PCCP

Accepted Manuscript

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Surface hopping investigation of benzophenone excited state dynamics

Lucilla Favero ${ }^{\dagger}$, Giovanni Granucci ${ }^{\ddagger}$ and Maurizio Persico ${ }^{\ddagger}$
${ }^{\dagger}$ Università di Pisa, Dipartimento di Farmacia via Bonanno Pisano 33, 56126 Pisa, Italy
${ }^{\ddagger}$ Università di Pisa, Dipartimento di Chimica e Chimica Industriale, via Moruzzi 13, 56124 Pisa, Italy

Abstract

We present a simulation of the photodynamics of benzophenone for the first 20 ps after $n \rightarrow$ π^{*} excitation, performed by trajectory surface hopping calculations with on the fly semiempirical determination of the potential energy surfaces and electronic wavefunctions. Both the dynamic and the spin-orbit couplings are taken into account, and the time-resolved fluorescence emission is also simulated. The computed decay time of the S_{1} state is in agreement with experimental observations [13, 14]. The direct $S_{1} \rightarrow T_{1}$ InterSystem Crossing (ISC) accounts for about $2 / 3$ of the S_{1} decay rate. The remaining $1 / 3$ goes through T_{2} or higher triplets. The nonadiabatic transitions within the triplet manifold are much faster than the ISC and keep the population of T_{1} at about $3 / 4$ of the total triplet population, and that of the others states (mainly T_{2}) at $1 / 4$. Two internal coordinates are vibrationally active immediately after $n \rightarrow \pi^{*}$ excitation: one is the $\mathrm{C}=\mathrm{O}$ stretching and the other one is a combination of the conrotatory torsion of the phenyl rings and of the bending involving the carbonyl C atom. The period of the torsion-bending mode coincides with oscillations in the time-resolved photoelectron spectra of Spighi et al [14] and substantially confirms their assignment.

Keywords: Benzophenone - Nonadiabatic dynamics - InterSystem Crossing - Surface Hopping - Spin-orbit coupling

1 Introduction

The photoexcited benzophenone chromophore shows an efficient intersystem crossing (ISC), relaxing to the triplet states with a quantum yield close to 1 [1]. For this reason it is widely used in photochemistry as a triplet sensitizer [2], and may induce DNA damage [3,4]. It is moreover commonly used as UV blocker [5]. Benzophenone derivatives have been proposed [6] as constituents of organic light emitting diodes (OLEDs) and, thanks to their high photoluminescence quantum yield and large Stokes shift, could be good candidates for the the design of organic luminescent solar concentrators [7] (LSCs).

The $S_{1}\left(n \rightarrow \pi^{*}\right)$ state of benzophenone gives rise to a broad and weak absorption band, with $\lambda_{\max }$ at about 345 nm in gas phase [8], corresponding to an excitation energy $\Delta E_{\text {exc }}=3.6 \mathrm{eV}$. The mechanism of ISC from S_{1} to T_{1} after $n \rightarrow \pi^{*}$ excitation is still a matter of debate, particularly concerning the role of higher lying triplet states. Shah et al. [9] performed transient absorption experiments on benzophenone in solution (acetonitrile) with $\Delta E_{\text {exc }}=4.64$ and 3.70 eV , corresponding respectively to excitation in the $\pi \rightarrow \pi^{*}$ and in the upper energy end of the $n \rightarrow \pi^{*}$ band. In both cases a lifetime for the $S_{1} \rightarrow T_{1}$ ISC of $\sim 10 \mathrm{ps}$ is obtained by fitting the rise of the transient absorption signal at 530 nm , which roughly corresponds to the $\lambda_{\max }$ of T_{1}. This is in agreement with older results obtained in acetonitrile, benzene and ethanol [10-12] while a slightly larger ISC lifetime of $16-18$ ps was reported in isooctane $[11,12]$.

The $S_{1} \rightarrow T_{1}$ decay of benzophenone in solution was thoroughly reinvestigated by Aloïse et al. [13] with transient absorption experiments considering various solvents and excitation energies. After excitation in the lower energy end of the $n \rightarrow \pi^{*}$ band ($\Delta E_{\text {exc }}=$ 3.24 eV), the transient signals at 570 and 525 nm , corresponding respectively to the $\lambda_{\max }$ of S_{1} and T_{1}, were fitted. In acetonitrile they obtained a lifetime for the S_{1} decay of 17 ps , while the increase of the T_{1} signal gave 9.4 ps . Slightly longer times were obtained for the T_{1} growth in methanol and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (11.6 and 11.8 ps , respectively). With $\Delta E_{\text {exc }}=4.64$ eV in acetonitrile, roughly the same lifetime of $\sim 10 \mathrm{ps}$ was obtained for the decay of S_{1} (but fitting the transient absorption at 330 nm) and the growth of T_{1}. These raw data were further mathematically analyzed, and a two step kinetic model was found $S_{1} \rightarrow I S \rightarrow T_{1}$, were $I S$ is an intermediate state, not fully identified. The characteristic times for the transitions $S_{1} \rightarrow I S$ and $I S \rightarrow T_{1}$ were reported to be $\sim 6 \mathrm{ps}$ and $\sim 10 \mathrm{ps}$ respectively, largely independent of the solvent and of the excitation energy.

Very recently Spighi et al. [14] performed time resolved photoelectron spectroscopy experiments for benzophenone in a supersonic jet and deposited on cold argon clusters, with $\Delta E_{\text {exc }}=4.66 \mathrm{eV}$. The time constants for the $S_{1} \rightarrow T_{1}$ ISC were found to depend on the environment: 5 ps for the free molecule and 20 ps for deposited benzophenone. This has been interpreted as a signature of the presence of a threshold energy to reach the S_{1} / T_{1} intersection from the S_{1} minimum. Strong oscillations with a period of 550 fs in the decay of the photoelectron intensity were observed, and attributed to the totalsymmetric ring torsional motion in S_{1}.

In the present work we investigate the photodynamics of isolated benzophenone after $n \rightarrow \pi^{*}$ excitation by nonadiabatic molecular dynamics simulations, in the framework of the surface hopping method [15]. The spin orbit interaction is included and evaluated on the fly during the dynamics, so that both internal conversion (IC) and ISC processes can be accounted for in our simulations [16-18]. Our aim is to clarify the mechanism of the $S_{1} \rightarrow T_{1}$ decay, in particular concerning the role of higher lying triplet states.

2 Potential energy surfaces

The electronic potential energy surfaces (PES) and couplings considered in the nonadiabatic dynamics calculations have been obtained using a semiempirical reparameterized AM1 Hamiltonian, with the Floating Occupation Molecular Orbitals Configurations Interaction (FOMO-CI) ansatz [15]. In particular, the CI subspace selected comprised 76 determinants, and was generated from an active space of 10 MO and 10 electrons, considering first a full CI of 6 MO and 10 electrons and then adding the single excitations (generated from the doubly occupation determinant) involving the remaining 4 virtual orbitals. Three of the active MOs belonged to the carbonyl group (the highest non-bonding $\mathrm{MO} n_{\mathrm{O}}$ plus π_{CO} and π_{CO}^{*}), and seven to the phenyl rings (three bonding MOs, $\pi_{\text {ring }}$ and four antibonding, $\pi_{\text {ring }}^{*}$). A Gaussian width for floating occupation of 0.1 Hartree was chosen.

Figure 1: Benzophenone. The numbering of phenyl carbon atoms is shown.

