
λ 0.255202 0.272696 0.290190 0.307683 0.325177
B 2.74553 4.63969 6.53386 8.42802 10.32219

∥µ∥BV 3.68628 6.37931 9.20508 12.17366 15.29615

We select δ = 2−16, obtaining

Figure 1. The stationary measures in the expanding examples.

∥L− Lδ∥BV→L1 ≤ 2−15
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from Prop. 5.7. We prove computationally that the Ulam matrices of T1, T2 con-
tract to α = 1

2 in 9 and 8 steps respectively, and similarly compute the contracting
rate for the IFS transfer operator. Considering that in Theorem 3.1 all Ci are 1 we
can estimate the L1 error as

∥f − fδ∥L1 ≤ ∥L− Lδ∥BV→L1 · ∥µ∥BV · N

1− α
,

N being such that ∥LN
δ ∥ < α (contraction rate). As we will show later, we can

also give an error estimation depending on an a priori estimation of the decay time.
The estimation obtained in this way is rather pessimistic, but is obtained only from
the contraction time for the operators associated to T1 and T2, that is, skipping the
more numerically intensive computation.

p1 0.1 0.3 0.5 0.7 0.9
N (contraction rate) 8 7 7 8 9

L1 error 0.00180 0.00272 0.00393 0.00594 0.00840
A priori N (contraction rate) 34 222 2135 314 37

A priori L1 error 0.00766 0.0865 1.200 0.233 0.0345

In the table the contraction rate is the N such that ∥LN
δ ∥ < α, while the error

is ∥f − fδ,c∥L1 (fδ,c begin the computed approximation of fδ, that is, a rigorous
estimate of the numerical error has been added). The a priori equivalents are
obtained via Theorem 4.2 rather than via an expensive computation; except for
two central values, the a priori error could already be considered acceptable.

Figure 2. Examples with rotation and expanding map.

We conclude with an example of IFS formed replacing the T 1 map above with
an irrational rotation by

√
2. Such a map satisfies a (trivial) Lasota-Yorke with

λ = 1 and B = 0, but for each non-trivial value of the pi the transfer operator of
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the corresponding IFS satisfied a non-trivial Lasota-Yorke (with λ < 1). Taking
δ = 2−14, we can compute the stationary measure up to the error specified below.

p1 0.2 0.4 0.6 0.8
λ 0.39716 0.54787 0.69858 0.84929
B 1.43876 1.07907 0.71938 0.35969

N (contraction rate) 8 9 12 20
L1 error 0.0011687 0.0013139 0.0017506 0.0029155

8. Contractive Maps

In the case of contractive maps, the strategy is similar but the functional spaces
are totally different. In fact, the transfer operator turns out not to be a contraction
when applied to spaces of regular absolutely continuous measures like BV or C1.

A space where the transfer operator attached to a contractive map is contractive
is the dual of Lipschitz, that is the space of measures having finite norm

∥µ∥W = sup
ϕ∈C0(X):Lip(ϕ)≤1

∫
X

ϕdµ,

where we denote by Lip(ϕ) the Lipschitz constant of ϕ (with respect to some dis-
tance on X). We remark that µ has to be a zero-average measure for ∥µ∥W to be
finite; if µ = µ1 − µ2 for positive measures µ1 and µ2, ∥µ∥W is also known as the
Wasserstein-Kantorovich distance (well known in Transportation Theory, and also
known as earth-moving distance) of µ1 to µ2.

Let T be a contraction with contraction rate α and L be the corresponding
transfer operator. Then for each ϕ satisfying Lip(ϕ) ≤ 1 we have∫

X

ϕ(x)dLµ(x) =

∫
X

ϕ(T (x))dµ(x)

= α

∫
X

ϕ(T (x))

α
dµ(x) ≤ α∥µ∥W

observing that

Lip

(
ϕ(T (x))

α

)
≤ 1.

This proves that the operator L satisfies

(3) ∥Lµ∥W ≤ α∥µ∥W
for each zero-average Borel measure µ ∈ V .

Remark 8.1. Since now on we will just assume L to be a contraction, i.e. satisfying
the (3). Since we just proved that the transfer operator associated to a single
contractive map satisfied the (3), this will also be true for the transfer operator of
an IFS as its transfer operator is obtained as a convex combination of the operators.

Assume now X be a bounded domain in Rn equipped with the “Manhattan”
(L1) distance

|x|M =
n∑

i=0

|xi|,

with respect to which we will assume our maps to be contractions (and that we
will use to evaluate the ∥ · ∥W norm). We will define a projection on the space of
measures that is a contraction in the ∥ · ∥W distance.



