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Abstract

We present a novel algorithm to perform the Hessenberg reduction of an n×nmatrix A of the form
A = D+UV ∗ where D is diagonal with real entries and U and V are n×k matrices with k ≤ n.
The algorithm has a cost of O(n2k) arithmetic operations and is based on the quasiseparable
matrix technology. Applications are shown to solving polynomial eigenvalue problems and some
numerical experiments are reported in order to analyze the stability of the approach.
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1. Introduction

Reducing an n× n matrix to upper Hessenberg form by a unitary similarity transformation
is a fundamental step at the basis of most numerical methods for computing matrix eigenvalues.
For a general matrix, this reduction has a cost of O(n3) arithmetic operations (ops), while for
matrices having additional structures this cost can be lowered. This happens, for instance, for the
class of quasiseparable matrices. We say that a matrix is (kl, ku)-quasiseparable if its submatrices
contained in the strictly upper triangular part have rank at most ku and those contained in the
strictly lower triangular part have rank at most kl. For simplicity, if kl = ku = k we say that A is
k-quasiseparable. Quasiseparable matrices have recently received much attention; for properties
of this matrix class we refer the reader to the recent books [5], [6], [12], [13].

In the papers [4] and [8], algorithms are provided to reduce a k-quasiseparable matrix A
to upper Hessenberg form H via a sequence of unitary transformations. If A satisfies some
additional hypothesis then the Hessenberg matrix obtained this way is still quasiseparable, and
the cost of this reduction is O(n2kα) ops, where α is strictly greater than 1, in particular α = 3
for the algorithm of [4] and α > 1 in [8], but its value is not exactly deducible as it depends
on some choices in the implementation. The advantage of this property is that one can apply
the shifted QR iteration to the matrix H at the cost of O(nk2) ops per step, instead of O(n2),
by exploiting both the Hessenberg and the quasiseparable structure of H, see for instance [7],
[11]. This way, the computation of the eigenvalues of A has a lower cost with respect to the case
of a general matrix. More specifically, assuming that the number of QR iterations is O(n), the
overall cost for computing all the eigenvalues turns to O(n2k2 + n2kα). Clearly, if α ≥ 3, the
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advantage of this quasiseparable reduction to Hessenberg form can be appreciated only if k � n.
In particular, if the value of k is of the order of n

1
3 these algorithms might have a cost of O(n3)

ops as for a general unstructured matrix.
In this paper we consider the case of a k-quasiseparable matrix which can be represented as

A = D + UV ∗, U, V ∈ Cn×k, (1)

where D is a diagonal matrix with real entries and U, V ∈ Cn×k and V ∗ is the Hermitian
transpose of V . Matrices of this kind are encountered in the linearization of matrix polynomials
obtained by the generalization of the Smith companion form [9], [2]. They have been used also
in the package MPSolve v. 3.1.4 for the solution of polynomial and secular equations up to any
desired precision [3].

We prove that if H = QAQ∗ is the Hessenberg form of A, with Q unitary, then H is (1, 2k−1)-
quasiseparable, moreover, we provide an algorithm for computing H with O(n2k) ops. This algo-
rithm substantially improves the algorithms of [4] and [8] whatever is the value of k. Moreover,
for an unstructured matrix where k = n, the cost of our algorithm amounts to O(n3), that is the
same asymptotic cost of the Hessenberg reduction for a general matrix.

It interesting to observe that the improvement of our algorithm over [4] and [8] is due to two
different reasons: the quasiseparable structure used in [4] relies on auxiliary unstructured k × k
matrices whose manipulation costs O(k3) ops; in [8] the rank of the quasiseparable structure
grows during the computation and its growth is controlled by a compression step which might
be expensive.

An immediate consequence of this algorithm is that the cost for computing all the eigenvalues
of A by means of the shifted QR iteration applied to H turns to O(n2k) with an acceleration by
a factor of O(kα−1) with respect to the algorithms of [4] and [8].

Another application of this result concerns the solution of polynomial eigenvalue problems
and is the main motivation of this work. Consider the matrix polynomial P (x) =

∑n
i=0 Pix

i,
Pi ∈ Cm×m, where for simplicity we assume Pn = I. The polynomial eigenvalue problem consists
in computing the solution of the equation detP (x) = 0 and, if needed, the nonzero vectors v
such that P (x)v = 0.

The usual strategy adopted in this case is to employ a linearization L(x) = xI − A of
the matrix polynomial, such that the linear eigenvalue problem L(x)w = 0 is equivalent to the
original one P (x)v = 0. The matrix A, also called companion matrix of P (x), is of size mn×mn.
Many companion matrices do have a k-quasiseparable structure where k = m and in the case of
the Smith companion [9], generalized to matrix polynomials in [2], the quasiseparable structure
takes the desired form A = D + UV ∗. In this case, the cost of our algorithm to reduce A into
quasiseparable Hessenberg form turns to O(nm2) whereas the algorithms of [4] and [8] of cost
O(nmα+1), where α > 1, would be unpractical.

This paper is divided in 6 sections. Besides the introduction, in Section 2 we introduce
some preliminary results, concerning quasiseparable matrices, which are needed to design the
algorithm for the Hessenberg reduction. In Section 3 we recall the general algorithm for reducing
a matrix into Hessenberg form by means of Givens rotations and prove the main result, expressed
in Theorem 3.2, on the conservation of the quasiseparable structure at all the steps of the
algorithm. In Section 4 we recall and elaborate the definition of Givens vector representation of
a symmetric k-quasiseparable matrix. Then we rephrase Theorem 3.2 in terms of Givens vector
representations. Section 5 deals with algorithmic issues: the fast algorithm for the Hessenberg
reduction is presented in detail. In Section 6 we present some numerical experiments and show
that the CPU time needed in our tests confirms the complexity bound O(n2k). Finally the last
Section 7 briefly shows an application of these results to numerically computing the eigenvalues
of a matrix polynomial.
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2. Preliminary tools

Throughout the paper the matrix A has the form (1) and H = QAQ∗ is in upper Hessenberg
form, where Q is unitary, i.e., Q∗Q = I. Here we recall the notations and definitions used in this
paper, which mainly comply with the ones used in [13], together with the main results concerning
quasiseparable matrices.

Definition 2.1. A complex matrix A is lower-quasiseparable (resp. upper-quasiseparable) of
rank k if every submatrix contained in the strictly lower (resp. upper) triangular part of A has
rank at most k. If A is kl lower quasiseparable and ku upper quasiseparable we say that A is
(kl, ku)-quasiseparable. If k = kl = ku we say that A is k-quasiseparable. Moreover, we denote
QSHnk the set of n×n Hermitian k-quasiseparable matrices with entries in C. We will sometimes
omit the superscript n and simply write QSHk when the dimension is clear from the context. In
general, we say that A is quasiseparable if it is (kl, ku)-quasiseparable for some nontrivial kl, ku.

The definition of a quasiseparable matrix can be expressed easily by using the MATLAB
notation. In fact, A is lower-quasiseparable of rank k if and only if

rank(A[i+ 1 : n, 1 : i]) 6 k for i = 1, . . . , n− 1,

where A[i1 : i2, j1 : j2] denotes the submatrix of A formed by the entries ai,j for i = i1, . . . , i2,
j = j1, . . . , j2.

Given a vector v = (vi) ∈ C2, denote by G = G(v1, v2) a 2× 2 Givens rotation

G =

[
c s
−s c

]
, c ∈ R, |s|2 + c2 = 1,

such that Gv = αe1, where |α| =
√
|v1|2 + |v2|2. More generally, denote Gi = Ii−1⊕G⊕ In−i−1

the n×n matrix which applies the Givens rotation G =
[ ci si
−si ci

]
to the components i and i+1 of

a vector, where Im denotes the identity matrix of size m and A⊕B denotes the block diagonal
matrix [A 0

0 B ]. In the following we will call Gi Givens rotations as well.
The following well-known result [13] will be used in our analysis:

Lemma 2.2. Let Q be a unitary Hessenberg matrix. Then

• Q is a (1, 1)-quasiseparable matrix.