The improved set of semiempirical parameters was obtained by minimizing the quadratic errors with respect to given target values, according to the procedure fully described in ref. [19]. Mainly experimental data were used as targets, as shown in Table S1 of Supporting Information. The new semiempirical parameters for carbon, hydrogen and oxygen issued from the fit are shown in Table S2. Note that two different set of parameters were produced for carbonylic and aromatic carbon atoms. Our reparameterization was per-

Table 1: Equilibrium geometries. Distances in \AA, angles in degrees. θ is the angle between the planes of the phenyl rings [20]. For C_{2} geometries the distances $\mathrm{C}-\mathrm{C}_{1}$ and $\mathrm{C}-\mathrm{C}_{1^{\prime}}$ share the same value, as well as the angles $\mathrm{C}_{1} \mathrm{CO}$ and $\mathrm{C}_{1^{\prime}} \mathrm{CO}$, and the dihedrals $\mathrm{OCC}_{1} \mathrm{C}_{2}$ and $\mathrm{OCC}_{1^{\prime}} \mathrm{C}_{2^{\prime}}$

	S_{0}	S_{1}	S_{2}	T_{1}	T_{2}
$\mathrm{C}-\mathrm{O}$	1.23	1.33	1.25	1.31	1.26
$\mathrm{C}-\mathrm{C}_{1} / \mathrm{C}^{\prime} \mathrm{C}_{1^{\prime}}$	1.45	1.41	$1.45 / 1.42$	1.42	$1.41 / 1.45$
$\mathrm{C}_{1} \mathrm{CC}_{1^{\prime}}$	121	133	121	131	124
$\mathrm{C}_{1} \mathrm{CO} / \mathrm{C}_{1} \mathrm{CO}$	120	114	$119 / 120$	114	$119 / 117$
θ	51	37	41	40	53
$\mathrm{OCC}_{1} \mathrm{C}_{2} / \mathrm{OCC}_{1^{\prime}} \mathrm{C}_{2^{\prime}}$	-150	-159	$-168 /-140$	-157	$-134 /-170$

formed before we became aware of the recent high level ab initio calculations of Sergentu et al. [21], reporting vertical excitation energies at CASPT2(16/15) level and minimum energy paths on S_{1}, S_{2}, T_{1} and T_{2}.

The most relevant geometrical parameters of benzophenone ground and lower lying states minima are shown in Table 1 (see Figure 1 for the numbering of atoms). The S_{1} and T_{1} minima share the same C_{2} conformation as the ground state with, as expected, significant but relatively small geometrical changes, mainly concerning the C-O bond length and the rotation of the phenyl rings around the $\mathrm{C}-\mathrm{C}_{1}$ and $\mathrm{C}-\mathrm{C}_{1^{\prime}}$ bonds. Such rotation takes place in the conrotatory mode, which is more effective than the disrotatory one in relieving the repulsion between the H atoms in 2 and 2^{\prime} with a minimal loss of conjugation of the carbonyl and phenyl π systems. For this reason we shall use a single parameter to describe the phenyl rotation, namely the dihedral angle θ between the two phenyl planes (see note [20] for details). The variations in the geometrical parameters upon excitation are in reasonable agreement with the CASSCF results of Sergentu et al. [21]. The T_{2} minimum correspond to a T_{1} / T_{2} intersection.

In Table 2 we show vertical and adiabatic excitation energies $\left(\Delta E_{\text {vert }}\right.$ and $\left.\Delta E_{\text {adia }}\right)$, comparing our semiempirical FOMO-CI results to available experimental and computational data. Figure 2 offers a schematic view of the relationships between minima and surface crossings. The experimental adiabatic $S_{0} \rightarrow S_{1}$ and $S_{0} \rightarrow T_{1}$ transition energies are accurately reproduced, as well as the absorption, fluorescence and phosphorescence maxima that can be identified with $\Delta E_{v e r t}$ computed at the S_{0}, S_{1} and T_{1} minima, respectively. $\Delta E_{\text {vert }}\left(S_{0} \rightarrow S_{n}\right)$ and $\Delta E_{v e r t}\left(S_{0} \rightarrow T_{n}\right)$ are also in good agreement (within 0.13 $\mathrm{eV})$ with the CASPT2(16/15) results of Sergentu et al. [21], at least for S_{1} and $T_{1}-T_{3}$. The agreement deteriorates for higher lying states, still remaining reasonable. Rather large differences are also found between the semiempirical and the ab initio $\Delta E_{\text {vert }}\left(S_{1} \rightarrow S_{0}\right)$ and $\Delta E_{\text {vert }}\left(T_{1} \rightarrow S_{0}\right)$, i.e. for the luminescence bands, but in this case our results are closer to the experimental ones.

In Table 2 we also show vertical transition energies obtained from our state averaged $\operatorname{CASSCF}(16 / 13)$, which includes 16 states (6 singlets and 10 triplets), and was performed with the $6-31 \mathrm{G}^{*}$ basis set at the B3LYP/6-31G* ground state minimum. If compared to the available experimental data, and to the CASPT2 results of ref. [21], the CASSCF transition energies are invariably too high, providing therefore a much worse description of benzophenone PES's with respect to FOMO-CI.

Minimum energy conical intersections (MXS) between S_{0} / S_{1} and S_{0} / T_{1} were determined at the FOMO-CI level. For S_{0} / S_{1} two distinct, highly distorted, MXS structures were found (enolic and cyclopropanone, see Figure 2), at 4.38 and 4.04 eV above the ground state minimum, respectively. The presence of the enolic S_{0} / S_{1} MXS was subsequently confirmed by ab initio state averaged $\operatorname{CASSCF}(16 / 13)$ calculations including S_{0}, S_{1} and T_{1}, performed using the $6-31 \mathrm{G}^{*}$ basis set and the MOLPRO program package [22], which located the MXS at 4.20 eV above the S_{0} minimum, in good agreement with the semiempirical result. Analogously, a cyclopropanone S_{0} / S_{1} MXS was obtained with CASSCF, at 4.32 eV above the S_{0} minimum. An enolic MXS was also found for S_{0} / T_{1}, at 3.52 eV above the ground state minimum according to FOMO-CI. These distorted MXS lie around or higher than the S_{1} Franck-Condon energy, indicating that fast $S_{1} \rightarrow S_{0}$ or $T_{1} \rightarrow S_{0}$ deactivation pathways are not readily accessible by $n \rightarrow \pi^{*}$ excitation.

The S_{1} / T_{1} MXS is found at 0.45 eV above the S_{1} minimum, with a planar geometry. The energies of S_{1} and T_{2} at the S_{1} minimum are, respectively, 3.30 and 3.55 eV while at the T_{2} minimum they are 3.55 and 3.32 , so that the two states must cross proceeding
from one minimum to the other. In fact, the S_{1} / T_{2} MXS is found at an intermediate geometry with respect to S_{1} and T_{2} equilibrium points shown in table 1, and only 0.09 eV above the S_{1} minimum. Note moreover that T_{2} and S_{1} are almost degenerate in the Franck-Condon region (see table 2). Overall, the above pattern for S_{1} and T_{2} closely match the ab initio results of Sergentu et al. (see in particular the T_{2} minimum energy path shown in figure 7 of Ref. [21]).

