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Abstract. Recent years have witnessed an increasing interest about a
rigorous modelling of (different classes of) connectors. Here, the term
connector is used to name entities that can regulate the interaction of
possibly heterogeneous components. Thus, connectors must take care of
exogenous coordination, handling all those aspects that lie outside the
scopes of individual components. This has led to the development of
different frameworks that are used to specify, design, analyse, compare,
prototype and implement connector-based middleware and a rigorous
mathematical foundation of connectors is crucial for the analysis of ex-
ogenously coordinated systems. In this survey, we overview the main
features of some notable theories of connectors, namely the algebra of
stateless connectors, the tile model, Reo, BIP, nets with boundaries and
the wire calculus. We discuss similarities, differences, mutual embedding
and possible enhancements.

1 Introduction

The inherent complexity of modern distributed systems can only be tackled by
modular engineering practices and methodologies that enhance the structural
and logical blueprint of such systems. This way, it is possible to prove proper-
ties of the system either by construction, assembling well-behaving subsystems
according to sound patterns, or by decomposition, dividing the systems and
the property to be proved in smaller parts that can be analysed separately.
Component-based design relies on the separation of concerns between coordi-
nation and computation. Component-based systems are built from sequential
computational entities, the components, that should be loosely coupled w.r.t.
the concurrent execution environments where they will be deployed. The com-
ponent interfaces comprise the number, kind and peculiarities of communication
ports. The communication media that make possible to interact are called con-
nectors. Intuitively, they can be understood as (suitably decorated) channels or
links among the ports of the components. Graphically, ports are represented as
nodes and connectors as hyperarcs whose tentacles are attached to the ports
they control. Several connectors can also be combined together by merging some
of the ports their tentacles are attached to. Semantically, each connector imposes
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suitable constraints on the allowed communications among the components it
links together. For example, a connector may impose handshaking between a
sender component and a receiver component (Milner’s CCS-like synchroniza-
tion), or it may require an agreement on the action to be performed next by
all components that it connects (Hoare’s CSP-like synchronization). A differ-
ent kind of connector may trigger the broadcasting of a message sent from one
component to all the other linked components. The evolution of a network of
components and connectors (just network for brevity) can be seen as if played in
rounds: At each round, the components try to interact through their ports and
the connectors allow/disallow some of the interactions selectively. A connector
is called stateless when the interaction constraints that it imposes over its ports
stay the same at each round; it is called stateful otherwise. To address composi-
tion and modularity of a system, networks are often decorated with (input and
output) interfaces: in the simplest case, they consist of ports through which a
network can interact. For example, two networks can be composed by merging
the ports (i.e. nodes) they have in common. Ports that are not in the interface
are typically private to the network and cannot be used to attach additional
connectors. The distinction between input and output ports indicates in which
direction the data should flow, but feedback is also possible through short-circuit
connectors, which redirects some of the emitted output of a network to (some
of) its input.

In this paper we survey some formal approaches to the modelling, compo-
sition and analysis of connectors, namely Reo [1], BIP [6], nets with bound-
aries [25], the algebra of stateless connectors [10], the tile model [17], and the
wire calculus [24]. Although the approaches we shall consider are quite differ-
ent in spirit, we will argue that they are different ways to look at the same
entity. We briefly illustrate below the analysed frameworks by following the
chronological order in which they were proposed. To expose the analogies and
differences of the approaches, we shall use as a running example the modelling of
compensation-based workflows typical of the area of business process modelling
(see Section 2). We present the essential technical machinery underlying the con-
sidered theories in dedicated sections (the presentation order has been guided by
practical dependencies arising in the descriptions of the different models). Some
final considerations are reported in Section 8.

The algebra of stateless connectors and the tile model: An algebra con-
sisting of five kinds of basic stateless connectors (plus their duals) has been
presented in [10]. The connectors can be composed in series or in parallel.
The operational, observational and denotational semantics of connectors are
first formalised separately and then shown to coincide. Moreover, a complete
normal-form axiomatisation is available for them.
The Tile Model [17, 9] offers a flexible and adequate semantic setting for con-
current systems [22, 15, 13] and also for defining the operational and abstract
semantics of suitable classes of connectors, of which the algebra of stateless
connectors is a particular instance. Tiles express the reactive behaviour of
connectors in terms of 〈trigger, effect〉 pairs of labels. In this context, the
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usual notion of equivalence is called tile bisimilarity. Tile bisimilarity is a
congruence when a simple tile format is met by basic tiles [17].

The Reo coordination model: Reo [1] is an exogenous coordination model
based on channel-like connectors that mediate the flow of data among com-
ponents. Notably, a small set of point-to-point primitive connectors is suffi-
cient to express a large variety of interesting constraints over the behaviour
of connected components, including various forms of mutual exclusion, syn-
chronization, alternation, and context-dependency. Components and primi-
tive connectors can be composed into larger Reo circuits by disjoint union
up-to the merging of shared Reo nodes. The semantics of Reo has been
formalized in several ways, see [19] for a recent survey.

