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Abstract

This paper presents an endogenous growth model driven by human capital, where human capital can

be allocated across three sectors: the production of the final consumption good, the educational sector

and the production of technological capital (in the form of knowledge or ideas). In our model, which also

includes public expenditure and population growth, labor augmenting technical progress is endogenous

and this enriches the transitional dynamics of the economy. With respect to ideas-based growth models, we

assume knowledge is produced according to a neoclassical technology, combining ideas and human capital.

Such an assumption is motivated by empirical works showing the existence of significant decreasing returns

in the creation of ideas at the aggregate level (as Kortum, 1993; and Pessoa, 2005) and of weak relationship

between some inputs of the knowledge production process (as the number of researchers) and the total

factor productivity growth rate (as Jones, 2002). Under some general conditions, this economy exhibits the

existence of a steady state equilibrium and an unstable multidimensional manifold. Numerical examples

are provided to show the existence of stable arms.
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1 Introduction

During the last century, modern economies have been characterized by growth in many forms: output,

productivity, average human capital and knowledge are all variables which have grown consistently over the

past hundred years. This increased the interest in identifying the underlying causes of such improvements,

and different variables have been identified as possible sources of growth in the literature during the last

fifty years. Solow (1965) and others after him identified the accumulation of physical capital as crucial in

explaining growing economies. In Lucas’ (1988) view, instead, the evolution of human capital is the key

feature driving growth in the long run. Recently, a literature stream, led mainly by Romer (1986, 1990),

has started considering ideas as the relevant engine of growth.

In ideas-based growth models, the dynamics of knowledge is assumed to be the ultimate determinant of

growth. This means that the creation of new ideas is enough to explain the features of growing economies

over the last century. In order to model this, some kind of linearities have been introduced in the technology

production function (see Jones, 2005, for a survey). For example, Romer (1990) assumes creation of ideas

is linear both in the stock of ideas and human capital employed in research. Empirical works suggest

there are significant decreasing returns of ideas at the aggregate level (see for example, Kortum, 1993; and

Pessoa, 2005). Moreover, as Pessoa (2005) clearly summarizes: ”The ideas-driven model ... predicts that
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expansion in the number of researchers leads to a permanent increase in TFP growth rate. In contrast, the

empirical evidence suggests that most OECD economies have increased the size of their R&D workforce,

while experiencing (at best) constant TFP growth rates. This weak relationship between the number of

researchers and TFP growth rate has led some to question the viability of ideas-driven growth for the long

run”. Therefore, we consider that the concept of creation of ideas has to be introduced in standard economic

growth models, modeling its interaction with capital (in particular with human capital), in order to deepen

their dynamics. In this paper, we introduce ideas in a multi-sector endogenous growth model. In particular,

ideas affect the production of the consumption good and are used to create new ideas1. Therefore, our

model economy is composed of three main interrelated sectors: the final one, the educational sector and that

devoted to accumulating knowledge. We also include other two important variables: public expenditure and

population growth (see also Hall (1988), Jorgenson and others (1987), Maddison (1982), Mehra and Prescott

(1985)). The basic model we use in order to study the linkages among ideas, human and physical capital

is an extension of the Uzawa-Lucas model (see Uzawa, 1965, and Lucas, 1988), which is one of the most

studied and celebrated endogenous growth models. As Boucekkine and Ruiz-Tamarit (2008a) have recently

emphasized, ”the Lucas-Uzawa model, one of the most celebrated endogenous growth model, [...] has some

interesting properties. [...] being a two-sector model, it gives rise to a sophisticated dynamic system with two

controls, consumption (c) and the fraction of human capital operating in the final good sector (u), and two

state variables, physical capital (K) and human capital (H)”, and ”because it is mathematically appealing,

it has been studied by many authors, using different approaches, allowing for a stimulating methodological

discussion”. In literature, further extensions of the classical Uzawa-Lucas model can be found in Boucekkine

and others (2008b and 2009b), Bucci and others (2009, 2010a, 2010b and 2010c), Ferrara and Guerrini (2008

and 2010). For instance, in Bucci and others (2010c), the authors generalize the Uzawa-Lucas model by

assuming that the level of technology might be subject to random shocks and suppose that the level of

technology follows an exogenous stochastic differential equation driven by a Brownian motion. For a certain

combination of the parameters and by using the Bellman equation, the authors find a closed-form solution

to this model. In Bucci and others (2010b), the authors extend the Lucas-Uzawa model along two different

directions, by introducing the growth of the physical capital stock into the human capital supply equation

and by including in the intertemporal maximization problem of the representative household a preference

parameter controlling for the degree of agents’ altruism towards future generations.

In this paper we extend the Uzawa-Lucas model in different ways. Ideas affect the production of the final

consumption good (derived from a technology combining ideas, physical and human capital) and are used

to produce new ideas (therefore we have an additional differential equation, representing the accumulation

of knowledge over time). Human capital, which still represents the engine of growth, is used also in the

production of new ideas, and therefore has to be endogenously allocated across these three sectors.

It is well known that economic growth can be affected by government’s purchases of goods and services.

Therefore, we introduce public expenditure in our model and, following Barro R.J. (1990), Barro R.J. and

Lee J.W. (2000) and Barro R.J. and Sala-i-Martin X. (1992), we assume that it is a fixed portion of the total

income. We also assume that population grows at a variable rate and that it follows a logistic behavior.

A benevolent social planner in this model has to decide where to allocate resources. The human capital

1The introduction of ideas in a growth model, as Jones (2005) emphasizes, raises the problem of introducing non-rivalry.

