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A Boundary Element - Response Matrix Method for 3D
Neutron Diffusion and Transport Problems

V. Giusti1 and B. Montagnini1

Abstract: An application of a 3D Boundary Element Method (BEM), coupled
with the Response Matrix (RM) technique, to solve the neutron diffusion and trans-
port equations for multi-region domains is presented. The discussion is here limited
to steady state problems, in which the neutrons have a wide energy spectrum, which
leads to systems of several diffusion or transport equations. Moreover, the number
of regions with different physical constants can be very large. The boundary inte-
gral equations concerning each region are solved via a polynomial moment expan-
sion and, taking advantage of suitable recurrence formulas, the multi-fold integrals
there involved are reduced to single or double integrals. The usual unknowns (the
boundary particle density and its normal derivative) are here replaced by the partial
currents entering or leaving each computational cell. The intuitive physical mean-
ing of such quantities facilitates the application of the response matrix technique.
Only eigenvalue (criticality) problems will be here considered. As it regards the
transport equation, the use of the so called Simplified Spherical Harmonics method
(SPN) allows, through suitable approximations, to cast the problem into a system
of differential elliptic equations of the diffusion type, which can still be solved by
BEM.

Keywords: Response matrix, Neutron diffusion, Neutron transport, 3D criticality
problems, Simplified spherical harmonics.

1 Introduction

The computational procedures based on the Boundary Element Method (BEM)
here presented have been devised for the calculation of the nuclear reactor cores,
an application field that, although subject to heavy criticisms, is still a valid op-
tion in order to contrast the persisting, and even increasing, use of coal, oil and
gas. Getting aside from these considerations, it should also be noted that several
computational techniques of neutron transport can be applied, with minor changes,
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to other fields as, for instance, radiation transfer or, via the linearized Boltzmann
equation, the theory of the highly rarefied gases.

An exhaustive collection of historical references on the application of BEM to neu-
tronic problems is outside the aim of this paper. Thus we limit ourselves to list
some relevant works. The first paper, with a rather complete account of the basic
theory, goes back to Koskinen (1965). At the beginning of the eighties, further
developments [Itagaki (1985); Itagaki and Brebbia (1991)] gave a strong impulse
to BEM, owing to the introduction of the Multiple Reciprocity Method (MRM)
[Novak and Neves (1994); Itagaki (1995, 2000, 2002); Ozgener (1998); Ozgener
and Ozgener (2000); Cavdar and Ozgener (2004)]. Despite of its elegance, MRM
has not completely ruled out other classical methods for systems of second order
partial differential equations (also discussed in some of the aforementioned pa-
pers), e.g. the diagonalization method and, as a second step, the decoupling of the
global problem into two levels [Purwadi, Tsuji, Narita, and Itagaki (1997, 1998);
Chiba, Tsuji, and Shimazu (2001a,b); Maiani and Montagnini (1999, 2004); Cossa,
Giusti, and Montagnini (2010)]. As regards the latter subject, it can be observed
that a link, although not explicit, should exist between our physically intuitive ap-
proach in [Maiani and Montagnini (1999, 2004); Cossa, Giusti, and Montagnini
(2010)] and the more abstract techniques of hierarchical decomposition of matrices
that are now extensively used in other fields (e.g. Brancati, Aliabadi, and Benedetti
(2009)), although examples can be found also in the neutron field [Purwadi, Tsuji,
Narita, and Itagaki (1997, 1998); Chiba, Tsuji, and Shimazu (2001a,b)]. The ne-
cessity of summarizing in a limited space how BEM can be used for the neutron
diffusion and transport problems has forced us to converge, very strictly, towards
our own specific approach. This resulted in a short review of some ideas of ours,
to the prejudice of the other Authors’ ones. The references quoted above should
suffice, however, to start a more complete bibliographical research.

The main purpose of this paper is to give a quick account of BEM as applied to
steady state reactor calculations, in which the interest is focused on the determina-
tion of the multiplication constant, k (the ratio of two successive neutron genera-
tions) and local and global distribution of the neutron population.

Section 2 introduces the simplest model, based on diffusion theory, and gives a
general outline of the problems to be solved. Section 3 deals with the setting of
the Boundary Integral Equations (BIE) in the so called partial current form, while
the related numerical methods are described in section 4. In this section emphasis
is given to the analytical procedures that were introduced in order to obtain a fast
computation of the boundary integrals of a single reactor fuel cell. Section 5 out-
lines the calculations referring to the reactor core, viewed as the global cell system.
Section 6 introduces the Simplified Spherical Harmonics method, as a first step to



A Boundary Element - Response Matrix Method 231

proceed from the diffusion theory approach towards an approach fully based on
the linear Boltzmann equation (or transport equation). Numerical results are re-
ported in section 7 and the conclusion are drawn in section 8. An appendix has
been written in order to give the reader a summary of some basic topics of neutron
theory.

2 The simplest model: problem setting

The simplest model to be used for the calculation of a reactor core is based on a
system of diffusion equations, one for each energy (or speed) group, g say, with g=
1, . . . ,G, in which the neutron population can be divided. In the case of steady state
conditions, what is to be determined is the density, ρg (r), of the particles belonging
to the energy group g at the point r of the body where the diffusion process occurs.
One can make use, equivalently, of the neutron traffic φg (r) = vgρg (r), vg being
the mean neutron speed in the group g. The latter quantity allows for a more direct
evaluation of the reaction rates, although the name traffic is usually, but improperly,
substituted by the name flux, despite of the confusion that may follow. The equation
system in order to obtain the φg’s is as follows

∇ ·Dg (r)∇φg (r)−Σa,g (r)φg (r)+
G

∑
g′=1

Σs,gg′ (r)φg′ (r)

+
χg

k

G

∑
g′=1

νg′Σ f ,g′ (r)φg′ (r) = 0 (g = 1, . . . ,G) , (1)

where Dg, Σa,g, Σs,gg′ and νgΣ f ,g are, respectively, the diffusion coefficient, the
absorption cross section, the scattering cross section from group g′ to group g and
the fission cross section times νg, the number of secondary neutrons emitted by
such fissions. Finally, χg is the fraction of secondary neutrons whose energy is
within the group g, while k represents the multiplication constant, which plays the
rôle of eigenvalue of the equation system, and is equal to one at criticality.

The commonly used conditions on the reactor boundary are vanishing conditions
for each φg or, preferably, for the incoming particle flux (see section 3).

The main difficulties as regards the application of BEM to such problems are: (i)
the problem domain is, in general, a 3D domain, (ii) the number of equations, G,
is rather large, (iii) the reactor core is divided into regions that are physically ho-
mogeneous (or can be considered homogeneous after applying suitable averaging
procedures), but such regions might be thousands.

The lucky circumstance is that the regions, or ’cells’ (as we will refer to them
from now on) have a rather simple shape: usually right prisms with a rectangular,
hexagonal or triangular base, arranged accordingly to a regular lattice.
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As pointed out above the calculation procedure can be divided into two steps or
levels:

- the first level: one considers the neutrons entering each cell from the boundary,
which is accomplished by assigning a suitable combination of φg and its normal
derivative. Making use of BEM it is then possible to determine those neutrons
which leave the cell and will therefore be considered as entering the adjacent ones;

- the second level: on the basis of the ingoing and outgoing particles, an iterative
procedure is established in order to determine the neutron distribution over the
global reactor system as well as the multiplication constant k.

Figure 1: Face numbering on the rectangular node.

