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Abstract

We analyze a discrete time two-sector economic growth model where the production
technologies in the final and human capital sectors are affected by random shocks both
directly (via productivity and factor shares) and indirectly (via a pollution externality).
We determine the optimal dynamics in the decentralized economy and show how these
dynamics can be described in terms of a two-dimensional affine iterated function system
with probability. This allows us to identify a suitable parameter configuration capable
of generating exactly the classical Barnsley’s fern as the attractor of the log-linearized
optimal dynamical system.
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1 Introduction

Over the last two decades a large and growing number of studies have tried to characterize the
eventual fractal nature of the steady state in economic models. Indeed, since the pioneering
work by Montrucchio and Privileggi (1999) it has been well known that traditional macroe-
conomic models may give rise to random dynamics possibly converging to invariant measures
supported on fractal sets. Several works try to identify the conditions under which this might
be the case by borrowing from the iterated function systems literature (Hutchinson, 1981;
Vrscay, 1991; Barnsley, 1993). Most of these works analyze discrete time stochastic economic
growth models with logarithmic utility and Cobb-Douglas production, either in a one-sector
or two-sector framework, showing that through appropriate log-transformations their optimal
dynamics can be converted into an affine iterated function system converging to a singular
measure supported on some fractal set; in the case of unidimensional iterated function systems
such an attractor can be the Cantor set (Montrucchio and Privileggi, 1999; Mitra et al., 2003;
Mitra and Privileggi, 2004, 2006, 2009; Marsiglio, 2012; Privileggi and Marsiglio, 2013; La
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Torre et al., 2015), while in the case of two-dimensional iterated function systems it can be
either the Sierpinski gasket or distorted-copies of the Barnsley’s fern (La Torre et al., 2011;
La Torre et al., 2015; La Torre et al., 2018). With the exception of La Torre et al. (2018)
who consider also shocks affecting factor shares, in all these works randomness affects economic
activities through the productivity channel, following the Brock and Mirman (1972) tradition.
Some of these works also identify specific parameter configurations under which the invariant
probability measure turns out to be either singular or absolutely continuous (Mitra et al., 2003;
La Torre et al., 2015; La Torre et al., 2018).

We contribute to this stochastic growth and fractal attractors literature by analyzing an
economy in which economic production is affected by random shocks both directly (via produc-
tivity and factor shares) and indirectly (via a pollution externality). Specifically, we build on
the model by La Torre et al. (2018) in which such direct effects have already been accounted
for in order to allow for pollution to be an additional and indirect source of randomness. To
the best of our knowledge none of the extant works has ever considered how the presence of
externalities complicate aggregate macroeconomic dynamics and what this may imply for the
attractor of the associated iterated function system. However, accounting for the existence of
such a pollution externality, as widely discussed in the environmental economics literature, is
important to better characterize potential economic outcomes. Several papers document and
discuss the extent to which the economy and the environment are mutually related (IPCC,
2007; Nordhaus, 2013): on the one hand, economic activities generate pollution which is the
primary determinant of environmental problems; on the other hand, environmental degrada-
tion precludes pollution absorption which in turn critically determines economic capabilities.
Moreover, due to the large degree of uncertainty associated with environmental phenomena,
very little is known with precision about such a bilateral economy-environment relation, which
is most likely to be random (Soretz, 2003; Marsiglio and La Torre, 2016). In order to take
these issues into account in the most intuitive way, we focus on the optimal dynamics in the
decentralized economy, where the externality is not internalized yet but it fully affects the evo-
lution of both control and state variables; such a setting is the most appropriate to give rise
to a simple but realistic characterization of real world dynamics. We show how the optimal
dynamics can be described in terms of a two-dimensional affine iterated function system with
probability, whose coefficients can eventually take on negative values, differently from all extant
papers. Such a peculiarity of our framework, due to the presence of the pollution externality,
allows us to identify a suitable parameter configuration capable of generating exactly the clas-
sical Barnsley’s fern as the attractor of the log-linearized optimal dynamical system. To the
best of our knowledge, no other macroeconomic model has ever been able to give rise to the
Barnsley’s fern1 for some specific – but fully admissible – parameter configuration.

This short paper proceeds as follows. In Section 2 we briefly recall some basic results from
the mathematical theory on iterated function system, which will help us discuss our following
results. In Section 3 we formally introduce our model which consists of a two-sector economic
growth model subject to random shocks affecting economic productive activities both directly
and indirectly, thanks to the role played by pollution. We also derive the optimal rule for the
control variables and the optimal dynamics of the state variables – physical and human capital
– in the decentralized economy in which the pollution externality is not internalized. In Section
4 we introduce a log-transformation which allows us to recast the nonlinear optimal dynamical
system in terms of a two-dimensional affine iterated function system, allowing us to borrow

1Since the coefficients in their iterated function system can only take on positive values, La Torre et al.’s
(2018) model is able to generate only distorted copies of the fern, which ultimately do not even remotely resemble
a fern.
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from the mathematical literature to discuss its eventual convergence to an invariant measure
supported on some fractal set. In Section 5 we present two specific model’s parameterizations:
the first one allows us to obtain exactly the classical Barnsley’s fern as the attractor of the
log-linearized optimal dynamics; the second one focuses on a more realistic scenario giving
rise to an attractor very different from a fern. In Section 6 as usual we conclude and present
directions for future research, while the Appendix contains a brief sketch of the proof yielding
the optimal dynamics of the model presented in Section 3.

2 Preliminaries on Iterated Function Systems

Let (X, d) denote a compact metric space. An N -map iterated function system (IFS) on X ,
w = {w1, . . . , wN}, consists of N contraction mappings on X , i.e., wi : X → X , i = 1, · · · , N ,
with contraction factors ci ∈ [0, 1) (see Barnsley, 1993; Hutchinson, 1981; Barnsley et al., 1986;
Kunze et al., 2012). Associated with an N -map IFS one can define a set-valued mapping ŵ on
the space H ([a, b]) of nonempty compact subsets of X as follows:

ŵ (S) :=
N
⋃

i=1

wi (S) , S ∈ H ([a, b]) .

The following two results state a convergence property of an N -map IFS towards its at-
tractor. More properties and results can be found in Barnsley (1993), Hutchinson (1981), and
Kunze et al. (2012).

Theorem 1 (Hutchinson, 1981) For A,B ∈ H (X),

h (ŵ (A) , ŵ (B)) ≤ ch (A,B) where c = max
1≤i≤N

ci < 1

and h denotes the Hausdorff metric on H (X).

