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Abstract

To avoid solution of numerous Kohn-Sham one-body potential
equations for wave functions in DFT, various groups independently
proposed the use of Pauli potential to bosonize the customary one-
body potential theory. Here, we utilize our recent QMC calculations
of the ground-state electron density of the Be atom to estimate the
bosonized one-body potential VB(r) and hence extract the Pauli po-
tential for this atom.
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1 Introduction

As reviewed in [1] and [2], various research groups throughout the world
independently proposed the use of the so-called Pauli potential VP (r) [3] to
bosonize the ground-state electron density calculation in density functional
theory (DFT). However, while VP (r) has been extracted for some simple
model potentials (e.g. the bare Coulomb potential −Ze2/r), by March et al
[4]), its form is not well understood even for the ground-state of closed shell
atoms with spherical density n(r).

Therefore, in the present work, we study the bosonized DFT potential
VB(r). Then the usual chemical potential of DFT reads (see, for example,
[5])

µ =
δTs

δn(r)
+ V (r) (1)

where Ts[n] is the (as yet unknown) single-particle kinetic energy functional,
while

V (r) = Vext(r) +
∫

n(r′)

|r− r′| dr
′ + Vxc(r) (2)

is the Kohn-Sham potential which includes the exchange-correlation potential
Vxc(r).

As one of us pointed out [3], the bosonized potential VB(r) then has the
merit, since

δTs

δn(r)
− δTW

δn(r)
= VB(r) , (3)

that Eq.(1) becomes

µ =
δTW

δn(r)
+ VP (r) + V (r) . (4)

The considerable merit of Eq.(4) is that the von Weizsäcker kinetic energy
TW [n] is explicitly known as[6]

TW [n] =
h̄2

8m

∫ |∇n|2
n

dr . (5)

If we define therefore the bosonized (B) DFT potential from Eq.(4) as

VB(r) = V (r) + VP (r) (6)
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Eq.(4) is readily rewritten, in atomic units, as

µ =
1

8

|∇n|2
n2

− 1

4

∇2n

n
+ VB(r) . (7)

2 Quantum Monte Carlo results

Fairly recently, we calculated by diffusion quantum Monte Carlo (DMC) the
ground-state electron density for the Be atom[7] and we take this as starting
point to extract an estimate of the bosonized potential VB(r). In our previous
work, we used such ground-state density to get an accurate estimate of the
exchange-correlation potential of DFT for this atom. Here, to reconstruct
the density in a form that can be easily differentiated, we expand the Be
Kohn-Sham (KS) orbitals, namely φ1s and φ2s, in terms of Slater-type atomic
orbitals and solve the Kohn-Sham equation (in atomic units)

[

−1

2
∇2 − 4

r
+

∫

n(r′)

|r− r′| dr
′ + Vxc(r)

]

φj(r) = ǫjφj(r) (8)

where
φj(r) =

∑

k

ckjr
ake−ζkr . (9)

in which the basis set parameters are chosen in a way to satisfy the Kato cusp
condition at the nucleus, the correct asymptotic behaviour and to reproduce
properly the shape of the density at all distances from the nucleus. ckj are
computed by diagonalizing the Kohn-Sham operator above in the subspace
spanned by the atomic basis set. Vxc(r), in local form, is taken from our pre-
vious work[7]. In Table 1, we show our final results. The smallest exponent
has been set to

√
2I where I is the experimental ionization potential. Here,

for I, we take the value of 0.3426 Hartree that we have already used in a
previous work on Be-like series of atomic ions [8]. The ground-state electron
density for Be atom is then rewritten as

n(r) = 2φ2
1s(r) + 2φ2

2s(r) = 2
2

∑

j=1

∑

kl

ckjcljr
ak+ale−(ζk+ζl)r (10)

The plots of the density n(r) and of the radial density 4πr2n(r) are shown,
respectively, in Figures 1 and 2. In these Figures, we plot also for comparison,
the computed DMC corresponding values. Figure 3, therefore, shows VB(r)
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extracted from Eqs (4) and(6) by insertion of the QMC density n(r) for the
Be atom reconstructed from Eq.(10). The shape is seen to be rather simple.

Finally, we computed the Pauli potential VP (r) by means of Eq.(6) taking
the accurate exchange-correlation potential Vxc(r) from our previous work on
Be [7]. The resulting plot, as a function of r, is shown in Figure 4 in the range
of distances from the nucleus between approximately zero to 5 a0. VP (r) from
this plot is finite at all distances, it is flat at the origin in agreement with
the recent study of Levämäki et al [9] and has a maximum at about 0.89
a0 reflecting the shell structure of the electron density of Be. To complete
this analysis, we report in Table 2 also a set of properties which have been
computed through the solution of the Kohn-Sham equation (8) and that are
directly related to n(r), VB(r) and VP (r).

In summary, the main results of the present article are summarized in
Figures 3 and 4. The former shows VB(r) as a function of r which derived
solely by the QMC electron density shown in Eq.(10). The latter shows,
instead, the Pauli potential VP (r) derived from Eq.(6). However, Figure 4
needs information on the exchange-correlation contribution to the one-body
DFT potential which we have taken from Amovilli and March [7].

Acknowledgments

NHM wishes to acknowledge that his contribution to this work was carried
out mainly during a visit to the University of Pisa. Professors D. Lamoen
and C. Van Alsenoy are thanked for making possible the continuing affiliation
of NHM with the University of Antwerp (B).

4



References

[1] Levy M, Gorling A. Phil Mag B. 1994; 69:763.

[2] March NH. J Mol Struc (THEOCHEM). 2010; 943: 77.

[3] March NH. Phy Lett A. 1985; 113: 476.
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ak ζk ck,1s ck,2s
0 8.000 -1.8634664 3.6312290
0 5.154 13.3496637 31.8219522
0 4.000 -8.0781624 -36.4529063
0 2.000 0.8396784 -1.7626738
0 1.000 -0.1322915 1.9315786
1 6.746 -4.9896492 10.8643272
1 4.519 11.8198807 39.9820628
1 2.012 -0.2652587 -1.1289335
1 1.3065 0.1019443 -0.7916701
1 0.827768 0.0020884 0.0522140

Table 1: Parameters entering the Kohn-Sham orbitals defined in Eq.(9)

property value property value
TW 13.612 n0 35.25
Ts 14.573 n′

0 282.0
Exc –2.769 n′′

0 2330.8
E –14.667 Ve(0) 8.42
ǫ1s –4.1271 Vxc(0) –2.94
ǫ2s –0.3485 VP (0) 3.6

Table 2: Some DFT properties calculated in this work: von Weizsäcker ki-
netic energy (TW ), single particle kinetic energy (Ts), exchange-correlation
energy (Exc), total energy from DMC (E), KS orbital energies (ǫj), val-
ues at the origin of electron density and derivatives (n0, n

′

0, n
′′

0), electronic
electrostatic potential (Ve(0)), exchange-correlation potential (Vxc(0)), Pauli
potential (VP (0)). All data are in atomic units.
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Figure 1: Displays ground-state density n(r) for the Be atom, as calculated
by QMC.
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Figure 2: Radial form 4πr2n(r) versus r in a.u. for ground-state of the Be
atom, using QMC density in Figure 1.
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Figure 3: Displays bosonized potential VB(r) obtained from QMC ground-
state density in Figure 1.
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Figure 4: Displays estimate of Pauli potential VP (r) for ground-state of the
Be atom.
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