• If det(Q) = 1 then Q can be factorized as a product of n − 1 Givens rotations Q =
G1 . . . Gn−1.

In the following we use the operators tril(·, ·) and triu(·, ·), coherently with the corresponding
MATLAB functions, such that L = tril(A, k), U = triu(A, k) where A = (ai,j), L = (`i,j),
U = (ui,j) and

`i,j =

{
ai,j if i > j − k
0 otherwise

ui,j =

{
ai,j if i 6 j − k
0 otherwise

.

2.1. A useful operator

Another useful tool is the operator t : Cn×n → Cn×n defined by

t(A) = tril(A,−1) + triu(A∗, 1). (2)

Observe that if A has rank k then t(A) is a Hermitian k-quasiseparable matrix with zero diagonal
entries. In particular, for u, v ∈ Cn, the matrix t(uv∗) is in QSHn1 and its entries are independent
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of u1 and of vn. More generally, for U, V ∈ Cn×k, the matrix t(UV ∗) is in QSHnk and its entries
are independent of the first row U [1, :] of U and of the last row V [n, :] of V . Observe also that
t(A) is independent of the upper triangular part of A.

The following properties can be verified by a direct inspection

t(A+B) = t(A) + t(B), for any A,B,∈ Cn×n,
t(αA) = αt(A), for any α ∈ R,
t(DAD∗) = Dt(A)D∗, for any D diagonal matrix,

(3)

moreover,

t

([
A1,1 A1,2

A2,1 A2,2

])
=

[
t(A1,1) A∗2,1
A2,1 t(A2,2)

]
, (4)

where A1,1 and A2,2 are square matrices. We also have

t(A) = A− diag(a1,1, . . . , an,n), for any A such that A = A∗. (5)

We analyze some properties of the residual matrix R = t(SAS∗) − St(A)S∗, for S being a
unitary upper Hessenberg matrix, which will be used to prove the main result in the next section.
We start with a couple of technical lemmas.

Lemma 2.3. Let Z ∈ Ck×k and set S = Z ⊕ In−k where n > k. Then for any A ∈ Cn×n it
holds that

t(SAS∗)− St(A)S∗ = W ⊕ 0n−k,

for some W ∈ Ck×k where 0n−k is the null matrix of size n− k. Similarly, for S = In−k ⊕ Z it
holds that t(SAS∗)− St(A)S∗ = 0n−k ⊕W ′, for some W ′ ∈ Ck×k. The same properties hold if
In−k is replaced by a diagonal matrix Dn−k.

Proof. Concerning the first part, partition A as A =
[
A1,1 A1,2

A2,1 A2,2

]
where A1,1 ∈ Ck×k, so that

SAS∗ =
[
ZA1,1Z

∗ ZA1,2

A2,1Z
∗ A2,2

]
. In view of (4) we have

t(SAS∗) =

[
t(ZA1,1Z

∗) ZA∗2,1
A2,1Z

∗ t(A2,2)

]
. (6)

On the other hand,

St(A)S∗ = S

[
t(A1,1) A∗2,1
A2,1 t(A2,2)

]
S∗ =

[
Zt(A1,1)Z∗ ZA∗2,1
A2,1Z

∗ t(A2,2)

]
. (7)

So that, from (6) and (7) we get t(SAS∗) − St(A)S∗ = W ⊕ 0n−k, with W = t(ZA1,1Z
∗) −

Zt(A1,1)Z∗. The second part can be proved similarly. Finally, if In−k is replaced by the diag-
onal matrix Dn−k the same properties hold since for a diagonal matrix D one has t(DAD∗) −
Dt(A)D∗ = 0 in view of (3).

Lemma 2.4. Let S = (Z ⊕ In−2)(1 ⊕ Ŝ) where Z ∈ C2×2, Ŝ ∈ C(n−1)×(n−1). Then for any

matrix A partitioned as A =
[
a1,1 u∗

v Â

]
∈ Cn×n, where Â ∈ C(n−1)×(n−1) it holds that

t(SAS∗)− St(A)S∗ = W ⊕ 0n−2 + (Z ⊕ In−2)(0⊕ (t(ŜÂŜ∗)− Ŝt(Â)Ŝ∗))(Z∗ ⊕ In−2).

for some W ∈ C2×2.
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Proof. Set B = (1⊕ Ŝ)A(1⊕ Ŝ∗) then by Lemma 2.3

t(SAS∗) = t((Z ⊕ In−2)B(Z∗ ⊕ In−2) = W ⊕ 0n−2 + (Z ⊕ In−2)t(B)(Z∗ ⊕ In−2).

On the other hand

St(A)S∗ = (Z ⊕ In−2)(1⊕ Ŝ)t(A)(1⊕ Ŝ∗)(Z∗ ⊕ In−2).

Thus
t(SAS∗)− St(A)S∗ = W ⊕ 0n−2 + (Z ⊕ In−2)E(Z∗ ⊕ In−2),

where E = t(B)− (1⊕ Ŝ)t(A)(1⊕ Ŝ). Now, since B = (1⊕ Ŝ)A(1⊕ Ŝ∗), in view of (4) we have

B =

[
a1,1 u∗Ŝ∗

Ŝv ŜÂŜ∗

]
, t(B) =

[
0 v∗Ŝ∗

Ŝv t(ŜÂŜ∗)

]
.

A similar analysis shows that

(1⊕ Ŝ)t(A)(1⊕ Ŝ∗) =

[
0 v∗Ŝ∗

Ŝv Ŝt(Â)Ŝ∗

]
.

Thus we get

t(SAS∗)− St(A)S∗ = W ⊕ 0n−2 + (Z ⊕ In−2)(0⊕ (t(ŜÂŜ∗)− St(Â)Ŝ∗))(Z∗ ⊕ In−2).

A consequence of the above results is expressed by the following

Theorem 2.5. Let A ∈ Cn×n, and set Q = Gh · · ·Gk for 1 ≤ h < k ≤ n − 1, where the
parameters si, ci defining Gi are such that si 6= 0, i = h, . . . , k. Then Rn := t(QAQ∗) −
Qt(A)Q∗ = diag(d) + t(ab∗) ∈ QSHn1 for vectors a, b, d ∈ Cn, where b is independent of A. More
precisely, bh = sh · · · sk, bi = ci−1si · · · sk, for i = h + 1, . . . , k, bi = ai = di = 0 for i < h and
i > k + 1. In particular, if h > 1 then Rne1 = 0.

Proof. Clearly the matrix Q has the form Ih−1 ⊕ Zk−h+2 ⊕ In−k−1 where Zk−h+2 is a unitary
Hessenberg matrix of size k−h+ 2. In view of Lemma 2.3, we can write Rn = 0h−1⊕Rk−h+2⊕
0n−k−1 and this immediately proves the last statement of the Theorem. Moreover, it follows
that ai = bi = di = 0 for i = 1, . . . , h − 1 and for i = k + 2, . . . , n so that it is sufficient to
prove the claim for Rk−h+2. Equivalently, we may assume that h = 1 and k = n − 1 so that
si 6= 0 for i = 1, . . . , n − 1. We prove that Rn ∈ QSHn1 by induction on n. For n = 2 it holds
that R2 = [ 0 αα 0 ]. This way one can choose a2 = α/s1 and b1 = s1. For the inductive step,

let n > 1 and observe that Q can be factorized as Q = (Z ⊕ In−2)(1 ⊕ Ŝ) for Z = [ c s
−s c ], and

Ŝ ∈ C(n−1)×(n−1), where for notational simplicity we set s = s1, c = c1. Applying Lemma 2.4
yields

Rn = W ⊕ 0n−2 + (Z ⊕ In−2)(0⊕Rn−1)(Z∗ ⊕ In−2)

for

W = t(Z
[ a1,1 a1,2
a2,1 a2,2

]
Z∗)−Zt(

[ a1,1 a1,2
a2,1 a2,2

]
)Z∗ =

[
−c(sa2,1+sa2,1) −s(ca1,1+sa1,2−ca2,2−sa2,1)

−s(ca1,1+sa1,2−ca2,2−sa2,1) c(sa2,1+(sa2,1))

]
,
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where Rn−1 = t(ŜÂŜ∗)− Ŝt(Â)Ŝ∗ and Â is the trailing principal submatrix of A of size n− 1.
A direct inspection shows that

Rn = W ⊕ 0n−2 +

[
|s|2eT1 Rn−1e1 seT1 Rn−1D
sDRn−1e1 DRn−1D

]
, D = c⊕ In−2. (8)

From the inductive assumption we may write that Rn−1 = diag(d̂) + t(âb̂∗) for â, b̂, d̂ ∈ Cn−1,

where b̂1 = s2 · · · sn−1 6= 0, b̂i = cisi+1 · · · sn−1. So that (8) turns into

Rn =


w1,1 w1,2

w2,1 w2,2

+



|s|2d̂1 ∗ ∗ · · · . . . ∗
d̂1cs c2d̂1 ∗ . . . . . . ∗

â2b̂1s â2b̂1c d̂2
. . .