Corollary 1 (Hutchinson, 1981) There exists a unique set A ∈ H ([a, b]), the attractor of
the IFS w, such that

A = ŵ (A) =

N
⋃

i=1

wi (A) .

Moreover, for any B ∈ H ([a, b]), h (A, ŵn (B)) → 0 as n→ ∞.

An N -map Iterated Function System with (constant) Probabilities (IFSP) (w,p) is an
N -map IFS w with associated probabilities p = {p1, . . . , pN},

∑N
i=1 pi = 1.

Let M (X) denote the set of probability measures on (Borel subsets of) X and dMK the
Monge-Kantorovich distance on this space: For µ, ν ∈ M (X), with Monge-Kantorovich metric,

dMK (µ, ν) = sup
f∈Lip1(X)

[
∫

f dµ−

∫

f d ν

]

.

where Lip1 (X) = {f : X → R | |f (x)− f (y)| ≤ d (x, y)}. The metric space (M (X) , dMK) is
complete (Barnsley, 1993; Hutchinson, 1981; Kunze et al., 2012).

The Markov operator associated with an N -map IFSP is a mapping M : M → M, defined
as follows: For any µ ∈ M (X), and for any measurable set S ⊂ X , define a measure ν = Mµ
as:

ν (S) = (Mµ) (S) =

N
∑

i=1

piµ
(

w−1
i (S)

)

.
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The following results show that the Markov operator has a unique invariant measure ν̄ and
it is globally attracting.

Theorem 2 (Hutchinson, 1981) For µ, ν ∈ M (X),

dMK (Mµ,Mν) ≤ cdMK (µ, ν) .

Corollary 2 (Hutchinson, 1981) There exists a unique measure ν̄ ∈ M (X), the invariant
measure of the IFSP (w,p), such that

µ̄ (S) = (Mµ̄) (S) =

N
∑

i=1

piµ̄
(

w−1
i (S)

)

.

Moreover, for any ν ∈ M (X), dMK (µ̄,Mnν) → 0 as n→ ∞.

Theorem 3 (Hutchinson, 1981) The support of the invariant measure µ̄ of an N-map IFSP
(w,p) is the attractor A of the IFS w, i.e.,

supp µ̄ = A.

In order to determine the attractor of an IFSP, the following random dynamical system
known as Chaos Game might be implemented: Starting from x0 ∈ X , let us determine
xt+1 = wσ (xt) where σ is chosen in the interval 1 . . . N with probabilities p1, . . . , pN . It can
be proved (see Kunze et al., 2012, for more details) that the orbit of this random dynamical
system is dense in the attractor A.

3 The Model

We analyze a discrete time two-sector economic growth model where the production technolo-
gies in the final and human capital sectors are affected by random shocks both directly (via
productivity and factor shares) and indirectly (via pollution). While a large literature has con-
sidered the implications of random shocks for macroeconomic dynamics by analyzing the direct
channel (Brock and Mirman, 1972; Montrucchio and Privileggi, 1999; Mitra et al., 2003; La
Torre et al., 2015, 2018), more limited is the number of works analyzing the indirect channel,
and in particular the effects of pollution on aggregate macroeconomic dynamics (Privileggi and
Marsiglio, 2013; Marsiglio and La Torre, 2016). However, it is now well known that economic
activities and environmental outcomes are mutually related, thus taking into account the ex-
istence of some economic-environmental feedback is essential to understand macroeconomic
dynamics. Several studies discuss that pollution is a by-product of economic activities and how
pollution impacts on both aggregate economic activities and health (IPCC, 2007; Nordhaus,
2013). We take these issues into account by (i) allowing output to be the driver of pollution,
and (ii) allowing pollution to affect both the productivity of final output and that of human
capital (meant as a broad form of capital encompassing not only education but health as well;
Barro and Sala–i–Martin, 2004).

We analyze a standard two-sector optimal growth model under uncertainty, as discussed in
La Torre et al. (2011), extended to account for such mutual economic-environmental feedback.
Specifically, the representative household maximizes its lifetime utility subject to the evolution
of physical and human capital. Lifetime utility is the infinite discounted (β > 0 is the discount
factor) sum of instantaneous utilities, and the utility function is assumed to be logarithmic in
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consumption. At each time t, the household chooses its level of consumption, ct, and which
share of its human capital, ut, to devote to the production of the final consumption good,
which is produced according to a Cobb-Douglas technology combining physical, kt, and human,
ht, capital. Also new human capital is produced according to a Cobb-Douglas technology,
which however employs only human capital (Lucas, 1988; Rebelo, 1991). As in La Torre et
al. (2018), the production technologies of the final good and new human capital are directly
affected by exogenous shocks which take both a multiplicative form through coefficients zt
and ηt respectively, and an exponential form affecting the factor shares in both production
functions; therefore, output is given by yt = ztAtk

αt

t (utht)
γt , where αt and γt denote the random

physical and human capital shares of income respectively, while human capital is given by
ht+1 = ηtBt [(1− ut) ht]

φt , with φt denoting the random human capital share of human capital.
In this formulation At and Bt denote the pollution-induced productivity levels in the final and
human capital sectors, respectively. Specifically, we assume that At = P νt

t and Bt = P µt

t , where
Pt denotes pollution which is a by-product of macroeconomic activities and νt, µt ∈ R are
random parameters; since these parameters can take on real values, this accounts for the fact
that pollution may have positive or negative effects on the production of final output and/or
human capital. As in Marsiglio et al. (2016) economic activities generate pollution according
to Pt = kχt

t h
ωt

t in order to represent that the production inputs are characterized by different
pollution-intensities; such intensities are set by parameters χt and ωt respectively, which, like
νt and µt, can take on real values and are random. This implies that At = kνtχt

t hνtωt

t and
Bt = kµtχt

t hµtωt

t , suggesting that randomness through the pollution channels affects indirectly
the production technologies of the final good and human capital.