RIGOROUS APPROXIMATION OF STATIONARY MEASURES FOR IFS 13

We will discretize spatially the bounded measures in Rn working one dimension
at a time, depending on a parameter δ determining the coarseness of the discretiza-
tion. Assume our domain X to be contained in a parallelepiped

Π = [P1, Q1]× [P2, Q2]× · · · × [Pn, Qn],

and let’s also assume by convenience that each size Qk − Pk is an integer multiple
of δ, Nkδ say. We will put

pk,i = Pk + iδ

for 1 ≤ k ≤ n and 0 ≤ i ≤ Nk.
For each set A ⊆ Π denote by Ai,k the set

Ai,k = {(x1, . . . , xn) ∈ A : xk = pk,i} ,

obtained slicing A at the i-th sample of the k-th dimension, and let Ai,k,δ be the
δ-thickening along the slicing direction, that is,

Ai,k,δ = {(x1, . . . , xn) : |xk = pk,i| ≤ δ ∧ (x1, . . . , xk−1, pk,i, xk+1, . . . , xn) ∈ A} .

Let now

hi,k(x) =

{
1− 1

δ |xk − pk,i| if |xk − pk,i| ≤ δ,
0 in any other case.

We define the k-th projection πδ,k as defined, for each measure µ, by

(πδ,kµ)(A) =

Nk∑
i=0

∫
Ai,k,δ

hi,kdµ.

Intuitively, πδ,k can be viewed as the operation of moving “sliding the k-th coordi-
nate” all the mass to the affine planes of equations xk = pk,i, using the functions
hk,i to spread linearly the contribution from each point to the nearby planes.

We put πδ = πδ,1 · · ·πδ,n (these operators obviously commute), and such πδ can
be easily described as

πδµ =
∑

p=(p1,i1 ,...,pn,in )

δp ·
∫

hpdµ

where for such given point of the grid

hp =

n∏
j=1

hj,pj,ij
.

We prove the following proposition.

Proposition 8.2. If ∥µ∥W ≤ 1, then ∥πδ,kµ∥W ≤ 1.

Proof. We need to prove that
∫
ϕdπδ,kµ ≤ 1 for each admissible function ϕ. We

will describe a suitable linearization ϕ̃ of ϕ that on one hand will satisfy

(4)

∫
ϕdπδ,kµ =

∫
ϕ̃dπδ,kµ,

and on the other hand will have Lipschitz constant ≤ 1 and satisfy

(5)

∫
ϕ̃dπδ,kµ =

∫
ϕ̃dµ.
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Given ϕ, we put

ϕ̃(x) =

Nk∑
i=0

hk,i(x)ϕ
(
(x1, . . . , xk−1, pk,i, xk+1, . . . , xn)

)
.

On the points x such that xk is equal to some pk,i the ϕ̃ is equal to ϕ, so the (4) is
clearly satisfied.

To prove the (5), we can just check it on the µ that are δy for some y =
(y1, . . . , yn) and reason by density. Note that

(6) πδ,kδy =

Nk∑
i=0

hk,i(y)δ(y1,...,yk−1,pk,i,yk+1,...,yn),

so the LHS of the (5) turns out to be equal to

ϕ̃(y) =

∫ ∫
ϕ̃dδy.

I remains to prove that ϕ̃ also has Lipschitz constant ≤ 1 (with respect to the Man-
hattan distance), but let y, z be two points and put w = (y1, . . . , yk−1, zk, yk+1, . . . , yn).
We have ∣∣∣ϕ̃(y)− ϕ̃(z)

∣∣∣ ≤ ∣∣∣ϕ̃(y)− ϕ̃(w)
∣∣∣+ ∣∣∣ϕ̃(w)− ϕ̃(z)

∣∣∣
and note that on the segment from y to w ϕ̃ is piecewise linear with slope ≤ 1, while
ϕ̃(w)− ϕ̃(z) is obtained as convex combination of quantities that are all ≤ |w−z|M .
Consequently ∣∣∣ϕ̃(y)− ϕ̃(z)

∣∣∣ ≤ ∥y − z∥M .

We conclude that
∫
ϕdπδ,kµ ≤ 1. □

We are left with the problem of estimating the distance between the fixed points
of L and Lδ, where L is the transfer operator of the IFS (or more in general any
operator satisfying ∥Lµ∥W < α∥µ∥W ).

Proposition 8.3. If L and Lδ are defined as above we have

∥L− Lδ∥L1→W ≤ (α+ 1)
nδ

2
.

Proof. Recall the definition of ∥µ∥L1 in equation (1), we start observing that

∥1− πδ,k∥L1→W ≤ δ

2
.