The BIP component framework: BIP [6] is a component framework for con-
structing systems by superposing three layers of modelling, called Behaviour,
Interaction, and Priority. At the global level, the behaviour of a BIP system
can be faithfully represented by a safe Petri net with priorities, whose sin-
gle transitions are obtained by fusion of component transitions according to
the permitted interactions, and priorities are assigned accordingly. An alge-
braic presentation of BIP connectors with vacuous priorities is given in [7].
One key feature of BIP is the so-called correctness by construction, which
allows the specification of architecture transformations preserving certain
properties of the underlying behaviour. For instance it is possible to provide
(sufficient) conditions for compositionality and composability which guaran-
tee deadlock-freedom. The BIP component framework has been implemented
in a language and a tool-set. A compositional version of BIP systems is pre-
sented in [11].

Nets with boundaries and the wire calculus: Nets with boundaries takes
inspiration from the open nets of [5]. The main idea is that nets are extended
with input/output interfaces that can be used by transitions to synchro-
nise their firings with the environment. C/E nets with boundaries can be
composed in series and in parallel and come equipped with a labelled tran-
sition system that fixes their operational and bisimilarity semantics. The
wire calculus [24] is a process algebra whose action prefixes come with an
input/output arity typing. In [25, 12] a dialect of the wire calculus has been
used to give an exact characterisation of a special class of (stateful) connec-
tors that can be alternatively expressed in terms of nets with boundaries.

2 Running example

We will illustrate the different approaches surveyed in this paper by modelling
the basic operator used for defining Long Running Transactions (LRT), i.e.,
transactions that may require long periods of time to complete. The implemen-
tation of LRT does not use locking (as usual for database transactions), but
they rely instead on a weaker notion of atomicity based on compensations [18].
Compensations are activities programmed ad hoc to recover partial executions
of transactional processes. Then, a LRT is a group of activities that must be all
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Fig. 2. Graphical representation of Reo basic connectors

either successfully executed or compensated otherwise. Consider the LRT pre-
sented in Fig. 1, where the transaction consists in the sequential execution of
the activities A1, A2 and A3, that can be compensated respectively by B1, B2 and
B3. Suppose now that the activity A1 completes successfully while the activity A2
fails. In this case, the failure of A2 activates the execution of the compensation
B1 to undo as much as possible the effects of A1, because the transaction failed as
a whole. Note that B2 is not executed, because A2 has not completed. Differently,
if both A1 and A2 succeed while A3 fails, then the compensations will be executed
in the reverse order, i.e., first B2 and then B1.

Recent years have seen an increasing interest in compensation-based lan-
guages for LRT, especially in the area of business process modelling [26], mostly
exploiting standard form of composition (sequential, branching, parallel). The
compensation pair A%B is one key operation common to most of them, whose
modelling as connector middleware shall be our running example.

3 The Reo coordination model

Reo [1] is a connector-based exogenous coordination model. Connectors are es-
sentially graphs where the edges are user-defined communication channels and
the nodes implement a fixed routing policy. Reo channels are entities that have
exactly two ends, also referred to as ports, which can be either source or sink
ends: Source ends accept data into, and sink ends dispense data out of their chan-
nels. Typical primitive connectors are: (i) the Sync channel, which allows a data
item to flow from its source end to its sink end when the latter is able to accept
it; (ii) the LossySync channel, similarly to the Sync channel but the data item
is lost when the sink end is not ready to accept it; (iii) the SyncDrain channel,
which is a channel with two source ends that accept data simultaneously and
dispense them subsequently; (iv) the FIFO channel, which is an asynchronous
channel with a buffer of capacity one. The set of primitive channels is completed
with AsyncDrain, Filter, Transformer, Timer (their definition can be found at [1]).
The graphical representation of basic channels is shown in Fig. 2.

Components and primitive connectors can be composed into larger Reo cir-
cuits by disjoint union, up-to the merging of shared Reo nodes with the same
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Fig. 3. Reo exclusive router connector

name (this operation is called join). Note that a joint node behaves asymmet-
rically: in input, the node takes non-deterministically a message from one of its
incoming channels (the other channels must remain idle); in output, the selected
data is written simultaneously to all outgoing channels (that must be able to
accept the message). Nodes of a connector can be hidden before composition
in order to avoid further joins over those particular nodes. In graphical rep-
resentation we will leave all hidden nodes unnamed. Figure 3(a) illustrates a
well-known composite Reo connector, called exclusive router. It joins five Sync,
two LossySync and one SyncDrain. The connector provides three visible nodes in,
out1 and out2. Any data item read on the input port in is written in only one
of its output ports out1 or out2, depending on which one is ready to consume
it. When both out1 and out2 are ready to read, then the connector chooses non
deterministically one of them. We remark that an input data is never replicated
to more than one of its output ports. As a shorthand, we will represent the
exclusive router connector as shown in Fig. 3(b).