Romer (1993) divides goods into two categories: ideas and objects. Ideas can be represented by instructions or blueprints, while

objects are the standard rival goods, such as capital, labor, output... Ideas are merely instructions for combining the objects

in order to produce utility. Accepting Romer’s (1993) definition of ideas, we have to recognize that the use of ideas by one

person does not diminish others’ use and therefore ideas are non-rival goods. This of course implies the presence of increasing

returns to scale in production possibilities, and consequently leads to a framework where the first fundamental theorem of

welfare economics does not hold. As a result, the decentralized outcome may not coincide with the planned one, resulting in

a sub optimal allocation of resources. In this paper, we do not analyze the problems related to the decentralized allocation

(postponing this issue to future research), but we aim to study the optimal planned economy and the linkages between ideas,

physical and human capital
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decision is crucial, since it affects production of the final good, education, and ideas.

The paper is organized as follows. Section 2 introduces the model in its most possible general version. It

shows that this model is equivalent to a much simpler version simply by rescaling some variables, and then

derives the optimal paths. Section 3 focuses on a particular case of the model, namely when the production

function of new ideas shows constant returns to scale. It analyzes the steady state of our model economy,

that is characterized by a balanced growth path, along which the fractions of human capital allocated in

each sector are constant, and its local transitional dynamics. We show that the economy exhibits a steady

state equilibrium and an unstable multidimensional manifold which has at least dimension one. Numerical

examples are provided to show the existence of stable arms which prove that this equilibrium is a saddle

point. We moreover present a numerical example, in order to underline the role of human capital in the

three main sectors. As usual, section 4 concludes.

2 The Model

The model is an extension of the Uzawa-Lucas model, where we consider a multi-sector economy, where

all variables are used to produce only one homogeneous final good, that can be consumed or invested in

physical capital. Physical capital can be used only for producing the final good, while the human capital

can be allocated in the production of the final good, in the education sector or in the production of ideas.

Technological capital or ideas instead is used as an input in the production of the final good or to create

ideas. The economy is closed and composed of households (that receive wages and interest income, purchase

the consumption good and choose how much to save and how much to invest both in education and in ideas),

firms (that produce the consumption good) and government (which finances its expenditures through lump-

sum taxes). The infinitely-lived representative household wants to maximize its lifetime utility function:

U =

∫ ∞
0

u(ct)Lte
−ρtdt, (1)

where ct ≡ Ct
Lt

is per-capita consumption and ρ > 0 is the rate of time preference. The instantaneous utility

function is assumed to be iso-elastic:

u(ct) =
c1−σt

1− σ
, (2)

where σ > 0 represents the inverse of the inter-temporal elasticity of substitution in consumption.

Following Barro and Sala-i-Martin (1992), we assume that (not wasteful) public expenditure, Gt, is a

fixed portion τ ∈ [0, 1] of the income Yt for all t, that is:

Gt = τYt. (3)

In literature, it is well recognized that economic growth can be affected by government’s purchases of goods

and services. Therefore, we introduce government in our model in order to have the most possible general

model. However, as we show in the next subsection, the presence of government spending is irrelevant for

the equilibrium of the model. In fact, with a simple transformation of variables it is possible to recast the

model in a simpler form, where government activity is no longer present.

The final good is produced by combining physical capital, Kt, the share of human capital allocated to

final production, utHt, labor in efficiency units (the product of labor and its efficiency, given by level of

ideas in the economy), AtLt, and public expenditure Gt according to the following technology (see Mankiw

et al. (1992)):

Y (t) = (AtLt)
ψ1(utHt)

ψ2Kψ3
t G1−ψ1−ψ2−ψ3

t , (4)

with ψ1, ψ2, ψ3 ∈ (0, 1) and ut ∈ (0, 1).
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η1 η2

USA 0.03857713 -0.00000041

Italy 0.10548241 -0.00000776

UK 0.15565694 -0.00000869

Table 1: Estimated parameters

Notice that two inputs of production, human capital and ideas, are allocated across other sectors: other

than the final one, the former is also assigned to production of new human capital and production of new

ideas, while the latter is also assigned to the creation of knowledge. The main difference between these

factors is found in their own nature: human capital is a rival good, meaning that its usage in a sector lowers

its availability in the other ones2. This means that human capital used in the production of the final good

is only a share, ut, of the total, while the remaining fraction is split between the production of new ideas

(or blueprints), xt and education, 1− ut − xt.
Population (raw labor) coincides with the available number of workers, Lt, so that there is no unem-

ployment and the labor supply is inelastic (no leisure-work choice), and it grows at an exogenous rate.

We assume that population grows at a variable rate g(Lt) = η1 − η2Lt, ηi > 0, η1 − η2L0 > 0, that is

it follows a logistic behavior3. The first study on population dynamics was due to Malthus (1798), who

showed the explosion of the birth rate when income increases and then the increase of mortality because

of competition on the relatively scarce output of productive land. Malthus (1798) was among the first to

point out the existence of these two distinct phases in the evolution of world population. This idea was

formalized by a logistic process by Verhulst (1977), and by the famous papers by Lotka (1925) and Volterra

(1931). Applied mathematicians and biologists have studied extensively the dynamics of populations us-

ing logistic processes and their generalizations. Up-to-date demographic forecasts (United Nations, 2000)

show that the world population annual growth rate is expected to fall gradually from 1.8% (1950-2000) to

0.9% (2000-2050) and then reach a value of 0.2% between the years 2050 and 2100. In Capasso and others

(2010b), an estimation of η1 and η2 is provided. Starting from real data (coming from Angus Maddison

webpage: http://www.ggdc.net/Maddison/dataset) we solve an inverse problem for the differential equation

L̇t = Ltg(Lt). This empirical analysis shows that a good fitting curve for this data is the logistic one; the

results to eight decimal digits in three countries (Italy, UK, USA) over the period 1870-2008 are shown in

Table 1.