The whole (zt, ηt, αt, γt, φt, νt, µt, χt, ωt) ∈ R
9 is a random vector which is independent and

identically distributed, and can take on m values, i.e., at each time t
(zt, ηt, αt, γt, φt, νt, µt, χt, ωt) ∈ {(zi, ηi, αi, γi, φi, νi, µi, χi, ωi)}

m
i=1. While shocks zt, ηt enter mul-

tiplicatively the two Cobb-Douglas production functions and αt, γt, φt represent shocks on the
factor shares, νt, µt, χt, ωt are random externalities affecting final production through two chan-
nels: 1) νt, µt determine how pollution modifies final production, 2) χt, ωt determine how much
pollution is generated by the current levels of physical and human capital, kt and ht, employed
in the production of the composite good. As far as the first five shocks are concerned, we
shall assume that zt, ηt > 0, 0 < αi, γi, φi < 1 and αi + γi ≤ 1 for all i = 1, . . . , m. We do
not impose any restriction on parameters νi, µi, χi, ωi, but the realization of the shock deter-
mines whether physical or human capital is the relatively greener production input (according
to how χt and ωt compare). Each vector realization, (zi, ηi, αi, γi, φi, νi, µi, χi, ωi), occurs with
(constant) probability pi, with pi ∈ (0, 1), i = 1, . . . , m, and

∑m
i=1 pi = 1.

The optimization problem of the representative household can be summarized as follows:

V (k0, h0, z0, η0, α0, γ0, φ0, ν0, µ0, χ0, ω0) = max
{ct,ut}

∞
∑

t=0

βt
E0 ln ct (1)

s.t.







kt+1 = ztAtk
αt

t (utht)
γt − ct

ht+1 = ηtBt [(1− ut)ht]
φt

k0 > 0, h0 > 0, (z0, η0, α0, γ0, φ0, ν0, µ0, χ0, ω0) are given,

(2)

As in Benhabib and Perli (1994), in the competitive (decentralized) solution the representa-
tive households take At and Bt as given, meaning that, because of the pollution externality, this
solution will differ from the planning (centralized) solution. Most papers focusing on the effects
of random shocks on macroeconomic dynamics analyze the centralized solution where all exter-
nalities are internalized by the social planner; we will instead focus on the decentralized solution
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since it is likely to provide us with a more realistic characterization of real world dynamics.
In a competitive solution, since agents do not take into account the existence of the pollution
externality, the optimal control problem is concave such that first order conditions turn out to
be also sufficient. However, even if the household does not internalize the externality this will
affect macroeconomic dynamics, allowing us to take track of the aggregate effects of pollution.
Hence, assuming that parameters At and Bt are considered as constants by utility maximizing
households when deriving the FOCs, similar steps as in La Torre et al. (2018)—which are
briefly recalled in the Appendix—allow us to determine the following optimal policy functions:

ct = [1− βE (α)] yt (3)

ut =
[1− βE (φ)] γt

[1− βE (φ)] γt + βE (γ)φt
, (4)

where E (α) =
∑m

i=1 piαi, E (γ) =
∑m

i=1 piγi, and E (φ) =
∑m

i=1 piφi. Substituting (3) and
(4) back into the law of motion of physical and human capital and taking into account the
pollution-induced productivity levels At = kνtχt

t hνtωt

t and Bt = kµtχt

t hµtωt

t , yield the optimal
dynamics in the competitive economy, which turn out to be characterized by the following
equations:

{

kt+1 = ∆tztk
αt+νtχt

t hγt+νtωt

t

ht+1 = Θtηtk
µtχt

t hφt+µtωt

t

(5)

with

∆t = βE (α)

{

[1− βE (φ)] γt
[1− βE (φ)] γt + βE (γ)φt

}γt

(6)

Θt =

{

βE (γ)φt

[1− βE (φ)] γt + βE (γ)φt

}φt

. (7)

4 Log-Transformation

We can apply the same technique developed in La Torre et al. (2018) to build a specific trans-
formation that recasts system (5) into an affine, topologically equivalent system. Specifically,
we wish to transform it into a system of the following form:

{

ϕt+1 = (αt + νtχt)ϕt + (γt + νtωt)ψt + ζt
ψt+1 = µtχtϕt + (φt + µtωt)ψt + ϑt,

, (8)

where the coefficients are the exponents of physical and human capital in our original equations
(5) plus the parameters characterizing pollution externalities, and the additive random vector
(ζt, ϑt) ∈ R

2 takes onm values corresponding to realizations of the multiplicative shocks (zt, ηt).
We will show that, by imposing some conditions on the parameters, there exists a one-to-one
continuous transformation from the dynamics of (kt, ht) defined by (5) to those of (ϕt, ψt) as
in (8). By recalling section 2, the convergence of the random dynamical system in (8) to the
steady state can be obtained by noticing that equation (8) is the chaos game associated with
an IFS with probabilities whose associated Markov operator will be converging to an invariant
measure µ̄.

It may be useful to rewrite (8) in vector terms as follows:

[

ϕt+1

ψt+1

]

=

[

αt + νtχt γt + νtωt

µtχt φt + µtωt

] [

ϕt

ψt

]

+

[

ζt
ϑt

]

, (9)
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where:

Qt =

[

αt + νtχt γt + νtωt

µtχt φt + µtωt

]

(10)

is a random 2 × 2 matrix which, together with the vector (ζt, ϑt) ∈ R
2, take on m values

corresponding to the m shocks realizations.

Proposition 1 There exists a one-to-one logarithmic transformation (kt, ht) → (ϕt, ψt) defined
by

{

ϕt = ρ1 ln kt + ρ2 ln ht + ρ3
ψt = ρ4 ln kt + ρ5 ln ht + ρ6

(11)

that is topologically conjugate to the nonlinear system (5) provided that the model’s parameters
zi, ηi, αi, γi, φi, νi, µi, χi, ωi, the constants ζi, ϑi in the IFS (8), together with the coefficients
ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, satisfy the following conditions:























(µiχi) ρ2 = (γi + νiωi) ρ4
(γi + νiωi) ρ1 = (αi + νiχi − φi − µiωi) ρ2 + (γi + νiωi) ρ5
(αi + νiχi − φi − µiωi) ρ4 + µiχiρ5 = µiχiρ1
(ln∆i + ln zi) ρ1 + (lnΘi + ln ηi) ρ2 + (1− αi − νiχi) ρ3 − (γi + νiωi) ρ6 = ζi
(ln∆i + ln zi) ρ4 + (lnΘi + ln ηi) ρ5 + (1− φi − µiωi) ρ6 − µiχiρ3 = ϑi

(12)

for all i = 1, . . . , m.

Proof. We use (11) to rewrite both sides of (8):

ρ1 ln kt+1 + ρ2 ln ht+1 + ρ3 = (αt + νtχt) (ρ1 ln kt + ρ2 ln ht + ρ3)
+ (γt + νtωt) (ρ4 ln kt + ρ5 ln ht + ρ6) + ζt

ρ4 ln kt+1 + ρ5 ln ht+1 + ρ6 = µtχt (ρ1 ln kt + ρ2 ln ht + ρ3)
+ (φt + µtωt) (ρ4 ln kt + ρ5 ln ht + ρ6) + ϑt.