. . .
...

...
... â3b̂2 d̂3

. . .
...

...
...

...
. . .

. . . ∗
ân−1b̂1s ân−1b̂1c ân−1b̂2 . . . ân−1b̂n−2 d̂n−1


,

where the upper triangular part, denoted with ∗, is determined by symmetry. Thus, it follows
that Rn = diag(d)+t(ab∗) where d1 = |s1|2d̂1+w1,1, d2 = c21d̂1+w2,2, di = d̂i−1, for i = 3, . . . , n;
moreover

a2 =
1

b̂1
(csd̂1 + w2,1),

ai = âi−1, for i = 3, . . . , n,

b1 = s1b̂1, b2 = c1b̂1,

bi = b̂i−1, for i = 3, . . . , n− 1,

where the condition si 6= 0 implies that b1 6= 0. This completes the proof.

The property that R = D + t(ab∗), where b is independent of A enables us to prove the
following

Corollary 2.6. In the hypotheses of Theorem 2.5 we have

R = t(QAQ∗)−Q(D + t(A))Q∗ ∈ QSHn1

for any diagonal matrix D with real entries. Moreover, R = diag(d) + t(ab∗) for some vectors
a, b ∈ Cn and d ∈ Rn.

Proof. Without loss of generality we may assume that si 6= 0 for i = 1, . . . , n − 1. In view of
Theorem 2.5, t(QAQ∗)−Qt(A)Q∗ = diag(d)+ t(ab∗), where b is independent of A. On the other
hand equation (5) implies that QDQ∗ = diag(d′)+t(QDQ∗), moreover, since t(D) = 0, Theorem
2.5 implies that t(QDQ∗) = t(a′b∗) for some vector a′. Thus we get QDQ∗ = diag(d′) + t(a′b∗).
Therefore R = diag(d) + t(ab∗) − diag(d′) − t(a′b∗) = diag(d + d′) + t((a − a′)b∗), that is,
R ∈ QSHn1 .

A further analysis enables us to provide an explicit representation of the ith row of the matrix
R. More precisely we have the following result:
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Theorem 2.7. Under the assumptions of Theorem 2.5, the ith row of the matrix R = t(QAQ∗)−
Q(D + t(A))Q∗ has the representation

eTi R = [0, . . . , 0, vi, di, w
∗
i ]G∗i−2G

∗
i−3 · · ·G∗1 (9)

where, vi, di ∈ C, wi ∈ Cn−i and di = ri,i.

Proof. Let us write Q = Q1Q2 where Q1 = G1 · · ·Gi−2, Q2 = Gi−1 · · ·Gn−1, so that (9) can be
rewritten as eTi RQ1 = [0, . . . , 0, vi, di, w

∗
i ]. This way, it is enough to show that the ith row of

RQ1 has the first i− 2 entries equal to zero. In view of Lemma 2.3 we have

R′ := t(Q2AQ
∗
2)−Q2(D + t(A))Q∗2 = 0i−2 ⊕ R̂ ∈ QSHn1 .

Whence
Q2(D + t(A))Q∗2 = t(Q2AQ

∗
2)− 0i−2 ⊕ R̂. (10)

Moreover, by definition of R we have

RQ1 = t(Q1Q2AQ
∗
2Q
∗
1)Q1 −Q1Q2(D + t(A))Q∗2.

Setting B = Q2AQ
∗
2 and combining the above equation with (10) yields

RQ1 = t(Q1BQ
∗
1)Q1 −Q1t(B) +Q1(0i−2 ⊕ R̂).

Now, since Q1(0i−2⊕ R̂) has the first i−2 columns equal to zero, it is sufficient to prove that the
ith row of t(Q1BQ

∗
1)Q1−Q1t(B) has the first i−2 components zero. To this regard, observe that

Q1 = Q̃1 ⊕ In−i+1, where Q̃1 ∈ C(i−1)×(i−1), so that partitioning B as
[
B1,1 B1,2

B2,1 B2,2

]
, where B1,1 ∈

C(i−1)×(i−1), by applying again Lemma 2.3 we find that t(Q1BQ
∗
1)−Q1t(B)Q∗1 = Wi−1⊕0n−i+1

for some Wi−1 ∈ C(i−1)×(i−1). This implies that t(Q1BQ
∗
1)Q1 −Q1t(B) has the last (n− i+ 1)

rows equal to zero. This completes the proof.

Observe that the representation of R that we have found is exactly the Givens-Vector repre-
sentation for quasiseparable matrices that is presented in [13]. A more general analysis of this
representation is given in Section 4.

3. Reduction to Hessenberg form

It is a simple matter to show that the Hessenberg form H = QAQ∗ maintains a quasiseparable
structure. In fact, since D is real, we find that H = QDQ∗+QUV ∗Q∗ is the sum of a Hermitian
matrix S = QDQ∗ and of a matrix T = QUV ∗Q∗ of rank k. Since H is Hessenberg, the
submatrices contained in the strictly lower triangular part of H have rank at most 1 so that the
submatrices in the strictly lower triangular part of S = H − T have rank at most k + 1. On
the other hand, since S is Hermitian, then also the submatrices contained in its strictly upper
triangular part have rank at most k+1, thus the submatrices in the strictly upper triangular part
ofH = S+T have rank at most 2k+1 being the sum of the ranks of the corresponding submatrices
of S and T respectively. This way we find that H is (1, 2k+ 1)-quasiseparable. Actually, we will
see in Section 3.1 that the submatrices contained in the strictly upper triangular part of H have
rank 2k − 1.

The nontrivial problem is to exploit this structure property and to provide a way to compute
the matrix H with a cost lower than O(n3) ops needed for general matrices. To this end we
have to recall the customary procedure for reducing a matrix A into Hessenberg form which is
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Algorithm 1 Reduction to Hessenberg form by means of Givens rotations

1: for j = 1, . . . , n− 2 do
2: for i = n, . . . , j + 2 do
3: G← givens(A[i− 1, j], A[i, j])
4: A[i− 1 : i, :]← G ·A[i− 1 : i, :]
5: A[:, i− 1 : i]← A[:, i− 1 : i] ·G∗
6: end for
7: end for

based on Givens rotations. The algorithm can be easily described by the pseudo-code reported
in Algorithm 1 where the function givens(v1, v2) provides the matrix G(v1, v2).

Denote byGi−1,j the unitary n×nmatrix which performs the Givens rotationG = givens(A(i−
1, j), A(i, j)) in the rows i−1 and i at step j of Algorithm 1 and set Qj = Gj+1,jGj+2,j · · ·Gn−1,j .
Then Algorithm 1 generates a sequence Aj of matrices such that

A0 = A, An−2 = H

Aj = QjAj−1Q
∗
j , j = 1, . . . , n− 2

where the matrix Aj has the form

Aj = Qj . . . Q1(D + UV ∗)Q∗1 . . . Q
∗
j = D̂ + Û V̂ ∗ =



a
(j)
1,1 . . . a

(j)
1,j × . . . ×

a
(j)
2,1

. . .
...

