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Abstract. The aim of this short survey is to give a quick introduction to the Salvetti complex

as a tool for the study of the cohomology of Artin groups. In particular we show how a spectral

sequence induced by a filtration on the complex provides a very natural and useful method to

study recursively the cohomology of Artin groups, simplifying many computations. In the last

section some examples of applications are presented.

1. Introduction

The classical braid group has been defined in 1925 by Artin ([Art25]). In 1962 Fox and Neuwirth

[FN62] proved that the group defined by Artin is the fundamental group of the configuration

space C(R2, n) of unordered n-tuples of distinct points in the real plane. A more general algebraic

definition of Artin groups can be given starting from the standard presentation of a Coxeter group

W.

Given a Coxeter group W acting on a real vector space V we can consider the collection HW

of all the hyperplanes H which are fixed by a reflection ρ ∈ W. This collection is the reflection

arrangement of W. In [Bri71] Brieskorn proved that the fundamental group of the regular orbit

space with respect to the action of the group W on the complement of a complexified reflection

arrangement is the Artin group A associated to W.

We illustrate the case of the braid group, that can be considered as the leading example of this

construction. We will use it for several other examples along this paper. We consider the action,

by permuting coordinates, of the symmetric group on n letters Sn on the complex vector space

Cn. If we restrict this action of Sn to the space of ordered n-tuples of distinct points F (C, n)

we obtain a free and properly discontinuous action. The space F (C, n) is the complement of the

union of the hyperplanes of the form Hij = {zi = zj} in Cn. The quotient C(C, n) = F (C, n)/Sn

is the regular orbit space for Sn and hence its fundamental group is the braid group on n strands

Bn, that is the Artin group associated to Sn.

The result of Brieskorn mentioned above shows the important relation between Artin groups

and arrangements of hyperplanes, since an Artin group is the fundamental group of a quotient of

the complement of a reflection arrangement.

Research on arrangements of hyperplanes started with the works of E. Fadell, R. Fox, L.

Neuwirth, V.I. Arnol′d, E. Brieskorn, T. Zaslavsky, K. Saito, P. Deligne, A. Hattori and later
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P. Orlik, L. Solomon, H. Terao, M. Goresky, R. MacPherson, C. De Concini, C. Procesi, M. Sal-

vetti, R. Stanley, R. Randell, G. Lehrer, A. Björner, G. Ziegler and many others. A basic reference

for the subject is [OT92]. A more recent reference with many recent developments and a wide

bibliography on the theory of hyperplane arrangements is given by the book (still work in progress)

[CDF+]. Given an arrangement H, an important combinatorial invariant is the intersection lattice

L(H), that is the poset of non-empty intersections of elements of H ordered by reverse inclusion.

One of the main problems in the study of arrangements is to understand the relation between the

topology of the complement of the arrangement and its intersection lattice. For a real arrangement

we have a finer combinatorial invariant, the face poset (see Definition 2.2 and [OT92]). In [Sal87]

Salvetti introduced a CW-complex Sal(H) associated to a real arrangement H and determined by

the face poset of H. He proved that this complex is homotopy equivalent to the complement of

the complexified arrangement. Moreover if H is associated to a reflection group W, the group W

acts on the complex Sal(H) and the quotient complex XW is homotopy equivalent to the regular

orbit space of W (see [Sal94, DCS96]). An extension of these results for an oriented matroid can

be found in [GR89]. For a general complex arrangement, in [BZ92] Björner and Ziegler construct

a finite regular cell complex with the homotopy type of the complement of the arrangement.

In this short survey we present some methods and useful tools for the study of Artin groups

through the Salvetti complex. A natural filtration of the complex allows to define a spectral

sequence that can be very helpful in several homology and cohomology computations. In particular

we can use the Salvetti complex to compute the cohomology of Artin groups, either with constant

coefficients or with a local system of coefficients. The computation of the cohomology of the

Milnor fiber, which is related to a very interesting abelian local system over a Laurent polynomial

ring, plays a special role in this context.

In Section 2 we recall our main notation for arrangement of hyperplanes and the Salvetti com-

plex. We try to keep the notation introduced in [Par12]. In Section 3 we give a general introduction

to computations using a spectral sequence that arises from a natural filtration of the Salvetti com-

plex. Finally in Section 4 we provide a few examples that show how the computations via this

spectral sequence can be applied to the study of the cohomology and homology of braid groups,

providing a simpler or shorter proof for previously known results. A first example is given in Sec-

tion 4.1 where we provide a shorter proof of Fuks’s result (see [Fuk70]) on the homology of braid

groups mod 2. Another example is in Section 4.2: we compute the rational cohomology of the

commutator subgroup of the braid group giving a new proof of some results already appeared in

[Fre88], [Mar96] and [DCPS01]. In Section 4.3 we show how the Salvetti complex can be modified

in order to study recursively affine type Artin groups. In Section 4.4 we show how it can be used

for computer investigations providing the example of a non-abelian local system.

Acknowledgment. The author would like to thank the organizing and scientific committees of

the School “Arrangements in Pyrénées” held in June 2012 in Pau, where the idea of these notes

started.
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2. Hyperplane arrangements, Artin groups and Salvetti complex

2.1. Hyperplane arrangements. We recall some definitions and results on hyperplane arrange-

ments and Artin groups. We follow the notation of [Par12] and we refer to it for a more detailed

introduction. We refer to [OT92] for a general introduction on the subject of hyperplane arrange-

ments.

Let I be an open convex cone in a finite dimensional real vector space V.

Definition 2.1. A real hyperplane arrangement in I is a family H of real affine hyperplanes of V

such that each hyperplane of H intersects I and the family H is locally finite in I.

Definition 2.2. A real hyperplane arrangement H induces a stratification on the convex cone I

into facets. Given two points x and y in I we say that they belong to the same facet F if for every

hyperplane H ∈ H either x ∈ H and y ∈ H or x and y belong to the same connected component

of I \H. We call the set of all facets S the face poset of H and we equip S with the partial order

given by F > F ′ if and only if F ⊃ F ′.

A face is a codimension 1 facet, i. e. a facet that is contained in exactly one hyperplane of the

arrangement. A chamber of the arrangement is a maximal facet, that is a connected component

C of the complement

I \ ∪H∈HH.
Let H be a real affine hyperplane and let v(H) be its underlying vector space: the complexified

hyperplane HC is the complex affine hyperplane HC := {z = x + ıy, x ∈ H, y ∈ v(H)} in the

complex vector space VC := V ⊗R C.
We recall the definition of the complement of the complexified arrangement:

M(H) := (I ⊕ ıV ) \
⋃
H∈H

HC.

Now we consider the case of a Coxeter arrangement. Let the couple (W,S) be a Coxeter system

and assume that the set of generators S is given by linear reflections in the vector space V. Then

W is a finite subgroup of GL(V ). We define the reflection arrangement of W as the collection

H = HW := {H ⊂ V | H is the fixed hyperplane of a reflection ρ ∈ W}. Given any chamber C of

the arrangement H we define the convex cone I associated to (W,S) as the interior of the union

I :=
⋃
w∈W

wC.