Then, use (5) to rewrite the LHS in each equation above in order to obtain the following two
equations:

ρ1 ln∆t + ρ1 ln zt + ρ1 (αt + νtχt) ln kt + ρ1 (γt + νtωt) ln ht

+ρ2 lnΘt + ρ2 ln ηt + ρ2µtχt ln kt + ρ2 (φt + µtωt) ln ht + ρ3

= (αt + νtχt) ρ1 ln kt + (αt + νtχt) ρ2 ln ht + (αt + νtχt) ρ3 (13)

+ (γt + νtωt) ρ4 ln kt + (γt + νtωt) ρ5 ln ht + (γt + νtωt) ρ6 + ζt,

ρ4 ln∆t + ρ4 ln zt + ρ4 (αt + νtχt) ln kt + ρ4 (γt + νtωt) ln ht

+ρ5 lnΘt + ρ5 ln ηt + ρ5µtχt ln kt + ρ5 (φt + µtωt) ln ht + ρ6

= µtχtρ1 ln kt + µtχtρ2 ln ht + µtχtρ3 (14)

+ (φt + µtωt) ρ4 ln kt + (φt + µtωt) ρ5 ln ht + (φt + µtωt) ρ6 + ϑt.

As these equations must hold for all t ≥ 0, under the i.i.d. assumption it is sufficient
that they hold for all parameters’ values, that is, for all i = 1, . . . , m; hence, in the sequel we
replace the time index t of each term involving only the model’s parameters with the index
i = 1, . . . , m (clearly, the state variables kt and ht remain indexed by t). By equating the
corresponding coefficients in the LHS and the RHS, equations (13) and (14) become independent
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of values taken by the variables ln kt and ln ht; this is equivalent to the following conditions
(corresponding to system (25) in La Torre et al., 2018):







(µiχi) ρ2 = (γi + νiωi) ρ4
(γi + νiωi) ρ1 = (αi + νiχi − φi − µiωi) ρ2 + (γi + νiωi) ρ5
(αi + νiχi − φi − µiωi) ρ4 + µiχiρ5 = µiχiρ1

for all i = 1, . . . , m.

After joining them with the terms that do not depend on ln kt and ln ht left in equations (13)
and (14) we obtain the system of 5m equations in (12) and the proof is complete.

System (12) has 5m equations and 6 unknowns, ρ1, ρ2, ρ3, ρ4, ρ5, ρ6; clearly such system has
no solution whenever there is more than one state of nature, i.e., when m ≥ 2, as already
with m = 2 it has 10 equations in 6 unknowns. Hence, following an approach similar to that
pursued in La Torre et al. (2015, 2018), in the next section we will add more constraints on
the parameters’ values so to increase the number of unknowns; specifically we will treat some
values for the coefficients zi, ηi as unknowns in order to have as many unknowns as the number
of equations in (12). A complication ensuing in this case is that system (12) ceases to be linear,
as the new unknowns (even in their log-expression) ln zi, ln ηi enter multiplicatively the other
unknowns of the type ρi. Therefore, to solve (12) we will rely on numerical methods.

5 Some Specific Parameterizations

We now present two different model’s parameterizations. The first allow us to generate exactly
the classical Barnsley’s fern, but this requires to impose somehow questionable parameters
values. The second tries to fix this issue by focusing on more realistic parameter values; this
however gives rise to an attractor very different from a fern.

5.1 A Model Generating the Classical Barnsley’s Fern

It is well known that the classical Barnsley’s fern (Barnsley, 1993) is produced by the following
affine IFS:























































w1 (ϕ, ψ) =

[

0 0
0 0.16

] [

ϕ
ψ

]

+

[

0
0

]

with prob. p1 = 0.01

w2 (ϕ, ψ) =

[

−0.15 0.28
0.26 0.24

] [

ϕ
ψ

]

+

[

0
0.44

]

with prob. p2 = 0.07

w3 (ϕ, ψ) =

[

0.20 −0.26
0.23 0.22

] [

ϕ
ψ

]

+

[

0
1.60

]

with prob. p3 = 0.07

w4 (ϕ, ψ) =

[

0.85 0.04
−0.04 0.85

] [

ϕ
ψ

]

+

[

0
1.60

]

with prob. p4 = 0.85.

(15)

We now look for a configuration of parameters’ values for the economic growth model dis-
cussed in Section 3 such that the dynamics described by the IFS (15), generating the Barnsley’s
fern through the chaos game, are obtained as the result of some logarithmic transformation of
the form in (11) applied to the optimal nonlinear dynamics defined by (5). In other words,
following the arguments developed in Section 4 we look for suitable values of the parameters
zi, ηi, αi, γi, φi, νi, µi, χi, ωi that allow the existence of coefficients ρ1, ρ2, ρ3, ρ4, ρ5, ρ6 solving sys-
tem (12). Note that the existence of a pollution externality allows some of the parameters in
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the random matrix (10) to take on negative values, which is specifically required in order to
generate the IFS (15).

The realization of the random matrix Q1 representing the first map in the IFS (15), w1,
imposes a constraint that yields immediately the values of ρ2, ρ4 and ρ5 for all i = 1, . . . , 4. In
fact, according to (10), µ1χ1 = 0 must hold for i = 1; as (γi + νiωi) 6= 0 in the wi maps for
i = 2, . . . , 4, replacing µ1χ1 = 0 in the first equation of system (12) for i = 1 yields ρ4 = 0,
which, when substituted in the third equation of system (12) leads to µiχiρ5 = µiχiρ1, which,
in turn implies that ρ5 = ρ1 must hold, as µiχi 6= 0 in the wi maps for i = 2, . . . , 4. Finally,
using ρ5 = ρ1 in the second set of equations of system (12) and noting that, besides having
(γi + νiωi) 6= 0 in the wi maps for i = 2, . . . , 4, (αi + νiχi − φi − µiωi) 6= 0 at least in the w1

map (for i = 1), we observe that also ρ2 = 0 must hold. Therefore, with ρ2 = ρ4 = 0 and
ρ5 = ρ1 satisfying the first three equations in (12) for all i = 1, . . . , 4, after substituting such
values in the remaining equations the whole system boils down to the following 8 equations:

{

(ln∆i + ln zi) ρ1 + (1− αi − νiχi) ρ3 − (γi + νiωi) ρ6 = ζi
(lnΘi + ln ηi) ρ1 + (1− φi − µiωi) ρ6 − µiχiρ3 = ϑi

for i = 1, . . . , 4, (16)

having only the three coefficients ρ1, ρ3 and ρ6 as unknowns.
As anticipated at the end of Section 4, we will choose arbitrarily 3 out of the 8 values for

the multiplicative shocks zi, ηi (or, equivalently, ln zi, ln ηi) and leave the remaining 5 values for
zi, ηi (ln zi, ln ηi) as unknowns so that, together with the 3 coefficients ρ1, ρ3, ρ6, (16) becomes
a system of 8 equations in 8 unknowns. Specifically, we will set

ln z1 = −0.4, ln η1 = −0.2 and ln η2 = 0 (17)

and leave ln z2, ln z3, ln z4, ln η3 and ln η4 as unknowns, to be found as part of the solution for
system (16).