...
. . . a

(j)
j,j × . . . ×

a
(j)
j+1,j ? . . . ?

...
...

? . . . ?


, (11)

and the symbols × and ? denote arbitrary numbers.
For notational simplicity, we denote by Âj the (n− j)× (n− j) trailing principal submatrix

of Aj , that is, the submatrix represented by ? in (11). Observe that Âj is the part of Aj that
has not yet been reduced to Hessenberg form. Finally, by following the notation of Section 2, we
write Gi or Gi,j to denote a unitary matrix which applies a Givens transformation in the rows i
and i+ 1.

The following lemma is useful to get rid of non-generic cases in the process of Hessenberg
reduction.

Lemma 3.1. Let v ∈ Cn, v 6= 0 and consider Givens rotations G1, . . . , Gn−1 constructed in
such a way that (Gi . . . Gn−1)v = (w(i)∗, 0, . . . , 0)∗, where w(i) ∈ Ci, for i = 1, . . . , n− 1. If there
exists h such that Gh = I then one can choose Gi = I for every i > h, that is, (G1 · · ·Gh−1)v =

(w
(1)∗
1 , 0, . . . , 0)∗.

Proof. Since Gi · · ·Gn−1 is a unitary matrix which acts in the last n− i+ 1 components of v, the

2-norm of v[i : n] coincides with the 2-norm of (Gi · · ·Gn−1v)[i : n], that is, |w(i)
i |. On the other

hand, if Gh = I then (w(h)∗, 0, . . . , 0) = (w(h+1)∗, 0, . . . , 0) so that w
(h+1)
h+1 = 0. This implies that

‖v[h + 1 : n]‖ = 0, whence vi = 0 for i = h + 1, . . . , n. This way, one can choose Gi = I for
i = h+ 1, . . . , n− 1.

8



Observe that in view of Lemma 2.2 the unitary matrixQ = G2 · · ·Gn−1 is in upper Hessenberg
form. Moreover, the rotations Gi are such that QAe1 = αe1 + βe2 for some α, β. In view of
Lemma 3.1 we can assume that if Gh = I then Gi = I for every i > h, that is, Q = G2 . . . Gh−1.

The quasiseparable structure of the matrices Âi is a consequence of our main result which is
reported in the following

Theorem 3.2. Let U, V,W ∈ Cn×k, S = diag(d) + t(ab∗) ∈ QSHn1 and define

A = UV ∗ + t(UW ∗) + S.

Let Gi, i = 2, . . . , n− 1 be Givens rotations acting on the rows i and i+ 1 such that

QAe1 = a1,1e1 + βe2, where Q = G2 . . . Gn−1.

Then the matrix Â obtained by removing the first row and the first column of QAQ∗ can be
written again as

Â = Û V̂ ∗ + t(ÛŴ ∗) + Ŝ

where Û , Ŵ ∈ C(n−1)×k, and Ŝ = diag(d̂ + t(âb̂∗)) ∈ QSHn−11 for some vectors d̂, â, b̂ ∈ Cn−1.

Moreover, Û and V̂ are obtained by removing the first row of QU and QV , respectively.

Proof. According to Lemma 3.1, we may assume that in the first step of the process of reduction
in Hessenberg form, the parameters si satisfy the condition si 6= 0 for i = 2, . . . , h, while si = 0,
for i = h + 1, . . . , n − 1, for some h ≤ n − 1. Note that in this case Q = Q̃ ⊕ In−h−1 so we can

apply this theorem to the matrix Q̃ÃQ̃∗ where Ã is the leading square block of A partitioned
according to the partitioning of Q. Lemma 2.3 provides a way to extend this representation to
dimension n. In view of this fact we can assume, without loss of generality, that h = n− 1. We
have

QAQ∗ = (QU)(QV )∗ + F, F = Q(t(UW ∗) + S)Q∗.

In view of Corollary 2.6 we have F = t(Q(UW ∗ + ab∗)Q∗)−R for R ∈ QSHn1 . Thus

QAQ∗ = (QU)(QV )∗ + t(QU(QW )∗) + t(Qa(Qb)∗)−R. (12)

Recall from Theorem 2.5 that Re1 = 0 and that Q has been chosen so that QAQ∗e1 = αe1 +βe2.
This fact, together with (12), implies that the vector u = t(Qa(Qb)∗)e1 is such that u[3 : n] is
in the span of the columns of (QU)[3 : n, :]. In view of (4) we may write t(Qa(Qb)∗)[2 : n, 2 :
n] = t(ûz∗) for û = u[2 : n], and for a suitable z ∈ Cn−1. Applying (3) yields the following

representation for the trailing principal submatrix Â of QAQ∗ of size n− 1

Â = Û V̂ ∗ + t(ÛW̃ ∗ + ûẑ∗)− R̂

where Û , V̂ and W̃ are obtained by removing the first row of U , V and W , respectively, while
R̂ = R[2 : n, 2 : n]. Since û[2 : n] is in the span of Û [2 : n, :], and since the first row of Û as well

as the first entry of û do not play any role in the value of t(ÛW̃ ∗ + ûẑ∗), we may set û1 equal

to an appropriate value in such a way that û is in the span of the columns of Û . This way, the
matrix ÛW̃ ∗ + ûẑ∗ has rank at most k and can be written as ÛŴ ∗ for a suitable Ŵ ∈ Ck×n.
Thus we have

Â = Û V̂ ∗ + t(ÛŴ ∗) + Ŝ

for Ŝ = −R̂, that concludes the proof.
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Observe that the matrix A defined in (1) satisfies the assumptions of the above theorem
with W = 0 and S = D real diagonal. This way, Theorem 3.2 shows that the trailing principal
submatrix Âj of the sequence generated by the Hessenberg reduction, maintains the structure

Âj = UjV
∗
j + t(UjW

∗
j ) + Sj where Sj = diag(dj) + t(ajb

∗
j ).

This fact is fundamental to design fast algorithms for the Hessenberg reduction of a matrix
of the form (1). In order to realize this goal, we need to choose a reliable explicit representation
for t(UjW

∗
j ) and Sj . This is the topic of the next section.

Note also that the representation Âj = UjV
∗
j + t(UjW

∗
j ) + Sj implies that Âj is still a

quasiseparable matrix of low quasiseparability rank. In fact, t(UjW
∗
j ) + UjV

∗
j is (at most)

(k, 2k)-quasiseparable, where k is the number of columns of Uj . The sum with Sj provides a
(k+ 1, 2k+ 1)-quasiseparable matrix. We will prove in the next Theorem 3.3 that after the first

step it is possible to replace Uj , Vj and Wj with n× (k− 1) matrices, thus showing that Âj is a
(k − 1, 2k − 1)-quasiseparable matrix at all the intermediate steps of the Hessenberg reduction.

3.1. Analysis of the first step

Recall that the matrix A = A0 is of the kind A = D + UV ∗. This is a particular case of
the form A = UV ∗ + t(UW ∗) + S above where W = 0 and S is diagonal. Because of this
additional structure, the first Hessenberg reduction step is somewhat special and we can get a
sharper bound for the quasiseparability rank of Â1. This is shown in the next result.

Theorem 3.3. Assume that the matrix A of (1) does not have the first column already in
Hessenberg form, i.e., A[3 : n, 1] 6= 0. Then the rank of the matrix obtained by removing the first
two rows of Q1U is less than k − 1. Moreover, the (n− 1)× (n− 1) trailing principal submatrix

Â1 of A1 = Q1AQ
∗
1 has lower quasiseparable rank k.