The semantics of Reo has been formalized in several ways, exploiting, e.g., co-
algebraic techniques [3], constraint-automata [4], colouring tables [14], and the
tile model [2]. We illustrate here the denotational approach called the two-colour
semantics. The two-colour semantics relies on two colours to denote the presence
and absence of a message on a port (1 and 0 respectively). The semantics of a
connector is defined in terms of the valid assignments of colours to its ports.
The tables in Fig. 4 show the valid assignments for some basic connectors. The
definition is straightforward for stateless connectors such as Sync, LossySync
and SyncDrain. For stateful connectors, constraints have to be provided for any
possible state of the connector. Note that the semantics of the FIFO connector is
given in terms of two different states, i.e., empty and full. Moreover, the semantic
tables define also the state transitions of the connector. Finally, the semantics of a
complex Reo circuit corresponds to the set of all possible colour assignments that
are consistent with the colouring tables of the involved connectors and reflect
the behaviour of joint nodes (i.e., at most one incoming arc has colour 1 and all
ongoing arcs have the same colour: 0 when no incoming arc is coloured with 1
and 1 otherwise). In this way, we derive the semantics of complex connectors. For
example, valid assignments for (in, out1, out2) in the exclusive router are (0, 0, 0),
(1, 0, 1) and (1, 1, 0).
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Fig. 4. Two-colour semantics of Reo basic connectors
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Fig. 5. The stateful selector

3.1 Compensation Pair in Reo

We report here the definition of a compensation pair in Reo as proposed in [21].
We start by presenting an auxiliary connector, named stateful selector, which will
be used for encoding a compensation pair into a Reo circuit. The stateful selector,
depicted in Fig. 5(a), behaves as follows: At the initial state this connector can
only accept a message over port on because a synchronization over in1 and in2

would require a message in the FIFO channel. A synchronization over on puts a
message in the FIFO channel that next enables the synchronization over just one
of the ports in1 and in2. Note that in1 and in2 are in mutual exclusion due to the
connector ⊗, and hence, the connector can accept just one message on either in1

or in2. The connector returns to its initial state after this synchronization. As a
shorthand we will depict the stateful selector as shown in Fig. 5(b).

The Reo circuit modelling the compensation pair A%B is shown in Fig. 6. The
execution flow starts when a message is written in channel Start, which activates
the execution of the activity A. After completion, A will write a message on its
output port, which will set the stateful selector and write a message on port
Performed for signalling that the activity has been successfully executed (this
could serve for instance to activate the next activity in the flow). Eventually,
the performed task will be cancelled or committed, after which the effects of
a committed task cannot be undone or cancelled anymore. If a Cancel message
arrives, the compensation activity B is executed and the task A is considered
to be cancelled (this is signalled by sending a message in port Cancelled). If a
Commit message arrives, the port Committed emits also a message. The messages
to commit or cancel the task are generated from the controller of the transaction.
(For simplicity, we omit details here and refer interested readers to [21]).
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Fig. 6. Reo circuit for the compensation pair A%B

4 The BIP component framework, and BI(P)

BIP [6] is a component framework that exploits a three-layered architecture: 1)
the lower level is called Behaviour and it fixes the activities of individual atomic
components; 2) the middle layer is called Interaction and it defines the hand-
shaking mechanisms between components; and 3) the top level is called Priority
and it assigns a partial order of preferences to the admissible interactions. This
section recalls the formal definition of BIP using the notation from [8]. Here
we disregard priorities for simplicity, and thus we name BI(P) the presented
framework.

The lower layer consists of a set of atomic components with ports. The sets
of ports of components are pairwise disjoint, i.e., each port is uniquely assigned
to a component. Components are modelled as automata whose transitions are
labelled by sets of ports.

Definition 1 (Component). A component B = (Q,P,→) is a transition sys-
tem where Q is a set of states, P is a set of ports, and →⊆ Q × 2P ×Q is the
set of labelled transitions.

As usual, we write q
a−→ q′ to denote the transition (q, a, q′) ∈→. We say that

a is enabled in q, denoted q
a−→, iff there exists q′ s.t. q

a−→ q′. We assume that

for all q, q′ it holds q
∅−→ q′ iff q = q′.

The second layer consists of connectors that specify the allowed interactions
between components.

Definition 2 (Interaction). Given a set of ports P , an interaction over P is
a non-empty subset a ⊆ P .

We write an interaction {p1, p2, . . . , pn} as p1p2 . . . pn and a ↓Pi
for the pro-

jection of a ⊆ P over the set of ports Pi ⊆ P , i.e., a ↓Pi
= a ∩ Pi.

Definition 3 (BI(P) system). A BI(P) system B = γ(B1, . . . , Bn) is the
composition of a finite set {Bi}ni=1 of transitions systems Bi = (Qi, Pi,→i)
such that their sets of ports are pairwise disjoint, i.e., Pi ∩ Pj = ∅ for i 6= j,
parametrized by a set γ ⊂ 2P of interactions over the set of ports P =

⊎n
i=1 Pi.

We call P the underlying set of ports of B, written ι(B).
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Fig. 7. A simple BIP for compensation pair A%B

The semantics of a BI(P) system γ(B1, . . . , Bn) is given by the transition
system (Q,P,→γ), with Q = ΠiQi, P =

⊎n
i=1 Pi and →γ⊆ Q × 2P × Q is the

least set of transitions satisfying the following inference rule

a ∈ γ ∀i ∈ 1..n : qi
a↓Pi−−−→ q′i

(q1, . . . , qn)
a−→γ (q′1, . . . , q

′
n)

Note that the interactions in γ are pairwise mutually exclusive, e.g., is a, b ∈ γ
it is not necessarily the case that ab ∈ γ. We find it convenient to introduce the
shorthand cl(γ) as the closure of γ w.r.t. set union, i.e., cl(γ) is the least set
such that γ ∈ cl(γ) and ∀a, a′ ∈ cl(γ). aa′ ∈ cl(γ).