As far as all other parameters are concerned, we set β = 0.96, while the constant terms ζi
and ϑi in system (16) are clearly given by the coordinates of the constant vectors in the maps
wi of the IFS (15). To choose all the exponents involved in the optimal dynamics (5) we must
equate the random matrix Qi defined in (10) to the 4 values considered in the IFS (15), that is,
we must choose values for the exponents αi, γi, φi, νi, µi, χi, ωi that satisfy the following 4 sets
of conditions:

1.















α1 + ν1χ1 = 0
γ1 + ν1ω1 = 0
µ1χ1 = 0
φ1 + µ1ω1 = 0.16

2.















α2 + ν2χ2 = −0.15
γ2 + ν2ω2 = 0.28
µ2χ2 = 0.26
φ2 + µ2ω2 = 0.24

3.















α3 + ν3χ3 = 0.20
γ3 + ν3ω3 = −0.26
µ3χ3 = 0.23
φ3 + µ3ω3 = 0.22

4.















α4 + ν4χ4 = 0.85
γ4 + ν4ω4 = 0.04
µ4χ4 = −0.04
φ4 + µ4ω4 = 0.85.

1. The third equation for the first shock realization requires that either µ1 or χ1 be zero;
we opt for the former solution, µ1 = 0, as the latter would imply that α1 is zero
as well from the first equation, which is ruled out by the basic assumptions on the
model’s fundamentals. Such choice implies that, in the first shock realization, the pro-
duction of human capital is not being affected by pollution. Setting α1 = 0.3 and
ν1 = −0.5 (output production decreases in the stock of pollution) the first equation yields
χ1 = −0.3/ (−0.5) = 0.6 (pollution increases in the stock of physical capital); setting
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γ1 = 0.6, the second equation yields ω1 = −0.6/ (−0.5) = 1.2 (pollution increases in
the stock of human capital as well); finally, with µ1 = 0 the last equation implies that
φ1 = 0.16. This configuration envisages χ1 < ω1, so that human capital turns out to be
more pollution-intense than physical capital.

2. In the second set of conditions we set µ2 = −0.5 (human capital production decreases
in the stock of pollution), so that the third equation yields χ2 = 0.26/ (−0.5) = −0.52
(pollution decreases in the stock of physical capital), which, by setting α2 = 0.15 in
the first equation, leads to ν2 = (−0.15− 0.15) / (−0.52) = 0.3/ (0.52) = 0.577 (output
production increases in the stock of pollution). By setting φ2 = 0.1 the last equation
yields ω2 = (0.24− 0.1) / (−0.5) = 0.14/ (−0.5) = −0.28 (pollution decreases in the
stock of human capital), which, after substituting into the second equation, in turn yields
γ2 = 0.28 − 0.577 (−0.28) = 0.28 + 0.162 = 0.442. In this case again χ2 < ω2, but now
both have negative values, which implies that the stock of pollution is more sensitive to
changes in the stock of physical capital than in the stock of human capital.

3. In the third set of conditions again we set µ3 = −0.5 (human capital production decreases
in the stock of pollution), so that the third equation yields χ3 = 0.23/ (−0.5) = −0.46
(pollution decreases in the stock of physical capital), which, by setting α3 = 0.05 in the
first equation, leads to ν3 = (0.20− 0.05) / (−0.46) = 0.15/ (−0.46) = −0.326 (output
production decreases in the stock of pollution). By setting γ3 = 0.05 the second equation
yields ω3 = (−0.26− 0.05) / (−0.326) = 0.31/ (0.326) = 0.951 (pollution increases in the
stock of human capital), which, after substituting into the last equation, in turn yields
φ3 = 0.22− (−0.5) (0.951) = 0.22+0.475 = 0.695. Also in this scenario χ3 < ω3, but now
χ3 and ω3 have opposite signs, meaning that they affect pollution in opposite directions.

4. In the fourth shock realization we set µ4 = −0.1 (human capital production decreases in
the stock of pollution), so that the third equation yields χ4 = −0.04/ (−0.1) = 0.4 (pol-
lution increases in the stock of physical capital), which, by setting α4 = 0.89 in the first
equation, leads to ν4 = (0.85− 0.89) / (0.4) = −0.04/ (0.4) = −0.1 (output production
decreases in the stock of pollution with the same intensity as human capital produc-
tion). By setting γ4 = 0.06 the second equation yields ω4 = (0.04− 0.06) / (−0.1) =
−0.02/ (−0.1) = 0.2 (pollution increases in the stock of human capital), which, after sub-
stituting into the last equation, in turn yields φ4 = 0.85−(−0.1) (0.2) = 0.85+0.02 = 0.87.
The fourth configuration thus has χ4 > ω4, so that physical capital turns out to be more
pollution-intense than human capital.