The spin orbit (SO) interaction among FOMO-CI semiempirical wavefunctions was evaluated using a mean field Hamiltonian fully described elsewhere [23]. The relevant SO semiempirical parameters for carbon and oxygen were fitted in order to reproduce ab initio CASSCF results. In particular, the target SO couplings were obtained from

Table 2: Vertical and adiabatic transition energies, in eV. Values used as targets in the reparameterization are given in bold. C_{2} symmetry labels are indicated were appropriate. The T_{1} / T_{2} MXS (minimum energy intersection) corresponds to the minimum of the $T_{2} \mathrm{PES}$, according to our FOMOCI calculations.

Transition	FOMO-CI a	CASSCF a	CASPT2 [21]	Exp
$\Delta E_{\text {adia }}$				
$S_{0}(A)_{\text {min }} \rightarrow S_{1}(A)_{\text {min }}$	3.30		3.15	$\mathbf{3 . 2 5}^{b}$
$S_{0}(A)_{\text {min }} \rightarrow T_{1}(A)_{\text {min }}$	3.09		2.85	$\mathbf{3 . 0 0}^{b}$
$S_{0}(A)_{\text {min }} \rightarrow T_{1} / T_{2}$ MXS	3.32		3.22	
$\Delta E_{\text {vert }}($ absorption $)$				
$S_{0}(A)_{\text {min }} \rightarrow S_{1}(A)$	3.53	4.46	3.66	$\mathbf{3 . 6 1}^{c}$
$S_{0}(A)_{\text {min }} \rightarrow S_{2}(A)$	4.56	5.60	4.33	$\mathbf{4 . 4 0}^{d}$
$S_{0}(A)_{\text {min }} \rightarrow S_{3}(B)$	4.57	5.62	4.43	$\mathbf{4 . 4 0}^{d}$
$S_{0}(A)_{\text {min }} \rightarrow S_{4}(B)$	4.76	6.00	5.39	$\mathbf{5 . 0 0}^{e}$
$S_{0}(A)_{\text {min }} \rightarrow S_{5}(A)$	5.05	6.64		$\mathbf{5 . 0 0}^{e}$
$S_{0}(A)_{\text {min }} \rightarrow T_{1}(A)$	3.26	3.88	3.33	
$S_{0}(A)_{\text {min }} \rightarrow T_{2}(A)$	3.51	4.25	3.41	
$S_{0}(A)_{\text {min }} \rightarrow T_{3}(B)$	3.57	4.32	3.69	
$S_{0}(A)_{\text {min }} \rightarrow T_{4}(A)$	3.85	5.05	4.18	
$S_{0}(A)_{\text {min }} \rightarrow T_{5}(B)$	3.86	5.17	4.18	
$S_{0}(A)_{\text {min }} \rightarrow T_{6}(A)$	4.07	5.19	4.22	
$S_{0}(A)_{\text {min }} \rightarrow T_{7}(B)$	4.11	5.27	4.26	
$S_{0}(A)_{\text {min }} \rightarrow T_{8}(A)$	4.92	6.90		
$S_{0}(A)_{\text {min }} \rightarrow T_{9}(B)$	4.93	6.65	6.47	
$\Delta E_{\text {vert }}(\mathrm{emission})$				
$S_{1}(A)_{\text {min }} \rightarrow S_{0}(A)$	2.93		2.34	$\mathbf{2 . 9 5}$
$T_{1}(A)_{\text {min }} \rightarrow S_{0}(A)$	2.84		2.19	$\mathbf{2 . 7 8} \mathbf{7 B}^{c}-2.72^{f}$

${ }^{a}$ This work. ${ }^{b}$ Supersonic jet, 0-0 band [25-27]. ${ }^{c}$ Absorption/phosphorescence, band maximum, low pressure vapor [8]. ${ }^{d}$ Absorption, band shoulder, solution [28, 29]. ${ }^{e}$ Absorption, band maximum, solution $[28,29]$. ${ }^{f}$ Fluorescence/phosphorescence, band maximum, solution [30].

Table 3: Spin orbit coupling, cm^{-1}. For geometry specifications see the text.

coupling	geometry	CASSCF	FOMO-CI
S_{0} / T_{1}	planar	57	62
S_{1} / T_{2}	planar	41	38
T_{1} / T_{2}	planar	55	52
S_{0} / T_{1}	perp	61	63
S_{0} / T_{2}	perp	0.02	0.13
S_{1} / T_{1}	perp	0.03	0.09
S_{1} / T_{2}	perp	34	25
T_{1} / T_{2}	perp	46	33

state averaged $\operatorname{CASSCF}(16 / 13) / 6-31 \mathrm{G}^{*}$ calculations including 16 states. In agreement with Sergentu et al. [21] the T_{1} state showed non negligible $n \rightarrow \pi^{*} / \pi \rightarrow \pi^{*}$ mixing, the extent of which is influenced by the value of the angle θ between the phenyl rings: for planar geometries $\left(\theta=0^{\circ}\right) n \rightarrow \pi^{*}$ and $\pi \rightarrow \pi^{*}$ configurations belong to different irreducible representations, so that no mixing is possible. Therefore, according to ElSayed rules [24], the SO coupling between T_{1} and $S_{1}\left(n \rightarrow \pi^{*}\right)$ is in turn influenced by the angle θ (see figure 3). To avoid inconsistencies due to differences in $n \rightarrow \pi^{*} / \pi \rightarrow \pi^{*}$ mixing with FOMO-CI wavefunctions with respect to CASSCF, the target SO couplings were determined at geometries where the mixing is zero for symmetry reasons: the planar $C_{2 v}\left(\theta=0^{\circ}\right)$ geometry and the perpendicular $C_{s}\left(\theta=90^{\circ}\right)$ geometry, obtained minimizing

Figure 2: Potential energy surfaces of benzophenone: schematic view of minimum energy points. Labels S_{0} / S_{1}-e and S_{0} / S_{1}-c refer respectively to enolic and cyclopropanone minimum energy conical intersections.
the S_{0} energy with respect to the other internal coordinates. In this way the semiempirical SO parameters for C and O were evaluated, respectively, as $\xi_{C}=28.6 \mathrm{~cm}^{-1}$ and $\xi_{O}=222$ cm^{-1}. In table 3 we show the target CASSCF SO couplings and the corresponding FOMOCI results at the planar and perpendicular geometries referred above. In the following, we shall refer to the SO coupling strength, computed as the square root of the sum of the squares of the multiplet components. The dependence of the S_{1} / T_{1} and S_{1} / T_{2} SO coupling on the orientation of the phenyl planes is shown in figure 3. As one can see from table 3, with the fitted semiempirical SO parameters the FOMO-CI wavefunctions reproduce well the ab initio results. At the ground state equilibrium geometry the semiempirical S_{1} / T_{1} and S_{1} / T_{2} SO couplings are, respectively, 6 and $26 \mathrm{~cm}^{-1}$, to be compared with the CASSCF values of 20 and $29 \mathrm{~cm}^{-1}$. Given the good results of table 3, the discrepancy in the S_{1} / T_{1} SO coupling at the ground state minimum has to be attributed to the different $n \rightarrow \pi^{*} / \pi \rightarrow \pi^{*}$ mixing in the semiempirical wavefunctions with respect to CASSCF.

3 Excited state dynamics

The nonadiabatic molecular dynamics calculations have been performed with our surface hopping scheme [15], using the spin-adiabatic method [16] to account for the SO interaction. In particular, we selected the first 6 singlet and 10 triplet states giving rise to 36 spin-adiabatic (i.e. spin-mixed) states after diagonalization of the SO Hamiltonian. In all the dynamics calculations the PESs and couplings were obtained on the fly with the FOMO-CI method and the semiempirical parameters referred above. To sample the starting conditions a ground state trajectory was run for 100 ps , with an integration time step of 0.1 fs , using the Bussi Parrinello algorithm [31] to introduce the coupling with a thermostat at 298 K .