4.1 Compensation Pair in BI(P)

A BI(P) system modelling the behaviour of a compensation pair A%B is shown
in Fig. 7, where

γ = { {start, startA}, {performed, endA, on}, {cancel, in1, startB},
{endB, cancelled}, {commit, in2, committed} }.

As in previous cases, we assume basic activities A and B to be defined as
components with two ports: one for activating its execution (named, startA

and startB, respectively) and other for signalling the completion of the activity
(named, endA and endB, respectively). Moreover, we assume that any initiated
execution is completed before starting another execution. Hence, basic activities
are modelled as automata with just two states (see Fig. 7). We also rely on a
component Selector, which behaves analogously to the stateful selector defined in
Reo. In addition, we consider a fourth component Env representing the environ-
ment in which the compensation pair will execute. This component acts as the
transaction manager that coordinates the execution of the whole transaction.
As such, it is in charge of starting the execution of the compensation pair at
the proper moment (action start) and then it decides whether to commit or to
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Fig. 8. Synthesized behaviour of the BI(P) system for A%B

cancel the already executed activity. The synchronization set cl(γ) in Fig. 7 de-
fines all the allowed movements of the system. For instance, γ contains just one
synchronization for the action start, which requires the simultaneous execution
of startA, i.e., the environment may perform start only when the component
A is able to perform startA. Similarly, synchronization {endA, on, performed}
implies that the termination of A enables the component Selector and makes the
environment to move with action performed. Assuming the more liberal defini-
tion of Env (that does not introduce deadlocks), the behaviour of the system can
be summarized with the LTS in Fig. 8. Note that, if Env guarantees that multi-
ple instances of the compensation pair are serialized, then only the four leftmost
states are meaningful. Otherwise, it is possible to handle simultaneously up to
three instances of the pair: executing one instance of A (third serve), one of B
(first serve) with selector on (second serve). We remark that the same behaviour
arises in the Reo circuit for the compensation pair when we replace A and B by
FIFO connectors.

5 Nets with Boundaries

This section summarizes the basic of C/E nets with boundaries introduced
in [25]. C/E nets with boundaries are a compositional version of C/E nets that
come equipped with a notion of sequential and parallel composition. Contrary to
previous proposals in the literature for composing Petri nets, the ports in their
boundaries are neither places nor transitions, but rather handshaking points.

We start by describing elemental Petri nets and then we introduce nets with
boundaries. Petri nets [23] consist of places, which are repositories of tokens, and
transitions that remove and produce tokens.

Definition 4 (Net). A net N is a 4-tuple N = (SN , TN ,
◦−N ,−◦N ) where SN

is the (nonempty) set of places, a, a′, . . ., TN is the set of transitions, t, t′, . . .
(with SN ∩ TN = ∅), and the functions ◦−N ,−◦N : TN → 2SN assign finite sets
of places, called respectively source and target, to each transition.

Transitions t, u are independent when ◦t ∩ ◦u = t◦ ∩ u◦ = ∅. This no-
tion of independence allows so-called contact situations. Moreover, it also allows
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consume/produce loops, i.e., a place p can be both in ◦t and t◦. A set U of tran-
sitions is mutually independent when, for all t, u ∈ U , if t 6= u then t and u are
independent. Given a set of transitions U let ◦U = ∪u∈U ◦u and U◦ = ∪u∈Uu◦.

Definition 5 (Semantics). Let N = (P, T, ◦−,−◦) be a net, X,Y ⊆ P and
t ∈ T . Write:

(N,X)→{t} (N,Y )
def
= ◦t ⊆ X ∧ t◦ ⊆ Y ∧X\◦t = Y \t◦

For U ⊆ T a set of mutually independent transitions, write:

(N,X)→U (N,Y )
def
= ◦U ⊆ X ∧ U◦ ⊆ Y ∧X\◦U = Y \U◦

Note that, for any X ⊆ P , (N,X) →∅ (N,X). States of this transition
system will be referred to as markings of N .

For the definition of nets with boundaries we let k, l, m, n range over finite

ordinals: n
def
= {0, 1, . . . , n− 1}.

Definition 6 (Nets with boundaries). Let m,n ∈ N. A net with boundaries
N : m → n is a tuple N = (S, T, ◦−,−◦, •−,−•) where (S, T, ◦−,−◦) is a net
and functions •− : T → 2m and −• : T → 2n assign transitions to the left and
right boundaries of N , respectively.

The representation of the left and right boundaries as ordinals is just a nota-
tional convenience. In particular, we remark that the left and the right bound-
aries of a net are always disjoint.

The notion of independence of transitions extends to nets with boundaries
in the obvious way: t, u ∈ T are said to be independent when

◦t ∩ ◦u = ∅ ∧ t◦ ∩ u◦ = ∅ ∧ •t ∩ •u = ∅ ∧ t• ∩ u• = ∅

Example 1. Figure 9 shows three different nets with boundaries. Places are cir-
cles and a marking is represented by the presence or absence of tokens; rectangles
are transitions and arcs stand for pre and postset relations. The left interface
(right interface) is depicted by points situated on the left (respectively, on the
right). Figure 9(a) shows the net P : 1 → 2 containing one place, two transi-
tions and one token. Nets I : 1 → 1 and R : 3 → 2 have no places: the former,
called identity, forwards tokens received on its input port to the output port; the
latter has two competing transitions γ and δ for the tokens arriving on the top-
positioned input port, and δ requires also a token from the bottom-positioned
input port.
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Nets with boundaries can be composed in parallel and in series. Given N :
m → n and M : k → l, their tensor product is the net N ⊗M : m + k → n + l
whose sets of places and transitions are the disjoint union of the corresponding
sets in N and M , whose maps ◦−,−◦, •−,−• are defined according to the maps
in N and M and whose initial marking is m0N ⊕m0M . Intuitively, the tensor
product corresponds to draw the nets N and M one above the other.