Table 1 summarizes all parameters’ values discussed so far.

i αi γi φi νi µi χi ωi ζi ϑi pi
1 0.3 0.6 0.16 −0.5 0 0.6 1.2 0 0 0.01
2 0.15 0.442 0.1 0.557 −0.5 −0.52 −0.28 0 0.44 0.07
3 0.05 0.05 0.695 −0.326 −0.5 −0.46 0.951 0 1.60 0.07
4 0.89 0.06 0.87 −0.1 −0.1 0.4 0.2 0 1.60 0.85

Table 1: parameters characterizing our model, additive constants and probability values
corresponding to the IFS (15) generating the classical Barnsley’s (1993) fern.
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Under these parameters’ choice,

E (α) =

4
∑

i=1

αipi = 0.7735, E (γ) =

4
∑

i=1

γipi = 0.0914 and E (φ) =

4
∑

i=1

φipi = 0.7968,

such that the coefficients (6) and (7) defining the optimal policy of the model at the end of
Section 3 become:

i ∆i Θi

1 0.7015 0.6809
2 0.7164 0.7747
3 0.6779 0.8847
4 0.6642 0.8629

Recall that, following the discussion at the beginning of this section on the parameters’
constraints due to the first shock realization, ρ2 = ρ4 = 0 and ρ1 = ρ5. Hence, using the choice
in (17) for the values of ln z1, ln η1, ln η2, we find the following unique solution for system (16)
by means of the standard (symbolic, not numerical) ‘solve’ routine in Maple:

ρ1 = ρ5 = 5.6984
ρ2 = ρ4 = 0
ρ3 = 4.3
ρ6 = 3.9638,

with all multiplicative shocks configurations:

i zi ηi
1 0.6703 0.8187
2 0.7123 1
3 0.6731 1.0345
4 1.3824 1.3414

(18)

where the values of z1, η1 and η2 correspond to the choice in (17) and all other values are found
as a solution of (16).

Figure 1(a) reports the standard Barnsley’s fern by tracing 50,000 random iterations2 of
the affine IFS defined in (15) expressed in terms of the log-transformed variables ϕ, ψ. It is
well known that the unique invariant measure supported on the fern is singular (Theorem 1 in
La Torre et al., 2018). Figure 1(b) portraits the attractor of the corresponding nonlinear IFS
defined in (5) for the parameters’ values characterizing our growth model reported in Table
1, expressed in terms of physical and human capital, k, h; such attractor turns out to be a
downsized version of the fern in Figure 1(a) (rescaled by a factor 10 on the horizontal axis and
by a factor 4 on the vertical axis) which is being translated into the positive orthant (k and h
cannot be negative) and somewhat straighten up along its main branch.

Some comments on the parametrization employed to generate the classical fern are needed.
Leaving aside the productivity parameter values in (18), the four-shocks parameters’ config-
uration reported in Table 1 does not only clearly satisfy all the assumptions on the model’s
fundamentals, but may even be considered not totally unrealistic, as the following tentative
arguments try to clarify.

The first scenario foresees reasonable values for all three factor shares (perhaps the human
capital share, φ1, in human capital production is too low), an output production function which

2The Maple code is available from the authors upon request.
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Figure 1: approximation through 50000 random iterations of (a) the IFS in (15) generating the
standard Barnsley’s fern as attractor and (b) the attractor of the corresponding nonlinear IFS in (5)

for the parameters’ values listed in Table 1.

decreases in the stock of pollution (ν1 < 0), while the latter increases in both the physical and
human capital stocks (χ1, ω1 > 0). The only anomalies may appear to be an output production
process that is not being affected by pollution (µ1 = 0) and a human capital production
that generates pollution with and intensity which is the double of that of physical capital
(ω1 = 2χ1)—i.e., human capital is a dirtier input than physical capital. The latter feature
may be characteristic in an economy that is more efficient in producing physical goods than in
recycling waste generated by human activity.

In the second shock configuration, besides perhaps too low values for the physical and human
capital shares in output production and a human capital share in human capital production even
lower than in the first case, the most apparent anomalies are given by a positive relationship
between the pollution stock and output production (ν2 > 0)—i.e., pollution becomes itself some
exogenous production factor—together with a negative relationship between both physical and
human capital and pollution stock (χ2, ω2 < 0)—i.e., physical and human capital accumulation
reduces pollution. On the other hand, the negative relationship between pollution and human
capital (µ2 < 0) has an intuitive and appealing interpretation if one attributes to the latter a
broader meaning that includes health. Such scenario may describe a virtuous economy that is
capable of recycling pollution as a production enhancer (ν2 > 0), while physical together with
human capital accumulation may be thought as general progress capable of bringing about a
better and more efficient treatment and recycling of polluting by-products.

The third shock environment is characterized by even smaller values for the physical and
human capital shares in output production while the human capital share in human capital
production more realistically becomes larger. The pollution parameters envisage a reasonable
negative relationship between the pollution stock and both physical and human capital produc-
tion (ν3, µ3 < 0) together with a positive relationship between human capital accumulation and
pollution (ω3 > 0), while, again, the relationship between physical capital accumulation and
the pollution stock is negative (χ3 < 0)—i.e., physical capital accumulation reduces pollution.
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In this case human capital turns out to be a dirty input while physical capital accumulation
has a beneficial effect on the environment. This may occur in an economy that invests a lot in
renewable technologies.

The last exogenous shock includes an output production function with a very large physical
capital share compared to the human capital share as well as a quite large human capital share
in human capital production, while the pollution stock decreases both physical and human
capital production (ν4, µ4 < 0) and both physical and human capital accumulation increase the
pollution stock (χ4, ω4 > 0). Besides the excessive displacement in the final production factor
shares,3 this scenario seems to describe a somewhat more realistic economy, as human capital
happens to be a greener input than physical capital (ω4 < χ4).

5.2 A Tentative More Realistic Example

Considering the possible drawbacks of our previous parametrization, we now rely on a set of
parameter values allowing for a more intuitive interpretation of typical real world situations.
Such a configuration is summarized in Table 2.

i αi γi φi νi µi χi ωi ζi ϑi pi
1 0.05 0.94 0.05 −0.1 −0.7 0.2 0.7 0 0 0.15
2 0.15 0.84 0.15 −0.3 −0.5 0.3 0.5 0 0.44 0.30
3 0.45 0.54 0.45 −0.5 −0.3 0.5 0.3 0 1.60 0.50
4 0.70 0.29 0.70 −0.7 0 0.7 0.2 0 1.60 0.05

Table 2: factor shares, additive constants and probability values corresponding to the IFS (19).

To such configuration corresponds the following affine IFS:























































w1 (ϕ, ψ) =

[

0.03 0.87
−0.14 −0.44

] [

ϕ
ψ

]

+

[

0
0

]

with prob. p1 = 0.15

w2 (ϕ, ψ) =

[

0.06 0.69
−0.15 −0.10

] [

ϕ
ψ

]

+

[

0
0.44

]

with prob. p2 = 0.30

w3 (ϕ, ψ) =

[

0.20 0.39
−0.15 0.36

] [

ϕ
ψ

]

+

[

0
1.60

]

with prob. p3 = 0.50

w4 (ϕ, ψ) =

[

0.21 0.15
0 0.70

] [

ϕ
ψ

]

+

[

0
1.60

]

with prob. p4 = 0.05.