Figure 3: S_{1} / T_{1} and S_{1} / T_{2} spin orbit coupling $\left(\mathrm{cm}^{-1}\right)$ with respect the $\mathrm{OCC}_{1} \mathrm{C}_{2}$ dihedral. Solid (respectively, dashed) lines: the $\mathrm{OCC}_{1^{\prime}} \mathrm{C}_{2^{\prime}}$ dihedral is kept fixed at 180° (respectively, 150°). All the other internal coordinates are optimized for the ground state.

In the present work, excitation in the $n \rightarrow \pi^{*}$ band is considered: the starting conditions were therefore selected from the thermalized trajectory (discarding the first 20 ps) in agreement with the radiative transition probability to the spin-adiabatic states in the energy range $3.35-3.75 \mathrm{eV}$, following a stochastic algorithm described elsewhere [15]. Overall, 320 starting conditions were selected and the corresponding surface hopping trajectories were propagated for 20 ps . A single trajectory was discarded for technical reasons, so that the final averages shown here are obtained from a total of 319 trajectories. An integration time step of 0.1 fs was used both for the nuclear and for the electronic degrees of freedom. In particular, for the latter ones the local diabatization scheme was employed $[32,33]$. The quantum decoherence was approximately taken into account using our overlap based correction [34] with Gaussian width $\sigma=0.2$ a.u. and overlap threshold $S_{m i n}=0.005$.

Figure 4: Spin-diabatic state populations after $n \rightarrow \pi^{*}$ excitation. Black curves are biexponential fits of the state populations. Only states with final population larger than 5% are shown.

As the SO coupling in benzophenone is weak, the results are better analyzed in terms of the spin-diabatic (i.e. unmixed) singlet and triplet states. In figure 4 we show the time evolution of the spin-diabatic state populations:

$$
\begin{equation*}
\bar{P}_{K}(t)=N_{\text {traj }}^{-1} \sum_{j} \sum_{m}\left|\left\langle K_{m} \mid A^{(j)}(t)\right\rangle\right|^{2} \tag{1}
\end{equation*}
$$

Here $N_{\text {traj }}$ is the total number of trajectories, the index j runs over all trajectories, the index m identifies the components of the spin multiplet K, and $A^{(j)}(t)$ is the current spin-adiabatic state for the trajectory j at time $t[17,18]$. The fit of $\bar{P}_{S_{1}}(t)$ with an exponential function $e^{-t / \tau}$ yielded $\tau=16.2 \mathrm{ps}$. This result is in good agreement with the lifetime of 17 ps obtained by Aloïse et al. [13] in their experiments with $\Delta E_{\text {exc }}=3.24 \mathrm{eV}$ in acetonitrile, by a monoexponential fit of their raw transient absorption data. A more refined representation for the decay of the S_{1} population is obtained by fitting $\bar{P}_{S_{1}}(t)$ with a biexponential function

$$
\begin{equation*}
\bar{P}_{S_{1}}(t)=w e^{-t / \tau_{1}}+(1-w) e^{-t / \tau_{2}} \tag{2}
\end{equation*}
$$

Table 4: Radiationless transition rates $\bar{R}_{K L}\left(\mathrm{ps}^{-1}\right)$ and rate constants $\bar{T}_{K L}$ between spin-diabatic states (or groups of states), averaged over time intervals $\left[t_{1}, t_{2}\right]$ (ps).

state K	state $(\mathrm{s}) L$	t_{1}, t_{2}	$\bar{R}_{K \rightarrow L}$	$\bar{R}_{L \rightarrow K}$	$\Delta \bar{R}_{K \rightarrow L}$	$\bar{T}_{K \rightarrow L}$	$\bar{T}_{L \rightarrow K}$
S_{1}	T_{1}	0,5	0.038	0.005	0.033	0.045	0.051
S_{1}	T_{1}	5,10	0.036	0.007	0.029	0.061	0.022
S_{1}	T_{1}	10,15	0.027	0.012	0.015	0.058	0.029
S_{1}	T_{1}	15,20	0.015	0.014	0.001	0.038	0.030
S_{1}	T_{1}	0,20	0.029	0.009	0.019	0.051	0.033
S_{1}	$T_{2}-T_{10}$	0,5	0.115	0.093	0.022	0.139	1.376
S_{1}	$T_{2}-T_{10}$	5,10	0.093	0.085	0.009	0.160	1.421
S_{1}	$T_{2}-T_{10}$	10,15	0.085	0.084	0.001	0.185	1.341
S_{1}	$T_{2}-T_{10}$	15,20	0.083	0.076	0.006	0.210	1.042
S_{1}	$T_{2}-T_{10}$	0,20	0.094	0.085	0.010	0.174	1.295
T_{1}	$T_{2}-T_{10}$	0,5	1.453	1.468	-0.015	10.057	25.446
T_{1}	$T_{2}-T_{10}$	5,10	3.525	3.523	0.002	11.207	44.560
T_{1}	$T_{2}-T_{10}$	10,15	4.798	4.794	0.004	11.773	83.343
T_{1}	$T_{2}-T_{10}$	15,20	5.238	5.241	-0.003	11.348	82.707
T_{1}	$T_{2}-T_{10}$	0,20	3.753	3.756	-0.003	11.096	59.014

In this case we get $\tau_{1}=6 \mathrm{ps}, \tau_{2}=53 \mathrm{ps}$ and $w=0.49$. Although the biexponential function fits our data much better than the single exponential, it is clear that this value of τ_{2} is only a rough estimate, because it largely exceeds the duration of our simulation. The τ_{1} value is close to the lifetime of 5 ps observed in time-resolved photoelectron spectra of the isolated molecule after $\pi \rightarrow \pi^{*}$ excitation by Spighi et al [14], who assigned it to the ISC decay of S_{1}.

During 20 ps only 2 trajectories out of 319 undergo $S_{1} \rightarrow S_{0}$ decay, which is not enough for a meaningful statistics. It is however clear that the internal conversion rate of S_{1} must be negligible in this time scale, so that the lifetime of S_{1} is practically determined by the ISC process. In the same time interval, no trajectories switch from the triplet states to S_{0}. Therefore, within the first tens of picoseconds we expect the rise of the total triplet population to be almost exactly complementary to the decay of S_{1}, i.e.

$$
\begin{equation*}
\bar{P}_{\text {all-triplets }}(t)=1-\bar{P}_{S_{1}}(t) \tag{3}
\end{equation*}
$$

as shown in figure 4 . The population of every single triplet increases almost exactly with the same law, being at all times a fraction of the total: about $76 \% T_{1}, 13 \% T_{2}, 4 \%$ T_{3}, and $6 \% T_{4}$ together with the higher triplets, of which the last with a non negligible contribution is T_{8} (see figures 4, S1 and S 2). Overall, the population of triplets other than T_{1} is considerable and can significantly contribute to probe signals such as differential absorption or photoionization, because of the different spectral properties of these states (we remind that T_{1} is essentially $n \rightarrow \pi^{*}$, while T_{2}, T_{3} and most of the others are $\pi \rightarrow \pi^{*}$).