The sequential composition N ;M : m → k of N : m → n and M : n → k
is slightly more involved and relies on the following notion of synchronization: a
pair (U, V ) with U ⊆ TN and V ⊆ TM mutually independent sets of transitions
such that: (1) U ∪ V 6= ∅ and (2) U• = •V .

The set of synchronisations inherits an ordering from the subset relation, i.e.
(U, V ) ⊆ (U ′, V ′) when U ⊆ U ′ and V ⊆ V ′. A synchronisation is said to be
minimal when it is minimal with respect to this order. Let

TN ;M
def
= {(U, V )|U ⊆ TN , V ⊆ TM , (U, V ) a minimal synchronisation}

Notice that any transition t in N (respectively t′ in M) not connected to
the shared boundary n defines a minimal synchronisation ({t},∅) (respectively
(∅, {t′})) in the above sense. The sequential composition of N and M is written
N ;M : m → k and defined as (SN ] SM , TN ;M ,

◦−N ;M ,−◦N ;M ,
•−N ;M ,−•N ;M ),

where pre- and post-sets of synchronizations are defined as

– ◦(U, V )N ;M = ◦(U)N ] ◦(V )M and (U, V )◦N ;M = (U)◦N ] (V )◦M
– •(U, V )N ;M = •(U)N and (U, V )•N ;M = (V )•M .

Intuitively, transitions attached to the left or right boundaries can be seen
as transition fragments, that can be completed by attaching other complemen-
tary fragments to that boundary. When two transition fragments in N share a
boundary node, then they are two mutually exclusive options for completing a
fragment of M attached to the same boundary node. Thus, the idea is to combine
the transitions of N with that of M when they share a common boundary, as if
their firings were synchronized. As in general several combinations are possible,
only minimal synchronizations are selected.

Example 2. Let P , I and R be the nets in Fig. 9. Then, the net (P ⊗ I); (I ⊗R)
obtained as the composition of P , R and two copies of I is shown in Fig. 10.

Sometimes we find convenient to write N = (S, T, ◦−,−◦, •−,−•, X) with
X ⊆ S for the net (S, T, ◦−,−◦, •−,−•) with initial marking X and extend the
sequential and parallel composition to nets with initial marking by taking the
union of the initial markings.

For any k ∈ N, there is a bijection p q : 2k → {0, 1}k with

pUqi
def
=

{1 if i ∈ U
0 otherwise

Definition 7 (Semantics). Let N : n→ n be a net and X,Y ⊆ PN . Write:

(N,X)
α−→
β

(N,Y )
def
= ∃ mutually independent U ⊆ TN s.t

(N,X)→U (N,Y ), α = p•Uq, and β = pU•q
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α

��
//•

enabled

•
zz

		
• //
in1

β //•
out1

• //
in2

γ //•
out2

(b) ∆on.

Fig. 11. Net with boundaries for the stateful selector

5.1 Compensation Pair as a Net with Boundaries

We start by introducing an auxiliary net that will be used for encoding a com-
pensation pair into a net with boundaries. Figure 11 depicts a net modelling
a stateful selector, analogous to the Reo circuit introduced in Section 3.1. The
main difference with the Reo circuit is that we distinguish here between input
and output ports (note that nodes in Reo allow both input and output actions).
Consequently, we use three input ports enable, in1 and in2, which correspond to
to the input behaviour of the homonymous nodes in Fig. 5(a). Similarly, the out-
put ports enabled, out1 and out2 are considered. Figure 11(a) depicts the initial
state of the connector, abbreviated as ∆off , in which selection is not enabled,
while Fig. 11(b) shows the state ∆on in which selection is enabled. The allowed
movements of the connector are:

1. ∆off
000−−→
000

∆off , i.e., the connector is idle;

2. ∆off
100−−→
100

∆on, i.e., selection has been enabled.

3. ∆on
000−−→
000

∆on, i.e., the connector remains idle;

4. ∆on
010−−→
010

∆off , i.e., input in1 is chosen;

5. ∆on
001−−→
001

∆off , i.e., input in2 is chosen.

We remark that ∆on returns to the initial state ∆off after a selection takes place.
We assume any activity A to be modelled as a net with boundaries [[A]] with

just one input and one output port, i.e., [[A]] : 1 → 1. In addition, we assume
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• [[A]]start • //
��

//• //• performed

}}

��
• //cancel • // //• [[B]] • cancelled

• //commit • // //• //• committed

Fig. 12. Net with boundaries for [[A%B]]

that [[A]] is well-defined, and that every started execution ends by signalling
the completion of the task with a signal over the output port. We will also use
the identity net introduced in Fig. 9(b). Finally, the net corresponding to the
compensation pair A%B is the net [[A%B]] : 3→ 3 defined as follows

[[A%B]] = ([[A]]⊗ I ⊗ I);∆off ; (I ⊗ [[B]]⊗ I)

A graphical representation of [[A%B]] is in Fig. 12. Initially, the only allowed
movement of the net is the one that initiates the execution of [[A]] (i.e., a message
received on port start). Subsequently, the completion of [[A]] will be signalled on
the output port of the net representing the task. This will fire the top leftmost
transition of the net, and consequently a token will be produce in the unique
place of the net and a signal will be emitted on port performed. Afterwards, the
net will be able to accept one signal on either cancel or commit port. A signal
on port cancel will activate the execution of the compensation [[B]], which will
eventually complete and a signal on port cancelled will be produced.