(19)

In order to solve the first 3m equations in system (12) in one shot we exploit the same
property that we used at the beginning of Section 5.1 of having zero as the left bottom element
in one of the four stochastic matrices Qi. Specifically we set µ4 = 0 for i = 4, so that in the
fourth shock realization the production of human capital is not being affected by pollution.
The same argument followed in Section 5.1 then immediately yields ρ2 = ρ4 = 0 and ρ5 = ρ1
satisfying the first three equations in (12) for all i = 1, . . . , 4; after substituting such values in
the remaining equations the whole system again boils down to the same 8 equations as in (16)

3There is, however, a growing discussion on the reduction of the labor income share due to automation,
machines and AI replacing labor in tasks that it used to perform, implying that scenarios envisaging very low
intensities of human capital in final production may well deemed plausible. See, e.g., Korinek and Stiglitz (2017)
and Acemoglu and Restrepo (2018), who also propose policies aimed at countervailing such tendency and the
inequality it involves.
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having only the three coefficients ρ1, ρ3 and ρ6 as unknowns. To have 8 unknowns in total as
well, again we choose arbitrarily 3 out of the 8 values for the multiplicative shocks zi, ηi (or,
equivalently, ln zi, ln ηi) and leave the remaining 5 values for zi, ηi (ln zi, ln ηi) as unknowns; in
this example we will set

ln z1 = ln η1 = ln η2 = 0 (20)

and leave ln z2, ln z3, ln z4, ln η3 and ln η4 as unknowns, to be found as part of the solution for
system (16).

We keep the individual discount factor value β = 0.96 and all the values of the constant
terms ζi and ϑi in system (12)—i.e., in the IFS (19)—are the same as the coordinates of the
constant vectors in the maps wi of the IFS (15). We choose four values for each factor share (the
first three columns in Table 2) that, together with the probabilities listed in the last column of
Table 2, on average resemble empirical evidence:

E (α) =

4
∑

i=1

αipi =

4
∑

i=1

φipi = 0.3125, and E (γ) =

4
∑

i=1

γipi = 0.6775.

Under these assumptions the coefficients (6) and (7) defining the optimal policy of the model
at the end of Section 3 become:

i ∆i Θi

1 0.2867 0.8583
2 0.2637 0.7464
3 0.2201 0.6886
4 0.2133 0.7725

As far as the four pollution parameters, νi, µi, χi, ωi, are concerned, we propose an increasing
pattern for both the (absolute value of the) intensity of pollution affecting output production,
νi, and the intensity of physical capital accumulation adding to the pollution stock, χi, as the
physical capital share αi in output production increases; similarly, also the (absolute value of
the) intensity of pollution affecting human capital production, µi, and the intensity of human
capital accumulation adding to the pollution stock, ωi, increase as the human capital share γi in
human capital production increases. The latter property is consistent with the assumption that
in the fourth shock configuration pollution does not affect the production of human capital,
µ4 = 0, for the technical reasons explained before.

Having set ρ2 = ρ4 = 0 and ρ1 = ρ5 and using the choice in (20) for the values of
ln z1, ln η1, ln η2, we find the following unique solution for system (16) by means of the standard
(symbolic, not numerical) ‘solve’ routine in Maple:

ρ1 = ρ5 = −3.6368
ρ2 = ρ4 = 0
ρ3 = −4.6267
ρ6 = 0.0640,

(21)

with all multiplicative shocks configurations:

i zi ηi
1 1 1
2 1.1331 1
3 1.6307 0.7816
4 1.7117 0.8381
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where the values of z1, η1 and η2 correspond to the choice in (20) and all other values are found
as a solution of (16).

Figure 2(a) traces 50,000 random iterations to approximate the attractor of the affine IFS
(19) expressed in terms of the log-transformed variables ϕ, ψ. By applying condition (5) of
Theorem 1 in La Torre et al. (2018) to the random matrix Qi defined in (10) we find that also
for the parameters’ values reported in Table 2 the invariant measure supported on the attractor
in Figure 2(a) is singular, as

|det (Q1)|
p1 |det (Q2)|

p2 |det (Q3)|
p3 |det (Q4)|

p4 < pp11 p
p2
2 p

p3
3 p

p4
4 ⇐⇒ 0.1170 < 0.3191.

Figure 2(b) portraits the attractor of the corresponding nonlinear IFS defined in (5) for the
parameters’ values characterizing our growth model reported in Table 2, expressed in terms of
physical and human capital, k, h; such attractor turns out to be a downsized version of the fern
in Figure 2(a) which is being translated into the positive orthant (k and h cannot be negative)
and rotated by 180◦, consistently with both the magnitude and the (negative) signs of the
nonzero coefficients ρ1, ρ3 and ρ5 in (21).
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Figure 2: approximation through 50000 random iterations of (a) the attractor of the affine IFS in
(19) and (b) the attractor of the corresponding nonlinear IFS in (5) for the parameters’ values listed

in Table 2.

6 Conclusions

We extend the analysis of the fractal nature of steady states in macroeconomic models, by con-
sidering a stochastic two-sector discrete-time economic growth model in which shocks affect the
production function not only directly (via productivity and factor shares) but also indirectly
(via a pollution externality). This extension is meaningful from both economic and mathemat-
ical points of view, since it allows to capture important economy-environment feedback and it
gives rise to an IFS with potential negative coefficients. This latter characteristic, completely
lacking in extant literature and due to the presence of the pollution externality, is essential
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in order to prove our main result: a fully-fledged macroeconomic model can generate optimal
dynamics which, through an appropriate log-transformation, converges to a singular measure
supported on the classical Barnsley’s fern. To the best of our knowledge, no other paper is
able to generate the Barnsley’s fern as an attractor of the optimal dynamics emerging from a
meaningful macroeconomic model. It should be also emphasized that the key features of our
model allowing for a representation of the log-transformed optimal dynamics by means of an
IFS with potentially negative coefficients paves the way for possibly characterizing a quite large
family of fractal attractors, including, perhaps, the renowned maple-leaf.

This paper closes an open gap in the stochastic growth and fractal attractors literature.
Three important questions still remain open: (i) how to characterize also absolute continuity
of the invariant measure in a two-dimensional affine IFS; (ii) how to extend the analysis in
a framework in which probability are not constant but place-dependent; and (iii) which other
fractal attractors can by generated from the optimal dynamics of macroeconomic models. These
further issues are on top of our future research agenda.