To analyze in more detail the nonadiabatic dynamics we monitored the switches between quasi-diabatic states (or multiplets). A $K \rightarrow L$ switch for trajectory j is counted

Figure 5: Energetic and geometrical variables, averaged over the full swarm of trajectories, in the 0-2 ps time domain. Upper panel: energy differences $E\left(S_{1}\right)-E\left(S_{0}\right), E\left(T_{1}\right)-E\left(S_{0}\right)$ and $E\left(T_{2}\right)-E\left(S_{0}\right)$, in eV . Middle panel: distance C-O, in \AA. Lower panel: angles θ and $\mathrm{C}_{1} \mathrm{CC}_{1^{\prime}}$, in degrees. Note the scale for $\mathrm{C}_{1} \mathrm{CC}_{1^{\prime}}$ on the right side.
when K is replaced by L as the multiplet K with the largest probability $P_{K}^{(j)}(t)=$ $\sum_{m}\left|\left\langle K_{m} \mid A^{(j)}(t)\right\rangle\right|^{2}$ (see ref. [18] for details). We calculate the one-way transition rate $\bar{R}_{K \rightarrow L}\left(t_{1}, t_{2}\right)$ between states K and L, averaged over all trajectories, on the basis of the number $N_{K \rightarrow L}\left(t_{1}, t_{2}\right)$ of $K \rightarrow L$ switches occurring in the time interval $\left[t_{1}, t_{2}\right]$:

$$
\begin{equation*}
\bar{R}_{K \rightarrow L}\left(t_{1}, t_{2}\right)=\frac{N_{K \rightarrow L}\left(t_{1}, t_{2}\right)}{N_{\text {traj }}\left(t_{2}-t_{1}\right)} \tag{4}
\end{equation*}
$$

In a similar way, we define the corresponding rate constant

$$
\begin{equation*}
\bar{T}_{K \rightarrow L}\left(t_{1}, t_{2}\right)=N_{\text {traj }}^{-1}\left(t_{2}-t_{1}\right)^{-1} \sum_{i}\left[\bar{P}_{K}\left(t_{i}\right)\right]^{-1} \tag{5}
\end{equation*}
$$

Here the index i runs over all the $K \rightarrow L$ switches occurring at times $t_{i} \in\left[t_{1}, t_{2}\right]$. We qualify $\bar{T}_{K \rightarrow L}$ as a "rate constant" because the $1 / \bar{P}_{K}\left(t_{i}\right)$ factor is meant to normalize the transition rate with respect to the population of the starting state; but of course
$\bar{T}_{K \rightarrow L}$ is determined by the dynamics and may change in time. In table 4 we list the one-way rates and rate constants for different time intervals, along with the net rates $\Delta \bar{R}_{K \rightarrow L}=\bar{R}_{K \rightarrow L}-\bar{R}_{L \rightarrow K}$. For simplicity, we group together all the triplets from T_{2} to T_{10}, but in table S 3 we provide more detailed data. Some of the rate constant values cannot be determined with a good statistical accuracy, because they depend on a small number of switches and/or on small state probabilities \bar{P}_{K} : quite understandably, this occurs at short times ($[0,5] \mathrm{ps}$ time interval) for triplet \rightarrow singlet transitions. Apart from such uncertainties, the rate constants do not show dramatic changes, probably because the geometrical relaxation and the internal vibrational energy redistribution occur in a shorter time scale and/or their effect on the transition rates is minor.

The $S_{1} \rightleftarrows T_{2}$ ISC rates exceed the $S_{1} \rightleftarrows T_{1}$ ones in both directions, because of the larger spin-orbit coupling and smaller energy gap for the former transition. However, the forward and backward $S_{1} \rightleftarrows T_{2}$ rates tend to cancel out, so the net contribution of the T_{2} route to the decay of S_{1} is smaller than that of T_{1} : overall, during the first 20 ps the $S_{1} \rightarrow T_{1}$ net rate is about twice the sum of the net rates from S_{1} to T_{2} and all the higher triplets. The ISC net transition rates tend to slow down as the S_{1} population decreases, showing a tendency towards equilibrium. Much faster exchanges, but again with relatively small net effects on the state populations, are caused by the dynamic couplings within the triplet manifold. This can be appreciated from the noisy character of the T_{1} and T_{2} curves in figure 4 , if compared to S_{1} and the total triplet populations. Overall, some population from T_{2} and the higher triplets leaks to T_{1}, especially during the first picoseconds, but the population flux seems to follow the circular route $T_{1} \rightarrow T_{2} \rightarrow$ higher triplets $\rightarrow T_{1}$.

The internal coordinates most affected by the $n \rightarrow \pi^{*}$ excitation are the R_{CO} distance, the $\mathrm{CC}_{1} \mathrm{C}_{1^{\prime}}$ angle and the θ dihedral (see Table 1). In both S_{1} and T_{1} the carbonyl group acquires an extra π electron and the stabilizing effect of conjugation with the phenyl groups becomes more important than in the ground state. As a consequence, the phenyl groups tend to rotate towards planarity (smaller θ) and the $\mathrm{C}_{1} \mathrm{CC}_{1^{\prime}}$ angle opens to relieve the repulsion between H_{2} and $\mathrm{H}_{2^{\prime}}$. In figure 5 we present the time evolution of some energetic and geometrical variables, averaged on the full swarm of trajectories, in the 0-2 ps domain, when S_{1} is by far the most populated state. The averaged energy differences $E(X)-E\left(S_{0}\right)$, with $X=S_{1}, T_{1}$ or T_{2}, show fast oscillations with the same period of the C-O stretch, further modulated by the oscillations of θ. Differently with respect to the Franck-Condon point, the T_{2} curve lies sensibly higher in energy with respect to S_{1} : this can be understood considering that the minimum energy geometry of T_{2} is quite different from that of S_{1} and T_{1} (see table 1). $\mathrm{C}_{1} \mathrm{CC}_{1^{\prime}}$ and θ oscillate with the same period but with opposite phases, in agreement with the above considerations. In addition, $\mathrm{C}_{1} \mathrm{CC}_{1^{\prime}}$ is clearly affected by the $\mathrm{C}=\mathrm{O}$ stretching motion. The period of the combined θ and $\mathrm{C}_{1} \mathrm{CC}_{1^{\prime}}$ mode is about 600 fs , which is in nice agreement with the oscillation period of 550 fs observed for the time resolved photoelectron intensity in the experiments of Spighi et al. [14]. Therefore, we substantially confirm their attribution of this feature to the ring torsional motion in S_{1}.

The evaluation of the transition dipole moments along the nuclear trajectories allows us to simulate the decay of the fluorescence intensity [35]. The photon emission rate averaged over all the trajectories is shown in figure 6 . The spikes that represent sudden increases in the emission rate, in particular around 13 ps , are due to transitions to S_{2}. The $\pi \rightarrow \pi^{*}$ states have a much larger oscillator strength with respect to S_{1}, so that a very modest population of the S_{2} state (below 1%) can lead to a sizeable increase in the emission rate. In fact, very few trajectories do switch to S_{2}, which means this contribution
to the emission rate, besides being of secondary importance, cannot be accurately assessed on the basis of our simulation.