Figure 1: Population dynamics in Italy, USA, UK

Physical capital accumulates over time in accordance to the difference between output, Yt, consumption,

Ct and public expenditure Gt:

K̇t = Yt − Ct −Gt. (5)

2Ideas instead are non-rival, meaning that being widespread in the economy, they can be freely and contemporaneously used

in different sectors, without compromising their availability in each one.
3If we assume that η2 = 0 this implies that population evolves over time according to an exponential process
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Human capital accumulation coincides with the production of new human capital, which depends only

on the effort devoted to the accumulation of human capital, 1− ut− xt, and on the already attained human

capital stock (the education sector is intensive in human capital), Ht:

Ḣt = B(1− ut − xt)Ht, (6)

where 0 < ut, xt < 1 and B > 0 is a scale parameter. Notice that new human capital is produced accordingly

to a linear production function, meaning that human capital, as in the Uzawa-Lucas model, represents the

force driving endogenous growth.

Also idea accumulation coincides with the production of new ideas, depending on the effort devoted to

the accumulation of new ideas, xtHt, and on already existing stock of the knowledge, At:

Ȧt = D(xtHt)
φAδt , (7)

where φ ∈ [0, 1), δ ∈ [0, 1) (see Lutz (1998)) and D > 0 is a scale parameter. Let us observe that if

φ = 0 and δ = 1 the technological progress is exogenous and this model reduces to the deterministic version

presented in Bucci and others (2010c). If δ = 0 this equation is trivial. The condition δ > 0 means we

rely on what Jones (2005) labels as a standing on the shoulders effect : the discovery of ideas in the past

increases the possibilities of new discoveries4. As in Jones (2005), we assume that the production of new

ideas is Cobb-Douglas, combining ideas and human capital. The specification of decreasing returns in ideas

is suggested also in Romer (1990) and considered by Kortum (1993) and Jones (1995). Moreover, empirical

works suggest there are significant decreasing returns of ideas at the aggregate level; for example, Kortum

(1993) reports elasticity estimates of δ in the range between 0.1 and 0.6. Romer (1990) also suggests the

specification of decreasing returns in human capital, considered by Stokey (1995) and Jones (2002).

In next section, in order to provide the existence of a BGP equilibrium and sufficiency of the Hamiltonian-

based optimality conditions5 we will assume that δ = 1 − φ. If this hypothesis is not assumed, one has to

apply a suitable transformation of variables to guarantee this property (see Hiraguchi (2009a and 2009b) and

Bucci and others (2010a)) being satisfied. Following Kortum (1993) estimates, the assumption of constant

returns to scale implies that φ lies in the interval of 0.4 to 0.9. Notice that in such a case we are considering

the possibility of duplication in technology: if we double the stock of ideas and the share of human capital

used for producing new ideas, we will also double the production of new knowledge. However, in order to do

so, we have to allow a decrease in the fraction of human capital allocated to the educational sector, meaning

that the endogenous growth rate will be lower.

We have assumed that the depreciation rate of physical, human and technological capital is common and

equal to zero6.

The social planner maximizes the social welfare function, that is it has to choose ct, ut, and xt in

order to maximize agents’ lifetime utility function subject to physical, human capital and idea accumulation

constraints and the initial conditions:

max
{ct,ut,xt}∞0

U =

∫ ∞
0

c1−σt

1− σ
Lte
−ρtdt, ρ > 0 (8)

s.t. K̇t = (AtLt)
ψ1(utHt)

ψ2Kψ3
t G1−ψ1−ψ2−ψ3

t − ctLt −Gt
Ḣt = B(1− ut − xt)Ht

Ȧt = D(xtHt)
φAδt

4The opposite case, where δ < 0, corresponds to what the productivity literature defines as the fishing out effect, in which

the rate of innovation decreases with the level of knowledge
5As Hiraguchi (2009) underlines, the Hamiltonian is nonconcave and thus the first order conditions (FOCs) and the transver-

sality conditions does not imply the optimality.
6This is of course a simplifying assumption, but the outcome of the model would not change even if we introduce non zero

depreciation rates. The only difference would be given by the presence of additional constants in the Euler and state equations
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L̇t = g(Lt)Lt

Gt = τYt

K0, H0, A0, L0 given.

At the end of this section, it is worth mentioning how one can obtain estimates of parameters for this

optimal control problem using, for instance, fractal-based methods and inverse problem approach. In fact,

in practical applications it is crucial to obtain such estimates of meaningful parameters starting from a set of

observational data. As well discussed in Bucci and others (2010b) and Kunze and La Torre (2009b), through

the solution of the inverse problem one can get the estimation of some key-parameters of the model, such as

the total factor productivity, the productivity of human capital in the production of new skills, the physical

capital share in total income, and so on. The method we use is based on the Collage Theorem; many

problems in the parameter estimation literature for differential equations can be formulated in a collage

coding framework as showed in Kunze and Vrscay (1999) and subsequent works. The main advantage of

this approach, motivated by its abstract formulation, is that it can be used whenever classical econometric

techniques fail (see, for more details, Kunze and others (1999), (2003), (2004), (2007a), (2007b), (2007c),

(2009a), (2009b) in the references).