3 The first level: solution of the diffusion equation system for a single cell

Let us consider a single cell, V say, with a shape of a prism with rectangular base
and sides a, b and c (Fig. 1) and homogeneous physical properties (thus the quan-
tities Dg, Σa,g, etc. are constant inside V ). Equation system 1 can be written in a
compact matrix form:

−∇
2
rφφφ (r)+Qφφφ (r) = 0, (2)

where φφφ (r) = [φ1 (r) , . . . ,φG (r)] and Q is a GxG matrix in which all the physical
quantities of the cell are embedded. The k eigenvalue refers to the global physical
system and is kept fixed during the present single cell calculations, so that it can
be momentarily understood. It is assumed that Q has G distinct eigenvalues, λh.
Then, the corresponding eigenvectors ξξξ h ≡ [ξ1h, . . . ,ξGh] constitute a basis of the
space CG and denoting by ΞΞΞ the (non-singular) matrix having these eigenvectors as
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its columns and by ΞΞΞ
−1 its inverse, the matrix Q is diagonalized

ΞΞΞ
−1QΞΞΞ = ΛΛΛ, (3)

where ΛΛΛ = diag [λ1, . . . ,λG]. Now we set

ψψψ (r) = ΞΞΞ
−1

φφφ (r) (4)

and, reciprocally, φφφ (r) = ΞΞΞψψψ (r). After left multiplication by ΞΞΞ
−1 Eq. 2 is trans-

formed as follows

−∇
2
rψψψ (r)+ΛΛΛψψψ (r) = 0. (5)

In terms of the components of ψψψ (r), ψh (r) say, we have

−∇
2
rψh (r)+λhψh (r) = 0 (h = 1, . . . ,G) , (6)

actually a set of G uncoupled equations. The usual procedure of the BEM direct
technique is then applied to each equation.

When looking for the fundamental solution, i.e. the solution of the following non-
homogeneous equation,

−∇
2
rψ̃h

(
r,r′
)
+λhψ̃h

(
r,r′
)
+δ

(
r− r′

)
= 0 (h = 1, . . . ,G) , (7)

one must consider that the eigenvalues of the real matrix Q are either real or dis-
tributed in couples of complex-conjugates. If λh = ζh + iηh we take µh = γh + iωh,
where

γh =
1√
2

(√
ζ 2

h +η2
h +ζh

) 1
2

,ωh =
1√
2

(√
ζ 2

h +η2
h −ζh

) 1
2

, (8)

so that µ2
h = λh. Then, the fundamental h-th solution is

ψ̃h
(
r,r′
)
=

e−(γh+iωh)|r− r′|
4π|r− r′|

. (9)

In particular, if λh is real and positive then γh = ζh > 0, ωh = 0, so that the classical
Green function of the diffusion equation in the infinite space, which is exponentially
decreasing to zero as R = |r− r′| → ∞, is recovered. An exponential decay also
holds for a complex λh with ζh > 0, ηh 6= 0, the most general case that occurs with
the problems which are of interest here. An exception is presented by the case in
which λh is real and negative, so that γh = 0, ωh = ζh and the asymptotic behaviour
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of ψ̃h is only O(1/R), but the Sommerfeld radiation condition is fulfilled, so that
the uniqueness of the fundamental solution is still ensured.

Continuing with the direct BEM procedure, the usual machinery based on apply-
ing the Green’s second identity to the function ψ̃h leads to the following, classical
integral relation,

c(r)ψh (r)+
∫

S

[
∂ψ̃h

∂n′S

(
r,r′S

)
ψh
(
r′S
)
− ψ̃h

(
r,r′S

) ∂ψh

∂n′S

(
r′S
)]

dS′= 0 (h = 1, . . . ,G) ,

(10)

where S = ∂V . The label S is also used as a suffix for the points on the bound-
ary, while nS indicates the outward normal at such points. Moreover, c(r) is the
characteristic function of V and, in particular,

c(rS) =
∫

V
δ
(
rS− r′

)
dV ′ =

1
4π

Ωs (rS) , (11)

ΩS being the angle of aperture of the tangent cone at rS (c(rS) = 1/2 for a smooth
point).

Let us now denote by ξ ∗hg the elements of the matrix Ξ−1 (we recall that the elements
of Ξ were called ξgh) and consider the following sum:

φ̃gg′
(
r,r′S

)
=

G

∑
h=1

ξghψ̃h
(
r,r′S

)
ξ
∗
hg′ (12)

or, in matrix form,

φ̃φφ
(
r,r′S

)
= ΞΞΞψ̃ψψ

(
r,r′S

)
ΞΞΞ
−1, (13)

where ψ̃ψψ (r,r′S) = diag [ψ̃1 (r,r′S) , . . . , ψ̃G (r,r′S)]. Eq. 4 and its reciprocal allow to
write Eq. 10 also in matrix form, i.e., after left multiplication by Ξ,

c(r)φφφ (r)+
∫

S
Ξ

(
∂ψ̃

∂n′S

(
r,r′S

)
− ψ̃

(
r,r′S

) ∂

∂n′S

)
Ξ
−1

φφφ
(
r′S
)

dS′ = 0 (14)

or, using Eq. 13,

c(r)φφφ (r)+
∫

S

(
∂ φ̃φφ

∂n′S

(
r,r′S

)
− φ̃φφ

(
r,r′S

) ∂

∂n′S

)
φφφ
(
r′S
)

dS′ = 0. (15)

In terms of the components the above equation reads

c(r)φg (r)+
G

∑
g′=1

∫
S

(
∂ φ̃gg′

∂n′S

(
r,r′S

)
φg′
(
r′S
)
− φ̃gg′

(
r,r′S

) ∂φg′

∂n′S

(
r′S
))

dS′ = 0

(g = 1, . . . ,G) , (16)
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another classical relationship that allows to determine the fluxes, φg (r), at any point
of the V cell, provided the boundary values of these fluxes and their normal deriva-
tives are known. Taking, in particular, r = rS, we arrive at the system of the bound-
ary integral equations for such quantities. However, we shall not make a direct use
of the φg’s (or their normal derivatives). Rather, we shall introduce the following
linear combinations of them, namely (Maiani and Montagnini, 1999, 2004)

J±g (rS) =
1
4

φg (rS)∓
1
2

Dg
∂φg

∂nS
(rS) , (17)

together with the reciprocal relations

φg (rS) = 2
(
J+g (rS)+ J−g (rS)

)
(18)

−Dg
∂φg

∂nS
(rS) = J+g (rS)− J−g (rS) . (19)

The quantities J±g (rS) are known, respectively, as the outgoing and ingoing partial
current (in the general language of mathematical physics they should rather be
called outward and inward particle fluxes per unit area). We defer the reader to the
Appendix for more details; here we only observe that Jg (rS) = J+g (rS)− J−g (rS)
represents the net current at rS and Eq. 19 is simply the Fick’s law (Davison, 1958;
Weinberg and Wigner, 1958; Bell and Glasstone, 1970; Stacey, 2007).