We fitted the emission rate with the exponential function

$$
\begin{equation*}
F(t)=K_{F} e^{-t / \tau_{F}} \tag{6}
\end{equation*}
$$

and we obtained the fluorescence rate constant $K_{F}=0.23 \mu \mathrm{~s}^{-1}$ and the lifetime $\tau_{F}=17.5$ ps. As almost the whole emission originates from S_{1}, τ_{F} is close to the lifetime obtained by a monoexponential fit of the S_{1} population. Also the fluorescence rate shows evidence of a more complex decay, that can be approximated by a biexponential law:

$$
\begin{equation*}
F(t)=K_{F}\left[w e^{-t / \tau_{1}}+(1-w) e^{-t / \tau_{2}}\right] \tag{7}
\end{equation*}
$$

However, it was not possible to obtain reliable values of the four parameters K_{F}, w, τ_{1} and τ_{2} from the fitting procedure, so we assumed $\tau_{1}=6 \mathrm{ps}$ and $\tau_{2}=53 \mathrm{ps}$ as for the S_{1} population. Then, the fitting yielded $K_{F}=0.25 \mu \mathrm{~s}^{-1}$ and $w=0.52$. Of course the K_{F} values obtained from mono- or biexponential fits are very similar, since in both cases they represent the emission rate at $t=0$.

From the steady state absorption and delayed fluorescence spectra of benzophenone in CCl_{4}, Sun et al. [30] obtained $K_{F}=1.1 \pm 0.1 \mu \mathrm{~s}^{-1}$ by making use of the BirksDyson equation $[36,37]$. Our K_{F} value for the isolated molecule can be converted to the corresponding solution quantity by taking into account the refractive index of the solvent, $n=1.47$ in this spectral range [38]. According to the empty cavity model [39, 40] the fluorescence rates in vacuo and in solution are related by the factor $9 n^{5}\left(2 n^{2}+1\right)^{-2}$, so our computed K_{F} would be converted to about $0.5 \mu \mathrm{~s}^{-1}$. Comparing this value with the experimental one, we find it underestimated by about a factor two. Since the $S_{0}-S_{1}$ transition is almost dipole forbidden and presumably very sensitive to the $n \rightarrow \pi^{*} / \pi \rightarrow \pi^{*}$ mixing, both our semiempirical estimate and the application of the Birks-Dyson equation are questionable [36] and further work is planned to investigate this issue.

4 Conclusions

We simulated the photodynamics of benzophenone for the first 20 ps after $n \rightarrow \pi^{*}$ excitation with on the fly trajectory surface hopping calculations. The T_{1} state has a mixed $n \rightarrow \pi^{*} / \pi \rightarrow \pi^{*}$ character and therefore shows a sizeable SO coupling with $S_{1}\left(n \rightarrow \pi^{*}\right)$, so that the main ISC channel is found to be due to $S_{1} \rightarrow T_{1}$ transitions. In fact we might have slightly underestimated the $S_{1} \rightarrow T_{1}$ ISC rate because at non-planar geometries our FOMO-CI T_{1} wavefunction shows less $\pi \rightarrow \pi^{*}$ character with respect to the CASSCF one. Nevertheless, our simulations clearly show that T_{2} and also higher triplets play a non negligible role in the decay of S_{1}, because such states are close in energy and more strongly coupled to S_{1} than T_{1}. We obtained a lifetime of S_{1} of about 16 ps by a monoexponential fit, or two lifetimes of 6 and 50 ps by a biexponential fit, which seems compatible with experimental determinations [13,14]. Within the duration of our simulation (20 ps), almost no decay to the ground state takes place, and the most populated triplet is T_{1} (about $3 / 4$ of the total). The population of T_{2} is around 13% and that of all the higher triplets (mainly T_{3} and T_{4}) about 10%. The nonadiabatic transitions among triplet states are ultrafast, with rate constants ranging from 1 to 50 ps^{-1}. While it would be difficult to unravel experimentally the dynamics within the triplet manifold, the contribution of T_{2} and of the higher triplets to differential absorption or

Figure 6: Fluorescence decay. Thin red line: photon emission rate. Thick green line: fit with the biexponential function of eq. 7 see the text. $\Phi_{F}=K_{F}\left[w \tau_{1}+(1-w) \tau_{2}\right]$ is the fluorescence quantum yield.
photoelectron signals should not be disregarded. We note that vibrational energy loss to the environment may decrease the accessibility of T_{2} and of the higher triplets in solution or in other condensed media.

After excitation to S_{1}, two internal modes start a train of damped oscillations: one is the $\mathrm{C}=\mathrm{O}$ stretching, with a period of 28 fs , and the other is a combined conrotatory phenyl torsion and phenyl-C-phenyl angle opening, with a period of about 600 fs . An oscillation with about the same frequency was observed by Spighi et al. [14] in time resolved photoelectron spectroscopy experiments and we substantially confirm their attribution to the phenyl torsional motion.

Acknowledgments

This work was supported by grants of the University of Pisa. In particular GG acknowledges the project "Progetti di Ricerca di Ateneo" (grant no. PRA_2015_0038).