2.1 Solving the model

By combining the expression Gt = τYt and the definition of production function Y we get

Yt = (AtLt)
ψ1

ψ1+ψ2+ψ3 (utHt)
ψ2

ψ1+ψ2+ψ3K
ψ3

ψ1+ψ2+ψ3
t τ

1−ψ1−ψ2−ψ3
ψ1+ψ2+ψ3 (9)

This means we can eliminate the variable Gt and, by defining α = ψ3

ψ1+ψ2+ψ3
, β = ψ2

ψ1+ψ2+ψ3
and Ω =

τ
1−ψ1−ψ2−ψ3
ψ1+ψ2+ψ3 , the model can be rewritten as

max
{ct,ut,xt}∞0

U =

∫ ∞
0

c1−σt

1− σ
Lte
−ρtdt, ρ > 0 (10)

s.t. K̇t = ΩKα
t (utHt)

β(AtLt)
1−α−β − ctLt

Ḣt = B(1− ut − xt)Ht

Ȧt = D(xtHt)
φAδt

L̇t = g(Lt)Lt

K0, H0, A0, L0 given.

Furthermore by applying a suitable transformation of variables the model can be rewritten as

max
{ct,ut,xt}∞0

U =

∫ ∞
0

c1−σt

1− σ
Lte
−ρtdt, ρ > 0 (11)

s.t. K̇t = ΩKα
t (utHt)

β(AtLt)
1−α−β − ctLt

Ḣt = (1− ut − xt)Ht

Ȧt = (xtHt)
φAδt

L̇t = g(Lt)Lt

K0, H0, A0, L0 given.

The Hamiltonian function, Ht(·), associated to the maximization problem (since Lt is exogenous) is:

Ht(·) =
c1−σt

1− σ
Lte
−ρt + λt[ΩK

α
t (utHt)

β(AtLt)
1−α−β − ctLt] + µt[(xtHt)

φ(AtLt)
δ] + νt(1− ut − xt)Ht.

(12)
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The first order necessary conditions are:

ct → c−σt e−ρt = λt (13)

ut → λtβΩKα
t (utHt)

β−1(AtLt)
1−α−βHt = νtHt (14)

xt → µtφ(xtHt)
φ−1AδtHt = νtHt (15)

Kt → −λ̇t = λtΩαK
α−1
t (utHt)

β(AtLt)
1−α−β (16)

At → −µ̇t = λt(1− α− β)ΩKα
t (utHt)

β(AtLt)
−α−β + µtδ(xtHt)

φAδ−1t (17)

Ht → −ν̇t = λtβΩKα
t (utHt)

β−1(AtLt)
1−α−βut + µtφ(xtHt)

φ−1Aδtxt + νt(1− ut − xt) (18)

together with the initial conditions K0, H0 and A0, the dynamic constraints:

K̇t = ΩKα
t (utHt)

β(AtLt)
1−α−β − ctLt

Ḣt = (1− ut − xt)Ht

Ȧt = (xtHt)
φAδt

and the transversality conditions:

lim
t→∞

λtKt = 0 (19)

lim
t→∞

νtHt = 0 (20)

lim
t→∞

µtAt = 0. (21)

Solving the system, the optimal paths of consumption, share of human capital allocated to production

and to new ideas are:

ċt
ct

=
1

σ

[
αΩKα−1

t (utHt)
β(AtLt)

1−α−β − ρ
]

(22)

u̇t
ut

=
1

β − 1

[
α
ctLt
Kt
− β − (1− β)(ut + xt)− (1− α− β)(xtHt)

φAδ−1t

]
(23)

ẋt
xt

=
1

φ− 1

[
φ(1− α− β)

β
utx

φ−1
t Hφ

t A
δ−1
t − φ− (1− φ)(ut + xt)

]
(24)

Equation (22) is the standard Keynes-Ramsey rule, showing that the growth rate of consumption is an

increasing function of the marginal productivity of physical capital in the final sector. Notice that, as usual,

it is positive if the marginal productivity of physical capital is higher than the rate of time preference, ρ.

Equation (23) says that the change of the share of human capital allocated to the production of the final good

is a negative function of the consumption-capital ratio and a positive function of the average productivity

of ideas in the research sector and of the shares of human capital not allocated to the educational sector.

Equation (24) instead relates the share of human capital devoted to the production of ideas positively with

the shares of human capital not allocated to the educational sector and with the ut
xt

ratio while negatively

with the human capital-ideas ratio.

3 Steady State Analysis

We now analyze the steady state of our model economy, which is characterized by a balanced growth path

equilibrium, that is a situation where all economic variables grow at constant and finite rates. Before doing

this, we assume the following hypotheses:
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• δ = 1−φ. Under this hypothesis the Hamiltonian is concave and thus the first order conditions (FOCs)

and the transversality conditions imply the optimality (see Chilarescu (2008), Hiraguchi (2009a) and

(2009b)) 7.

• Lt is constant over time. Since we have assumed that Lt follows a logistic behavior, in the long-run

Lt converges to a constant. Since, by continuity, nothing changes in the long-run perspective, then in

the sequel it is worth assuming Lt being constant over time.

By rescaling Lt for simplicity, the previous model is totally equivalent to the following (where per-capita

(lower case letters) and aggregate variables (capital letters) coincide):

max
{ct,ut,xt}∞0

U =

∫ ∞
0

c1−σt

1− σ
e−ρtdt, ρ > 0 (25)

s.t. k̇t = kαt (utht)
βa1−α−βt − ct

ḣt = (1− ut − xt)ht
ȧt = (xtht)

φa1−φt

k0, h0, a0 given.

The following definition introduces the notion of BGP.