If expressions 18 and 19 are substituted into Eqs. 16 and the following new kernels

J̃±gg′
(
rS,r′S

)
=

1
4Dg

φ̃gg′
(
rS,r′S

)
± 1

2
∂ φ̃gg′

∂n′S

(
rS,r′S

)
(20)

are introduced, we get a partial current form of the G-group boundary integral
equations (Maiani and Montagnini, 1999, 2004):

1
2

c(rS)J+g (rS)+
G

∑
g′=1

∫
S

J̃+gg′
(
rS,r′S

)
J+g′
(
r′S
)

dS′ =−1
2

c(rS)J−g (rS)

+
G

∑
g′=1

∫
S

J̃−gg′
(
rS,r′S

)
J−g′
(
r′S
)

dS′ (g = 1, . . . ,G) . (21)

Let the ingoing currents J−g (rS) be known, so that the r.h.s. of the latter equations
is also known. Then the response of the V cell in terms of the outgoing currents
J+g (rS) will be determined by solving the above boundary integral equations with
the kernels J+gg′ (rS,r′S). Although perfectly equivalent to the classical setting of the
BIE’s, the present rearrangement facilitates the subsequent calculations. It is, in
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fact, quite intuitive how to proceed for the second, or global, level of the calculation,
in which the cells are connected all together. It is based on the following iteration
steps, to be applied to each cell of the general system:

1
2

c(rS)J+(t+1)
g (rS)+

G

∑
g′=1

∫
S

J̃+gg′
(
rS,r′S

)
J+(t+1)

g′
(
r′S
)

dS′ =−1
2

c(rS)J−(t)g (rS)

+
G

∑
g′=1

∫
S

J̃−gg′
(
rS,r′S

)
J−(t)g′

(
r′S
)

dS′ (g = 1, . . . ,G) . (22)

The eigenvalue k is updated at the end of each one of these steps.

4 Numerical solution of the cell problem

Let us continue with the cell problem. As regards the numerical solution of Eqs.
22 (we omit the superscript t, with the understanding that the r.h.s. is known from
the outset), the classical procedure based on a distribution of source and evaluation
points (with a local expansion) on the contour of even a two-dimensional cell do-
main was found to be computationally expensive (Maiani and Montagnini, 1999).
We then adopted a weak or, better, a moment formulation, based on the expansion
of the boundary partial currents on a set of orthogonal polynomials (Maiani and
Montagnini, 2004). This approach was maintained in all subsequent works, includ-
ing the problems with 3D cells (Cossa, Giusti, and Montagnini, 2010; Giusti and
Montagnini, 2012; Giusti, Montagnini, and Ravetto, 2013). The motivation, as al-
ready pointed out in sect. 2, was that the reactor cores can be usually considered
as made of cells with simple shape. A direct, elementary evaluation of the face-
to-face boundary integrals is then possible and there is no need to adopt special
techniques such as the multipoles algorithms (Gumerov and Duraiswami, 2004;
Brunner, Junge, Rapp, Bebendorf, and Gaul, 2010; Mallardo and Aliabadi, 2012),
which would be otherwise mandatory in other contexts.

Let (u,v) be the coordinates of a point rS on the face S(s) (s = 1, . . . ,sM, with
sM = 6) of the parallelepiped V and the functions esm (t) be such that the products
Ws,mn (rS) = esm (u)esn (v) constitute an orthogonal set on this face. By completing
the Ws,mn (rS) functions by zero on the remaining faces, we expand the inward and
outward partial currents in terms of these Ws,mn’s. It is highly expedient that each
esm (t) may belongs to a set of orthogonal functions, most easily a set of orthogonal
polynomials (in our case normalized Legendre polynomials). Then we introduce
the following truncated expansions

J±g (rS) =
sM

∑
s=1

mM

∑
m=0

nM

∑
n=0

J±g,smnWs,mn (rS) , (23)
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where

J±g,smn =
∫

S(s)
J±g (u,v)esm (u)esn (v)dudv (24)

and the analogous expansion for the kernels:

J̃±gg′
(
rS,r′S

)
=

sM

∑
s,s′=1

mM

∑
m,m′=0

nM

∑
n,n′=0

J̃±gg′,ss′,mm′,nn′Ws,mn (rS)Ws′,m′n′
(
r′S
)
, (25)

where

J̃±gg′,ss′,mm′,nn′ =
∫

S(s)

∫
S(s′)

J̃±gg′
(
u,v,u′,v′

)
esm (u)es′m′

(
u′
)

esn (v)es′n′
(
v′
)

dudu′ dvdv′.

(26)

After the expansions have been introduced into Eqs. 22 (or, simply into Eqs. 21,
since the iteration index has been understood), owing to the orthonormality the
following linear system is obtained

1
4

J+g,smn +
G

∑
g′=1

sM

∑
s′=1

mM

∑
m′=0

nM

∑
n′=0

J̃+gg′,ss′mm′nn′J
+
g′,s′m′n′ =

− 1
4

J−g,smn +
G

∑
g′=1

sM

∑
s′=1

mM

∑
m′=0

nM

∑
n′=0

J̃−gg′,ss′mm′nn′J
−
g′,s′m′n′ . (27)

Note that the moment approach overcomes (perhaps in a somewhat brute force
way) the otherwise fine and elegant problems implied by the edges and vertices,
since the points where c(rS) 6= 1/2 are a set of zero measure.

Eqs. 27 can be given a compact form, namely

M+J+ = M−J−, (28)

where the M± matrices have the elements

M±gg′,ss′mm′nn′ = J̃±gg′,ss′mm′nn′±
1
4

δgg′δss′δmm′δnn′

and the J± vectors have elements J±g,smn. After inversion of M+ we obtain

J+ = R̃J−, (29)

where R̃ = (M+)
−1 M−. It is to be noted that the elements of the matrices M± and

therefore of R̃ may be complex, due to the constants in the fundamental solution,
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which are in general complex. However, J− must be real (owing to its physical
meaning) and the imaginary part of R̃ can be discarded. The real matrix R so
obtained then replaces the R̃ matrix in Eq. 29 and we finally obtain

J+ = RJ−. (30)

The above equation expresses what is usually meant as a response matrix approach
and justifies the name Boundary Element - Response Matrix (BERM) we have
given to the technique here presented.

The evaluation of the elements of the matrices M±, although elementary, is very
tedious, even for a cell with the shape of a rectangular prism. Let us first deal with
the part of the calculation of the J̃±gg′ integrals that involves the fundamental solution
ψ̃h (the part involving the normal derivative will be considered afterwards).

Considering the interaction, so to say, of the faces 1 and 4 in Fig. 1, the pertinent
integral, called ˜IF14,mn,m′n′ , is as follows (Cossa, Giusti, and Montagnini, 2010)

˜IF14,mn,m′n′ =
∫

S(1)
dxdz

∫
S(4)

dy′ dz′ψ̃h
(
x,z,y′,z′

)
e1m (x)e1n (z)e4m′

(
y′
)

e4n′
(
z′
)

(31)

and, if the polynomials esm are expressed in terms of monomials, we are led to
compute the following integrals

¯IF14,mnpq =
∫ a

0
dx
∫ c

0
dz
∫ b

0
dy
∫ c

0
dz′

e−µh

√
x2+y2+(z−z′)2√

x2 + y2 +(z− z′)2
xmynzpz′q (32)

where y′m
′
in the preceding integral has been replaced by yn, zn by zp and z′n

′
by z′q;

the factor 1/4π in the fundamental solution is understood. Now we introduce the
following integral, which corresponds to the z,z′ integrations in Eq. 32:

Hpq (ρ) =
∫ c

0

∫ c

0

e−µh

√
ρ2+(z−z′)2√

ρ2 +(z− z′)2
zpz′q dzdz′ (33)

where ρ2 = x2 + y2. Setting u = z− z′ and performing another couple of changes
of variables (for details see (Cossa, Giusti, and Montagnini, 2010)) Hpq (ρ) can be
given the following form