Proof. Observe that Â1 can be written as the sum of a Hermitian matrix and of a matrix of
rank at most k, namely, Â1 = Q̂1DQ̂

∗
1 + Û1V̂

∗
1 , where Û1, V̂1 and Q̂1 are the matrices obtained

by removing the first row of Q1U , Q1V , and Q1, respectively. Define x = V ∗e1 so that x 6= 0
and Ae1 = d1e1 + Ux. Since Q1Ae1 = α1e1 + β1e2, we find that Q1Ux = Q1Ae1 − d1Q1e1 =
(α1− d1)e1 +β1e2, which implies Û1x = β1e1. Thus, Û1[2 : n− 1, :] has rank at most k− 1. This
matrix coincides with the matrix obtained by removing the first two rows of Q1U so that the
first part of the theorem is proven. Since Û1[2 : n − 1, :] has rank at most k − 1, then also the

matrix Û1[2 : n− 1, :]V̂ ∗1 has rank at most k − 1. We can conclude that every submatrix in the

strictly lower triangular part of Â1, given by the sum of a submatrix of Û1[2 : n− 1, :]V̂ ∗1 which
has rank at most k − 1, and a submatrix in the lower triangular part of Q1DQ

∗
1 which has rank

at most 1 in view of Corollary 2.6, can have rank at most k. This completes the proof.

It is important to note that we are not tracking the structure of the whole matrix but only
the structure of the trailing part that we still need to reduce. This is not a drawback since
the trailing part is the only information needed to continue the algorithm. Moreover, the entire
Hessenberg matrix can be recovered at the end of the process by just knowing the diagonal and
subdiagonal elements that are computed at each step together with the matrices Un−2 and Vn−2.

4. Representing quasiseparable matrices

Finding good and efficient representations of quasiseparable matrices is a problem that has
been studied in recent years. Some representations have been introduced and analyzed for the
rank 1 case. Some of them have been extended to (or were originally designed for) the higher
rank case [5, 6, 12, 13].
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In this section we provide a representation of quasiseparable matrices which, combined with
the results of the previous section, enables us to design an algorithm for the Hessenberg reduction
of the matrix A with cost O(n2k).

4.1. Givens Vector representations

A useful family of representations for quasiseparable matrices is described in [13] (for the
1-quasiseparable case) and is extended to a more general version in [10]. We use this kind of
representation and adjust it to our framework. For the sake of clarity, we provide the details of
the new notation in order to make this section self-contained.

Definition 4.1. A tuple G = (Gi)i∈I on some ordered index set (I,6) is said a sequence of
Givens rotations. We also define

∏
i∈I Gi the product in increasing order while

∏
i∈rev(I)Gi

denotes the product in decreasing order with respect to the order defined on I. The following
operations on G are introduced:

• Gv :=
∏
i∈rev(I)Giv, for v ∈ Cn;

• G∗v :=
∏
i∈I G

∗
i v for v ∈ Cn;

• for J ⊆ I, with the induced order, we call G[J ] := (Gj)j∈J the slice of G on the indices J ;

• for Givens sequences G = (Gi)i∈I , G′ =
(
G′j
)
j∈J , we define the product GG′ to be the

sequence

GG′ := (Ei)i∈ItJ , Ei =

{
Gi if i ∈ I
G′i if i ∈ J

where t is the disjoint union operator and where the order on I t J is induced by the ones
on I and J and by the agreement that Gi < G′j for every i ∈ I, j ∈ J .

The above definitions on the product between a sequence and a vector trivially extend to products
between sequences and matrices. For instance, GA :=

∏
i∈rev(I)GiA.

We are interested in the cases where the index sets I are special, in particular we consider
the case of univariate sets I ⊂ N, and the case of bivariate sets I ⊂ N2. Let us give first the
more simple definition of 1-sequences, which covers the case of univariate sets, and then extend
it to k-sequences for k > 1, that is, the case of bivariate sets.

Definition 4.2. We say that G is a 1-sequence of Givens rotations if G = (G2, . . . , Gn−1).

Notice that in this context, the operations already introduced in Definition 4.1 specialize in
the following way:

• Gv := Gn−1 . . . G2v, for v ∈ Cn;

• G∗v := G∗2 . . . G
∗
n−1v, for v ∈ Cn;

• G[i : j] := (Gi, . . . , Gj), for 2 6 i < j 6 n− 1, is a slice of G from i to j.

Here, and hereafter, we use the notation i : j to mean the tuple (i, i + 1, . . . , j) for i < j.
Sometimes we use the expressions G[: j] and G[i :] for G[2 : j] and G[i : n− 1], respectively. That
is, leaving the empty field before and after the symbol “:” is a shortcut for “starting from the
first rotation” and for “until the last rotation”, respectively.
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Below, we recall a useful pictorial representation, introduced in [13] and [10], which effectively
describes the action of the sequence of Givens rotations. We report the case n = 6, where every

describes a Givens rotation Gi applied to the pair (i, i+ 1) of consecutive rows.

G = (G2, . . . , Gn) = , Gv =


v1
v2
v3
v4
v5
v6

 .

The definition of 1-sequences is generalized to the case where I ⊂ N2 is a bivariate set of
indices, and where we consider Givens rotations Gi,j acting on the pair (i, i + 1) of consecutive
rows for any j. In this case, the ordering on N2 which induces orderings in any subset I of N2,
is defined by

(i1, j1) 6G (i2, j2) ⇐⇒ j1 > j2 or (j1 = j2 and i1 6 i2) .

Definition 4.3. We say that G = (Gi,j)(i,j)∈I is a k-sequence of Givens rotations if I = {(i, j) ∈
N2 | i = 2, . . . , n − 1, j = 1, . . . ,min(i − 1, k)} with the order induced by 6G. With a slight
abuse of notation we define the sequence G[i1 : i2] := (Gi,j)(i,j)∈I′ , I

′ = {(i, j) ∈ N2 | i =
i1, . . . ,min(i2 + k, n− 1), j = max(1, i− i2 + 1), . . . ,min(k, i− i1 + 1), 2 6 i1 < i2 6 n− 1} to
be a slice of G from i1 to i2, where the ordering in I ′ is induced by the ordering 6G valid on the
parent set.

A pictorial representation similar to the one given above can be used also in this case. For
example, for k = 2 and n = 6 we have G = (G3,2, G4,2, G5,2, G2,1, G3,1, G4,1, G5,1) that is
represented by

G = . (13)

Note that for every i1 6 i2 < i3, the slices of G can be factored in the following form:

G[i1 : i3] = G[i2 + 1 : i3]G[i1 : i2], G∗[i1 : i3] = G∗[i1 : i2]G∗[i2 + 1 : i3],

where, for notational simplicity, we set G∗[i1 : i2] = (G[i1 : i2])
∗
. This property is called slicing

of rotations.
Note that the order 6G is one of the orders such that Gv coincides with the multiplication of

the vector v by the Givens rotations in G with the order induced by the pictorial representation
(13).

It is worth highlighting that the operation of slicing a k-sequence is equivalent to removing
the heads and tails from the sequences itself. For example the slice of G defined by G[3 : n− 2]
is obtained by taking only the bold rotations in the following picture, where n = 7, which
correspond to G4,2, G5,2, G3,1, G4,1.

G = .
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With the basic tools introduced so far we can define the concept of Givens Vector represen-
tation.

Definition 4.4. A Givens Vector (GV) representation of rank k for a Hermitian quasiseparable
matrix A is a triple (G,W,D) where G is a k-sequence of Givens rotations, W ∈ Ck×(n−1) and
D is a diagonal matrix such that

• D is the diagonal of A;

• for every i = 1, . . . , n − 1 the subdiagonal elements of the i-th column of A are equal to
the last n− i elements of G[i+ 1 :]wi, where we define

wi :=

 0i
Wei

0n−k−i

 if i < n− k, wi :=

[
0i

(Wei)[1 : n− i]

]
otherwise

where 0j is the 0 vector of length j if j > 0, and is the empty vector otherwise. That is,
tril(A,−1)ei = G[i+ 1 :]wi.

If the triple (G,W,D) is a GV representation of the matrix A we write A = GV(G,W,D).

We refer to [10] for a detailed analysis of the properties of this representation. We recall here
only the following facts:

• If A is k-quasiseparable then there exists a k-sequence G, a matrix W ∈ Ck×(n−1) and a
diagonal matrix D such that A = GV(G,W,D).

