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Abstract

This paper works out connections between semide�nite optimiza-
tion and vector optimization. It is shown that well-known semide�nite
optimization problems are scalarized versions of a general vector opti-
mization problem. This scalarization leads to the minimization of the
trace or the maximal eigenvalue.

Mathematics Subject Classi�cation 2000: 90C22, 90C29

1 Introduction

Semide�nite optimization is currently a rapidly growing branch of math-
ematical programming (for instance, see [1], [15], [12] and [17]). Special
optimization problems in statistics (e.g., see [16] and [3]), structural opti-
mization (e.g., see [15] and [2]) and combinatorial optimization (e.g., see [1],
[15], [4] and [5]) lead to semide�nite optimization problems. It is the aim
of this paper to work out the connections between semide�nite optimization
and vector optimization. For instance, it is shown in this paper that spe-
cial semide�nite optimization problems are scalarized vector optimization
problems. Therefore, vector optimization seems to be an important tool for
semide�nite optimization. For the formulation of a semide�nite optimization
problem in a standard form we consider the �nite dimensional Hilbert space
H of all symmetric real (n; n) matrices (n 2 N) with the scalar product

hX; Y i := trace (X � Y ) for all X; Y 2 H:
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The natural ordering cone in this Hilbert space is de�ned as

C := fX 2 H j X positive semide�niteg:

This pointed convex cone induces a partial ordering �c in H. The ordering
cone C has a rich mathematical structure. Recall that it is self dual, i.e. the
dual cone C� equals C; its interior is given by

int(C) := fX 2 H j X positive de�niteg;

the quasi-interior of C�

C# := fX 2 H j hX; Y i > 0 for all Y 2 C nfOHgg

is nonempty (for instance, the identity matrix I belongs to C# because

hI; Y i = trace (I � Y )
= trace (Y )
=
P

eigenvalues (Y )
> 0 for all Y 2 C nf0Hg;

and, therefore, a base B for C (e.g., see [7, Def. 1.10,d)]) is given by

B = fX 2 C j hI;Xi = 1g
= fX 2 C j

P
eigenvalues (X) = 1g

(e.g., see [7, Lemma 3.3]). For these properties we refer to [6, 11].

Next, we assume that S is a subset of the Hilbert space H with the property
S \ C 6= ; and f : S \ C �! < is a given objective function. Then a
semide�nite optimization problem in standard form can be written as

min
X2S\C

f(X): (1.1)

The set S represents a part of the constraint set being possibly de�ned by
inequality and/or equality constraints; the additional conditionX 2 C means
that the matrix X is positive semide�nite.

If the set S describes a set of covariance matrices (from statistics), then
the problem of the determination of minimal matrices (see De�nition 2.1) of
S\C is a special vector optimization problem (see [16]) being closely related
to problem (1.1) (in fact, in this case the real-valued objective in (1.1) is
replaced by the vector-valued objective X).
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2 Minimization of the trace

In this section we consider the semide�nite optimization problem (1.1) with
the special objective function f : S \ C �! < given by

f(X) = trace (X) for all X 2 S \ C:

Recall the standard de�nition of minimality known from vector optimization
(e.g., see [7, De�nition 4.1]).

De�nition 2.1 A matrix �X is called a minimal element of the set S \ C if

(f �Xg � C) \ S \ C = f �Xg

or, equivalently

X �C �X; X 2 S \ C =) X = �X:

Then we obtain the following result.

Proposition 2.1 Every solution of the semide�nite optimization problem

min
X2S\C

trace (X) (2.1)

is a minimal element of the set S \ C.

Proof. For every X 2 H the trace of X can be written as

trace (X) = trace (I �X) = hI;Xi:

Since I 2 C#, a standard scalarization result known from vector optimization
(e.g., see [7, Thm. 5.18, b]) leads to the assertion.
The preceding proposition shows an essential property of solutions of the

special semide�nite optimization problem (2.1): they are minimal matrices.
Hence, Problem (2.1) is actually an auxiliary problem for the solution of the
vector optimization problem:

Determine a minimal element of the set S \ C: (2.2)

Problem (2.1) is also used in statistics for determination of minimal covari-
ance matrices (see [16]). Now we turn our attention to a linear problem. We
consider the following semide�nite program in equality standard form

min hX;Q0i
hX;Qii = ci, i = 1; : : : ;m

X �C 0H
(2.3)
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where Q0; Qi are symmetric matrices. Let us set S = fX 2 H j hX;Qii =
ci; i = 1; : : : ;mg: The following theorem points out the relationship between
Problem (2.3) and the problem of �nding the minimal matrices of S \C (see
De�nition 2.1).