Hpq (ρ) =
∫ c

0
du

e−µh

√
ρ2+u2√

ρ2 +u2

∫ c

0
dz(z−u)p zq

+ a similar term with p and q interchanged. (34)
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By using the binomial formula, we get

Hpq (ρ) =
p

∑
k=0

(−1)p−k

q+ k+1

(
p
k

)∫ c

0

(
cq+k+1up−k−up+q+1

) e−µh

√
ρ2+u2√

ρ2 +u2
du

+ a similar term with p and q interchanged (35)

and, finally, recalling that ρ2 = x2 + y2 and introducing this expression of the Hpq

integrals into Eq.(32) we arrive at the following formula, where the fourfold inte-
grals ¯IF14,mnpq are given as a sum of triple integrals:

¯IF14,mnpq =
∫ a

0

∫ b

0
xmynHpq

(√
x2 + y2

)
dxdy

=
p

∑
k=0

(−1)p−k

q+ k+1

(
p
k

)[
cq+k+1 ˆIF14,mn,p−k− ˆIF14,mn,p+q+1

]
+ a similar sum with p and q interchanged, (36)

with

ˆIF14,mnr =
∫ a

0
xm dx

∫ b

0
yn dy

∫ c

0
ur e−µh

√
x2+y2+u2√

x2 + y2 +u2
du. (37)

If n≥ 2 the latter integrals obey a recurrence relationship that alleviates very much
the calculational bargain.

Namely, since the expression
(

y/
√

x2 + y2 +u2
)

exp
(
−µh

√
x2 + y2 +u2

)
can be

written as (−1/µh)∂/∂y
(

exp
(
−µh

√
x2 + y2 +u2

))
, an integration by parts with

respect to the y variable and a further integration by parts with respect to the u
variable (for details see again Cossa, Giusti, and Montagnini (2010)) allows to get
the desired recurrence

ˆIF14,mnr =
1

r+1
[
−bn−1Um,r+2 (0,a,0,c,b,µh)

+cr+1Umn (0,a,0,b,c,µh)+(n−1) ˆIF14,m,n−2,r+2
]
, (38)

with

Upq (x1,x2,u1,u2,d,µh) =
∫ x2

x1

xp dx
∫ u2

u1

uq e−µh
√

d2+x2+u2

√
d2 + x2 +u2

du, (39)

where the latter integrals can also be evaluated by a similar recurrence relationship.
The initial integrals ˆIF14, such as ˆIF14,m1s or ˆIF14,m0s, as well as the low-index in-
tegrals Upq are amenable to one-dimensional integrals, which are readily evaluated



240 Copyright © 2014 Tech Science Press CMES, vol.102, no.3, pp.229-255, 2014

by a Gauss-Legendre numerical integration, with only one exception, concerning
ˆIF14,00s, for which a double integration is required. But, even in this case, a passage

to polar coordinates ρ =
√

x2 + y2,θ = arccos(y/ρ) allows to smooth the inherent
singularity and still achieve an accurate numerical result (Cossa, Giusti, and Mon-
tagnini, 2010).

The integrals ĪJ14,mn,m′n′ , involving the normal derivative of ψ̃h and therefore re-
lated to the current (just as the previous integrals ¯IF14 were related to the fluxes),
turn out to be as follows (Cossa, Giusti, and Montagnini, 2010):

ĪJ14,mnpq =
∫ a

0
xm+1 dx

∫ b

0
yn dy

∫ c

0
zp dz

∫ c

0
z′q dz′ ·K

(√
x2 + y2 +(z− z′)2

)
, (40)

where

K (t) =
(

µh +
1
t

)
e−µht

t2 . (41)

Since

∂

∂x

 e−µh

√
x2+y2+(z−z′)2√

x2 + y2 +(z− z′)2

=−xK
(√

x2 + y2 +(z− z′)2
)

(42)

the same procedure as from Eqs. 33 to 38 allows to get a recurrence relation also
for the ĪJ14 integrals:

ĪJ14,mnpq =
p

∑
k=0

(−1)p−k

q+ k+1

(
p
k

)(
cq+k+1ÎJ14,mn,p−k− ÎJ14,mn,p+q+1

)
+ a similar sum with p and q interchanged, (43)

in which the triple integrals ÎJ14,mnr, i.e.

ÎJ14,mnr =
∫ a

0
xm+1 dx

∫ b

0
yn dy

∫ c

0
ur duK

(√
x2 + y2 +u2

)
(44)

can be expressed in terms of the Upq integrals and the previously calculated flux
integrals ˆIF14,mnr.

Similar calculations are performed for all the other couples of faces of the V cell.
The symmetry of the cell (for instance, in the case V is a prism with a square base)
can also be exploited, in particular by means of the circulant properties of the M±
matrices.

By this way, our "all boundary" program is completed. No subdivision of the V cell
into subcells appears to be necessary, at least for the problems that are considered
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in the reactor field. The interior fluxes never come into play, with the exception
of the average fluxes over the whole cell volume, which are required in order to
evaluate the local reactor power and are elementarily derived from the balance con-
dition between the absorption-production events inside the cell and the currents at
its boundary. If the case, however, further analytical calculations, analogous to the
above concerning the surface integrals, allow to determine the fluxes φg (r) inside
V , both pointwise or by means of a polynomial in the xyz variables.

It is to be noted, finally, that the cases of V cells with the shape of a hexagonal or a
triangular base can be treated essentially in the same way as the above.

5 The second level of the calculation

We now give some details about the second level of the calculation. If the reactor
is divided into N homogeneous cells we can write

J+ = Z(k)J−, (45)

where the dependence on the eigenvalue k is now explicitly mentioned and the vec-
tors J+ and J− are made of N blocks, which correspond to the outward and inward
partial currents from each cell. The matrix Z(k) is therefore a block (N×N) diag-
onal matrix where each block corresponds to a cell response matrix R. Defining a
suitable coupling matrix ΠΠΠ it is possible to write the partial currents entering each
cell in terms of the partial currents leaving the neighbouring ones:

J− = ΠΠΠJ+. (46)

A few words are needed concerning the boundary conditions. The global physical
system is always assumed to be surrounded by the vacuum or, equivalently, by a
purely absorbing material of an infinite extent. Thus the typical condition to be
imposed at the boundary is that the inward partial currents of the exposed faces of
the peripheral cells are all vanishing.

Combining now equations 45 and 46, we get

J+ = Z(k)ΠΠΠJ+ = ΘΘΘ(k)J+. (47)

This homogeneous system admits a non trivial solution only for specific values of
the multiplication constant k. The following procedure can be devised in order to
determine, in particular, the minimum value of k, which corresponds to the multi-
plication constant. Let us consider the following auxiliary eigenvalue problem

αJ+ = ΘΘΘ(k)J+. (48)
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We must look for the value of k that gives an α-eigenvalue equal to unity (Maiani
and Montagnini, 1999, 2004). This means that the J+’s must be invariant under the
transformation given by Eq. 48. Thus, an iterative procedure (actually the classical
power method) can be exploited to determine the α-eigenvalue for a fixed value of
k:

(n+1)J+ = ΘΘΘ(k) (n)J+ (49)

(n+1)
α =

{〈
(n+1)J+, (n+1)J+

〉〈
(n)J+, (n)J+

〉 } 1
2

, (50)

where Eq. 49 is iterated until a suitable convergence on the estimated value of
(n+1)α is achieved. As α (k) turns out to be a monotonic function of k (Maiani
and Montagnini, 1999), the new value of k can be estimated e.g, by means of the
Newton’s chord method. The process is stopped when a suitable convergence on
the value of the multiplication constant k is obtained.