• If A = GV(G,W,D) for some k-sequence G, W ∈ Ck×(n−1) and D diagonal, then A is at
most k-quasiseparable.

We introduce now an important operation on Givens rotations, called turnover. The follow-
ing Lemma can be thought as a partial answer to the question whether two Givens rotations
commute. It is clear that if we have Gi and Gj such that |i − j| > 1 then GiGj − GjGi = 0.
This is also true if the two rotations act on the same rows, but it does not hold when they are
acting on consecutive rows. In the latter case, the turnover gives a way to swap the order of the
rotations.

Lemma 4.5. Let G be a sequence of Givens rotations and Fi a Givens rotation acting on the
rows i and i+ 1. Then there exists another sequence Ĝ and a Givens rotation F̂i−1 acting on the
rows i− 1 and i such that

GFi = F̂i−1Ĝ.

Moreover, Ĝ differs from G only in the rotations acting on the rows with indices (i − 1, i) and
(i, i+ 1).

See [13] for a proof of this fact. The pictorial representation of the Givens rotations can be
helpful to understand how the turnover works.

=
̂ ̂̂

The above lemma can be easily extended to k-sequence of rotations.
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Corollary 4.6. Let G be a k-sequence of Givens rotations and Fi a Givens rotation acting on
the rows i and i+ 1. Then there exists another k-sequence Ĝ and a Givens rotation F̂i−k acting
on the rows i− k and i− k + 1 such that

GFi = F̂i−kĜ,

where F̂i−k = I if i−k ≤ 0. Moreover, Ĝ differs from G only in the rotations of indices (i−j+1, j)
and (i− j, j) for j = 1, . . . , k.

Again, a pictorial representation of this fact can be useful to figure out the interplay of the
rotations. Below, we report the case where i > k + 1.

=

̂ ̂̂ ̂̂
The above operations are very cheap. The cost of the computation of a turnover is O(1) in

case of 1-sequences and O(k) in case of k-sequences.
We answer now to the following question: Given a k-sequence G and a k-quasiseparable matrix

A, there exist appropriate matrices W ∈ Ck×(n−1) and D diagonal such that A = GV(G,W,D)?

Lemma 4.7. Let A be a Hermitian matrix and G a k-sequence of Givens rotations. Then
B = G∗A is lower banded with a bandwidth of k, i.e., bi,j = 0 for i − j > k, if and only if
the matrix A admits a representation of the form GV(G,W,D) for some W ∈ Ck×n and D real
diagonal.

Proof. We first suppose that A = GV(G,W,D). Recall that, by definition of GV representation,
tril(A,−1)ei = G[i+ 1 :]wi for i = 1, . . . , n− 1. This implies that

G∗ tril(A,−1)ei = G∗G[i+ 1 :]wi = G∗[: i]G∗[i+ 1 :]G[i+ 1 :]wi = G∗[: i]wi.

We also have
G∗ triu(A)ei = G∗[: i]G∗[i+ 1 :] triu(A)ei = G∗[: i] triu(A)ei,

since G∗[i+ 1 :] is acting on rows that are null. So by decomposing A = tril(A,−1) + triu(A) we
have

G∗Aei = G∗ triu(A)ei + G∗ tril(A,−1)ei = G∗[: i](triu(A)ei + wi).

Now observe that the rotations inside G∗[: i] only act on the first i + k rows. This implies
that, since both wi and triu(A)ei have all the components with index strictly bigger than i+ k
equal to zero, the same must hold for G∗[: i](wi + triu(A)ei), and this completes the proof. The
converse is also true. In fact, if G∗A is lower banded with bandwidth k we can build W by
setting Wei = (G∗[i+ 1 :]Aei) [i+ 1 : i+k] and D equal to the diagonal of A. Then the equation
A = GV(G,W,D) can be verified by direct inspection.

To simplify the notation when talking about ranks in the lower part of quasiseparable matri-
ces, we say that a k-sequence G spans U ∈ Cn×k if there exists Z ∈ Ck×k such that G∗U = [ Z0 ].
This definition is motivated by the following
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Lemma 4.8. If G spans U ∈ Cn×k then, for every V ∈ Cn×k, W ∈ Ck×(n−1) and D diagonal,
the matrix A1 = UV ∗+ GV(G,W,D) is lower k-quasiseparable and A2 = t(UV ∗) + GV(G,W,D)
is k-quasiseparable. In particular, both G∗A1 and G∗A2 are lower banded with bandwidth k.

Proof. For the first part of the Lemma it suffices to observe that G∗A1 is lower banded with
bandwidth k. This follows directly by noting that A = GV(G,W,D) + UV ∗. Since G∗UV ∗ =
[ Z0 ]V ∗ and G∗GV(G,W,D) is lower banded by Lemma 4.7, we conclude that also G∗A1 is lower
banded with bandwidth k. Since the strictly lower part of A2 coincides with the one of A1 we
find that also A2 is lower k-quasiseparable. Given that A2 is Hermitian, we conclude that A2 is
also upper k-quasiseparable. To see that also G∗A2 is lower banded we can write

G∗A2 = G∗(A1 − triu(UV ∗) + triu(V U∗, 1)) = G∗A1 + G∗R,

where R is upper triangular. Since G∗, represented as a matrix, is the product of k upper
Hessenberg matrices, it is lower banded with bandwidth k. This implies that also G∗R is lower
banded with bandwidth k and so the same must hold also for G∗A2.

Remark 4.9. The above Lemma shows how the Givens rotations in a GV representation of a
matrix in QSHk are sufficient to determine the column span of the submatrices contained in the
lower triangular part. These matrices give the same information obtained by knowing the matrix
U in the D + t(UV ∗) representation.

We need to find efficient algorithms to perform operations on this class of matrices in order
to implement in terms of algorithms the constructive proofs given in Section 2. More precisely,
we need to explain how to efficiently perform the following tasks assuming we are given GV
representations of M = D + t(UV ∗) = GV(G,W,D) ∈ QSHk and of S = DS + t(uv∗) ∈ QSH1,
where U, V ∈ Cn×k, G spans U , u, v ∈ Cn and u = Ux for some vector x ∈ Ck:

1. Compute a GV representation of rank k of M + S.

2. Given a unitary upper Hessenberg matrix P , compute a GV representation of rank k of
t(PU(PV )∗), and a GV representation of rank 1 of R = PMP ∗ − t(PU(PV )∗).

We start by analyzing the problem of computing M + S. Since S = DS + t(Uxv∗), in
view of Lemma 4.8, we find that G∗S is lower banded with bandwidth k and so by applying
Lemma 4.7 there exists WS ∈ Cn×k and D̂S real diagonal such that S = GV(G,WS , D̂S) is a GV
representation of S. Given an algorithm for the computation of WS it is possible to represent
M + S as GV(G,WS +W,D +DS).

We need to investigate how to actually compute the matrix WS assuming we are given a GV
representation S = GV(F , z,DS) of S. Recall that the i-th column of WS can be extracted from
the components of the vector G∗[i+ 1 :]Mei, as explained in Lemma 4.7. We can compute the
whole matrix WS at cost O(nk) by following this procedure:

• Compute the last column of WS by using Lemma 4.7. This is almost cost-free since no
rotations are involved, and the only significant element of WSen−1 is equal to zn−1.

• Compute WSei starting from WSei+1; this vector can be computed by using some elements
in G∗[i + 1 :]Mei. In fact, since we are in the 1-quasiseparable case then zi = ziei+1. So
we have

G∗[i+ 1 :]Mei = G∗[i+ 1 :]F [i+ 1 :]zi = ziG∗[i+ 1 :]F [i+ 1 :]ei.
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In particular, the only relevant quantity that we need to compute to obtain a representation
for the i-th column of M is Γi := G∗[i+ 1 :]F [i+ 1 :]ei. To this end we have

Γi = G∗[i+ 1]G∗[i+ 2 :]F [i+ 2 :]F [i+ 1]ei

= G∗[i+ 1]G∗[i+ 2 :]F [i+ 2 :] (αei + βei+1) =

= G∗[i+ 1] (βΓi+1 + αei)

for some α, β such that α2 + β2 = 1.