References

[1] V. Balzani, P. Ceroni and A. Juris, Photochemistry and Photophysics, Wiley-VCH (2014).
[2] R. P. Wayne, Principles and applications of photochemistry, Oxford University Press (1988).
[3] M. Consuelo Cuquerella, V. Lhiaubet-Vallet, J. Cadet and M. A. Miranda, Acc. Chem. Res., 2012, 45, 1558-1570.
[4] E. Dumont, M. Wibowo, D. Roca-Sanjuán, M. Garavelli, X. Assfeld and A. Monari, J. Phys. Chem. Lett., 2015, 6, 576-580.
[5] R. Kumasaka, A. Kikuchi and M. Yagi, Photochem. Photobiol., 2014, 90, 727-733.
[6] S. Y. Lee, T. Yasuda, Y. S. Yang, Q. Zhang and C. Adachi, Angew. Chem. Int. Ed., 2014, 53, 6402-6406.
[7] M. Debije, P. Verbunt, P. Nadkarni, S. Velate, K. Bhaumik, S. Nedumbamana, B. Rowan, B. Richards and T. Hoeks, Appl. Opt., 2011, 50, 163-169.
[8] T. Itoh, J. Phys. Chem., 1985, 89, 3949.
[9] B. K. Shah, M. A. J. Rodgers and D. C. Neckers, J. Phys. Chem. A, 2004, 108, 6087-6089.
[10] K. Prater, W. L. Freund and R. M. Bowman, Chem Phys. Lett., 1998, 295, 82-88.
[11] P. F. McGarry, C. E. Jr. Doubleday, C.-H. Wua, H. A. Staab and N. J. Turro, J. Photochem. Photobiol. A, 1994, 77, 109-117.
[12] H. Miyasaka, K. Morita, K. Kamada and N. Mataga, Bull. Chem. Soc. Jpn., 1990, 63, 3385-3397.
[13] S. Aloïse, C. Ruckebusch, L. Blanchet, J. Réhault, G. Buntinx and J.-P. Huvenne, J. Phys. Chem. A, 2008, 112, 224-231.
[14] G. Spighi, M.-A. Gaveau, J.-M. Mestdagh, L. Poisson and B. Soep, Phys. Chem. Chem. Phys., 2014, 16, 9610-9618.
[15] M. Persico and G. Granucci, Theor. Chem. Acc., 2014, 133, 1526.
[16] G. Granucci, M. Persico and G. Spighi, J. Chem. Phys., 2012, 137, 22A501.
[17] L. Favero, G. Granucci and M. Persico, Phys. Chem. Chem. Phys., 2013, 15, 20651.
[18] L. Martínez-Fernández, I. Corral, G. Granucci and M. Persico, Chem. Sci., 2014, 5, 1336-1347.
[19] T. Cusati, G. Granucci, E. Martínez-Nũnez, F. Martini, M. Persico and S. Vázquez, J. Phys. Chem. A, 2012, 116, 98.
[20] The angle θ is defined as the dihedral formed by the average planes of the two phenyl rings, i.e. the planes obtained by a least squares fit of the positions of their carbon atoms. Assuming pure rotations around the $\mathrm{C}-\mathrm{C}_{1}$ and $\mathrm{C}-\mathrm{C}_{1^{\prime}}$ axes by angles $\phi, \phi^{\prime} \in[0, \pi / 2]$ without loss of coplanarity of the phenyl rings and the carbonyl C atom, we have $\cos \theta=\cos \phi \cos \phi^{\prime}+\cos \alpha \sin \phi \sin \phi^{\prime}$, where $\alpha=\angle \mathrm{C}_{1} \mathrm{CC}_{1^{\prime}}$. We see that θ is an increasing function of both ϕ and ϕ^{\prime}, so it can be taken as a good descriptor of the loss of planarity of the whole π system.
[21] D.-C. Sergentu, R. Maurice, R. W. A. Havenith, R. Broer and D. Roca-Sanjuán, Phys. Chem. Chem. Phys., 2014, 16, 25393.
[22] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby and M. Schütz, WIREs Comput. Mol. Sci., 2012, 2, 242.
[23] G. Granucci and M. Persico, J. Comput. Chem., 2011, 32, 2690.
[24] M. A. El-Sayed, J. Chem. Phys., 1963, 38, 2834.
[25] K. W. Holtzlaw and D. W. Pratt, J. Chem. Phys., 1986, 84, 4713.
[26] N. Ohmori, T. Suzuki and M. Ito, J. Phys. Chem., 1988, 92, 1086-1093.
[27] V. D. Vachev and J. H. Frederick, Chem. Phys. Lett., 1996, 249, 476-484.
[28] P. Sett, T. Misra, S. Chattopadhyay, A. K. De and P. K. Mallick, Vibrational Spectroscopy, 2007, 44, 331-342.
[29] W. L. Dilling, J. Org. Chem., 1966, 31, 1045.
[30] Y.-P. Sun, D. F. Sears and J. Saltiel, J. Am. Chem. Soc., 1989, 111, 706-711.
[31] G. Bussi and M. Parrinello, Comp. Phys. Comm., 2008, 179, 26.
[32] G. Granucci, A. Toniolo and M. Persico, J. Chem. Phys., 2001, 114, 10608.
[33] F. Plasser, G. Granucci, J. Pittner, M. Barbatti, M. Persico and H. Lischka, J. Chem. Phys., 2012, 137, 22A514.
[34] G. Granucci, M. Persico and A. Zoccante, J. Chem. Phys., 2010, 133, 134111.
[35] T. Cusati, G. Granucci and M. Persico, J. Am. Chem. Soc., 2011, 133, 5109-5123.
[36] S. J. Strickler and R. A. Berg, J. Chem. Phys., 1962, 37, 814.
[37] J. B. Birks and D. J. Dyson, Proc. R. Soc. A, 1965, 275, 135-148.
[38] K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis and D. Triantis, Appl. Phys. B, 2013, 116, 617-622.
[39] R. J. Glauber and M. Lewenstein, Phys. Rev. A, 1991, 43, 467-491.
[40] D. Toptygin, J. Fluoresc., 2003, 13, 201-219.

Supporting informations

Surface hopping investigation of benzophenone excited state dynamics.

Lucilla Favero, Giovanni Granucci, Maurizio Persico
University of Pisa

Table S1: Target values used in the reparameterization and semiempirical results obtained with the optimized parameters. Energies in eV , distances in \AA, angles in degrees, frequencies in cm^{-1}. For the numbering of atoms see the main text.

	target value	semiemp. value	weight
S_{0} geom., $\Delta E\left(S_{1}-S_{0}\right)$	3.61	3.53	2.5
S_{0} geom., $\Delta E\left(S_{2}-S_{0}\right)$	4.40	4.56	2.2
S_{0} geom., $\Delta E\left(S_{3}-S_{0}\right)$	4.40	4.57	2.2
S_{0} geom., $\Delta E\left(S_{4}-S_{0}\right)$	5.01	4.76	2.5
S_{0} geom., $\Delta E\left(S_{5}-S_{0}\right)$	5.01	5.05	0.3
S_{0} geom., $\Delta E\left(T_{2}-S_{0}\right)$	3.61	3.51	1.3
S_{0} geom., $\Delta E\left(S_{1}-T_{1}\right)$	0.27	0.27	1.3
S_{1} geom., $\Delta E\left(S_{1}-S_{0}\right)$	2.95	2.93	1.0
S_{1} geom., $\Delta E\left(T_{1}-S_{0}\right)$	2.78	2.73	1.0
$\Delta E\left(S_{1}-S_{0}\right)$, adiabatic	3.25	3.30	1.2
$\Delta E\left(T_{1}-S_{0}\right)$, adiabatic	3.00	3.09	1.2
$\Delta E\left(T_{2}-T_{1}\right)$, adiabatic	0.25	0.25	0.2
S_{0} geom., $\mathrm{R}(\mathrm{CO})$	1.23	1.23	1.2
S_{0} geom., $\mathrm{R}\left(\mathrm{CC} \mathrm{C}_{1}\right)$	1.49	1.45	3.8
S_{0} geom., angle OCC_{1}	119.2	119.5	0.7
S_{0} geom., dihed. $\mathrm{OCC}_{1} \mathrm{C}_{2}$	147.0	150.4	0.6
S_{0} geom., freq. CO stretch	1682	1738	1.0
S_{1} geom., $\mathrm{R}(\mathrm{CO})$	1.32	1.33	0.7
S_{1} geom., $\mathrm{R}(\mathrm{CC} 1)$	1.45	1.41	2.7
S_{1} geom., angle OCC_{1}	128.1	113.7	0.5
S_{1} geom., dihed. $\mathrm{OCC}_{1} \mathrm{C}_{2}$	156.6	159.2	0.5
T_{1} geom., $\mathrm{R}(\mathrm{CO})$	1.33	1.31	0.5
T_{1} geom., $\mathrm{R}(\mathrm{CC} 1)$	1.44	1.42	2.7
T_{1} geom., angle OCC_{1}	115.5	114.5	0.4
T_{1} geom., dihed. $\mathrm{OCC}_{1} \mathrm{C}_{2}$	153.6	156.9	0.5

Table S2: Optimized semiempirical parameters (AM1 Hamiltonian). The names of the parameters are those used in the MOPAC 2002 documentation [1]. Note that different parameters are used for carbonyl and phenyl C atoms.