To accelerate the convergence of the above procedure a multi-step approach was
chosen: in the first step only the first moment of the partial current Legendre expan-
sion is considered; once the convergence is achieved the procedure is then repeated
considering the first two moments of the Legendre expansions and so on up to the
maximum number of moments used (e.g. five). It was found that such an approach
was able to cut down the computational time by a factor 20 with respect to a direct
use, from the beginning of the calculation, of the maximum number of the available
Legendre moments.

Finally, once the convergence over the multiplication constant k has been achieved,
in order to obtain also an accurate eigenvector J+ it is necessary to perform some
extra iterations according to Eq. 49, written now in the form Θ̂ΘΘJ+ = 0, where
Θ̂ΘΘ = I−ΘΘΘ(k). To this purpose, instead of the power method, which may result
quite lengthy, an algorithm based on a Krylov subspace projection method like the
Generalized Minimal RESidual algorithm (GMRES) (Saad and Schultz, 1986) has
been adopted.

Remark. The parameter k is usually introduced as the multiplication ratio of the
neutrons, i.e. as the ratio between the total number of neutrons of the (n+1)-th
generation and the total number of those of the n-th generation. If e.g. k > 1 the
neutron population would grow up and to get a (formally) stationary solution the
factor 1/k is just put beforehand the fission cross sections Σ f ,g. k plays therefore
the rôle of an eigenvalue (we are considering, more precisely, the fundamental
eigenvalue, the other eigenvalues being associated to the higher order harmonics
of the neutron distribution). The true steady state of the reactor is obtained when
k = 1, which requires an adjustment of the physical constants, typically by moving
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the control rods (this implies further calculations that are outside the purpose of
this paper).

6 The neutron transport equation

The linear Boltzmann equation (or transport equation), here again written already
in an energy discretized form, is as follows:

ΩΩΩ ·∇rφg (r,ΩΩΩ)+Σt,g (r)φg (r,ΩΩΩ)−
G

∑
g′=1

∫ [
Σs,gg′

(
r,ΩΩΩ,ΩΩΩ′

)
+

χg

4πk
νg′Σ f ,g′ (r)

]
φg′
(
r,ΩΩΩ′

)
dΩ
′ = 0 (g = 1, . . . ,G) , (51)

where Σs,gg′
(
r,ΩΩΩ,ΩΩΩ′

)
is the differential scattering cross section, which describes

the change of the direction of motion of a neutron from ΩΩΩ
′ to ΩΩΩ, due to a scatter-

ing collision, and the other symbols are already known. The capital improvement
obtained by solving this equation, as compared with the much less accurate diffu-
sion approach, is due to the intervention, in the definition of the φg fluxes, of the
supplementary angular variable ΩΩΩ, representing the direction of the particle beams
in which the neutron field can be subdivided, indeed an important deepening of the
description of the physical process.

The variable ΩΩΩ can be discretized or, in a more elegant form, the angular fluxes
φg (r,ΩΩΩ) can be expanded in terms of spherical harmonics Ylm (ΩΩΩ) (or Ylm (θ ,ϕ),
with the usual notation), as well as the kernels Σs,gg′

(
r,ΩΩΩ,ΩΩΩ′

)
.

For plane-parallel problems (r is then simply replaced by z, say) the spherical har-
monics reduce to Legendre polynomials and it is not difficult to show that the sys-
tem so obtained has the form of a system of (ordinary) linear differential equations
of the first order or also, after suitable manipulations, of the second order.

In the general 3D case, even for a moderate value of the order N of the approxi-
mation, the differential spherical harmonics equation system turns out to be over-
whelming. A successful, although rude, idea in order to simplify the matter is to
ignore the dependence on the azimuthal angle ϕ . Then it is again possible to arrive
at a system of 3D diffusion equations (Gelbard, 1960; Larsen, Morel, and McGhee,
1996; McClarren, 2011), to which BEM can still be applied (Chiba, 2011; Giusti
and Montagnini, 2012; Giusti, Montagnini, and Ravetto, 2013). Some further de-
tails are given in the Appendix, together with a few topics of neutron transport.

The examples in the next section illustrate the improvement obtainable by the above
simplified spherical harmonics method with respect to the diffusion method.
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7 Numerical examples

The first numerical example is a transport version prepared by Hébert (Hébert,
2010) of the classical IAEA 3D benchmark problem of the Argonne Code Center
ANL-7416 (1977) (see Fig. 2). As stated by the author, the original cross section
data have been converted in order to allow transport-like calculations consistent
with the diffusion theory results. The IAEA 3D benchmark concerns a full 3D
simplified version of a typical LWR core, where nine assemblies have fully inserted
control rods while four assemblies have partially inserted control rods. The active
part of the reactor core is made of 17 layers, 20 cm high. The four control rods
partially inserted are dipped from the top of the active core by 80 cm. Finally, a
reflector layer, 20 cm high, is present at the top and the bottom of the reactor core.
A vacuum boundary condition is adopted on the external surface of the lateral and
axial reflector. The values of the multiplication constant obtained with the diffusion
and SP3 (Simplified spherical harmonics with order N=3) approximations through
the Boundary Element - Response Matrix (BERM) method are compared in Tab. 1
with the reference value obtained by a suitable two energy group MCNP Monte
Carlo calculation (Pelowitz D.B. (Ed.), 2013).

20.0 cm

Reflector

Reflector + Control Rods

Fuel + Control rods

Fuel 1

Fuel 2

20.0 cm

Figure 2: Geometrical configuration and material composition of the IAEA 3D
benchmark problem.

The second example, which is much more demanding, is derived from a benchmark
problem (Smith, Lewis, and Na, 2005) concerning the calculation of a 3D reactor
core made of 16 fuel assemblies (quarter core simmetry), half of which contain
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Figure 3: Horizontal (left) and vertical (right) sections of the 3D MOX reactor core
(dimensions are in cm). In the present configuration the control rods are crossing
the upper reflector and inserted by 2/3 of the way into the inner UO2 fuel assembly
and 1/3 of the way into the two MOX fuel assemblies (hatched region).

mixed-oxide (MOX) fuel rods, and completely surrounded by a water reflector (see
Fig. 3). In the present case the number of mixed oxide mixtures has been reduced
from three to one. Each fuel assembly is made of 17x17 square pin cells the side
length of which is 1.26 cm. In this application, each pin cell has been spatially
homogenized weighting the cross section over the volumes, with a preliminary
estimate of the neutron flux within each cell. The sets of cross sections so obtained
are reported in Giusti and Montagnini (2012, Appendix B). There are control rods
inserted 2/3 of the way into the inner UO2 assembly and 1/3 of the way into both
MOX assemblies, as indicated by the hatched region in Fig. 3. Finally, a vacuum
boundary condition is applied on the external surface of the reflector and, in order
to reduce the computational burden, an axial symmetry is also assumed.

In order to define the reference multiplication constant, again a suitable MCNP
Monte Carlo calculation was run making use of the same sets of cross sections
used by the deterministic code.