Definition 1: (Balanced Growth Path, BGP) a balanced growth path, BGP, or steady state equilib-

rium, (c, h, k, a, u, x, γc, γh, γk, γa, γu, γx), is a sequence of time paths, {ct, ht, kt, at, ut, xt}t≥0, along which all

economic variables grow at constant rates. A BGP is said to be non-degenerate if ct, ht, kt and at grow at

non negative rates.

First of all, notice that the growth rate of consumption must equalize that of physical capital, in order

to have endogenous growth and not to violate TVC (19). Moreover, along the BGP, the share of human

capital allocated in the production of the consumption good and in the creation of new ideas have to both

be constant, otherwise the growth rate of human capital cannot be constant.

Therefore, we can study the dynamics of a simplified system, where the variables do not asymptotically

grow, and the BGP of the original system is represented by the equilibrium point of such a simplified system.

In fact, by introducing the intensive variables: χt ≡ ct
kt

, ϕt ≡ ht
kt

and ψt ≡ at
kt

, we obtain the following system

of five nonlinear differential equations:

χ̇t
χt

=
α− σ
σ

(utϕt)
βψ1−α−β

t − ρ

σ
+ χt (26)

ψ̇t
ψt

= (xtϕt)
φψ−φt − (utϕt)

βψ1−α−β
t + χt (27)

ϕ̇t
ϕt

= (1− ut − xt)− (utϕt)
βψ1−α−β

t + χt (28)

u̇t
ut

=
1

β − 1

[
αχt − β − (1− β)(ut + xt)− (1− α− β)(xtϕt)

φψ−φt

]
(29)

ẋt
xt

=
1

φ− 1

[
φ(1− α− β)

β

ut
xt

(xtϕt)
φψ−φt − φ− (1− φ)(ut + xt)

]
. (30)

7Through Comparison Theorems it is also possible to compare the dynamics of Equations (22), (23) and (24) with the case

of constant returns to scale (see also Bucci and others (2010d)).
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Moreover, by introducing the variables Zt = (utϕt)
βψ1−α−β

t and Mt = (xtϕt)
φψ−φt , we can recast the

system in a quasi linear form:

χ̇t
χt

=
α− σ
σ

Zt −
ρ

σ
+ χt (31)

Żt
Zt

=
α+ β − 1

β − 1
χt −

β

β − 1
− (1− α)Zt −

1− α− β
β − 1

Mt (32)

Ṁt

Mt
=

φ2(1− α− β)

β(φ− 1)

ut
xt
Mt − φMt −

φ

φ− 1
(33)

u̇t
ut

=
1

β − 1

[
αχt − β − (1− β)(ut + xt)− (1− α− β)Mt

]
(34)

ẋt
xt

=
1

φ− 1

[
φ(1− α− β)

β

ut
xt
Mt − φ− (1− φ)(ut + xt)

]
. (35)

The equilibrium point of this system is represented by a point where equations (31), (32), (33), (34) and

(35) are null. Such a point is characterized by a strictly positive level of all variables if σ > 1 − ρ > 0.

Moreover, under the same assumption, the equilibrium shows a multidimensional unstable manifold. Notice

that such a parametric condition is usually satisfied: it only requires the inverse of the intertemporal elas-

ticity of substitution to be sufficiently high. Several empirical works suggest the elasticity of substitution

is lower than one, meaning that its inverse (the relative risk aversion parameter) is higher than one (see

for example, Mehra and Prescott, 1985; and Hall, 1988). Therefore, we can summarize these results in the

following propositions.

Proposition 1: if the following parameter restrictions apply:

σ > 1− ρ > 0, (36)

then the following results hold:

(i) the BGP equilibrium is characterized by a strictly positive level of consumption, physical, human and

technological capital, shares of human capital allocated to the educational and research sectors;

(ii) the BGP equilibrium shows a multidimensional unstable manifold.

Proof: see Appendixes A and B. Appendix A proves part (i) of the proposition while Appendix B part

(ii). �

Moreover, under standard parameter values, it is possible to show that the BGP equilibrium is saddle-

point stable. This is shown by the next numerical examples.

Example 3.1. Let us do a numerical simulation using the following parameter values: α = 0.3333, β = 0.2,

φ = 0.2, σ = 2, ρ = 0.04. The equilibrium is: M∗ = 0.48, χ∗ = 2.52, Z∗ = 3, u∗ = 0.3813, x∗ = 0.1386.

The linearized Jacobian is:

2.520000000 −2.100000000 0 0 0

1.750000000 −2.0 1.750000000 0 0

0 0 −0.2499999999 −0.1938461539 0.5330769228

−0.1588888888 0 0.2224444445 0.3813333333 0.3813333333

0 0 −0.2224444445 −0.1413333333 0.9086666667


The eigenvalues of the linearized model are λ1 = −.8982525480, λ2 = 1.418252548, λ3 = .5199999998,

λ4 = .6952597330, λ5 = −.1752597328 with eigenvectors
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v1 =
[
−0.5183670708 −0.8437664579 −0.01284295470 −0.06025831199 −0.006294333392

]
v2 =

[
1.615847878 0.8477410890 0.04003391112 −0.2227207860 0.04429587035

]
v3 =

[
0.000000007300000000 0.000000007700000000 0.000000002097000000 −1.005291378 −0.3655604976

]
v4 =

[
−2.495952980 −2.168793288 −0.8443105758 −2.066326458 −2.248535201

]
v5 =

[
2.687615181 3.449438562 0.9091444981 0.2534170105 0.2196186132

]
The unstable manifold Mu is generated by the vectors 〈v2, v3, v4〉 while the stable manifold Ms by the vector

〈v1, v5〉.