Appendix: Optimal Policy Calculation in Section 3

We first eliminate controls and keep only the two state variables by restating problem (1) in
reduced-form:

max
{kt,ht}

∞
∑

t=0

βt
E0 ln

{

ztAtk
αt

t

[

ht −

(

ht+1

ηtBt

)
1

φt

]γt

− kt+1

}

(22)

s.t.



















0 ≤ kt+1 ≤ ztAtk
αt

t

[

ht −

(

ht+1

ηtBt

)
1

φt

]γt

0 ≤ ht+1 ≤ ηtBth
φt

t

k0 > 0, h0 > 0, (z0, η0, α0, γ0, φ0, A0, B0) are given,

where, from the households point of view, At = kνtχt

t hνtωt

t and Bt = kµtχt

t hµtωt

t are taken as
given. An argument similar to that used in Section 3.2 of La Torre et al. (2018) applies here
to establish that problem (22) is concave.

The Euler-Lagrange equation with respect to kt is:

−
1

zt−1At−1k
αt−1

t−1

[

ht−1 −
(

ht

ηt−1Bt−1

)
1

φt−1

]γt−1

− kt

+ βEt−1















ztAtαtk
αt−1
t

[

ht −
(

ht+1

ηtBt

)
1

φt

]γt

ztAtk
αt

t

[

ht −
(

ht+1

ηtBt

)
1

φt

]γt

− kt+1















= 0,

which, by assuming that kt+1 = sztAtk
αt

t

{

ht − [ht+1/ (ηtBt)]
1/φt

}γt
for some constant 0 < s <
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1, and recalling that {(zt, ηt, αt, γt, φt, At, Bt)} is an i.i.d. process, boils down to

1

kt
s
− kt

= βEt−1















ztAtαtk
αt−1
t

[

ht −
(

ht+1

ηtBt

)
1

φt

]γt

ztAtk
αt

t

[

ht −
(

ht+1

ηtBt

)
1

φt

]γt

− sztAtk
αt

t

[

ht −
(

ht+1

ηtBt

)
1

φt

]γt















=
βEt−1 (αt)

(1− s) kt
=

βE (α)

(1− s) kt
,

where in the second equality kt has been pulled out of the expectation because, under our

assumption, kt = szt−1At−1k
αt−1

t−1

{

ht−1 − [ht/ (ηt−1Bt−1)]
1/φt−1

}γt−1

is a deterministic choice

taken at time t− 1, with all the information available at that moment (including the optimal
choice for ht), and in the last equality we used the i.i.d. assumption on the random variable
αt, so that E (α) =

∑m
i=1 piαi is a constant. Then, the Euler-Lagrange equation becomes

s

(1− s) kt
=

βE (α)

(1− s) kt
,

so that the constant term is given by s = βE (α). Hence, given the optimal choice for the
human capital ht+1 (or, equivalently, utht), the (candidate) optimal policy for the physical
capital is given by

kt+1 = βE (α) ztAtk
αt

t

[

ht −

(

ht+1

ηtBt

)
1

φt

]γt

= βE (α) ztAtk
αt

t (utht)
γt , (23)

where in the last equality we have recovered the original control formulation for human capital
employed in final production. Then, from the constraint (2), the optimal consumption as in
(3) is immediately obtained.

The Euler-Lagrange equation with respect to ht leads to:

−

zt−1At−1γt−1k
αt−1

t−1

[

ht−1 −
(

ht

ηt−1Bt−1

)
1

φt−1

]γt−1−1
1

φt−1

(

ht

ηt−1Bt−1

)
1

φt−1
−1

1
ηt−1Bt−1

zt−1At−1k
αt−1

t−1

[

ht−1 −
(

ht

ηt−1Bt−1

)
1

φt−1

]γt−1

− kt

+ βEt−1



















ztAtγtk
αt

t

[

ht −
(

ht+1

ηtBt

)
1

φt

]γt−1

ztAtk
αt

t

[

ht −
(

ht+1

ηtBt

)
1

φt

]γt

− kt+1



















= 0.

By using the optimal policy for physical capital (23) for both terms kt and kt+1, the last equation
simplifies into

γt−1

φt−1

(

ht

ηt−1Bt−1

)
1

φt−1

[

ht−1 −
(

ht

ηt−1Bt−1

)
1

φt−1

]

ht

= βEt−1















γt
[

ht −
(

ht+1

ηtBt

)
1

φt

]















.

From the original dynamic constraint in (2) we can recover the control variable formulation for

human capital and substitute ht−1−[ht/ (ηt−1Bt−1)]
1/φt−1 with ht−1ut−1 and ht−[ht+1/ (ηtBt)]

1/φt
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with htut, while also noting that [ht/ (ηt−1Bt−1)]
1/φt−1 = (1− ut−1) ht−1, thus obtaining:

γt−1 (1− ut−1)ht−1

φt−1ht−1ut−1ht
= βEt−1

(

γt
htut

)

,

which, again after pulling ht out of the expectation from the RHS as it is a deterministic choice
taken at time t− 1 with all the information available at that moment (while ut, representing a
decision to be taken at time t, is still unknown at time t− 1), and simplifying terms, becomes

γt−1 (1− ut−1)

φt−1ut−1

= βEt−1

(

γt
ut

)

. (24)

Under the i.i.d. assumption we can safely assume that the expectation on the RHS is constant,
say Et−1 (γt/ut) = E (γ/u) ≡ C,4 and then rearrange the last equation as

γt−1

ut−1

= γt−1 + βCφt−1,

which, taking expectations on both terms, turns into

E

(

γt−1

ut−1

)

= E

(γ

u

)

= C = E (γ) + βCE (φ) ,

where under the i.i.d. assumption E (γ) =
∑m

i=1 piγi and E (φ) =
∑m

i=1 piφi are constants,
yielding the expected ratio

E

(γ

u

)

= C =
E (γ)

1− βE (φ)
.

Using the last expression for Et−1 (γt/ut) in (24) the optimal fraction of human capital to be
employed in the final good production as in (4) is immediately obtained.

Since the partial derivatives of the instantaneous utility along the optimal path (k∗t , h
∗
t )

defined by (5) are

∂

∂kt
u =

βE (α)

[1− βE (α)] k∗t
and

∂

∂kt
u =

βE (γ)

[1− βE (φ)] h∗t
,

the transversality condition

lim
t→∞

βt
E0

{

βE (α)

[1− βE (α)] k∗t
k∗t +

βE (γ)

[1− βE (φ)]h∗t
h∗t

}

= 0

is satisfied and the proof is complete.
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