Tab. 2 compares the reference value of the multiplication constant with those ob-
tained by two BERM calculations in the SP3 and SP7 transport approximations
(i.e. Simplified Spherical Harmonics with order N=3 and N=7, respectively). No
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Table 1: The multiplication constant k for the transport version of the IAEA 3D
benchmark.

Code k ∆k (pcm)
MCNP6a (ref.) 1.02955 −
BERM-diffusion 1.02907 -48
BERM-SP3 1.02956 1
awith an estimated standard deviation
of ±0.00002.

Table 2: The multiplication constant k for the 3D MOX reactor core.

Code k ∆k (pcm)
MCNP6a (ref.) 1.05932 −
BERM-SP3 1.05755 -177
BERM-SP7 1.05838 -94
awith an estimated standard deviation
of ±0.00004.

results obtained with the diffusion approximation are shown for this example be-
cause, due to the too small size of the computational cells, they turned out to be
rather inaccurate, as expected.

8 Conclusion

The paper presents a review of some applications of BEM to neutron diffusion and
transport. The lack of space has forced the authors to give particular emphasis
to their own methodology. Some efforts have been made, however, to add some
general rudiments about diffusion and the PN and SPN methods (see the Appendix).

The global problem i.e. the calculation of the neutron population in a multiregion
reactor core, which is made by an array of a large number of fuel cells, is divided
into two steps, or levels. The first level deals with a single cell, assumed to be phys-
ically homogeneous and with a rather simple shape, the second level considers the
interactions of all the cells and is directed to obtain the local and global distribution
of the neutron flux and the value of the multiplication constant, k.

A main part of the paper is dedicated to the solution of the first level problem in
the framework of diffusion theory, actually the simplest approach. The adopted
BEM procedure in order to evaluate the cell response to an inward flux of neutrons
from the neighbouring cells is a rather classical one, except for the presentation
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of the boundary integral equations in terms of inward-outward partial currents. A
great advantage is taken from the simple geometry of each cell, which allows to
apply a moment approach, with an almost completely analytical evaluation of the
fourfold boundary integrals that express the interactions between any two faces.
The second level of calculation is then started. It involves very large matrices in
order to connect the cells, but efficient acceleration procedures, based on increasing
progressively the degree of the involved boundary polynomials (the lowest order
calculations being used as precalculations of the highest) and the use of the GMRES
algorithm have alleviated very much the calculational bargain.

The method based on diffusion theory has been then extended in order to comply
with the Simplified Spherical Harmonics procedure.

The numerical results show that the present BERM method is very accurate and
represents a good alternative to the usual Finite Element methods.

References

ANL-7416 (1977): Benchmark Problem Book, Supplement 2. Argonne National
Laboratory, Argonne IL, USA.

Bell, G. I.; Glasstone, S. (1970): Nuclear Reactor Theory. Van Nostrand
Reinhold Co.

Brancati, A.; Aliabadi, M. H.; Benedetti, I. (2009): Hierarchical Adaptive
Cross Approximation GMRES Technique for Solution of Acoustic Problems Using
the Boundary Element Method. CMES - Computer Modeling in Engineering &
Sciences, vol. 43, no. 2, pp. 149–172.

Brunner, D.; Junge, M.; Rapp, P. F.; Bebendorf, M.; Gaul, L. (2010): Com-
parison of the fast multipole method with hierarchical matrices for the Helmholtz-
BEM. CMES, Comput. Model. Eng. Sci., vol. 58, no. 2, pp. 131–159.

Capilla, M.; Talavera, C.; Ginestar, D.; Verdú, G. (2012): Application of a
nodal collocation approximation for the multidimensional Pl equations to the 3D
Takeda benchmark problems. Annals of Nuclear Energy, vol. 40, no. 1, pp. 1 – 13.

Cavdar, S.; Ozgener, H. A. (2004): A finite element/boundary element hybrid
method for 2-D neutron diffusion calculations. Annals of Nuclear Energy, vol. 31,
no. 14, pp. 1555 – 1582.

Chiba, G. (2011): Application of the hierarchical domain decomposition bound-
ary element method to the simplified P3 equation. Annals of Nuclear Energy, vol.
38, no. 5, pp. 1033 – 1038.

Chiba, G.; Tsuji, M.; Shimazu, Y. (2001): Development of the hierarchical do-
main decomposition boundary element method for solving the three-dimensional



248 Copyright © 2014 Tech Science Press CMES, vol.102, no.3, pp.229-255, 2014

multiregion neutron diffusion equations. Journal of Nuclear Science and Technol-
ogy, vol. 38, no. 8, pp. 664–673.

Chiba, G.; Tsuji, M.; Shimazu, Y. (2001): A hierarchical domain decomposition
boundary element method with a higher order polynomial expansion for solving 2-
D multiregion neutron diffusion equations. Annals of Nuclear Energy, vol. 28, no.
9, pp. 895–912.

Cossa, G.; Giusti, V.; Montagnini, B. (2010): A boundary element-response ma-
trix method for criticality diffusion problems in xyz geometry. Annals of Nuclear
Energy, vol. 37, no. 7, pp. 953–973.

Davison, B. (1958): Neutron transport theory. International series of monographs
on physics. Clarendon Press.

Fletcher, J. (1983): Solution of the multigroup neutron transport equation using
spherical harmonics. Nuclear Science and Engineering, vol. 84, no. 1, pp. 33 – 46.

Gelbard, E. M. (1960): Applications of spherical harmonics method to reactor
problems. Technical Report WAPD-BT-20, Bettis Atomic Power Laboratory, 1960.

Giusti, V.; Montagnini, B. (2012): A boundary element-response matrix method
for the multigroup criticality problems in the SP3 approximation. Annals of Nu-
clear Energy, vol. 42, pp. 119–130.

Giusti, V.; Montagnini, B.; Ravetto, P. (2013): Solution of 3D multigroup,
linearly anisotropic scattering, criticality problems by the AN boundary-element
response-matrix method. Annals of Nuclear Energy, vol. 57, pp. 350–367.

Gumerov, N. A.; Duraiswami, R. (2004): Fast Multipole Methods For The
Helmholtz Equation In Three Dimensions. Elsevier.

Hébert, A. (2010): Mixed-dual implementations of the simplified Pn method.
Annals of Nuclear Energy, vol. 37, no. 4, pp. 498 – 511.

Itagaki, M. (1985): Boundary element methods applied to two-dimensional neu-
tron diffusion problems. Journal of Nuclear Science and Technology, vol. 22, no.
7, pp. 565–583.

Itagaki, M. (1995): Higher order three-dimensional fundamental solutions to
the Helmholtz and the modified Helmholtz equations. Engineering Analysis with
Boundary Elements, vol. 15, no. 3, pp. 289 – 293.

Itagaki, M. (2000): Advanced dual reciprocity method based on polynomial
source and its application to eigenvalue problem for nonuniform media. Engineer-
ing Analysis with Boundary Elements, vol. 24, no. 2, pp. 169 – 176.



A Boundary Element - Response Matrix Method 249

Itagaki, M. (2002): Matrix-type multiple reciprocity method applied to the modi-
fied Helmholtz neutron flux mode in nuclear criticality system. Engineering Anal-
ysis with Boundary Elements, vol. 26, no. 9, pp. 807 – 812.

Itagaki, M.; Brebbia, C. A. (1991): Space-dependent core/reflector boundary
conditions generated by the boundary element method for pressurized water reac-
tors. Nuclear Science Engineering, vol. 107, no. 3, pp. 246 – 264.