Example 3.2. Let us do a numerical simulation using the following parameter values: α = 0.3333, β = 0.2,

φ = 0.8, σ = 2, ρ = 0.04. The equilibrium is: M∗ = 0.48, χ∗ = 2.52, Z∗ = 3, u∗ = 0.2611555556,

x∗ = 0.2588444444. The linearized Jacobian is:

2.520000000 −2.100000000 0 0 0

1.750000000 −2.0 1.750000000 0 0

0 0 −4.000000003 −6.646153850 6.705494512

−0.1088148148 0 0.1523407408 0.2611555556 0.2611555556

0 0 −2.437451853 −4.221155557 4.778844445


The eigenvalues of the linearized model are λ1 = 1.496661179+.6462436692i, λ2 = 1.496661179−.6462436692i,

λ3 = −.9766611807+ .6462436678i, λ4 = −.9766611807− .6462436678i, λ5 = .5200000002, with eigenvectors

v1 =
[
−0.662428e− 1 + .820589i .220243 + .420261i .351114 + .100464i 0.743842e− 1− 0.939052e− 1i .351861 + 0.23117e− 1i

]
v2 =

[
−0.662428e− 1− .820589i .220243− .420261i .351114− .100464i 0.743842e− 1 + 0.939052e− 1i .351861− 0.23117e− 1i

]
v3 =

[
0.54299e− 1− 2.51137i −.682426− 4.19834i 1.09701− .195676i −.105991− .211491i .408421− .19212i

]
v4 =

[
0.54299e− 1 + 2.51137i −.682426 + 4.19834i 1.09701 + .195676i −.105991 + .211491i .408421 + .19212i

]
v5 =

[
0.213000e− 7 0.197000e− 7 0.210000e− 8 .368319 .365059

]
The unstable manifold Mu is generated by the vectors 〈v1, v2, v5〉 while the stable manifold Ms by the vector

〈v3, v4〉. Notice that in this example only one eigenvalue is real.

The previous two examples have been implemented using MAPLE 13. They show that the economy

converges to its steady state through a saddle path and the unstable transitional manifold has dimension

three while the stable manifold has dimension two.

Along the BGP, the consumption-capital ratio is an increasing function of the inverse of the elasticity of

substitution, σ, and of the rate of time preference, ρ; it, instead, depends negatively on the capital share, α.

Notice that it is independent of the human capital share, β. The stationary share of human capital allocated

to physical and knowledge production instead are functions of the physical and human capital shares, α and

β, of the elasticity of human capital in the knowledge production process, φ, of the rate of time preference, ρ

and of the inverse of the intertemporal elasticity of substitution in consumption, σ. In particular, the share

of human capital allocated to knowledge (physical) production is a decreasing (increasing) function of β and

an increasing (decreasing) function of φ; the share allocated to the educational sector instead is independent

of both σ and φ.

10



3.1 The Allocation of Human Capital

We now illustrate the behavior of the allocation of human capital among the three sectors implied by the

model, under a given set of parameter values. In choosing such values we rely on existing empirical estimates

or on baseline specifications coming from previous works.

The physical capital share has been traditionally considered to be around one third (see Denison, 1962;

Maddison, 1982; Jorgenson et al., 1987; Mankiw et al., 1992) while the human capital share has been

estimated by Mankiw, Romer and Weil (1992) to vary in the range (0.333, 0.5). The elasticity of ideas in

the production function of technology has been estimated by Kortum (1993) in the range (0.1, 0.6), implying

that φ ∈ (0.4, 0.9). We set α = 0.33, and following Mulligan and Sala-i-Martin (1993), ρ = 0.04 and σ = 2.

Firstly, we fix β = 0.42 (the median value of the interval estimated by Mankiw, Romer and Weil, 1992)

and let φ vary in the interval (0.4,0.9); then we fix φ = 0.65 (the median value of the interval estimated by

Kortum, 1993) and let β vary in the range (0.333,0.5).

This set of parameters implies that in steady state the highest share of human capital is devoted to

creation of new human capital, and the lowest share is allocated to knowledge production. Such an outcome

is clear: the impact of human capital is more important in the educational sector, since it is the growth

driven force, and in the physical one, since it produces the consumable good, which is the argument of

agents’ utility function, while it is lower in the technological sector. This ranking is clearly reflected by the

optimal allocation of resources. In fact, the share of human capital in the technological sector is always

particularly low, while that in physical production can reach a value close to that in education.

Figure 2: Optimal allocation of human capital in steady state. The figure shows the values of u, x and

1− u− x, as β changes

Notice that even if we let β and φ be in the ranges empirically estimated, the same result holds. Of

course, as one of these parameters changes, the steady state values of u and x changes, while that of 1−u−x
does not. If we increase β, u increases (and x decreases) but its steady state value is always lower than the

share allocated to the educational sector; in fact, when β = 0.5, that is the upper bound of its estimated

range, the optimal allocation of human capital is the following: u∗ = 0.46, x∗ = 0.06 and 1−u∗−x∗ = 0.48.

Only if the human capital share gets particularly large (higher than 0.56), the fraction of human capital

allocated to physical production will be higher than that in education.

If we increase φ, instead, x increases (and u decreases) but, again, the steady state value of u and x are

always lower than the share allocated to educational sector; in fact, when φ = 0.4, the lower bound of its

estimated range, the optimal allocation of human capital is: u∗ = 0.44, x∗ = 0.07 and 1−u∗−x∗ = 0.48. If φ

gets particularly small (lower than 0.2), then the fraction of human capital allocated to physical production

will be higher than that in education.