The complement of the reflection arrangement is given by M(W ) := M(HW ). The group W acts

freely and properly discontinuously on M(W ) and we denote by N(W ) the quotient M(W )/W.

Let W be a Coxeter group with Coxeter graph Γ. The fundamental group of the complement

N(W ) is AΓ, that is the Artin group of type Γ. The fundamental group of the complement M(W )

is the pure Artin group PAΓ (see [Bri73]).

Example 2.3. We consider the example of the group W = S3 acting on I = R3 by per-

muting coordinates. The corresponding reflection arrangement is the given by the hyperplanes
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H1,2, H1,3, H2,3, where we define Hi,j = {x ∈ R3 | xi = xj}. We fix the fundamental chamber

C0 = {x ∈ R3 | x1 < x2 < x3} in the complement of HW . The complement M(W ) is the ordered

configuration space F (C, 3), while the space N(W ) is the unordered configuration space C(C, 3).

The following is Coxeter graph of S3

s1 s2

that is the Coxeter graph of type A2. The standard generators of the Coxeter group S3 are the

elements s1, s2 with relations s2
1 = s2

2 = e and s1s2s1 = s2s1s2. We can identify the generator s1

(resp. s2) with the transposition (1, 2) ∈ S3(resp. (2, 3)). The fundamental group of C(C, 3) is

the classical braid group on three strands B3 and the fundamental group of F (C, 3) is the pure

braid group braid group on three strands PB3. The braid group B3 is generated by the elements

σ1, σ2 with relation σ1σ2σ1 = σ2σ1σ2 (see, for example, [Bri73]).

2.2. The Salvetti complex. The key geometric object that we consider in this survey is the

Salvetti complex. This is a CW-complex which has the homotopy type of the complement M(H).

Moreover in the case of finite arrangements the Salvetti complex has a finite number of cells. Its

explicit description and the simple structure, especially in the case of reflection arrangements,

turn out to be very important for filtrations and recursive arguments.

In this survey we don’t provide an explicit definition of the Salvetti complex. The reader

interested on the subject can find the original definition in [Sal87]. An extended definition of can

be found in [Par12]. Further in this section we provide a description of the algebraic complexes

that compute the homology and cohomology of the quotient of Salvetti complex Sal(HW ) by the

action of the group W.

Theorem 2.4 ([Sal87]). The complement M(H) has the homotopy type of a CW-complex Sal(H)

that is a deformation retract of M(H). The k-cells of the complex Sal(H) are in 1 to 1 correspon-

dence with the couples (C,F ) where C is a chamber of the arrangement and F is a codimension

k facet adjacent to the cell C.

If the arrangement H is the reflection arrangement of a Coxeter group W, the complex Sal(H)

is W -invariant and the homotopy that gives the retraction from the space M(H) to the complex

Sal(H) can be chosen to be W -equivariant. Furthermore, the action on the cells follows from

the action of W on the sets of chambers and facets. Fix a fundamental chamber C0 for the

arrangement HW .

Theorem 2.5 ([Sal94, DCS96]). Let W be a Coxeter group. The orbit space N(W ) has the same

homotopy type of the CW-complex XW = Sal(HW )/W.

The k-cells of the complex XW are in 1 to 1 correspondence with the facets of HW that are

adjacent to the fundamental chamber C0.

Let (W,S) be the Coxeter system associated to the Coxeter group W and to the fundamental

chamber C0. Let Γ be the corresponding Coxeter graph. We recall that the nodes of Γ are in

bijection with the elements of S. Since the arrangement HW is locally finite, the facets of the
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arrangement HW that are adjacent to the fundamental chamber C0 are in bijection with the finite

parabolic subgroups of W generated by subsets of S.

Corollary 2.6 ([Sal94, CMS08, CD95]). Let (W,S) be a Coxeter system. The k-cells of the

complex XW are in 1 to 1 correspondence with the k-subsets of S that generate finite parabolic

subgroups.

Example 2.7. In Figure 1 there is a picture of the complex XW for the symmetric group W = S3

with set of generators S = {s1, s2}. The 6 vertices of the hexagon are all identified to a single

vertex corresponding to the empty subset of S. The 6 edges of the hexagon are identified according

to the arrows and correspond to the subsets {s1} and {s2}. The 2-cell corresponds to the set S

itself. The complex XW is homotopy equivalent to the configuration space C(C, 3).

Figure 1.

In order to provide a complete description of the complexes Sal(W ) and XW for a given Coxeter

system (W,S) we need to show how the cells glue together. We refer the reader to [Sal87] and

[Sal94] (see also [Par12]) for this. Here we recall the description of the boundary map for the

cochain complex of XW with coefficients in an assigned local system. Let M be a Z-module and

let

λ : AΓ → Aut(M)

be a representation of the fundamental group of XW . Such a representation determines a local

system Lλ on the complex XW . Moreover let (C∗, δ) be the algebraic complex associated to the

CW-complex XW that computes the cohomology H∗(XW ;Lλ). The complex C∗ is given by a direct

sum of some copies of the Z-module M indexed by elements eT

Ck :=
⊕

M.eT(1)

where the sum goes over all the subset T ⊂ S such that |T |= k and the parabolic subgroup WT

is finite. The complex C∗ is graded with deg eT =|T | .
In order to define the differential δ we recall some well known facts about Coxeter groups and

Artin groups. The first result we need is the following one (see for example Proposition 1.10 in

[Hum90]).
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Proposition 2.8. Let (W,S) be a Coxeter system with length function l. Any element w ∈ W

can be written in a unique way as a product w = uv with v ∈ WT and u ∈ w ∈ W/WT such that

l(w) = l(u) + l(v).

The element u is the unique element of minimal length in the coset w ∈ W/WT and it is called

the minimal coset representative of w.

Given a Coxeter system (WΓ, S), with Coxeter graph Γ, and the associated Artin group AΓ,

there is a natural epimorphism π : AΓ � WΓ defined by mapping each standard generator gs of

AΓ to the corresponding element s ∈ WΓ for all s ∈ S. Matsumoto proves the following lemma

(see also [Tit69]):

Lemma 2.9 ([Mat64]). Let (WΓ, S) be a Coxeter system. Given an element w ∈ W expressed as

a positive word si1 · · · sil of minimal length l in the generators sj ∈ S, the corresponding element

g = gsi1 · · · gsil ∈ AΓ is well defined and does not depend on the choice of the word representing w.

As a consequence the map π has a natural set-theoretic section ψ : W → AΓ. We remark that

the section ψ defined according to the previous lemma is not a group homomorphism.