Koskinen, H. (1965): Generalized potential theory for multigroup diffusion in
general multi-region reactor. In UN(Ed): Proceedings of the 3rd International
Conference on the Peaceful Uses of Atomic Energy, Geneva, volume 4, pp. 67–73.

Larsen, E. W.; Morel, J. E.; McGhee, J. M. (1996): Asymptotic Derivation
of the Multigroup P1 and Simplified PN Equations with Anisotropic Scattering.
Nuclear Science Engineering, vol. 123, pp. 328 – 342.

Maiani, M.; Montagnini, B. (1999): A boundary element-response matrix
method for the multigroup neutron diffusion equations. Annals of Nuclear En-
ergy, vol. 26, no. 15, pp. 1341 – 1369.

Maiani, M.; Montagnini, B. (2004): A Galerkin approach to the boundary
element-response matrix method for the multigroup neutron diffusion equations.
Annals of Nuclear Energy, vol. 31, no. 13, pp. 1447 – 1475.

Mallardo, V.; Aliabadi, M. (2012): An adaptive fast multipole approach to 2D
wave propagation. CMES - Computer Modeling in Engineering & Sciences, vol.
87, no. 2, pp. 77–96.

McClarren, R. G. (2011): Theoretical aspects of the simplified Pn equations.
Transport Theory and Statistical Physics, vol. 39, no. 2-4, pp. 73–109.

Novak, A. J.; Neves, A. C.(Eds): The multiple reciprocity boundary element
method, chapter 6. Computational Mechanics Publications, Southampton, 1994.

Ozgener, B. (1998): A boundary integral equation for boundary element applica-
tions in multigroup neutron diffusion theory. Annals of Nuclear Energy, vol. 25,
no. 6, pp. 347–357.

Ozgener, B.; Ozgener, H. (2000): Gaussian quadratures for singular integrals
in BEM with applications to the 2D modified Helmholtz equation. Engineering
Analysis with Boundary Elements, vol. 24, no. 3, pp. 259–269.

Pelowitz D.B. (Ed.) (2013): MCNP6 User’s Manual, Ver.1. LA-CP-13-00634,
Los Alamos National Laboratory, 2013.

Purwadi, M. D.; Tsuji, M.; Narita, M.; Itagaki, M. (1997): An application of
the domain decomposition method into the boundary element method for solving



250 Copyright © 2014 Tech Science Press CMES, vol.102, no.3, pp.229-255, 2014

the multi-region neutron diffusion equation. Engineering Analysis with Boundary
Elements, vol. 20, no. 3, pp. 197 – 204.

Purwadi, M. D.; Tsuji, M.; Narita, M.; Itagaki, M. (1998): A hierarchical
domain decomposition boundary element method applied to the multiregion prob-
lems of neutron diffusion equations. Nuclear Science and Engineering, vol. 129,
no. 1, pp. 88–96.

Saad, Y.; Schultz, M. H. (1986): GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems. SIAM Journal of Scientific
and Statistical Computing, vol. 7, no. 3, pp. 856–869.

Smith, M. A.; Lewis, E. E.; Na, B.-C. (2005): Benchmark
on Deterministic Transport Calculations Without Spatial Homogenisation.
NEA/NSC/DOC(2005)16, OECD Nuclear Energy Agency, 2005.

Stacey, W. (2007): Nuclear Reactor Physics. John Wiley & Sons.

Weinberg, A. M.; Wigner, E. P. (1958): The physical theory of neutron chain
reactors. University of Chicago Press.

Appendix A: An introduction to some topics of neutron transport

The linear integrodifferential neutron transport equations (Eq. 51 in the text) is
here rewritten under some simplifying assumptions that do not imply any essential
restriction. Only one energy group is considered (G = 1) and the scattering is
assumed to be isotropic (Σs

(
r,ΩΩΩ,ΩΩΩ′

)
= (1/4π)Σs (r)). Setting Σs f (r) = Σs (r)+

(χ/k)νΣ f (r), Eq. 51 becomes

ΩΩΩ ·∇rφ (r,ΩΩΩ)+Σt (r)φ (r,ΩΩΩ) =
1

4π
Σs f (r)

∫
4π

φ
(
r,ΩΩΩ′

)
dΩ
′, (52)

which can also be written as follows

∇r · (φ (r,ΩΩΩ)ΩΩΩ)+Σt (r)φ (r,ΩΩΩ) =
1

4π
Σs f (r)

∫
4π

φ
(
r,ΩΩΩ′

)
dΩ
′. (53)

Two simple relations are of fundamental importance. The first is that the integral of
the angular flux over the ΩΩΩ directions is the ordinary flux, here denoted by Φ(r):

Φ(r) =
∫

4π

φ (r,ΩΩΩ)dΩ. (54)

The second is concerning the so-called current vector, namely,

J(r) =
∫

4π

φ (r,ΩΩΩ)ΩΩΩdΩ. (55)
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The meaning of the latter quantity is immediate, if we look for e.g. the z-component

Jz (r) =
∫

4π

φ (r,ΩΩΩ)Ωz dΩ =
∫ 2π

0
dϕ

∫
π

0
φ (r,θ ,ϕ)cosθ sinθ dθ , (56)

which represents the net number of the particles crossing a plane orthogonal to the
z-axis per unit area (in the reactor language, the net normal current). If we integrate
only over the ΩΩΩ’s for which ΩΩΩ ·k = cosθ > 0, where k is the unit vector specifying
the direction of the z-axis, we obtain the partial current J+z (r), already encountered
in Sect. 3. Now let us try to work only with the quantities Φ(r) and J(r), with the
purpose of avoiding, as much as possible, the use of the highly refined angular flux.

A first result is obtained by integrating Eq. 53 over the ΩΩΩ directions. By virtue of
Eq. 54 and Eq. 55 we get

∇r ·J(r)+ [Σt (r)−Σs f (r)]Φ(r) = 0, (57)

actually the equation of continuity.

Another equation can be obtained, but only at the price of an important approxi-
mation on the gradient term, namely that the angular flux is practically isotropic:
φ (r,ΩΩΩ)' (1/4π)Φ(r). By multiplying Eq. 52 by ΩΩΩ and again integrating on the
directions (for simplicity we consider the single Ωz component) we have, using
Eq. 56,

1
4π

(
∂

∂x
Φ(r)

∫
4π

ΩxΩz dΩ+
∂

∂y
Φ(r)

∫
4π

ΩyΩz dΩ+
∂

∂ z
Φ(r)

∫
4π

Ω
2
z dΩ

)
+Σt (r)Jz (r) =

1
4π

Σs f (r)Φ(r)
∫

4π

Ωz dΩ. (58)

Obviously,
∫

4π
Ωz dΩ = 0 and

∫
4π

Ω2
z dΩ =

∫
4π

cos2 θ sinθ dθ dϕ = (4π/3), while
the integrals involving the products ΩxΩz and ΩyΩz are all vanishing. Then we
remain with (1/3)∂Φ/∂ z+ΣtJz (r) = 0, i.e.