	units	$\mathrm{C}(\mathrm{phenyl})$	$\mathrm{C}(\mathrm{CO})$	O	H
$U_{s s}$	eV	-49.6687239029	-51.5926064181	-89.0096523334	-10.8491535539
$U_{p p}$	eV	-39.4813823220	-39.1437309074	-77.8379181410	
β_{s}	eV	-16.1116257628	-15.2814454696	-26.5060604145	-6.3376982810
β_{p}	eV	-8.3845965271	-7.2293910728	-28.7179596479	
ζ_{s}	bohr^{-1}	1.6569306913	1.9117163234	3.2500086920	1.2530447780
ζ_{p}	bohr^{-1}	1.6551097550	1.5066165958	2.5701260986	
α	\AA^{-1}	2.7268920403	2.6970289946	4.8641229413	3.0516601405
$g_{s s}$	eV	12.2719459805	11.7417627149	5.7214695341	12.7862091987
$g_{s p}$	eV	11.9324870503	11.6321710371	14.7170663247	
$g_{p p}$	eV	11.3601849803	11.5241312615	14.1552702814	
$g_{p 2}$	eV	10.1373025627	10.0097524401	12.5185353113	
$h_{s p}$	eV	2.5377929671	2.4791208390	4.1404905520	
K_{1}		0.0116442026	0.0113409756	0.2805746085	0.1228093162
K_{2}		0.0459575575	0.0459132653	0.0814799447	0.0050787568
K_{3}		-0.0200528574	-0.0201275231		-0.0183256794
K_{4}		-0.0012600880	-0.0012597132		
L_{1}	$\AA \AA^{-1}$	5.0367158876	4.9870025958	5.0018065393	4.9997012140
L_{2}	$\AA \AA^{-1}$	5.0074531553	5.0003839163	7.0018495184	5.0013957709
L_{3}	$\AA \AA^{-1}$	4.9996150387	4.9914903143		2.0001017670
L_{4}	$\AA \AA^{-1}$	5.0346091244	5.0224265554		
M_{1}	\AA	1.6017218027	1.6010185123	0.8482873880	1.2000291535
M_{2}	\AA	1.8499416727	1.8512004187	1.4205195400	1.7917419639
M_{3}	\AA	2.0513647895	2.0501383394		2.1018835858
M_{4}	\AA	2.6473006889	2.6501071193		

Figure S1: T_{3} population. Green curve, simulation; black curve, fit with biexponential decay of S_{1}.

Figure S2: Sum of the populations of T_{4} and higher triplets. Green curve, simulation; black curve, fit with biexponential decay of S_{1}.

Table S3: Radiationless transition rates $\bar{R}_{K L}\left(\mathrm{ps}^{-1}\right)$ and rate constants $\bar{T}_{K L}$ between spin-diabatic states (or groups of states), averaged over time intervals $\left[t_{1}, t_{2}\right]$. Some of the rate constants cannot be reliably determined, because in the given time interval very few hops took place, starting from a state with a small population.

state K	state(s) L	t_{1}, t_{2}	$\bar{R}_{K \rightarrow L}$	$\bar{R}_{L \rightarrow K}$	$\Delta \bar{R}_{K \rightarrow L}$	$\bar{T}_{K \rightarrow L}$	$\bar{T}_{L \rightarrow K}$
S_{1}	T_{1}	0,5	0.038	0.005	0.033	0.045	0.051
S_{1}	T_{1}	5,10	0.036	0.007	0.029	0.061	0.022
S_{1}	T_{1}	10,15	0.027	0.012	0.015	0.058	0.029
S_{1}	T_{1}	15,20	0.015	0.014	0.001	0.038	0.030
S_{1}	T_{1}	0,20	0.029	0.009	0.019	0.051	0.033
S_{1}	T_{2}	0,5	0.103	0.085	0.019	0.125	1.376
S_{1}	T_{2}	5,10	0.080	0.077	0.003	0.136	1.421
S_{1}	T_{2}	10,15	0.075	0.073	0.002	0.163	1.034
S_{1}	T_{2}	15,20	0.068	0.065	0.003	0.173	0.816
S_{1}	T_{2}	0,20	0.082	0.075	0.007	0.149	1.162
S_{1}	T_{3}	0,5	0.004	0.006	-0.002	0.005	-
S_{1}	T_{3}	5,10	0.004	0.004	-0.001	0.007	-
S_{1}	T_{3}	10,15	0.006	0.007	-0.001	0.014	0.307
S_{1}	T_{3}	15,20	0.007	0.006	0.001	0.018	0.227
S_{1}	T_{3}	0,20	0.005	0.006	0.000	0.011	0.133
S_{1}	$T_{4}-T_{10}$	0,5	0.008	0.003	0.005	0.009	-
S_{1}	$T_{4}-T_{10}$	5,10	0.010	0.003	0.007	0.017	-
S_{1}	$T_{4}-T_{10}$	10,15	0.004	0.004	0.000	0.008	-
S_{1}	$T_{4}-T_{10}$	15,20	0.008	0.006	0.002	0.019	-
S_{1}	$T_{4}-T_{10}$	0,20	0.007	0.004	0.003	0.013	-

Table S3 continued.

state K	state $(\mathrm{s}) L$	t_{1}, t_{2}	$\bar{R}_{K \rightarrow L}$	$\bar{R}_{L \rightarrow K}$	$\Delta \bar{R}_{K \rightarrow L}$	$\bar{T}_{K \rightarrow L}$	$\bar{T}_{L \rightarrow K}$
T_{1}	T_{2}	0,5	1.066	1.008	0.059	7.555	25.4
T_{1}	T_{2}	5,10	2.567	2.438	0.129	8.165	44.6
T_{1}	T_{2}	10,15	3.453	3.271	0.182	8.475	46.1
T_{1}	T_{2}	15,20	3.832	3.599	0.233	8.300	44.8
T_{1}	T_{2}	0,20	2.730	2.579	0.151	8.124	40.2
T_{1}	T_{3}	0,5	0.225	0.260	-0.034	1.443	-
T_{1}	T_{3}	5,10	0.581	0.605	-0.024	1.859	-
T_{1}	T_{3}	10,15	0.810	0.853	-0.043	1.985	37.2
T_{1}	T_{3}	15,20	0.866	0.937	-0.071	1.876	38.0
T_{1}	T_{3}	0,20	0.621	0.664	-0.043	1.791	18.8
T_{1}	$T_{4}-T_{10}$	0,5	0.162	0.201	-0.039	1.059	-
T_{1}	$T_{4}-T_{10}$	5,10	0.376	0.480	-0.103	1.183	-
T_{1}	$T_{4}-T_{10}$	10,15	0.535	0.670	-0.135	1.313	-
T_{1}	$T_{4}-T_{10}$	15,20	0.540	0.704	-0.164	1.172	-
T_{1}	$T_{4}-T_{10}$	0,20	0.403	0.514	-0.111	1.182	-
T_{2}	T_{3}	0,5	0.191	0.157	0.033	4.997	-
T_{2}	T_{3}	5,10	0.445	0.401	0.043	8.185	-
T_{2}	T_{3}	10,15	0.634	0.569	0.065	8.934	24.8
T_{2}	T_{3}	15,20	0.691	0.590	0.101	8.604	23.9
T_{2}	T_{3}	0,20	0.490	0.429	0.061	7.680	12.2
T_{2}	$T_{4}-T_{10}$	0,5	0.087	0.046	0.040	2.004	-
T_{2}	$T_{4}-T_{10}$	5,10	0.208	0.128	0.080	3.735	-
T_{2}	$T_{4}-T_{10}$	10,15	0.318	0.195	0.123	4.475	-
T_{2}	$T_{4}-T_{10}$	15,20	0.326	0.196	0.130	4.057	-
T_{2}	$T_{4}-T_{10}$	0,20	0.235	0.141	0.093	3.568	-
T_{3}	$T_{4}-T_{10}$	0,5	0.060	0.063	-0.003	-	-
T_{3}	$T_{4}-T_{10}$	5,10	0.169	0.151	0.018	-	-
T_{3}	$T_{4}-T_{10}$	10,15	0.266	0.247	0.019	11.7	-
T_{3}	$T_{4}-T_{10}$	15,20	0.250	0.218	0.032	10.1	-
T_{3}	$T_{4}-T_{10}$	0,20	0.186	0.170	0.016	5.45	-

References

[1] J. J. P Stewart, MOPAC 2002, Fujitsu Limited, Tokio, Japan.