Let < be a total ordering on the set S. We can define the coboundary map δ as follows: for a

generator eT ∈ C∗ and an element a ∈M we have

δ(a.eT ) :=
∑

s∈S\T,|WT∪{s}|<∞

(−1)σ(s,T )+1
∑

w∈WT∪{s}/WT

(−1)l(w)λ(ψ(w))(a).eT∪{s}(2)

where w is the minimal length representative of the coset w ∈ WT∪{s}/WT and σ(s, T ) is the

number of elements of the set T that are strictly smaller than s with respect to the order < .

Theorem 2.10 ([Sal94]). Let Lλ be the local system induced on the space N(W ) by a represen-

tation λ of the group AΓ on the Z-module M. Let (C∗, δ) be the complex defined by formulas (1)

and (2) above for the group W = WΓ. We have the following isomorphism:

H∗(C∗) = H∗(N(W );Lλ).

We recall the following fundamental result.

Theorem 2.11 ([Del72]). If W is a finite linear reflection group, then N(W ) is aspherical.

As a consequence if W is finite the space N(W ) is a classifying space for AΓ and we have an

isomorphism

H∗(N(W );Lλ) = H∗(AΓ;Mλ)

where Mλ is the Z-module M considered as a AΓ-module through the representation λ.

2.3. Abelian representations and Poincaré series. We focus now on abelian representations

of AΓ since in that case the expression of formula (2) became very simple.

Remark 2.12. We recall how to compute the abelianization AAb
Γ := AΓ/[AΓ, AΓ] of the group

AΓ. For a given Coxeter graph Γ we consider the graph Γ with vertices set S, the set of vertices of

Γ and with an edge es,t for the couple (s, t) if and only if the element m(s, t) in the Coxeter matrix
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is odd. The abelianization AAb
Γ is the free abelian group generated by the connected components

of the graph Γ. The abelianization map Ab : AΓ → AAb
Γ maps each standard generator gs ∈ AΓ to

the generator corresponding to the connected component of the graph Γ containing the vertex s.

If λ is an abelian representation, then λ factors through the abelianization map Ab and the

elements in the image of λ commute.

Given a subset H ⊂ W we define the sum

Hλ :=
∑
w∈H

λ(ψ(w)).

In particular, given a subset T ⊂ S that generates the parabolic subgroup WT , we call the sum

(WT )λ the Poincaré series of the group WT with coefficients in the representation λ.

As a consequence of Proposition 2.8 we obtain the following formula:

(WT )λ
∑

h∈WT∪{s}/WT

λ(ψ(h)) = (WT∪{s})λ

where h is the minimal coset representative of h ∈ WT∪{s}/WT .

Example 2.13. We define a representation λ(q) : AΓ → Aut(L), where L = R[q±1] is a Laurent

polynomial ring with coefficients in a ring R and λ(q)(gs) is multiplication by q for each standard

generator of AΓ. In this case the series W (q) := Wλ(q) is called the Poincaré series for W. From

formula (2) we get

δ(a.eT ) :=
∑

s∈S\T,|WT∪{s}|<∞

(−1)σ(s,T )+1WT∪{s}(−q)
WT (−q)

.eT∪{s}(3)

If W is a finite Coxeter group with exponents m1, . . . ,mn the Poincaré series is actually a poly-

nomial and the following product formula holds ([Sol66]):

W (q) =
n∏
i=1

(1 + q + · · ·+ qmi).

Example 2.14. An analog of Example 2.13 is given by a representation on the Laurent polynomial

ring in two variables L = R[q±1
1 , q±1

2 ]. Let Φ be a root system with two different root-lengths. As

an example consider the root systems of type Bn or any reducible root system. Let W be the

Coxeter group associated to the root system Φ. We can define a representation of W on the ring

L as follows: if α is a short root and s is the reflection associated to α ∈ Φ the generator gs
maps to multiplication by q1 and if t is the reflection associated to a long root β ∈ Φ gt maps

to multiplication by q2. The Poincaré series for WBn with coefficients in such a representation are

computed in [Rei93].

Example 2.15. We show an explicit computation of the cochain complex C∗ and we compute

the coboundary δ in the case of the Coxeter group W = WA2 = S3, with coefficients in the

local system Lλ = Z[q±1] given as in Example 2.13. The complex that we are going to describe
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computes the cohomology of the commutator subgroup of the braid group B3, up to a degree shift

(see Theorem 3.7):

H∗(C∗) = H∗(B3;Z[q±1]λ) = H∗+1(B′3;Z).

We recall that the set of standard generators for the group W is S = {s1, s2}. Hence the complex

C∗ is given by

C0 = Z[q±1].e∅;

C1 = Z[q±1].e{s1} ⊕ Z[q±1].e{s1};

C2 = Z[q±1].e{s1,s2}.

According to the formulas in Example 2.13, the Poincaré series are given by

W∅(q) = 1;

W{s1}(q) = W{s1}(q) = 1− q;
W{s1,s2}(q) = (1− q)(1− q + q2)

and hence the coboundary is

δe∅ = (1− q)e{s1} + (1− q)e{s2}
δe{s1} = −δe{s2} = (1− q + q2)e{s1,s2}.

Remark 2.16. The analog construction of the algebraic complex (C∗, δ) can be given for homology.

We have a complex

Ck :=
⊕

|T|=k,|WT|<∞

M.eT(4)

with boundary maps

∂(a.eT ) :=
∑
s∈T

(−1)σ(s,T )+1
∑

w∈WT /WT\{s}

(−1)l(w)λ(ψ(w))(a).eT\{s}(5)

so that H∗(C∗) = H∗(N(W );Lλ).

3. Filtrations and spectral sequences for the Salvetti complex

3.1. A natural filtration for the Salvetti complex. In this section we assume that we have

a Coxeter graph Γ with finite set of vertices S and a corresponding Coxeter group W = WΓ

and a Coxeter system (W,S). We fix an ordering < on S and we assume S = {s1, · · · , sN}, with

s1 < · · · < sN . Moreover we set a Z-module M and a representation λ : AΓ → Aut(M).

The ordering on the set S induces a natural decreasing filtration on the complex C∗ defined in

Section 2. We define the submodule

FkC∗ :=< eT | sN−k+1, · · · , sN ∈ T > .

It is clear from the description of the differential δ (see equation (2)) that the submodule FkC∗ is

a subcomplex of the complex (C∗, δ) and we have the inclusions

0 = FN+1C∗ ⊂ · · · ⊂ Fk+1C∗ ⊂ FkC∗ ⊂ · · · ⊂ F0C∗ = C∗.
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By standard methods (see for example [Spa66]) we have a spectral sequence associated to the

complex (C∗, δ) and the filtration F :

Theorem 3.1. There is a first-quadrant spectral sequence (Er, dr) with E0-term

Ei,j
0 = F iCj/F i+1Cj =⇒ H i+j(C∗).

The d0 differential is the map naturally induced by the differential δ on the quotient complex

F iCi+j/F i+1Ci+j. The E1-term of the spectral sequence is given by

Ei,j
1 = H i+j(F iC∗/F i+1C∗)

and the d1 differential corresponds to the boundary operator of the triple (F i+2Cj,F i+1Cj,F iCj).