The above procedure provides a a recursion for the computation of Γi for i = 1, . . . , n − 1.
Moreover, it is clear that the computation of Γi from Γi+1 only costs O(k) flops and that
guarantees that the algorithm can be carried out within the desired cost bound of O(nk). This
gives a O(nk) algorithm for computing a k-quasiseparable representation of S.

We investigate now the problem of computing the residual matrix given by Theorem 2.5 and
Corollary 2.6 using the GV representation of M and S. We rephrase the proof of Theorem 2.5
in terms of GV representations.

Analyzing the proof of Theorem 2.5 and its corollaries, we can observe that the algorithm can
be constructed easily if we are able to compute the residual Ri = t(FiUV F

∗
i )− Fit(UV ∗)F ∗i for

a Givens rotation Fi acting on the rows (i, i+ 1). In the following, we suppose that i < n−k− 1
so that we do not need to care about “border conditions”. However, all the concepts reported
are easily extendable to those cases by just adding some care in the process.

Assume we are given D,U, V,W and G such that M = D+ t(UV ∗) = GV(G,W,D). Observe

that we can compute an updated Ĝ such that Ĝ spans FiU . In fact, we know that G∗F ∗i FiU is
of the form

[×
0

]
where × is an appropriate k× k block. The rotation F ∗i can be passed through

the rotations inside G∗ (by properly updating them using the turnover operation) obtaining

F̂ ∗i+kĜ∗ = G∗F ∗i . Then, by F̂ ∗i+kĜ∗FiU =
[×
0

]
, we can conclude that also Ĝ∗FiU = F̂i+k

[×
0

]
=[×

0

]
since F̂i+k is operating on the null rows.

Moreover, we can check that GV(Ĝ,W,D) correctly represents the lower part of t(Fi(D +
UV ∗)F ∗i ) on every column but the one with indices i, i + 1. In fact, the diagonal part of M is
left unchanged on the indices different from i, i+ 1. For the rest of the matrix we can distinguish
two cases and we do not need to care about D:

• If j > i + 1, both the left multiplication by Fi and the right multiplication by F ∗i leave
unchanged the relevant part of U and V needed for the computation of the portion of
the j-th column contained in the lower part of the matrix. Moreover, since in this case
Ĝ[j + 1 :] = G[j + 1 :] we conclude that the proposed representation for these columns is
valid.

• Also when j < i the right multiplication by F ∗i does not change the j-th column at all.
However, the left multiplication by Fi does change the j-th column and we can verify that
tril(t(FiUV

∗F ∗i ),−1)ej = tril(FiUV,−1)ej . Recall that, by definition of GV representa-
tion, we have

tril(t(UV ∗),−1)ej = tril(UV ∗,−1)ej = tril(M,−1)ej = G[j + i :]wi.

Since j < i we have Fi tril(UV ∗,−1)ej = tril(FiUV
∗,−1)ej so that we can write

tril(FiUV
∗,−1)ej = FiG[j + 1 :]wi = Ĝ[j + 1 :]F̂i+kwj = Ĝ[j + 1 :]wj

where the last two equalities follow from the definition of Ĝ and from the fact that the
components of wj with index bigger than j + k are zero. Thus we have that GV(Ĝ,W,D)
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provides a good representation of the lower part of the j-th column of t(FiUV
∗F ∗i ), as

requested.

A pictorial representation of these two facts can help to get a better understanding of what
is going on (here we are fixing k = 2). The rotation Fi on the left is highlighted using the bold
font. Equation (14) represents the first case, where the rotation Fi does not intersect the indices
of the rotations in G[j+ 1 :], and Equation (15) the latter case, where an update of the rotations
is necessary. 

0
...
0
?
?
0
...
0


=



0
...
0
?
?
0
...
0


(14)



0
...
0
?
?
0
...
0


= ̂̂ ̂̂ ̂



0
...
0
?
?
0
...
0


= ̂̂ ̂̂



0
...
0
?
?
0
...
0


(15)

This means that we need to track only what happens on columns (i, i+ 1). We show how to
update D and W in the i an i + 1 components in order to account for what happens in these
indices. Note that these columns of M can be described in the following way (we report the case
k = 3 for simplicity):

M

ei ei+1

 = G[i+ 2 :]




di 0
w1,i 0
w2,i 0
w3,i 0

0 0

+


0 ×
0 di+1

0 w1,i+1

0 w2,i+1

0 w3,i+1



 .

Left and right multiplying by Fi and F ∗i (reported with the bold font), respectively, leads to
the following structure:

FiMF ∗i

ei ei+1

 = G[i+ 2 :]




di 0
w1,i 0
w2,i 0
w3,i 0

0 0

+


0 ×
0 di+1

0 w1,i+1

0 w2,i+1

0 w3,i+1



 .
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We can explicitly compute the value inside the brackets and then observe that, since Ĝ[i+ 2 :]
= G[i+2 :], we have a representation of the columns of FiMF ∗i . Now we want to find a Hermitian

matrix R of the form R = αei+1e
t
i +αeie

t
i+1, ŵj,i, ŵj,i+1 for j = 1, . . . , k and d̂i, d̂i+1 such that,

writing with ̂ the rotations taken from Ĝ, we have




di 0
w1,i 0
w2,i 0
w3,i 0
0 0

+


0 ×
0 di+1

0 w1,i+1

0 w2,i+1

0 w3,i+1




︸ ︷︷ ︸

C

+R =

̂ ̂ ̂


d̂i 0
ŵ1,i 0
ŵ2,i 0
ŵ3,i 0
0 0

+

0 ×
0 d̂i+1

0 ŵ1,i+1

0 ŵ2,i+1

0 ŵ3,i+1

 . (16)

Let C be the left matrix in (16). Then the elements ŵj,i+1 must coincide with the vector

C[3 :, 2], the diagonal elements d̂i and d̂i+1 are determined by the diagonal of the top 2×2 block
of C. It remains to determine the elements ŵj,i and the value α. To find them we can multiply

on the left by the inverses of the rotations in Ĝ[i]. We get the equation

̂̂̂

Ce1 +


0
α
0
0
0


 =


d̂i
ŵ1,i

ŵ2,i

ŵ3,i

0

 .
We can choose α such that we get a 0 in the last component (which can always be done if the
rotations are not trivial) and then set the values ŵj,i by back substitution.

5. Reduction algorithm

In this section we explain how the reduction algorithm can be constructed by using the tools
presented in the previous sections.

Recall that the matrix A = D + UV ∗ can be represented in the more general form A =
t(UW ∗) + S + UV ∗, where S is a Hermitian 1-quasiseparable matrix and U, V,W ∈ Cn×k, just
by setting W = 0 and S = D. Recall also that, by Theorem 2.5, this form is maintained by
the trailing principal submatrices Âj ∈ C(n−j+1)×(n−j+1) of the matrices Aj , generated at each

step j of the algorithm, that is, Âj = t(UjW
∗
j ) + Sj + UjV

∗
j . The matrices Uj and Vj are easily

obtained by multiplying Uj−1 and Vj−1 by a sequence of Givens rotations and by removing the
first row. The matrices Sj and Wj will be used to store the “residues”.

A high level overview of the algorithm is reported in the pseudo-code of Algorithm 2.
The functions in the code of Algorithm 2 perform the following operations:

cleanColumn(v) is a function that takes as input a column vector and returns a sequence of
Givens rotations G such that Gv = v1e1 + αe2 for some α.

