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Abstract— Spiral resonators are one of the most common 

typology of resonant magnetic unit cell for the realization of 

metamaterials. The precise knowledge of their lumped electric 

properties (RLC parameters) is of crucial importance in the 

metamaterial design. Thus, an accurate and unambiguous 

procedure for estimating the value of the RLC lumped 

parameters of compact spiral resonators is introduced. The 

proposed procedure relies on a rigorous approach allowing a 

complete characterization of spiral resonators also in terms of Q-

factor. The method is general and valid for other shapes of 

resonators. The estimations have been finally verified by 

performing measurements on fabricated spiral resonators 

through a magnetic probe. 

Index Terms— Metamaterial, resonant frequency, scattering 

parameters, spiral resonators, unit cell. 

I. INTRODUCTION 

ETAMATERIALS are nowadays a consolidated 

branch of electromagnetic research and they are aimed 

at providing a novel class of artificial engineered materials 

able to show anomalous properties, not present in natural 

materials. Metamaterials can provide negative values of 

complex dielectric permittivity and magnetic permeability 

[1]–[4]. These properties are achieved over a narrow 

frequency bands and they are due to resonant behavior of 

miniaturized resonators [5], [6]. Because of the small 

footprint of the elementary resonators compared to the 

wavelength, various homogenization approaches [7]–[10] 

have been proposed to interpret these particles or array of 

particles as bulk material with negative permittivity or 

permeability values. Various resonators shapes have been 

proposed in the literature to extremely stress the 

miniaturization of the particle with respect to the operating 
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wavelength [11]–[13]. Among this broad class of materials, 

Spiral Resonators (SRs) have demonstrated their ability to 

provide a high level of miniaturization and they have been 

extensively used as metamaterial unit cell or as decoupling 

distributed filter in array applications [14]–[16]. Moreover, 

SRs have been recently employed also in the fast-growing 

field of the energy harvesting, because of their property to 

act as an inductive tank circuit able to store energy coming 

from the environmental electromagnetic pollution [17]–[19]. 

A key aspect in the design of a spiral resonator is to derive 

an accurate equivalent circuit representation of the 

miniaturized inclusion thus avoiding long and time-

consuming electromagnetic simulations. A number of works 

in literature reports helpful analytical model of passive spiral 

resonators (SRs) [5], [20]–[22]. The SR is usually modelled 

as a RLC series resonator and the values of the L and C 

parameters are derived starting from classical electrostatic 

considerations [5]. Such models revealed themselves able to 

provide a correct estimation of the resonance frequency 

compared to simulations [5] and measurements [22]. The 

experimental verification of the resonance frequency is 

usually carried out by employing two monopoles closely 

located to the resonator [22]. However, a rigorous 

verification of the values of the estimated L and C 

parameters used to characterize the resonator is not 

available. In particular, a different behavior of the values of 

capacitance and inductance as a function of the number of 

spiral turns have been observed by using different models 

[5], [20], [23] even with a similar estimation of the 

resonance frequency. As it is well known, there exist infinite 

couples of L and C that provide a certain resonance 

frequency for an LC circuit; in this sense, a complete 

characterization is achieved only if the derived L and C 

values are verified against an accurate estimation obtained, 

for instance, from a full-wave simulation [24], [25]. The 

measurement of the resonators with one or two external 

antennas permits only the estimation of the resonance 

frequency since the coupling between the interrogating 

antenna and the passive resonator is unknown.  

As a consequence, a reliable procedure, based on full-wave 

simulations or measured data, which guarantee the accurate 

extraction of the RLC parameters without any ambiguity is 
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certainly missing in the literature. Not only the resonance 

frequency has to be predicted by the RLC parameters, but also 

the behavior of the resonator around the resonance frequency. 

In this sense, the extraction procedure is the new contribution 

of this paper to such important issue.  