Example 3.2. In the case of the complex (C∗, δ) of Example 2.15 (W = WA2) the filtration

gives a very easy picture. The term F0C∗ is the complex C∗ itself. The term F1C∗ is the Z[q±1]-

submodule generated by e{s2} and e{s1,s2}. The term F2C∗ is the submodule generated by e{s1,s2}.

Finally F3C∗ is the trivial submodule. It is easy to see that the quotient F0C∗/F1C∗ is isomorphic

to the complex (C∗A1
, δ) for W = WA1 = S2 (recall that the corresponding Artin group is the braid

group B2 = Z), with the correspondence

ι : F0C∗/F1C∗ → C∗A1

given by ι : [e{s1}] 7→ e{s1} and ι : [e∅] 7→ e∅. It is easy to verify that the isomorphism ι is

compatible with the coboundary map δ. Moreover, note that ι preserves the natural graduation.

We assume that the ring of coefficients Z[q±1] is naturally graded with degree zero. The quotient

F1C∗/F2C∗ (resp. F2C∗/F3C∗) is isomorphic, as a Z[q±1]-module, to Z[q±1] generated by [e{s2}]

(resp. [e{s1,s2}]) with graduation shifted by 1 (resp. 2). Let λ be the representation defined in

Example 2.13. Note that λ is compatible with the natural inclusion Bm ↪→ Bm+1. Hence we can

write the E1-term of the spectral sequence associated to (C∗, δ) as follows

H1(B2;Z[q±1]λ)

H0(B2;Z[q±1]λ) Z[q±1]λ Z[q±1]λ

3.2. The differentials. The differentials of the spectral sequence given in Theorem 3.1 are in-

duced by the coboundary δ of the complex C∗. The differential d1 is explicitly described in Theorem

3.1. In order to compute the higher differentials it is useful to control the representatives in C∗
for the elements of the spectral sequence.

Following the construction in [Spa66] we define Zs
r := {c ∈ F sC∗ | δc ∈ F s+rC∗}. Given an

element x ∈ Er, it is represented by a cochain

c ∈ Zs
r/(Z

s+1
r−1 + δZs−r+1

r−1 ),

hence by a class c ∈ F sC∗ such that δc ∈ F s+rC∗ modulo the subgroup

(δF s−r+1C∗ ∩ F sC∗) + F s+1C∗.
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The differential dr on the class x is the map induced by the coboundary δ. Hence, given b ∈
Zs+r
r /(Zs+r+1

r−1 + δZs+1
r−1) and b ∈ F s+rC∗/F s+r+1C∗ representatives of an element y ∈ Er, if drx = y

we have that δc − b ∈ (Zs+r+1
r−1 + δZs+1

r−1) and, if y = 0, c ∈ Zs
r+1 + Zs+1

r−1 . In an equivalent way we

can say that drx = b if and only if δc− b ∈ (F s+r+1C∗ + δF s+1C∗).
Given an element x ∈ Er such that drx = 0 we need to lift x to an element x′ ∈ Er+1. We begin

taking a representative c ∈ Zs
r+1 + Zs+1

r−1 for x and we choose a lifting c′ ∈ Zs
r+1 with c′ = c + ∆,

where ∆ ∈ Zs+1
r−1 . This means that we need to lift the class c to a class c′ ∈ F sC∗/((δF s−r+1C∗ ∩

F sC∗) + F s+1C∗) taking as a representative for c′ the element c + ∆ where ∆ ∈ F s+1C∗ and

δ(c+ ∆) ∈ F s+r+1C∗.
Working out the spectral sequence we can use Theorem 3.1 and start at page E1 choosing a

class x ∈ H∗(F sC∗/F s+1C∗) and a representative c1 ∈ F sC∗ for x. At the Er-step of the spectral

sequence we have a representative cr for x with δcr ∈ F s+rC∗ and if drcr = 0 we can choose in

Er+1 a new representative cr+1 = cr + ∆r with ∆r ∈ F s+1C∗ and δ(cr + ∆r) ∈ F s+r+1C∗.

3.3. Recursion and order of vertices. Thanks to the simple structure of the complex C∗ and

the filtration F∗, Theorem 3.1 can provide a recursive description of the cohomology of the complex

C∗ and hence of the space N(W ). The Coxeter graph of the group W as well as the choice of the

ordering on the set S of vertices of Γ play an important role in this.

Let Γk be the full subgraph of Γ with vertices s1, . . . , sN−k−1 and let Γk̃ be the full subgraph of

Γ with vertices sN−k+1, . . . , sN .

Proposition 3.3. Let AΓ be the Artin group associated to the Coxeter graph Γ. Suppose that

the parabolic subgroups associated to the graphs Γk and Γk̃ commute, i. e. for every vertex

s ∈ s1, . . . , sN−k−1 and t ∈ aN−k+1, . . . , sN we have m(s, t) = 2. Then the quotient complex

FkC∗/Fk+1C∗ is isomorphic to the complex C∗(Γk)[k], that is the cochain complex that computes

the cohomology of the Artin group GΓk
with a graduation shifted by k.

The isomorphism

C∗(Γk)[k]
ρ−→ FkC∗/Fk+1C∗

is defined as follows: given a subset T ⊂ {s1, . . . , sN−k−1}, the generator eT maps to the equivalence

class of the generator eT ′ , with T ′ = T ∪ {sN−k+1, . . . , sN}.

Remark 3.4. In the special case when the Coxeter graph Γ is a subgraph of a linear graph we

can sort the the vertices of Γ in linear order, in such a way that for every index k the hypothesis of

Proposition 3.3 hold. Choose such an ordering for the vertices of Γ. Hence, according to Theorem

3.1, the construction described above determines a spectral sequence (Er, dr) converging to the

cohomology of the Artin group AΓ. The recursion given by Proposition 3.3 implies that for every

i, the i-th column of the E1-term of the spectral sequence is isomorphic to the cohomology of the

Artin group AΓ′ for Γ′ a subgraph of Γ.

Example 3.5. We keep working with a generic Z-module M and a representation λ : AΓ →
Aut(M) as in Section 3.1, but we consider the special case of the Coxeter group W of type A4,

with diagram
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s1 s2 s3 s4

and with the order on vertices given by the labelling. It is clear from the diagram that the given

order satisfies the hypothesis of Proposition 3.3. Moreover we have the following isomorphisms:

F0C∗/F1C∗ = C∗(A3); F1C∗/F2C∗ = C∗(A2)[1]; F2C∗/F3C∗ = C∗(A1)[2];

F3C∗/F4C∗ = M [3]; F4C∗/F5C∗ = F4C∗ = M [4]

where the index [k] in square brackets means that the graduation of the module is shifted by k.

Note that in this example the Artin group AΓ is the braid group on 5 strands. According to

[Par12] we write Bi for the braid group on i strands. We consider the natural identification of

the groups Bi, i < 5 as subgroups of B5 through the diagram inclusion induced by the filtration.