Proposition 2.2 (a) If �X is the unique optimal solution to the Problem
(2.3) then �X is a minimal element of the set S \ C:
(b) Consider Problem (2.3) where Q0 is positive de�nite. Then every solution
of (2.3) is a minimal point of the set S \ C.

Proof. (a) Suppose on the contrary that �X is not minimal. Then there
exists Z 2 S such that Z = �X�A; with positive semide�nite A and A 6= 0H:
Z 2 S implies hZ;Qii =



�X;Qi

�
�hA;Qii = ci for every i = 1; :::;m, so that

since �X is feasible and


�X;Qi

�
= ci we get hA;Qii = 0 for every i = 1; :::;m:

It follows that Z1 = �X + A is feasible since it is the sum of two positive
semide�nite matrices and hZ1; Qii =



�X;Qi

�
+ hA;Qii = ci: The optimality

of �X implies hX;Q0i �


�X;Q0

�
for every X 2 S: As particular cases we get

hZ;Q0i =


�X � A;Q0

�
=


�X;Q0

�
� hA;Q0i �



�X;Q0

�
hZ1; Q0i =



�X + A;Q0

�
=


�X;Q0

�
+ hA;Q0i �



�X;Q0

�
Consequently hA;Q0i = 0 and so Z1 = �X+A is optimal and this contradicts
the uniqueness of the solution for Problem (2.3).
(b)With the same argument of (a), if there exists Z 2 S such that Z = �X�A;
with positive semide�nite A and A 6= 0H; then it results hA;Q0i = 0 and this
cannot be true since hA;Q0i > 0; being Q0 positive de�nite.

3 Minimization of the maximal eigenvalue

Again, we consider the semide�nite optimization problem (1.1), but now the
objective function f : S \ C �! < is given by

f(X) = max. eigenvalue (X) for all X 2 S \ C:

Problems of this type play an important role in semide�nite optimization
(e.g., see [14], [15] and [9]). In order to work out the connection between
this special semide�nite optimization problem and the vector optimization
problem (2.2) we recall the known de�nition of weakly minimal elements
(e.g., see [7, Def. 4.12]).

De�nition 3.1 A matrix �X is called a weakly minimal element of the set
S \ C if

(f �Xg � int (C)) \ S \ C = ;:
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It is well-known that every minimal matrix of S \ C is also weakly minimal
but the converse is not true, in general.

Proposition 3.1 Every solution of the semide�nite optimization problem

min
X2S\C

max. eigenvalue (X) (3.1)

is a weakly minimal element of the set S \C. Every unique solution of (3.1)
is a minimal element of the set S \ C.

Proof. For every X 2 C the maximal eigenvalue of X equals the spectral
norm k X k. Therefore, problem (3.1) can be written as

min
X2S\C

k X k

being equivalent to the problem

min
X2S\C

k X + I k (3.2)

(actually the spectrum of X is shifted by 1). So, a solution �X of (3.1) solves
problem (3.2) as well. Applying Cor. 3.2 in [8] to this case �X is a weakly
minimal element of the set S \ C, and it is also a minimal element, if it is
uniquely determined.
Consequently, the semide�nite optimization problem (3.1) is an auxiliary

problem for the vector optimization problem (2.2), and solutions of (3.1) can
be interpreted as minimal or at least as weakly minimal elements of the set
S \ C.
Next, we investigate the question whether it is possible to characterize an

arbitrary minimal or weakly minimal element of the set S \ C as a solution
of a semide�nite optimization problem, or in other words: which class of
semide�nite optimization problems can generate the set of minimal or weakly
minimal elements of the set S \ C?

Proposition 3.2 Let � > 0 be an arbitrarily chosen number.
(a) If �X is a weakly minimal element of the set S \ C, then there is a

positive de�nite matrix A 2 H so that �X is a solution of the semide�nite
optimization problem

min
X2S\C

max. eigenvalue (A�1(X + � I)): (3.3)

(b) If �X is a minimal element of the set S \ C, then there is a positive
de�nite matrix A 2 H so that �X is a unique solution of problem (3.3).