6 Tiles, Wires and the Petri Calculus

The Petri calculus [25] is an algebra of stateful connectors, which basically ex-
tends the algebra of stateless connectors from [10] with one-place buffers. It can
also be seen as an instance of the tile model or of the wire calculus.

The algebra of stateless connectors [10] consists of five kinds of basic connectors
(plus their duals), namely symmetry, synchronization, mutual exclusion, hid-
ing and inaction. The connectors can be composed in series or in parallel. The
operational, observational and denotational semantics of connectors are first for-
malised separately and then shown to coincide. Moreover, a complete normal-
form axiomatisation is available for them. These networks are quite expressive:
for instance it is shown [10] that they can model all the (stateless) connectors of
the architectural design language CommUnity [16]. This result is of particular
interest, because it reconciles the algebraic and categorical approaches to sys-
tem modelling, of which the algebra of stateless connectors and CommUnity are
suitable representatives. The algebraic approach models systems as terms in a
suitable algebra. Operational and abstract semantics are then usually based on
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(i)

◦ s //
a �� α

◦
b��

◦
t
// ◦

(ii)

◦ //

�� α

◦ //

�� β

◦
��

◦ // ◦ // ◦
(iii)

◦ //

�� α

◦
��

◦ //

�� β

◦
��

◦ // ◦

(iv)

◦ //

��
◦
��◦ //

��
◦
��

β

◦ // ◦
◦ //α ◦

Fig. 13. Examples of tiles and their composition

inductively defined labelled transition systems. The categorical approach mod-
els systems as objects in a category, with morphisms defining relations such as
subsystem or refinement. Complex software architectures can be modelled as
diagrams in the category, with universal constructions, such as colimit, build-
ing an object in the same category that behaves as the whole system and that
is uniquely determined up to isomorphisms. While in the algebraic approach
equivalence classes are usually abstract entities, having a normal form gives a
concrete representation that matches a nice feature of the categorical approach,
namely that the colimit of a diagram is its best concrete representative.

The tile model [17, 9] offers a convenient framework for defining the operational
and abstract semantics of connectors. For example, the operational semantics of
the algebra of stateless connectors is given in terms of the tile model, which has
later been extended to deal with one place buffers in [2]. Also the operational
semantics of the Petri calculus, originally defined as a dialect the wire calcu-
lus [24], can be straightforwardly represented in the tile model. Tile bisimilarity
provided a standard observational congruence in all the above cases.

The name ‘tile’ is due to the graphical representation of such rules (see

Fig. 13). A tile α : s
a−→
b
t is a rewrite rule stating that the initial configura-

tion s can evolve to the final configuration t via α, producing the effect b; but
the step is allowed only if the ‘arguments’ of s can contribute by producing a,
which acts as the trigger of α (see Fig. 13(i)). Triggers and effects are called
observations and tile vertices are called interfaces.

Roughly, the semantics of component-based systems can be expressed via tiles
when: i) components and connectors are equipped with sequential composition
s; t (defined when the output interface of s matches the input interface of t), with
identities for each interface and with a monoidal tensor product s⊗t (associative,
with unit and distributing over sequential composition); ii) observations have
analogous structure a; b and a ⊗ b. Technically, we rely on configurations and
observations that are taken in two monoidal categories that are freely generated
from suitable signatures of constructors (i.e. the basic elements of which systems
are composed of) and have the same underlying set of objects.

Tiles can be composed horizontally, in parallel, or vertically to generate larger
rules. Horizontal composition α;β coordinates the evolution of the initial con-
figuration of α with that of β, yielding the ‘synchronization’ of the two rewrites
(see Fig. 13(ii)). Vertical composition is just the sequential composition of com-
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© : 1→ 1 ◦ ◦ ©· : 1→ 1 ◦ • ◦ X : 2→ 2
◦ ◦

◦ ◦

∇ : 1→ 2

◦
◦

◦

∇

: 2→ 1

◦
◦

◦
⊥ : 1→ 0 ◦ �

∧ : 1→ 2

◦
◦ +

◦
∨ : 2→ 1

◦
◦+

◦
> : 0→ 1

� ◦

↓ : 1→ 0 ◦ ◦ ↑ : 0→ 1 ◦ ◦ I : 1→ 1 ◦ ◦

Fig. 14. Graphical representation of Petri calculus constants

putations (see Fig. 13(iii)). The parallel composition builds concurrent steps (see
Fig. 13(iv)).

Tiles express the reactive behaviour of connectors in terms of 〈trigger, effect〉
pairs of labels. In this context, the usual notion of bisimilarity over the derived
Labelled Transition System is called tile bisimilarity. Tile bisimilarity is a con-
gruence (w.r.t. composition in series and parallel) when a simple tile format is
met by basic tiles [17].