Hence in this case we identify Bi with the subgroup generated by s1, . . . , si. We keep using the

notation λ for the representation of the subgroups of B5 induced by the inclusion. The cohomology

H∗(N(WA4);Lλ) - that is the cohomology H∗(B5;Mλ) of the classical braid group B5 on 5 strands

with coefficients on the B5-module Mλ - can be computed by means of a spectral sequence with

the following E1-term:

H3(B4;Mλ)

H2(B4;Mλ) H2(B3;Mλ)

H1(B4;Mλ) H1(B3;Mλ) H1(B2;Mλ)

H0(B4;Mλ) H0(B3;Mλ) H0(B2;Mλ) M M

The cohomology of the groups Bi for i < 5 (and actually for any i) can be computed recursively

by means of an analog spectral sequence.

Remark 3.6. In the homology complex C∗ the dual filtration is given by

FkC∗ :=< eT | {sN−k+1, . . . , sN}  T > .

With the hypothesis of Proposition 3.3 we have that the quotient Fk+1C∗/FkC∗ is isomorphic to

the complex C∗(Γk)[k].

If H is a finite central arrangement we can associate to every hyperplane H ∈ H a linear

functional lH with ker lH = H. The homogeneous polynomial fH =
∏

H∈H lH , which is unique

up to multiplication by an invertible element, is the defining polynomial of the arrangement and

the set f−1
H (1) is the Milnor fiber of the arrangement (see [Mil68] for a general introduction). If

H = HW is the reflection arrangement of a Coxeter group W, the polynomial f 2
H =

∏
H∈H l

2
H

is W -invariant and hence defines a weighted homogeneous polynomial φ : V/W → C on the

affine variety V/W with non-isolated singularity φ−1(0) = (∪H∈HH)/W. The map φ restricts to a

fibration φ : N(W )→ C∗ with fiber FW = φ−1(1) that is called the Milnor fiber of the singularity

associated to W.
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Let λ(q) be the representation on the Laurent polynomial ring L = R[q±1] considered in Example

2.13. Let W be a finite Coxeter group, with Coxeter graph Γ. The fibration φ : N(W ) → C∗
induces on fundamental groups a map φ] : AΓ → Z sending each standard generator of the Artin

group to 1. Since the space N(W ) is aspherical, from Shapiro’s Lemma (see [Bro94]) we have that

the cohomology of the Milnor fiber FW with constant coefficients in the ring R is isomorphic to

the cohomology of N(W ) with coefficients in the AΓ-module of Laurent series R[[q±1]] where each

standard generator of AΓ maps to multiplication by q :

H∗(FW ;R) = H∗(AΓ;R[[q±1]]).

Using the recursive description of the spectral sequence for the Salvetti complex, in [Cal05] it is

shown that the cohomology of the Artin group AΓ with coefficients in the representation λ(q) is

isomorphic, modulo an index shifting, to the cohomology with constant coefficients of the Milnor

fiber FW . We can state the result as follows:

Theorem 3.7 ([Cal05]). Let W be a finite Coxeter group and let A the associated Artin group.

We have:

H∗+1(A;Lq) = H∗(FW ;R).

Remark 3.8. A recursive computation applies even if Γ is not a linear graph or if the order on

the set of vertices is not linear. For any subset T of the set S of vertices of Γ we can define the

following subcomplex of C∗ :

FTC∗ :=< eU | T ⊂ U ⊂ S > .

We can consider the poset

P := {(T, T ′) | T ⊂ T ′ ⊂ S}
with the order relation given by (T1, T

′
1) < (T2, T

′
2) if and only if T1 ⊂ T2, T

′
1 ⊂ T ′2. Given a couple

(T, T ′) ∈ P the recursive method described in this section allows one to compute the E1-term of

the spectral sequence for the cohomology of the quotient complex FTC∗/FT ′C∗ by recursion on

the poset P .

In the next section we present a few examples of the application of this method and some results

obtained with it.

4. Cohomology of Artin groups: some examples

In this section we recall some computations and examples where the methods from the previous

section apply. In some cases, like in Section 4.1 and Section 4.2, the use of the spectral sequence

described in Section 3 makes computations and proof shorter.

In what follows we will use sometimes a compact notation for the generators eT , T ⊂ S of the

L-module C∗ for the Coxeter system (W,S). If S is the ordered set {s1, . . . , sn} we will write a

string ε1ε2 · · · εn, εi ∈ {0, 1} for a generator eT such that εi = 1 if and only if si ∈ T. We will write

also 0h and 1h instead of 0 · · · 0︸ ︷︷ ︸
h terms

and 1 · · · 1︸ ︷︷ ︸
h terms

, meaning respectively e and eS. As an example we
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write 1n for eS and 10n−1 for e{s1}; we can also use notations like A012 to denote a the terms eT
such that sn−2 /∈ T, sn−1 ∈ T, sn ∈ T.

4.1. Homology of the braid group Bn mod 2. In the case of the classical braid group Bn with

constant coefficients it is more simple to compute the homology instead of the cohomology. We

state in this form the results obtained by Fuks in [Fuk70] and we give a somewhat simpler proof.

Theorem 4.1. The homology ⊕nH∗(Bn;Z2) is isomorphic to the ring R = Z2[x0, x1, x2, · · · ]
considered as a Z2-module. The variable xi has homological dimension dimxi = 2i − 1 and

degree deg xi = 2i so that the monomial xh1i1 · · ·x
hl
il

belongs to the homology group Hm(Bn,Z2)

with n =
∑

j hj2
ij and m =

∑
j hj(2

ij − 1). The multiplication map Bn1 × Bn2 → Bn1+n2 given

by juxtaposing braids induces a multiplication on ⊕nH∗(Bn;Z2) that corresponds to the standard

multiplication in the ring R.

Proof. We consider the constant local system L = Z2 where each standard generator acts by

multiplication by 1. Using the notation of Example 2.13 we set q = −1. The coefficients in the

boundary ∂ can be easily computed since 1 + q + · · · + qn−1 = n mod 2. In particular we have

that the boundary for a simple element in the form c = 1n−1 is given (mod 2) by

∂c =
n−1∑
i=1

(
n

i

)
1i−101n−i−1.

We recall that the binomial

(
n

i

)
is even if and only if the integers i and n − i have no common

non-zero coefficients in their expansion in base 2. As a special case we have that if n is a power of

2 then the binomial

(
n

i

)
is always even.

Given a monomial u = xh1i1 · · ·x
hl
il

we assume that the indexes of u are ordered i1 > i2 > · · · > il
and we associate to u the following generator in the Salvetti complex C∗ for Bn:

12i1−10 · · · 012i1−1︸ ︷︷ ︸
h1 terms

0 · · · 0 12il−10 · · · 012il−1︸ ︷︷ ︸
hl terms

.