4 Conclusions

During the last century, knowledge (technology) has increased consistently in most of the industrialized

countries. Economic growth theory introduces endogenous technical change in order to describe this fact.
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Figure 3: Optimal allocation of human capital in steady state. The figure shows the values of u, x and

1− u− x, as φ changes

As a result, a new literature stream has recently arisen, leading to ideas-based growth models. Our goal

is to introduce ideas in a standard multi-sector endogenous growth model and the natural candidate for

such an aim seems to be the Uzawa-Lucas model. Therefore, we extend it along different lines: we formally

introduce ideas, which are used for producing the final physical good and are created in a particular separate

sector, and we emphasize the importance of education in the process generating ideas, also considering the

endogenous allocation of human capital in this technical sector. We also consider the effect of population

dynamics and public expenditure. The interaction between human capital and ideas rules the economy.

Since human capital is a rival good, while ideas are not, the allocation of human capital across sectors is

crucial. The stock of ideas can be contemporaneously exploited in the final and technical sectors, while

human capital stock has to be shared across the three sectors. Therefore, the planner has to determine how

to optimize the trade-off arising from the allocation of resources.

We show that the economy admits a steady state equilibrium, along which the consumption-capital ratio

is constant. The stable and unstable manifolds are multidimensional, and the unstable manifold is at least

of dimension one. It remains an open problem if it is possible to obtain, maybe for a certain combination of

parameters, a closed-form solution to this model.

For further research, we suggest to focus on the decentralized outcome, investigating how this allocation

differs from the optimal planned one and how it can be possible to decentralize the optimal allocation of

resources. Another aspect which could deserve some attention is the production function of ideas: we assume

it is neoclassical; however, it could be interesting to analyze the case where it is somehow linear, meaning that

ideas represent an additional source of endogenous growth. Another interesting extension of this paper could

involve a spatial Uzawa-Lucas model by assuming a continuous space structure and nonconcave production

functions (see, for instance, Boucekkine and others (2009a) and Capasso and others (2010a and 2010c)).

A Steady State

The steady state of the five dynamical equations system is characterized by setting equations (26), (27),

(28), (29) and (30) equal to zero:

0 =
α− σ
σ

Z∗ − ρ

σ
+ χ∗ (37)

0 = M∗ − Z∗ + χ∗ (38)

0 = 1− u∗ − x∗ − Z∗ + χ∗ (39)

0 =
1

β − 1

[
αχ∗ − β − (1− β)(u∗ + x∗)− (1− α− β)M∗

]
(40)

0 =
1

φ− 1

[
φ(1− α− β)

β

u∗

x∗
M∗ − φ− (1− φ)(u∗ + x∗)

]
. (41)
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Plugging equation (39) into (38) we get:

1− u∗ − x∗ = M∗; (42)

substituting equation (42) into equation (40), we obtain:

χ∗ =
1

α
−M∗. (43)

Substituting equation (43) into (37) instead:

Z∗ =
σ

α
M∗ +

ρ

α
. (44)

Then, from equations (38) and (44) we obtain the steady state value of M :

M∗ =
1− ρ
σ

. (45)

Therefore those of χ and Z are:

χ∗ =
σ − α(1− ρ)

ασ
(46)

Z∗ =
1

α
. (47)

From equation (41), we have:

u∗ =
βφ(1− ρ) + β(σ + ρ− 1)

φ(1− α− β)(1− ρ)
x∗, (48)

which substituted in equation (42) yields:

x∗ =
φ(1− α− β)(1− ρ)(σ + ρ− 1)

σ[φ(1− α)(1− ρ) + β(σ + ρ− 1)]
(49)

and therefore:

u∗ =
(σ + ρ− 1)[βφ(1− ρ) + β(σ + ρ− 1)]

σ[φ(1− α)(1− ρ) + β(σ + ρ− 1)]
(50)

Notice that the steady state values of the five variables, given by expressions (45), (46), (47), (49) and

(50), are positive if the following conditions hold:

1− ρ > 0→ ρ < 1 (51)

σ − α(1− ρ) > 0

σ + ρ− 1 > 0

}
→ σ > (1− ρ) > α(1− ρ) (52)

(53)

B Local Stability

We can study the stability of the steady state, by linearizing the system of differential equations. The

Jacobian matrix, J(χt, Zt,Mt, ut, xt), is:
α−σ
σ Zt − ρ

σ + 2χt
α−σ
σ χt

α+β−1
β−1 Zt

α+β−1
β−1 χt − β

β−1 − 2(1− α)Zt − 1−α−β
β−1 Mt

0 0
α
β−1ut 0

0 0


13




0 0

−1−α−β
β−1 Zt 0

2φ2(1−α−β)
β(φ−1)

ut
xt
Mt − 2φMt − φ

φ−1
φ2(1−α−β)
β(φ−1)

M2
t

xt

−1−α−β
β−1 ut

1
β−1 [αχt − β − (1− β)(2ut + xt)− (1− α− β)Mt]

φ(1−α−β)
β(φ−1) ut

φ(1−α−β)
β(φ−1) Mt + xt




0

0

−φ2(1−α−β)
β(φ−1)

ut
x2t
M2
t

ut
1

φ−1 [−φ− (1− φ)(ut + 2xt)]

 ,

and, evaluated at the steady state, J(χ∗, Z∗,M∗, u∗, x∗), it can also be written as:
χ∗ α−σ