The wire calculus [24] builds on ideas from [20] to propose a process algebra
whose distinctive features are: actions and processes come with an input/output
arity typing (that depends on the ports they are using); independent concurrent
systems are assembled together using a tensor product (· ⊗ ·); ports are used
instead of channels and communication is possible when ports are linked together
by sequential composition (·; ·).

Roughly, we write ` P : (n,m) for P with n input ports and m output
ports and the usual action prefixes a.P of process algebras are extended in the
wire calculus by the simultaneous input of a trigger a and output of an effect
b, written a

b .P , where a (resp. b) is a string of actions, one for each input port
(resp. output port) of the process.

6.1 The Petri Calculus

Terms of the Petri Calculus are defined by the grammar in Fig. 15. It consists
of the following constants plus parallel and sequential composition: the empty
place©, the full place©· , the identity wire I, the twist (also swap, or symmetry)
X, the duplicator (also sync) ∇ and its dual

∇

, the mutex (also choice) ∧ and
its dual ∨, the hiding (also bang) ⊥ and its dual >, the inaction ↓ and its dual
↑. The graphical representation of Petri calculus constants are in Fig. 14.

Any term has a unique associated sort (also called type) (k, l) with k, l ∈ N,
that fixes the size k of the left (input) interface and the size l of the right (output)
interface of P . The type of constants are as follows:©,©· , and I have type (1, 1),
X : (2, 2), ∇ and ∧ have type (1, 2) and their duals

∇

and ∨ have type (2, 1),
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R ::= © | ©· | I | X | ∇ | ∇

| ⊥ | > | ∧ | ∨ | ↓ | ↑ | R⊗R | R;R

Fig. 15. Petri calculus grammar

R : (k, l) R′ : (m,n)

R⊗R′ : (k +m, l + n)

R : (k, n) R′ : (n, l)

R;R′ : (k, l)

Fig. 16. Sort inference rules

© 1−→
0
©· ©· 0−→

1
© ©· 1−→

1
©· I

1−→
1

I ∇ 1−→
11
∇

∇11−→
1

∇

⊥ 1−→ ⊥ > −→
1
>

X
xy−→
yx

X ∧ 1−→
xx
∧ ∨ xx−→

1
∨

R1
α−→
σ
R2 R′1

σ−→
β
R′2

R1;R′1
α−→
β
R2;R′2

R1
α−→
β
R2 R′1

ρ−→
σ
R′2

R1 ⊗R′1
ασ−−→
βρ

R2 ⊗R′2

R : (m,n)

R
0m−−→
0n

R

Fig. 17. Operational semantics for the Petri Calculus

⊥ and ↓ have type (1, 0) and their duals > and ↑ have type (0, 1). The sort
inference rules for composed processes are in Fig. 16.

The operational semantics is defined by the tiles in Fig. 17, where x, y ∈ {0, 1}
and we let x = 1 − x. The labels α, β, ρ, σ of transitions are binary strings, all
transitions are sort-preserving, and if R

α−→
β
R′ with R,R′ : (n,m), then |α| = n

and |β| = m. Notably, bisimilarity induced by such a transition system is a
congruence.

Example 3. For example, let P
def
= ∇; (I⊗©· ) and Q

def
= ∇; (I⊗©). It is immediate

to check that P and Q have both sort (1, 2), in fact we have: ∇ : (1, 2), I⊗©· :

(2, 2) and I⊗© : (2, 2). The only moves for P are P
0−→
00

P , P
0−→
01

Q and P
1−→
11

P ,

while the only moves for Q are Q
0−→
00

Q and Q
1−→
10

P . It is immediate to note

that P is a term analogous to the net in Fig. 9(a).

A close correspondence between nets with boundaries and Petri calculus
terms is established in [25], by providing mutual encodings with tight semantics
correspondence. First, it is shown that any net N : m→ n with initial marking
X can be associated with a term TN,X : (m,n) that preserves and reflects the
semantics of N . Conversely, for any term T : (m,n) of the Petri calculus there
exists a bisimilar net NT : m→ n. Due to space limitation we omit details here
and refer the interested reader to [25].
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◦ ◦ ◦ ◦ ◦
◦ ◦ ◦

◦ ◦+ ◦
◦ ◦

◦ ◦ ◦ ◦ ◦
◦

◦ ◦ ◦ ◦ ◦
(a) ∆Off

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦

◦ • ◦+ ◦
◦ ◦

◦ ◦ ◦ ◦ ◦
◦

◦ ◦ ◦ ◦ ◦
(b) ∆On

Fig. 18. Petri calculus term for the stateful selector

6.2 Compensation Pair in the Petri Calculus

We start by presenting the Petri calculus term equivalent to the stateful selector,
which can be defined as follows:

∆off = (∇⊕ I⊕ I); (I⊕©⊕ I⊕ I); (I⊕ ∧⊕ I⊕ I); (I⊕ I⊕ X⊕ I) : (I⊕

∇

⊕

∇

)

Its graphical representation is in Fig. 18(a). It can be shown that the reduc-
tions of the connector coincide with the movements of the net with boundaries
presented in Fig. 11. Moreover, Fig. 18(b) corresponds to the enabled state of
the selector. We remark that the Petri calculus term equivalent to the net with
boundaries for the stateful selector can be directly obtained by using the encod-
ing defined in [25]. To handle all possible cases, the encoding uses a canonical
representation of nets and, as a consequence, obtained terms can become more
complex than necessary. For the sake of the simplicity, we prefer to present here
a simpler term that is bisimilar to the one produced by the encoding.