From the description of the boundary map ∂ it follows that for any generator of C∗ in the form

c = 12a1−10 · · · 012al−1

we have that ∂c = 0 and then in particular all the generators associated to monomials in R are

cycles.

Moreover given two generators

c1 = 12a1−10 · · · 012al−1012b−1012b
′−1012a

′
1−10 · · · 012

a′
l′−1

and

c2 = 12a1−10 · · · 012al−1012b
′−1012b−1012a

′
1−10 · · · 012

a′
l′−1

we can set

c = 12a1−10 · · · 012al−1012b+2b
′−1012a

′
1−10 · · · 012

a′
l′−1
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and for b 6= b′ we have ∂c = c1 + c2. Hence the two cycles c1 and c2 are co-homologous.

We assume the inductive hypothesis that for any k < n the cycles corresponding to the mono-

mials with total degree k generate the homology group H∗(Bk;Z2). Using the filtration given in

Remark 3.6 we can define the spectral sequence for the homology of Bn analogous to the coho-

mology spectral sequence constructed in Theorem 3.1.

The E1-term is given by E1
s,t = H t(Bn−s−1;Z2). By induction the s-th column of the E1-term

of the spectral sequence is generated by the monomials in R with degree n − s − 1. If the string

c is the cycle associated to the monomial u ∈ R, the representative in C∗ of a monomial u in the

s-th column of the E1-term is given by the string c01s.

The differential d1
s,t : E1

s,t → E1
s−1,t acts on c01s by mapping d1 : c01s → s · c001s−1, that is the

representative of the monomial s · ux0 mod 2. This means that d1
s,t it is given by multiplication

by sx0 and hence it is trivial if and only if s is even, while it is injective for odd s. It follows from

the inductive hypothesis on the description of the groups H∗(Bk;Z2) for k < n that for s even

we have E2
s,t = 0 and for s odd E2

s,t is generated by all the monomials with degree n− s− 1 and

dimension s that are not divided by x0.

The differential d2
s,t : E2

s,t → E2
s−2,t+1 is given by multiplication by x1 if s− 1 ≡ 0 mod 4 and is

trivial otherwise. The s-th column of the E3-term of the spectral sequence is trivial if s − 1 ≡ 0

mod 4, s > 1 and is generated by monomials that are not divided by x0 and x1 if s − 1 ≡ 2

mod 4.

In general the description of the differential, and as a consequence the description of the spectral

sequence, is the following. The differential d2i

s,t : E2i

s,t → E2i

s−2i,t+2i−1 is given by multiplication by xi

if s−1 ≡ 0 mod 2i and is trivial otherwise. The s-th column E2i+1-term of the spectral sequence

is trivial if s − 1 ≡ 0 mod 2i, s > 2i and is generated by monomials that are not divided by

x0, x1, . . . , xi if s− 1 ≡ 2i−1 mod 2i. All the other differentials are trivial.

In the E∞-term of the spectral sequence we have, in the 0-th column, the monomials u with

degree n − 1. Those lift to monomials ux0 in the homology of Bn. In general in the (2i − 1)-th

column we have the monomials with degree n− 2i that are not divided by the terms x0, . . . , xi−1.

A monomial u in the (2i − 1)-th column lifts to the monomial uxi in the homology of Bn.
The multiplication map Bn1 × Bn2 → Bn1+n2 given by juxtaposing braids is induced by the

inclusion of the Coxeter graph ΓAn1−1 for WAn1−1 and ΓAn2−1 for WAn2−1 in the graph ΓAn1+n2−1

for WAn1+n2−1 as graphs of commuting parabolic subgroups. The map sends the vertices of ΓAn1−1

to the first n1 − 1 vertices of ΓAn1+n2−1 and the vertices of ΓAn2−1 to the last n2 − 1 preserving

the ordering. The induced map on the Salvetti complex is given by mapping the couple of strings

(A,B) to the string A0B and hence the induced multiplication in homology maps the couple of

monomials (u, v) to the product uv. 2

4.2. Rational cohomology of the Milnor fiber. In this example we show how to compute the

rational cohomology of the classical braid group Bn with coefficients in the representation λ(q)

already described in Example 2.13. The result presented here has been computed in [Fre88] and

[Mar96] and independently in [DCPS01].
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Let R := Q be the field of rational numbers and let Lq be the local system constructed in

Example 2.13. The local system is induced by the action of the braid group on the Laurent

polynomial ring L := Q[q±1]. Each standard generator maps to multiplication by (−q). The choice

of this action is clearly equivalent to the action given by each standard generator mapping to

multiplication by q, as in Example 2.13. Although we prefer the choice of (−q), in coherence with

[DCPS01, Cal05, Cal06] and others, in order to get slightly simpler formulas, as the reader can

see in the following paragraphs.

As showed in Section 3.3, this local system has an interesting geometric interpretation in terms

of the cohomology of the Milnor fiber of the discriminant singularity of type An−1 (see also [Cal05,

Cal06] for the analog computation for homology with integer coefficients). From an algebraic

point of view, the computation gives, modulo an index shifting, the rational cohomology of the

kernel of the abelianization map Bn → Z, that is the commutator subgroup B′n of the braid group

on n strands. In fact it is easy to see that the Milnor fiber of type An−1 is a classifying space for

B′n and using Theorem 3.7 we get:

H∗+1(Bn;Lq) = H∗(B′n;Q).

Let ϕn(q) be the n-th cyclotomic polynomial. We introduce the notation n := Q[q]/(ϕn(q)). In

the following paragraphs we will also use the notation [n] := 1 + q + · · ·+ qn−1 = qn−1
q−1

.

For any positive integer n we linearly order the vertices of the graph Γn of type An, that is the

graph for the Artin group Bn+1. Let C∗n be the complex associate to Γn. Recall that the Coxeter

group WAn has exponents 1, . . . , n and hence WAn(q) = [n + 1]! :=
∏n+1

i=1 [i]. From Example 2.13

we can describe more explicitly the coboundary δ in C∗n. Let eT be a generator of C∗n in the form

A01a01b0B and let eT ′ be the generator A01a+b+10B. We need the following simple remark: if WS

is a Coxeter group generated by a set of generator S that is the disjoint union S = T1 ∪ T2 of two

commuting set of generators, then we can decompose WS = WT1×WT2 and we have a factorization

WS(q) = WT1(q)×WT2(q) for the Poincaré series for W. Applying this to the computation of δeT
we have that the coefficient for eT ′ in the coboundary is given by the sign coefficient (−1)a+|A|

times the q-analog binomial

WAa+b+1
(q)

WAa(q)WAb
(q)

=
[a+ b+ 2]!

[a+ 1]![b+ 1]!
:=

[
a+ b+ 2

a+ 1

]
.
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As in [DCPS01] we define the following elements:

wh := 01h−20

zr := 1h−10 + (−1)h01h−1

bh := 01h−2

ch := 1h−1

zh(i) :=

j=i−1∑
j=0

(−1)hjwjhzhw
i−j−1
h

vh(i) :=

j=i−2∑
j=0

(−1)hjwjhzhw
i−j−2
h bh + (−1)h(i−1)wi−1

h ch.