5



Proof. (a) If �X is a weakly minimal element of the set S \ C, by [8, Cor.
3.2] (where I is replaced by � I) there is a positive de�nite matrix
A 2 H so that �X solves

min
X2S\C

k X + � I kA (3.4)

where k � kA denotes the wheighted spectral norm

k Y kA := sup
x 6=0<n

�
xTY x

xTAx

�
for all Y 2 H:

If we de�ne ' : <nnf0<ng �! < for an arbitrary Y 2 H by

'(x) :=
xTY x

xTAx
for all x 2 <nnf0<ng;

then

r'(x) = 1
(xTAx)2

(2Y xxTAx� xTY x2Ax)
= 2

xTAx
(Y x� xTY x

xTAx
Ax)

= 2
xTAx

(Y x� '(x)Ax) for all x 2 <nnf0<ng;

and the equation r'(x) = 0<n is equivalent to the eigenvalue equation

A�1Y x = '(x)x:

Consequently, we obtain

k Y kA = sup
x 6=0<n

'(x)

= max. eigenvalue (A�1Y ):

Since �X solves (3.4), we then conclude that �X also solves problem (3.3).

(b) If �X is a minimal element of the set S \ C, by [8, Cor. 3.2, (a)]
there is a positive de�nite matrix A 2 H so that

k �X + � I kA < k X + � I kA for all X 2 S \ C with X 6= �X:

Here k � kA again denotes the wheighted spectral norm. So, �X is a
unique solution of problem (3.4). This leads to the assertion.

The converse of the implication in Proposition 3.2 immediately follows
from [8, Cor. 3.2] and the characterization of the wheighted spectral norm
given in the previous proof.
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Proposition 3.3 Let � > 0 be an arbitrarily chosen number, and let A 2 H
be an arbitrarily chosen positive de�nite matrix.
(a) Every solution of problem (3.3) is a weakly minimal element of the

set S \ C.
(b) Every unique solution of problem (3.3) is a minimal element of the

set S \ C.

Remark 3.1 (a) In the Propositions 3.2 and 3.3 the positive real number �
can be chosen arbitrarily small. Therefore, for calculations on a computer it
makes sense to set � = 0 and to work with the simpler problem

min
x2S\C

max. eigenvalue (A�1X): (3.5)

In this case we see that (3.1) is a special problem of the afore-mentioned form
(simply set A = I). Hence, from the point of view of vector optimization
it seems to be better to work with problem (3.5) for an arbitrary positive
de�nite matrix A instead of (3.1).
(b) The proof of Proposition 3.2, (a) shows that for an arbitrary � > 0

the objective function of problem (3.4) can be written as

k X + � I kA = max. eigenvalue (A�1(X + � I))
= k A�1(X + � I) k for all X 2 S \ C:

Here k � k again denotes the (unwheighted) spectral norm. Then we get

k A�1(X + � I) k � k A�1 k � k X + � I k
= k A�1 k � k X k for all X 2 S \ C:

Consequently, we obtain an upper bound for the minimal value of problem
(3.4) being independent of � > 0, i.e.

min
X2S\C

k X + � I kA � k A�1 k � min
X2S\C

k X k for all � > 0:

4 Eigenvalue transformation

We now consider the semide�nite optimization problem (1.1) in the very
special form

min f(�i(X))
subject to the constraints
(�1(X); : : : ; �n(X)) 2 ~S
X �C 0H

(4.1)
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(�1(X); : : : ; �n(X) denote the eigenvalues of X, and now f : <n+ �! < and
; 6= ~S � <n). In this case we consider a transformation from the Hilbert
space H to the eigenvalue coordinate system being identical with the <n
space.

For every X 2 H satisfying the constraints of problem (4.1) we have for the
eigenvalues

(�1(X); : : : ; �n(X)) 2 ~S
and

�1(X); : : : ; �n(X) � 0:
Then the problem (4.1) is equivalent to the standard optimization problem
in <n

min f(�1; : : : ; �n)
subject to the constraints
(�1; : : : ; �n) 2 ~S
�1; : : : ; �n � 0:

Example 4.1 Consider the special semide�nite optimization problem

min max. eigenvalue (X)
subject to the constraints
trace (X) � 1
X �C 0H:

(4.2)

This problem is equivalent to

min max
1�i�n

f�ig
subject to the constraints
�1 + � � �+ �n � 1
�1; : : : ; �n � 0:

(4.3)

Obviously, this problem has the unique solution
�
1
n
; : : : ; 1

n

�
. The following

picture illustrates the constraint set for n = 2:
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So, every positive semide�nite symmetric matrix with the eigenvalues
1
n
; : : : ; 1

n
; e.g.

�X :=

0B@
1
n

0
. . .

0 1
n

1CA ;
is a solution of problem (4.2). By Proposition 3.1 this matrix is a minimal
element of the set S \ C.

5 Conclusion

This paper shows that standard semide�nite optimization problems are spe-
cial scalarized versions of a general vector optimization problem. This theo-
retical connection between semide�nite optimization and vector optimization
shows concrete applications in a favourable light because one can also inter-
pret solutions as minimal matrices among a constrained set of matrices.
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