σ χ∗ 0 0 0
α+β−1
β−1 Z∗ −(1− α)Z∗ −1−α−β

β−1 Z∗ 0 0

0 0 φ2(1−α−β)
β(φ−1)

u∗

x∗M
∗ − φM∗ φ2(1−α−β)

β(φ−1)
(M∗)2

x∗ −φ2(1−α−β)
β(φ−1)

u∗

(x∗)2 (M∗)2

α
β−1u

∗ 0 −1−α−β
β−1 u∗ u∗ u∗

0 0 φ(1−α−β)
β(φ−1) u∗ φ(1−α−β)

β(φ−1) M∗ + x∗ x∗ − φ(1−α−β)
β(φ−1)

u∗

x∗M
∗


that is:

σ−α+αρ
ασ

(α−σ)(σ−α+αρ)

σ2α
0

−1+α+β
(β−1)α

α−1
α

−1+α+β
(β−1)α

0 0 φ
φ−1

−
αβ

(
−φσ−2 ρ φ+φ+2 σ+2 ρ−1+ρ φ σ+ρ2φ−2 ρ σ−ρ2−σ2

)
(β−1)σ (ρ β+ρ φα−ρ φ−β−φα+φ+β σ)

0 −
(−1+α+β)β

(
−φσ−2 ρ φ+φ+2 σ+2 ρ−1+ρ φ σ+ρ2φ−2 ρ σ−ρ2−σ2

)
(β−1)σ (ρ β+ρ φα−ρ φ−β−φα+φ+β σ)

0 0
φ (−1+α+β)

(
−φσ−2 ρ φ+φ+2 σ+2 ρ−1+ρ φ σ+ρ2φ−2 ρ σ−ρ2−σ2

)
(φ−1)σ (ρ β+ρ φα−ρ φ−β−φα+φ+β σ)




0 0

0 0

− (ρ−1)(ρ β+ρ φα−ρ φ−β−φα+φ+β σ)φ
σ (ρ−1+σ)β (φ−1)

− (ρ β+ρ φα−ρ φ−β−φα+φ+β σ)(ρ φ−ρ+1−φ−σ)
(ρ−1+σ)(φ−1)(−1+α+β)σ

−
β

(
−φσ−2 ρ φ+φ+2 σ+2 ρ−1+ρ φ σ+ρ2φ−2 ρ σ−ρ2−σ2

)
σ (ρ β+ρ φα−ρ φ−β−φα+φ+β σ)

−
β

(
−φσ−2 ρ φ+φ+2 σ+2 ρ−1+ρ φ σ+ρ2φ−2 ρ σ−ρ2−σ2

)
σ (ρ β+ρ φα−ρ φ−β−φα+φ+β σ)

φ2(−1+α+β)
(
αρ2−ρ2−2αρ+2 ρ+α−1−2 ρ β+β ρ2+β ρ σ−β σ+β

)
σ β (φ−1)(ρ β+ρ φα−ρ φ−β−φα+φ+β σ)

2 ρ φ σ−φ2σ ρ+2 ρ2φ−φ2σ α+4 ρ φα+2φασ−2φα ρ2−2 β ρ σ−2
(φ−1)σ (ρ β+ρ φα−ρ φ−β−φα+φ+β σ)

+

β ρ φ2+β ρ2φ2−β φ2σ+2φ2αρ2−2φ2−β−2φ
(φ−1)σ (ρ β+ρ φα−ρ φ−β−φα+φ+β σ)

+

σ−4 ρ φ−2φα+2 β σ+2 ρ β−β ρ2−β σ2+φ2σ−2 ρ2φ2+4 ρ φ2+2φ2α+β φ2−2
(φ−1)σ (ρ β+ρ φα−ρ φ−β−φα+φ+β σ)

+

φα ρ σ+φ2σ ρα+β ρ φ2σ+2φ−4 ρ φ2α
(φ−1)σ (ρ β+ρ φα−ρ φ−β−φα+φ+β σ)


Remembering that the sum of the eigenvalues of a matrix is equal to the trace of the matrix, we can study

the sign of the trace of the Jacobian evaluated at steady state: if it is positive, this would mean that at least

one eigenvalue is positive. The trace of J(χ∗, Z∗,M∗, u∗, x∗) is:

tr(J(χ∗, Z∗,M∗, u∗, x∗)) =
3(σ + ρ− 1)

σ
, (54)

which is positive if:

σ > (1− ρ). (55)

Notice that the same condition ensures that the steady state values of the variables are positive. This means

that, considering the standard empirical value of ρ, about 0.04, σ has to be higher than 0.96. This does not

represent a unreasonable value for the inverse of the elasticity of substitution in consumption, as empirical
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works suggest (see for example, Mehra and Prescott, 1985; and Hall, 1988). If condition (54) holds, there

exists at least one positive eigenvalue.

Moreover, it is possible to show that the determinant of the Jacobian, det(J(χ∗, Z∗,M∗, u∗, x∗)), which

equals the product of the eigenvalues, is:

−(α− 1) (ρ− 1 + σ) (ρ− 1) ((φ− 1) ρ+ 1− φ− σ)φ (σ − α+ αρ)

(φ− 1) (β − 1)ασ4
. (56)

Under the condition σ > 1 − ρ it is easy to prove that this determinant is positive. Since the product of

the eigenvalues is positive and their sum is positive (under the condition σ > 1 − ρ), if the eigenvalues are

real numbers then the number of positive eigenvalues has to be odd, that is there can be one or three or

five positive eigenvalues (and consequently, four or two or zero negative eigenvalues). Therefore an unstable

transitional manifold of at least dimension one exists.
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