The R, L and C parameters of the circuit model are 

obtained by including the RLC series circuit within an 

accurate circuit model of the entire simulation set-up. Once 

that the simulation setup is accurately characterized 

(including the mutual coupling between the interrogating 

antenna and the spiral resonators), the RLC parameters 

remain the sole unknows and they can be precisely and 

unambiguously derived by using a fitting procedure. In this 

way, the actual RLC values as a function of the number of 

turns can also be obtained and interesting considerations 

about the electromagnetic behavior of the spiral resonators 

can be performed, including a proper estimation of the Q-

factor. Our approach is completely general, and it allows 

analyzing any shape of resonators, unlike the fully-analytical 

works developed in the literature, in most cases suitable only 

for particular spiral resonators.   

The paper is organized as follows. Section II is focused on 

the description of the simulation setup used to estimate the 

lumped RLC parameters of the spiral resonators. Some 

results in terms of extraction of RLC parameters for different 

resonators are reported in Section III. In Section IV, we 

develop some physical considerations about the obtained 

characterization results. The attention is posed on the 

behavior of L and C values as a function of the number of 

turns. Finally, in Section V, measured results aimed at 

verifying the correct estimation of the resonance frequency 

and of the equivalent RLC circuit of the spiral resonators 

with our simulation set-up are presented. Conclusions 

follow. 

II. PROCEDURE FOR THE ESTIMATION OF RLC PARAMETERS OF 

THE SPIRAL RESONATOR 

The goal of the paper is to introduce a reliable extraction 

procedure for RLC parameters of a resonant magnetic 

inclusion as a spiral resonator. A lumped model with constant 

parameter values describes correctly the SR behavior 

especially in the proximity of its resonance point, which is the 

region of utmost importance in order to design metamaterials. 

The estimation of the R, L, C parameters of the spiral 

resonator is performed by using the simulation set-up depicted 

in Fig. 1a. It consists of the probe loop and the spiral resonator 

(SR) under test.  The probe loop is non-resonating and fed by 

coaxial cable.  The SR is placed at the center of the probe 

loop. The simulation setup shown in Fig. 1a is schematized by 

the equivalent circuit proposed in Fig. 1c [26], [27]. The 

external probe loop is represented by the Rloop and Lloop due to 

its inductive nature. The SR is represented by the RLC series 

circuit on the right-hand part. The coupling coefficient MloopSR 

takes into account the mutual coupling between the two 

circuits. A block diagram of the proposed procedure is 

reported in Fig. 2. The characterization process of the loop 

resonator starts with a full-wave simulation (or measurement) 

of the S11 of the probe loop standalone. The simulations, in our 

case, has been performed through CST Studio Suite (CST 

Computer Simulation Technology AG, Darmstadt, Germany). 

Once calculated the S11 of the probe, the input impedance, Z11, 

is straightforwardly computed. At this point the parameters 

Rloop, Lloop as a function of frequency are computed. This step is 

required in order to completely characterize the simulation set-

up, leaving the SR’s RLC parameters as the unique unknowns.  

The SR under test is therefore placed centered with respect to 

the probe loop and the mutual impedance MloopSR value must 

be determined.  

The mutual impedance value MloopSR quantifies the 

amplitude of the inductive coupling between the two elements. 

This parameter can be estimated through a magneto-static 

approach [28], once the geometrical parameters of the set-up 

are known. 

Indeed, under quasi-static hypothesis, it is possible to apply 

Biot-Savart formulation to estimate the mutual coupling 

between two generic coils. This assumption is substantiated by 

the small dimension of the set-up with respect to the 

wavelength and its geometrical properties. The typical 

dimension of the considered spiral resonators is around 1 cm 

whereas the wavelength at 300 MHz (in the middle of the 

chosen frequency span) is equal to 1 m in the vacuum. 

Considering a quasi-static assumption valid until the resonator 

is smaller than one tenth of the applied wavelength, we can set 

an upper bound for our hypothesis at around 3 GHz. 

Thus, the magnetic field produced by a generic current path 

at a generic point can be expressed as: 

   
'

0

3
'

( )
4

Idl r
B r

r

 
=

   () 

where 
0 (H/m) is the magnetic permeability of the 

vacuum, I (A) is the current amplitude flowing in the path, 

dl (m) is an infinitesimal element of the current path and 

'r (m) is the distance between a generic point of the space 

and the infinitesimal element dl .  