Jz (r) =−
1

3Σt

∂

∂ z
Φ(r) (59)

and, considering all the components,

J(r) =− 1
3Σt

∇rΦ(r) , (60)

which is the Fick’s law. Note that we have obtained also a prescription for the value
of the diffusion coefficient, i.e. D = (1/3Σt). Substitution of Eq. 60 into Eq. 57
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leads to the diffusion equation, in which the neutron source is represented by the
fission term included in Σs f Φ)

∇r ·D∇rΦ(r)− [Σt (r)−Σs f (r)]Φ(r) = 0. (61)

It can be seen that the last results can be obtained, in a more systematic way, by
expanding φ (r,ΩΩΩ) in spherical harmonics (see for instance Weinberg and Wigner
(1958)) truncated after the second term. The expansion can be performed, however,
up to an order N as high as we want, thus leading, in the limit, to exact solution of
the transport equation. The problem is that the system of differential equations so
obtained becomes rapidly so cumbersome as to be almost intractable, although a
considerable progress has been made since the early days (Fletcher, 1983; Capilla,
Talavera, Ginestar, and Verdú, 2012).

For plane-parallel problems, however, the situation is different. The r variable is
then replaced by the z-variable (say) and the angular flux is only dependent on
z and the angle θ the unit vector ΩΩΩ makes with the z-axis or, equivalently, on
µ = cosθ = Ωz. The transport equation takes the following form:

µ
∂

∂ z
φ (z,µ)+Σt (z)φ (z,µ) =

1
2

Σs f (z)
∫ 1

−1
φ
(
z,µ ′

)
dµ
′, (62)

where the unknowns φ (z,µ) now represents, more precisely, the original angular
flux integrated on the azimuthal angle ϕ , which simply results in a multiplying
factor 2π .

φ (z,µ) can now be expanded in a much less demanding series of Legendre poly-
nomials:

φ (z,µ) =
∞

∑
l=0

2l +1
2

φl (z)Pl (µ) , (63)

with

φl (z) =
∫ 1

−1
φ (z,µ)Pl (µ)dµ. (64)

In particular,

φ0 (z) =
∫ 1

−1
φ (z,µ)P0 (µ)dµ =

∫ 1

−1
φ (z,µ)dµ = Φ(z) (65)

φ1 (z) =
∫ 1

−1
φ (z,µ)P1 (µ)dµ =

∫ 1

−1
φ (z,µ)µ dµ

=
∫ 1

−1
φ (z,µ)Ωz dµ = Jz (z)≡ J (z) , (66)
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as expected (the suffix z in Jz has been suppressed). We now substitute the expan-
sion in Eq. 62 and, making use of the recurrence formula for the Legendre polyno-
mials, we replace the µPl (µ) factor occurring in the term containing the derivative
dφl/dz by a linear combination of Pl+1 (µ) and Pl−1 (µ):

µPl (µ) =
l +1
2l +1

Pl+1 (µ)+
l

2l +1
Pl−1 (µ) . (67)

The whole equation is then multiplied by Pn (µ) and integrated on [−1,1]. Using
the orthogonality of the polynomials, the following infinite system of first order
linear differential equation is obtained:

n
2n+1

d
dz

φn−1 +
n+1
2n+1

d
dz

φn+1 +Σt (z)φn = Σs f (z)φ0δ0n (n = 0,1,2, . . .) (68)

where δ0n is the Kronecker delta.

To solve this system it is obviously necessary to replace the infinite series, Eq. 63,
by a finite sum, retaining only the terms up to l = N, say, which corresponds to the
so called PN approximation. The derivative dφN+1/dz in Eq. 68 is also set equal to
zero and the infinite recurrence implied in the system is therefore stopped. The first
two levels of approximation are here of interest.

P1 approximation. For N = 1 we have

φ (z,µ) =
1
2

φ0 (z)+
3
2

φ1 (z)µ (69)

and the differential equations are

d
dz

φ1 (z)+Σt (z)φ0 (z) = Σs f (z)φ0 (z) (70)

1
3

d
dz

φ0 (z)+Σt (z)φ1 (z) = 0, (71)

while φ2 and dφ2/dz are suppressed. By substitution, one obtains the one-dimensional
diffusion equation

d
dz

(
D(z)

d
dz

Φ(z)
)
+[Σt (z)−Σs f (z)]Φ(z) = 0, (72)

with D = 1/3Σt . Another result follows from a direct application of Eq. 69 to
Eq. 56. We have, with obvious, slightly modified symbols,

J+ =
∫ 1

0
φ (z,µ)µ dµ =

∫ 1

0

[
1
2

φ0 (z)+
3
2

φ1 (z)µ

]
µ dµ

=
1
4

φ0 (z)+
1
2

φ1 (z) =
1
4

Φ(z)− D
2

d
dz

Φ(z) (73)
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(φ1 = J is derived from Eq. 71), a result that has been used in Sect. 3 for the partial
currents.

P3 approximation. The differential equations are:

dφ1

dz
+(Σt −Σs f )φ0 = 0

1
3

dφ0

dz
+

2
3

dφ2

dz
+Σtφ1 = 0

2
5

dφ1

dz
+

3
5

dφ3

dz
+Σtφ2 = 0

3
7

dφ2

dz
+Σtφ3 = 0. (74)

Next, we set φ̃0 = φ0 + 2φ2, φ̃2 = φ2, while the remaining unknowns φ1 and φ3
remain as they stand. The equations become

dφ1

dz
+(Σt −Σs f ) φ̃0 = 2(Σt −Σs f ) φ̃2

1
3

dφ̃0

dz
+Σtφ1 = 0

2
5

dφ1

dz
+

3
5

dφ3

dz
+Σt φ̃2 = 0

3
7

dφ̃2

dz
+Σtφ3 = 0. (75)

From the second and fourth equations we get

φ1 =−
1

3Σt

dφ̃0

dz
(76)

φ3 =−
3

7Σt

dφ̃2

dz
. (77)

Substituting into the first and third and equations we readily obtain a couple of
diffusion-like differential equations in terms of φ̃0 and φ̃2 only:

d
dz

(
1

3Σt

dφ̃0

dz

)
− (Σt −Σs f ) φ̃0 +2(Σt −Σs f ) φ̃2 = 0

d
dz

(
9

35Σt

dφ̃2

dz

)
− 1

5
(9Σt −4Σs f ) φ̃2 +

2
5
(Σt −Σs f ) φ̃0 = 0. (78)

The Simplified Spherical Harmonics method (SPN) consists in using, even for
the 2D and 3D problems, the same structure of the PN equations as for the one-
dimensional case, as given by Eqs. 74 to 78, and introducing the following device
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(we take for simplicity N = 3): the unknowns φ1 (z) and φ3 (z) are first transformed
into vectors, φφφ 1 (r) and φφφ 3 (r), say, (see Eqs. 76 and 77, which have the form of
the Fick’s law), then the d/dz derivative is replaced by a divergence, if applied to
vectors, and by a gradient, if applied to scalars (i.e. to φ̃0 (r) and φ̃2 (r)). It is then
easy to extend the above one-dimensional procedure and arrive to the following,
diffusion-like, SP3 equations

∇ ·
(
D̃0∇φ̃0

)
− (Σt −Σs f ) φ̃0 +2(Σt −Σs f ) φ̃2 = 0 (79)

∇ ·
(
D̃2∇φ̃2

)
− 1

5
(9Σt −4Σs f ) φ̃2 +

2
5
(Σt −Σs f ) φ̃0 = 0, (80)

with D̃0 = 1/3Σt , D̃2 = 9/35Σt . This audacious trick, due to Gelbard (1960), got a
great success. As a method half-way between diffusion and transport, is going to
become the up-to-date technique for the calculation of reactor cores or large regions
of them. However, SPN is intrinsically approximate and, differently from PN , the
error of the SPN solution does not tend to zero as N→ ∞.