We remark that the elements zh(i) and vh(i) are cocycles.

Our aim is to prove the following result:

Theorem 4.2 ([DCPS01]).

Hn−2i+1(Bn+1;Lq) =

{
0 if h := n

i
is not an integer

h generated by [zh(i)] if h := n
i

is an integer

Hn−2(i−1)(Bn+1;Lq) =

{
0 if h := n+1

i
is not an integer

h generated by [vh(i)] if h := n+1
i

is an integer.

Proof. We can prove the Theorem by induction on n. We consider the natural graph inclusion

Γn ↪→ Γn+1 and group inclusion Bn ↪→ Bn+1 induced by the filtration F . As in Example 3.5 we

recall that the E1−term of the spectral sequence for Bn+1 is given by

Es,t
1 := Hs+t(F sC∗n/F s+1C∗n) = H t(Cn−s−1)

where we can define the complexes C∗0 = C∗−1 := L concentrated in dimension 0 and hence H∗(C∗0) =

H0(C0) = H∗(C−1) = H0(C−1) = L.

The statement of the theorem is trivially true for n = 1. Assume n > 1 and suppose that the

theorem holds for any integer m, m < n. Each non-trivial entry Es,t
1 of the E1 term of the spectral

sequence for C∗n is isomorphic either to a L-module of the form h, for a suitable h, or to the ring

L itself. The second case holds only for the entries E0,n−1
1 and E0,n

1 .

The cyclotomic polynomials ϕh(q) are prime polynomials in the ring L. As a consequence any

map d : h → k induced by a differential dk of of the spectral sequence can be non-zero only if

h = k and the map is an isomorphism. In a similar way any map d : h → L/([n + 1]) can be

non-zero only if h | n+ 1 and if h - n+ 1 any map from h to any quotient of L/([n+ 1]) is trivial.

This follows since [n + 1] is the product of the cyclotomic polynomials ϕh(q) for h | n + 1 and

hence the L-module L/([n+ 1]) decomposes as a direct sum of modules

L/([n+ 1]) =
⊕
h|n+1

h.
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Since the L-module En−1,0
1 = L is generated by 01n−1 and En,0

1 = L is generated by 1n, from

Example 2.13 we can see that the differential d1 : En−1,0
1 → En,0

1 is given by multiplication by

[n+ 1] and hence we have En−1,0
2 = 0 and En,0

2 = R/([n+ 1]).

As a consequence if we fix a certain integer h we can study the spectral sequence considering

only the terms isomorphic to h and, if h | n + 1, the summand of R/([n + 1]) isomorphic to h,

while we can ignore all the other summand in the spectral sequence. We have three different cases:

i) h | n
By induction we know that Es,t

1 = H t(C∗n−s−1) = h only in two cases:

i.a) h | n− s− 1 and t = n− s− 1− 2n
h

+ 1;

i.b) h | n− s and t = n− s− 1− 2(n
h
− 1).

If we set i := n
h
, in case i.a) we have

λ = 1, . . . , i− 1 E
λh−1,n−λ(h−2)−2i+1
1 generated by zh(i− λ)01λh−1

and in case in case i.b) we have

λ = 0, . . . , i− 1 E
λh,n−λ(h−2)−2i+1
1 generated by vh(i− λ)01λh.

We note that zh(i)01l = vh(i)001l − (−1)h(i−1)wh(i − 1)1h−101l, hence we get that the map

d1 : E
λh−1,n−λ(h−2)−2i+1
1 → E

λh,n−λ(h−2)−2i+1
1 is given by multiplication by [λh + 1], so it is an

isomorphism. It follows (see diagram below) that the L-module E0,n−21+1
1 is the only one that

survives in the term E∞ and hence E0,n−21+1
1 will give, as we will see next, the only contribution

from E∞ to the cohomology group Hn−2i+1(C∗n).

h

h
∼ // h

· · · ∼ // · · ·

h
∼ // h

In order to consider the case ii) we need the following lemma:

Lemma 4.3 ([DCSS97]). Let 1 = d1 < ... < dn be the divisors of n, in the ring L we have the

following equality of ideals: ([
n

d1

]
, ...,

[
n

dk

])
= (ϕdk+1

· · ·ϕn).

ii) h | n+ 1

Now we set i := n+1
h
. The two possible cases for Es,t

1 = h are the following ones:

λ = 1, . . . , i− 1 E
λh−2,n−λ(h−2)−2i+2
1 generated by zh(i− λ)01λh−2

λ = 1, . . . , i− 1 E
λh−1,n−λ(h−2)−2i+2
1 generated by vh(i− λ)01λh−1.
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The differential d1 : E
λh−2,n−λ(h−2)−2i+2
1 → E

λh−1,n−λ(h−2)−2i+2
1 is multiplication by the q-analog

[λh] and hence it is the trivial map. The next differential that we need to consider is

dh−1 : E
λh−1,n−λ(h−2)−2i+2
h−1 → E

(λ+1)h−2,n−(λ+1)(h−2)−2i+2
h−1 .

The equality vh(i)01l = zh(i − 1)01h−201l + (−1)h(i−1)wi−1
h 1h−101l implies that the map above

corresponds to multiplication by [λh+1] . . . [λh+h−1] and hence it is an isomorphism, since all the

factors are invertible in h. Finally the map dh−1 : En−h,h−1
h−1 → En,0

h−1 corresponds to multiplication

by αh =

[
n+ 1

h

]
and hence from Lemma 4.3 it is injective. Below we have a picture of the

spectral sequence, with differentials d1 and dh−1. We can see the there is only one nontrivial h-

module that survives in E∞, that is E
h−2,n−h+2−2(i−1)
h−1 , that gives a contribution (actually the only

one) to the cohomology group Hn−2(i−1)(Cn).

h
0 // h

∼
)) · · · 0 // · · ·

∼

)) h
0 // h

αh

((
R/I

iii) h - n(n+ 1)

Let c, 1 < c < h be an integer such that h | n + c, if we set i := n+c
h
, we have again two cases for

Es,t
1 = h:

λ = 1, . . . , i− 1 E
λh−c−1,n+c−λ(h−2)−2i+1
1 generated by zh(i− λ)01λh−c−1

λ = 1, . . . , i− 1 E
λh−c,n+c−λ(h−2)−2i+1
1 generated by vh(i− λ)01λh−c.

The differential d1 : E
λh−c−1,n+c−λ(h−2)−2i+1
1 → E

λh−c,n+c−λ(h−2)−2i+1
1 corresponds to multiplication

by [λh − c + 1] that is co-prime with [h] and hence the map is an isomorphism. It follows that

none of the modules survives in E2 and hence the contribution to E∞ is trivial.