The mutual coupling coefficient between a generic coil j and 

a coil i is defined as the magnetic flux ( ij ) through the coil j 

induced by the current flowing in the coil i: 

 ij

ij

i

M
I


=  () 

Afterwards, supposing a unit current in the coil i (
iI ), the 

mutual coefficient 
ijM  is simply the flux of the magnetic field 

analytically calculated from (1) through the surface of the coil 

j.  

In this way, given the geometrical properties of the two 

elements constituting the system, we can numerically set a unit 

current flowing in one of the two coils and evaluate the 

inductive mutual coupling on the remaining one. Obviously, it  
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Fig. 1. (a) CAD model of the adopted simulation set-up (CST Studio Suite, 

Darmstadt). (b) Representation of a generic spiral resonator (drawing is not in 

scale). (c) Equivalent lumped circuit for inductively coupled spiral resonator 

and probe loop. 
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Fig. 2. Block diagram of the proposed retrieving method. 

 

is also valid that 
ij jiM M= . Thus, a value of the mutual 

coefficient expressed in nH can be obtained. 

At this point, the only unknown parameters in the model of 

Fig. 1c are the RLC parameters of the spiral resonator. 

In order to find the most suitable values of the RLC circuit, 

we implemented in a computer code the lumped circuit of Fig. 

1c; therefore, it was possible to evaluate the Z11 parameter 

according to the lumped elements values: 

 
( )11( ) 1SR SR SR loopSR

loopSR loop loop loopSR

Z R j L j C j M

j M R j L j M

 = +  +  − 


 + +  − 

 () 

Since Rloop, Lloop and MloopSR parameters are known, (3) is a 

function of the SR’s lumped electric parameters only.  

At this point, we compare the Z11 obtained from full-wave 

simulations (i.e. 
11CST

Z  in (4)) with the Z11 expressed in (3) (i.e. 

11Fitting
Z ). Among all the infinite combinations of RLC 

parameters for the spiral resonator producing a resonance at 

the frequency estimated by the full-wave software, there will 

be one that better fits the simulated Z11; in particular, a mean 

root square cost function has been chosen: 
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As previously stated, the resonant frequency fres of the spiral 

resonator can be easily detected from the full wave simulation. 

As the resonant properties of the spiral resonator are only 

dependent on its L and C values, we choose the best fitting LC 

couple satisfying the following relation: 

   
1

2
resf

LC
=  () 

On the other hand, the resistance term R influences the Q-

factor of the spiral resonator and it is spanned in the fitting 

procedure independently from the L and C values. 

In order to obtain physically meaningful initial seeds for the 

fitting procedure, we apply the method presented in [29]. By 

exploiting the model described in (3), we carried out a de-

embedding procedure on the simulated 
11CST

Z  in order to get 

the RLC parameters of the spiral. From (3), the de-embedded 

parameters can be calculated as: 
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The real part of this function evaluated at the resonant 

frequency gives the initial seed for the resistance. 
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On the other hand, the half of the derivative of the 

imaginary component of (6) (i.e., LC series), always evaluated 

at the resonant frequency, gives the initial seed for L.  

 

  

( )
2

11

1
1

2

1

2 ( ) ( )

seed

res

res

SR SR SR SR

loopSR

loop

L R j L j C

j M

Z Z

 

 

=

=


=  +  +  =



  −    
=   

  −     
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The initial seed for C simply follows from (5). 

In this way, we can obtain the combination of RLC 

parameters that better fits the full-wave simulation, thus 

providing an unambiguous characterization of the SR under 

test. 

III. NUMERICAL RESULTS 

We performed a series of tests of the proposed fitting 

procedure in order to characterize the behavior of different 

spiral resonators (SRs) as a function of the number of turns. 
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(a) (c) 

  
(b) (d) 

Fig. 3. Impedance of the loop (i.e. the larger magnetic probe) without the spiral resonator: (a) Real part, (b) Imaginary part. Impedance of the probing loop 

coupled with one of the spiral resonators (N=6, lx=13.7 mm, ly=6.7 mm) with the fitting obtained by using the lumped equivalent circuit in Fig. 1c: (c) Real part, 

(d) Imaginary part. It can be noted that the resonant frequency of the spiral resonator is easily detectable from the full-wave simulation. 