When πδ,k is applied to an atomic measure µ = δy the mass will be split by πδ,k

in at most two atoms at distance δλ and δ(1 − λ) and mass 1 − λ and λ, and
consequently

∥µ− πδ,kµ∥W ≤ 2δλ(1− λ) ≤ δ

2
taking the maximum over all λ ∈ [0, 1]. This inequality holds when µ is an atomic
measure µ = δy, and extends to the case of µ being a finite convex combination of
such measures (by linearity of πδ,k). Such measures are dense in the space of all
probability measures with respect to the ∥ · ∥W distance, hence this inequality hold
for all probabilities measures µ.



RIGOROUS APPROXIMATION OF STATIONARY MEASURES FOR IFS 15

Applying this estimate for all dimensions we obtain that

∥1− πδ∥L1→W ≤ nδ

2
,

and it follows that

∥L− Lδ∥L1→W ≤ ∥L(1− πδ)∥+ ∥(πδ − 1)Lπδ∥
≤ ∥L∥W · ∥1− πδ∥L1→W + ∥1− πδ∥L1→W · ∥Lπδ∥L1

≤ (α+ 1)
nδ

2
. □

Since an invariant probability measure has L1 norm equal to 1, we have that

(7) ∥Lµ− Lδµ∥W ≤ (α+ 1)
nδ

2
,

and as consequence of Corollay 3.2 we have

∥µ− µδ∥W ≤ (1 + α)nδ

2(1− α)
.

This gives an estimation that can be applied be applied to obtain 1 of Theorem
3.1, and is our main ingredient in the estimation of the error for the approximation
of the stationary measure in this kind of systems.

9. An example in the contractive case

In the contactive case each map has an approximated transfer operator Lδ =
πδLπδ (repesentable as a matrix) that can be computed very easily. We take the
image of a δx for x in the grid (an atom in x) via the map and approximate the δf(x)
obtained (which will not be aligned to the grid) to the measure πδ(δf(x)) supported
on the grid using equation (6).

We take all δx for x in the grid as a basis of the finite dimensional space of
measures supported on the grid, and being Lδ(δx) = πδ(δf(x)) we obtained the
expression of Lδ(δx) as combination of elements of the basis. The matrix P obtained
represents the operator Lδ in this basis, and the decay time of Lδ (or of P ) can be
estimated by the contraction rate of L via to Prop. 8.2.

The IFS also has a transfer operator, obtained as the linear combination of the
transfer operator of the maps, and is also contractive being a convex combination
of contractive operators, (its decay time can obtained as combination of the decay
times of the maps). The obtained matrix is then iterated to approximate the fixed
point of Lδ, the goodness of the approximation is then a consequence of its proven
decay time.

The informal description of the algorithm is the same as explained in Section 3,
with the difference that the decay time N is estimated directly from the contraction
rate of the operator L. The matrix P representing (an approximation) of Lδ is built
as explained in the beginning of the section.

We made an example in the following case: the maps T1, . . . , T4 are defined on
the square [0, 1]× [0, 1] as

• T1: scaling by 0.4 around (0.6, 0.2) with rotation by π/6,
• T2: scaling by 0.6 around (0.05, 0.2) with rotation by −π/30,
• T3: scaling by 0.5 around (0.95, 0.95),
• T4: scaling by 0.45 around (0.1, 0.9).



16 STEFANO GALATOLO, MAURIZIO MONGE, AND ISAIA NISOLI

We took the probabilities

p1 = 0.18, p2 = 0.22, p3 = 0.3, p4 = 0.3,

and a grid of size 210× 210, so that δ = 2−10. It turns out that the contraction rate
α is at most 0.659430, so the error can be estimated by

∥f − fδ∥W ≤ (1 + α)nδ

2(1− α)
≤ 0.0047583.

Here is an image of the computed invariant density.

Figure 3. The stationary measure of the contractive example.

References

[BB11] Wael Bahsoun and Christopher Bose, Invariant densities and escape rates: rigorous and
computable approximations in the l∞-norm, Nonlinear Analysis: Theory, Methods &

Applications 74 (2011), no. 13, 4481–4495.
[Dev15] The Sage Developers, Sage Mathematics Software (Version 6.7), 2015,

http://www.sagemath.org.
[GN14] Stefano Galatolo and Isaia Nisoli, An elementary approach to rigorous approximation

of invariant measures, SIAM Journal on Applied Dynamical Systems 13 (2014), no. 2,
958–985.

[Hal13] Paul R Halmos, Measure theory, vol. 18, Springer, 2013.

[KL06] Yuri Kifer and Pei-Dong Liu, Random dynamics, handbook of dynamical systems, vol.
1b, 379-499, 2006.



RIGOROUS APPROXIMATION OF STATIONARY MEASURES FOR IFS 17

[Liv04] Carlangelo Liverani, Invariant measures and their properties. a functional analytic point

of view, Dynamical systems. Part II (2004), 185–237.
[MR09] Philippe Marie and Jerome Rousseau, Recurrence for random dynamical systems, arXiv

preprint arXiv:0906.4847 (2009).