(RM ,M)←conjugateAndTruncate(M,G) takes as input a quasiseparable Hermitian matrix
M ∈ QSHk and a sequence of Givens rotations G. Then it computes a quasiseparable
representation for GMG∗ − RM where RM is a matrix in QSH1. It returns an updated
representation of M and the residual matrix RM .
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Algorithm 2 High level reduction process

1: A1 ← D + UV ∗

2: M ← 0
3: S ← 0
4: s← zeros(1, n− 1)
5: d← zeros(1, n)
6: for i = 1, . . . , n− 2− k do
7: G ← cleanColumn(Ai[:, 1])
8: d[i]← (GAi[:, 1])[1]
9: s[i]← (GAi[:, 1])[2]

10: U ← (G · U)[2 : n, :]
11: V ← (G · V )[2 : n, :]
12: (RM ,M)← conjugateAndTruncate(M,G)
13: (RS , S)← conjugateAndTruncate(S,G)
14: M ←M + S
15: S ← RM +RS
16: end for
17: (d[n− 1− k : n], s[n− 1− k : n− 1], U, V )← reduceTrailingBlock(An−1−k)

S ← RM +RS computes the sum of the matrices RM , RS ∈ QSH1. This is done by assuming
that both have the same sequence of Givens rotations in their representation.

reduceTrailingBlock(A) reduces the last k×k block of the matrix using a standard Hessenberg
reduction process. This is done because, in the last steps, the trailing block does not have
any particular structure anymore.

Some numerical issues might be encountered in the above version of the algorithm. For
instance, some cancellation may happen in the sum RM + RS , which eventually may affect the
Givens rotations of the representation of M .

A technique based on re-orthogonalization can be used to restore better approximations.
Recall that the rotations inside the GV representation of M are such that G∗U = [ Z0 ]. Such
rotations are not unique but (at least with some hypothesis on irreducibility) are essentially
unique, that is, they can be determined up to a multiplicative constant of modulus 1. Based
on this information we can compute rotations in order to obtain G∗U in the desired form and
correct the moduli of the sine and cosine inside G without altering the signs.

This has shown to be quite effective in practice, leading to better numerical results. The cost
of a reorthogonalization is the cost of a QR factorization of U , thus asymptotically O(nk2). By
performing it every k steps we have a total cost of the modified reduction algorithm that is still
O(n2k), since we need O(n) steps to complete the reduction and O(nk) · 1kO(n) = O(n2k) ops.

6. Numerical experiments

The algorithm presented in Section 5 has been implemented in the Julia language. It has
been run on a Laptop with an Intel(R) Core(TM) i3-2367M CPU running at 1.40GHz and 4 GB
of RAM.

In order to analyze the complexity and the accuracy of the results we have performed the
following tests:
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Size Time (s)

100 0.65
200 2.68
300 6.06
400 11.05
500 17.5
600 25.8
700 35.7
800 49.4
900 67.17
1000 77.56

Figure 1: CPU time, in seconds, for the Hessenberg reduction of a diagonal plus rank 10 matrix of size n. Here
the line is the plot of γn2 for an appropriate γ. It is evident the quadratic behavior of the time.

• We have run the algorithm on matrices of different sizes but with constant quasiseparability
rank k = 10. The purpose is to verify that the CPU time is quadratic in the dimension of
the problem.

• We have run the algorithm at a fixed dimension n = 200 with values of k between 5 and
160. Here the goal is to verify that the CPU time grows linearly with the rank.

• We have run the algorithm on some test problems in order to measure the errors on the
eigenvalues computed starting from the final Hessenberg form. The purpose of this set of
tests is to check the numerical stability of the algorithm.

Every experiment has been run 10 times and the mean value of the timings has been taken.
In Figure 1 we have reported, in log scale, the timings for some experiments with n = 100 · i for
i = 1, . . . , 10. In Figure 2 we have reported the CPU time in the case of matrices of fixed size
n = 400 with various quasiseparable ranks ranging from 5 to 160.

Looking at the results in Figure 2 we see that the complexity in the rank is almost sublinear
at the start. This is due to the inefficiency of operations on small matrices and the overhead of
these operations in our Julia implementation. The linear trend starts to appear for larger ranks.

As a last experiment in Figure 3 and Figure 4 we have reported the absolute and relative
errors, respectively, on eigenvalue computations for various sizes and fixed quasiseparable rank.
The errors were obtained as differences between the eigenvalues computed from the starting full
matrix using the QR algorithm and the QR algorithm applied to the Hessenberg matrix provided
by our algorithm. In these examples the re-orthogonalization technique described in Section 5
has been used, in order to mitigate the errors.

The matrices in these examples have been obtained by using the randn function that con-
structs matrices whose elements are drawn from a N(0, 1) Gaussian distribution. This function
has been used to construct D, U and V diagonal and n×k, respectively, such that A = D+UV ∗.
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5 10.16
10 11.42
20 14.36
40 20.58
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160 44.25

Figure 2: CPU time, in seconds, for the Hessenberg reduction of a 400 × 400 diagonal plus rank k matrix.
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Size Mean Minimum Maximum

40.0 5.52e-14 1.11e-15 3.97e-13
80.0 2.59e-13 0.0 2.43e-12
160.0 5.23e-13 5.32e-15 3.74e-12
320.0 5.06e-12 1.49e-14 2.41e-10
640.0 1.80e-10 1.42e-13 2.43e-9
1280.0 8.43e-9 6.43e-15 3.32-7

Figure 3: Absolute errors on eigenvalues computation for random matrices of quasiseparable rank 30 and variable
sizes.
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40.0 9.13e-15 2.86e-16 1.42e-13
80.0 2.55e-13 0.0 3.22e-12
160.0 1.83e-12 1.92e-16 1.07e-10
320.0 9.66e-12 4.91e-16 4.49e-10
640.0 7.79e-10 1.47e-15 5.34e-8
1280.0 5.15e-8 2.69e-15 6.35e-6

Figure 4: Relative errors on eigenvalues computation for random matrices of quasiseparable rank 30 and variable
sizes.

7. An application

Let P (x) =
∑d
i=0 Pix

i be a matrix polynomial where Pi are k×k matrices. In [2] a companion
linearization A for P (x) has been introduced where A is an n×n matrix, n = dk, of the form (1)
with n = dk. The computation of the eigenvalues of P (x), that is, the solutions of the equation
detP (x) = 0, is therefore reduced to solving the linear eigenvalue problem for the matrix A.
The availability of the Hessenberg form H of A with the quasiseparability structure, enables one
to apply the QR iteration to H at a low cost by exploiting the both the Hessenberg and the
quasiseparable structures.

A different approach to solve the equation detP (x) = 0, followed in [1], consists in applying
the Ehrlich-Aberth iteration to the polynomial detP (x), or alternatively, to represent the poly-
nomial P (x) in secular form [3]. In this case, one has to compute detP (x) at different values
x1, . . . , xn. Indeed, the evaluation of detP (x) at a single value x = ξ can be performed by
applying the Horner rule in order to compute the matrix P (ξ) and then by applying Gaussian
elimination for computing the determinant detP (ξ). The overall cost is O(dk2 + k3) so that the
computation at n = dk different points has the cost O(d2k3 + dk4).

The availability of the structured Hessenberg form H allows us to reduce this cost. We will
show that computing det(xI−A) = det(xI−H) can be performed in O(nk) = O(dk2) operations.
Asymptotically, the value of this cost is the minimum that we can obtain. In fact, the matrix A
is defined by 2nk + n entries, so that any algorithm which takes in input these 2nk + n values
must perform at least nk + n/2 operations. In fact each pair of input data must be involved in
at least an operation. In the case where we have to compute det(xI − A) at dk different values
we obtain the cost O(d2k3) which improves the cost required by the Horner rule applied to the
matrix polynomial.

The algorithm for computing det(xI − H) at a low cost relies on the Hyman method [14].
Assume that H is in k-quasiseparable Hessenberg form. Consider the system (xI − H)v =
αe1, set vn = 1 so that the equations from the second to the last one form a triangular k-
quasiseparable system. The first equation provides the value of α after that v1, . . . , vn−1 have
been computed. Since a triangular quasiseparable system can be solved with O(nk) ops, we
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are able to compute α at the same cost. On the other hand, by the Cramer rule we find that
1 = vn = α(

∏
i=2,n hi,i−1)/det(xI−H) which provides the sought value of det(xI−H). A similar

approach can be used for computing the Newton correction p(x)/p′(x) for p(x) = det(xI −H).
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