Finally, the term representing the compensation pair A%B can be defined
analogously to the case of net with boundaries, i.e.,

[[A%B]] = ([[A]]⊗ I⊗ I);∆off ; (I⊗ [[B]]⊗ I)

where [[A]] and [[B]] are Petri calculus terms with sort (1, 1) describing the be-
haviour of components A and B, respectively.

7 Comparison

BIP and Reo are two prominent approaches for coordination that rely on (ap-
parently) quite unrelated semantic models. In this section we link both models
by taking advantage of several results appeared in the literature that formally
state correspondences among the approaches presented in the previous sections.

BI(P) and Nets with boundaries The formal relation between BI(P) and nets
with boundaries has been studied in [11]. Firstly, it is shown that any BI(P)
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system can be mapped into a 1-safe Petri net that preserves computations. In-
tuitively, the places of the net are in one-to-one correspondence with the states
of the components, while the transitions of the net represent the synchronized
execution of the transitions of the components. In addition, [11] introduces a
composition operation for BI(P) systems that enables the hierarchical definition
of systems in which any BI(P) system can taken as a component of a more com-
plex system. Then, this compositional version of BI(P) systems is used to define
a compositional mapping of BI(P) systems into bisimilar nets with boundaries.
Finally, it is shown that any net with boundaries without left interface can be
encoded as a BI(P) system consisting on just one component. It is in this sense
that BI(P) systems and nets with boundaries are retained equivalent.

Nets with boundaries and the Petri Calculus The technical contribution in [25]
enlightens a tight semantics correspondence between these two approaches: it is
shown that a Petri calculus process can be defined for each net such that the
translation preserves and reflects operational semantics (and thus also bisimilar-
ity). The second result provides the converse translation, from Petri calculus to
nets, which requires some technical ingenuity.

Petri Calculus, Wires and Tiles The wire calculus [24] shares strong similarities
with the tile model, in the sense that it has sequential and parallel compositions
and exploits trigger-effect pairs labels as observations. However it is presented
as a process algebra instead of via monoidal categories and it exploits a different
kind of vertical composition. The usual action prefixes a.P of process algebras
are extended in the wire calculus by the simultaneous input of a trigger a and
output of an effect b, written a

b .P , where a (resp. b) is a string of actions, one for
each input port (resp. output port) of the process. The Petri calculus is a suitable
instance of the wire calculus that roughly models circuit diagrams with one-place
buffers and interfaces. An alternative characterization of the Petri calculus as
tiles has been given in [12]

Algebra of stateless connectors, Tiles and Wires The algebra of stateless con-
nectors in [10] can be regarded as a peculiar kind of tile model where all basic

tiles have identical initial and final connectors, i.e. they are of the form s
a−→
b
s.

In terms of the wire calculus, this means that only recursive processes of the
form recX.ab .X are considered for composing larger networks of connectors.

Tiles and Reo Differently from the stateless connectors of [10], Reo connectors
are stateful (in particular due to the asynchronous one-place buffer connector).
Nevertheless, it has been shown in [2] that the two-colour semantics of Reo con-
nectors can be recovered into the setting of the basic algebra of connectors and
in the tile approach by adding a connector and a tile for the one-state buffer.
It is worth mentioning that, in addition, the tile semantics of Reo connectors
provides a description for full computations instead of just single steps (as con-
sidered in the original two-colour semantics) and makes evident the evolution of
the connector state (particularly, whether buffers get full or become empty).



19

BI(P)
[11]

Nets with
boundaries [25]

Petri
Calculus [11]

Tile
[10, 12]

Reo

Fig. 19. Relation among the different models of connectors& buffers

The main results stating the correspondence among considered approaches
are summarized in Fig. 19.

8 Conclusion and future work

One of the main limitations of the state-of-the-art theories of connectors is
the lack of a reference paradigm for describing and analysing the information
flow to be imposed over components for proper coordination. Such a paradigm
would allow designers, analysts and programmers to rely on well-founded and
standard concepts instead of using all kinds of heterogeneous mechanisms, like
semaphores, monitors, message passing primitives, event notification, remote
call, etc. Moreover, a reference paradigm would facilitate the comparison and
evaluation of otherwise unrelated architectural approaches as well as the devel-
opment of code libraries for distributed connectors.

Still, some kind of models can be more convenient than others for particular
purposes, e.g., if modularity and mantainance is a key issue rather than efficient
analysis or automatic synthesis out of requirements. So, we think that having
links to move from one model to the other can be as important as having a
referential model and, to some extent, it may be more practical.

Some interesting research avenues for future work are (i) the study of suit-
able extensions of BIP interaction model accounting for dynamically changing
topologies of interactions; and (ii) the representation of priorities in approaches
such as the algebra of connectors and the tile model. In the former direction, we
are studying the possibility to define BIP components whose interfaces can be
changed at run time and whose evolution can spawn new component instances
and new interaction constraints. This would increase the expressive power of
BIP. In the latter direction, we are studying the condition under which global
priorities can be safely distributed among connectors. This would allow a mod-
ular, inconsistency-free assignment of priorities.
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