From Lemma 4.3 and from the previous observations in case ii) we get that En,0
∞ = n + 1,

generated by 1n. From the description of the spectral sequence it follows that the cohomology

group H∗(C∗n) is the one described in the statement of the theorem. In order to complete the proof

we need to check that the generators are correct. In case i) the L-module E0,n−21+1
1 is generated

by vh(i)0 that differs from zh(i) by a term of the form A1 and hence we can lift vh(i)0 to zh(i).

The case ii) is analog: the L-module E
h−2,n−h+2−2(i−1)
h−1 is generated by zh(i− 1)01h−2 that differs

from vh(i) by a term of the form A1h−1 and hence we can lift zh(i− 1)01h−2 to vh(i). 2

4.3. Artin group of affine type and non-linear Coxeter graphs: some remarks. We deal

now with the case of an affine reflection group. Let (W,S) be an affine reflection group with

Coxeter graph Γ and suppose |S |= n + 1. Let λ be an abelian representation of the Artin group

AΓ over a ring R that is an unique factorization domain. The generators of the Salvetti complex
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(C∗, δ) are in 1 to 1 correspondence with the proper subsets of S. It can be somewhat convenient

to complete the complex C∗ to an augmented Salvetti Complex Ĉ∗ as follows:

Ĉ∗ := C∗ ⊕R.eS.

We can define the coboundary δ̂ on the complex Ĉ∗ setting δ̂(eT ) = δ(eT ) if | T |< n and re-

defining the coboundary on the top-dimensional generators of C∗. We formally define a suitable

quasi -Poincaré polynomial for W by:

(ŴS)λ := lcm{(WS\{s})λ | s ∈ S}.

and for every s ∈ S we set the coboundary for Ĉ∗:

δ(eS\{s}) := (−1)σ(s,S\{s})+1 (ŴS)λ
(WS\{s})λ

.

and it is straightforward to verify that Ĉ∗ is still a chain complex. Moreover, we have the following

relations between the cohomology of C∗ and Ĉ∗:

H i(C∗) = H i(Ĉ∗)

for i 6= n, n+ 1 and we have the short exact sequence

0→ Hn(Ĉ∗)→ Hn(C∗)→ R→ 0.

An example of this construction can be found in the computation of the cohomology of the affine

Artin group of type B̃n in [CMS10].

4.4. A non-abelian case: three strands braid group and a geometric representation.

The third braid group B3 and the special linear group SL2(Z) have a classical geometric repre-

sentation given by symmetric power of the natural symplectic representation. The cohomology

of this representation is studied in detail in [CCS13]. The aim of this section is to show how the

Salvetti complex can be used for finite computations, even with non-abelian representation.

In general we can consider an orientable surface Mg,n of genus g with n connected components in

its boundary and the isotopy classes of Dehn twists around simple loops c1, . . . , c2g such that |ci ∩
ci+1| = 1 and |ci∩cj| = 0 if j 6= i±1. We give a representation of the braid group in the symplectic

group Aut(H∗(Mg,n;Z);<>) of all automorphisms preserving the intersection form as follows: the

i-th generator of the braid group B2g+1 maps to the Dehn twist with respect to the simple loop ci.

In the case g = 1, n = 1 the symplectic group equals SL2(Z). We extend this representation to a

representation λ on the symmetric algebra M = Z[x, y]. This representation splits into irreducible

SL2(Z)-modules M = ⊕n≥0Mn according to the polynomial degree. In [CCS13] the cohomology

groups H∗(B3;M) and H∗(SL2(Z);M) are computed. The main ingredients for the achievement

of this result are the computation of the spectral sequence associated to the central extension

1→ Z→ B3 → SL2(Z)→ 1

(see [Mil71, Th. 10.5]), the amalgamated free product decomposition

SL2(Z) = Z4 ∗Z2 Z6
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(see [MKS66]) and a generalization of a classical result of Dickson (see [Dic11, Ste87]) on the

characterization of SL2(Fp)-invariants polynomials.

The methods described in this survey don’t seem very useful to compute explicitly the cohomol-

ogy group H∗(B3;M), but they can be used to get finite computations with the help of a computer.

In particular, for a fixed degree n the computation of the cohomology group H∗(B3;Mn) is a very

simple problem.

Let σ1 and σ2 be the standard generators of the braid group B3. The action of the representation

λ on degree-one polynomials is given by

σ1 :

{
x→ x− y
y → y

, σ2 :

{
x→ x

y → x+ y

and hence, with respect to the basis {x, y} of M1, the representation is given by the matrices

σ1
λ7→
[

1 0

−1 1

]
, σ2

λ7→
[
1 1

0 1

]
.

The action extends to the n-th symmetric algebra of the space< x, y >, with basis {xn, xn−1y, . . . , yn},
by the matrices

σ1
λ7→



(
n
0

)
0 0 · · · 0

−
(
n
1

) (
n−1

0

)
0

. . . 0(
n
2

)
−
(
n−1

1

) (
n−2

0

) . . . 0
...

...
. . . . . . 0

(−1)n
(
n
n

)
(−1)n−1

(
n−1
n−1

)
· · · −

(
1
1

) (
0
0

)

 , σ2
λ7→



(
0
0

) (
1
0

)
· · ·

(
n−1

0

) (
n
0

)
0

(
1
1

) . . .
(
n−1

1

) (
n
1

)
0 0

. . . . . .
...

...
. . . . . .

(
n−1
n−1

) (
n
n−1

)
0 0 · · · 0

(
n
n

)


that is, (λ(σ1))ij = (−1)i−j

(
n+1−j
i−j

)
and (λ(σ2))ij =

(
j−1
i−1

)
, where

(
h
k

)
= 0 if k < 0. Hence we have

to compute the cohomology for the complex C∗ given by:

00

10

σ1σ2−σ2+Id ==

01

−σ2σ1+σ1−Idaa

00σ1−Id

aa

σ2−Id

==

Similar computations for large n can provide an evidence for general results like in [CCS13].

The reader familiar with computing local system (co)homology using resolutions will see that

the cochain complex obtained here coincides with that obtained from the standard presentation

of B3 by these other methods.

The cochain complex above can be easily generalized to the case g > 1, that is the computation of

the cohomology of the group B2g+1 with coefficients in the representation on the ring of polynomials

Z[x1, y1, · · · , xg, yg].
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E-mail address: callegaro@dm.unipi.it


	1. Introduction
	Acknowledgment

	2. Hyperplane arrangements, Artin groups and Salvetti complex
	2.1. Hyperplane arrangements
	2.2. The Salvetti complex
	2.3. Abelian representations and Poincaré series

	3. Filtrations and spectral sequences for the Salvetti complex
	3.1. A natural filtration for the Salvetti complex
	3.2. The differentials
	3.3. Recursion and order of vertices

	4. Cohomology of Artin groups: some examples
	4.1. Homology of the braid group Bn  12mumod2
	4.2. Rational cohomology of the Milnor fiber
	4.3. Artin group of affine type and non-linear Coxeter graphs: some remarks
	4.4. A non-abelian case: three strands braid group and a geometric representation

	References