 
TABLE I 

ANALYZED SPIRAL RESONATORS WITH OUR FITTING PROCEDURE 

Shape N w = s (mm) lx (mm) ly (mm) 

Rectangular [3, 4, 5, 6, 7, 8, 9, 

10, 11, 12, 13] 

0.127 13.7 6.7 

Square [3, 5, 7, 9, 11, 13] 0.127 6.7 6.7 

 

In particular, we selected the meaningful cases summarized 

in Table I. They consisted in two different shapes for spiral 

resonators (square and rectangular, respectively) and we 

computed the R, L and C with respect to the number of turns 

N. 

The probe loop was non-resonant, and it was not loaded 

with any reactive loads. The loop was made of copper and it 

was etched on a 0.8 mm thick FR4 substrate 

( 4.3r = , tan 0.025 = ). As a first step, we characterized the 

probe loop standalone in order to obtain its proper self-

impedance (Fig. 1a). For the case of the larger rectangular 

spiral resonator, it consisted in a loop of 5 cm diameter, with a 

strip width of 2 mm. The frequency span was set between 50 

and 500 MHz. On the other hand, we selected a smaller probe 

loop for the square resonator (2 cm diameter), in order to 

enhance the mutual coupling between the probe and the spiral 

(whose area is smaller with respect to the rectangular one), 

spanning the spectrum between 250 MHz and 1 GHz. The 

behavior of this probe loop was similar to the case of the larger 

probe but shifted in frequency. In order to clarify the effect of 

the spiral resonator placed in the middle of the probe loop, we 

reported in Fig. 3 both the impedance of the unloaded probe 

(real and imaginary part) and its impedance loaded with a 

spiral resonator with the following parameters: N=6, lx=13.7 

mm, ly=6.7 mm. A similar behavior is observed for other  

 

resonators with different dimensions. As expected, the real 

component of the impedance of the probe loop increases with 

the frequency, due to the more pronounced skin effect (Fig. 

3a). In the same way, we can see that the imaginary component 

is totally inductive (Fig. 3b), as predictable, because we added 

no reactive load to the probe. Thus, we concluded that the 

probe loop is effectively representable as a Rloop, Lloop 

equivalent circuit. 

In general, a spiral resonator can be defined as a N-turns 

planar spiral, presenting different shapes, strip width (s) and 

gap between strips (w) (Fig. 1b). For simplicity, we selected 

these two parameters as equal in our tests. 

In Fig. 3 (c and d) we reported the real and imaginary 

components of the impedance of the probe loop inductively 

coupled with the rectangular spiral resonator (N=6 turns, 

lateral dimensions of lx=13.7 mm and ly=6.7 mm). As it is 

apparent, both the real and the imaginary components of the 

Z11 were well fitted by the proposed procedure, with an almost 

perfect overlap between the simulated and the fitted curves. 

This confirmed the validity of the employed circuit model for 

the probe-spiral resonator system. 

The spiral resonators were made of copper and etched on an 

0.8 mm thick Arlon substrate ( 3.58r = , tan 0.0035 = ). This 

substrate is small compared to the probe substrate, and it is 

placed, centered, on the top of the probe loop.  

Once that the geometrical properties of the system are 

known (probe loop and the particular spiral resonator under 

test), as described in the previous Section, it was possible to 

apply Biot-Savart approximation in order to evaluate the 

mutual coupling. It must be noted, as shown in Fig. 4, that the 

estimated mutual coupling coefficients correctly increase with 

the number of turns of the spirals. Indeed, each turn added to  
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Fig. 4. Mutual impedance between the considered rectangular spiral 

resonators (aspect ratio: 2.04) and the larger probe loop (solid line); Mutual 

impedance between the considered square spiral resonators and the smaller 

probe loop (dashed line). 

 
(a) 

 
(b) 

 
(c) 

Fig. 5. Impedance of the spiral resonators (rectangular and square) obtained 

from the fitting when the number of turns increases: (a) Resistance, (b) 

Inductance, (c) Capacitance. 

 

the spiral resonator increases the area available for the 

linkage of the magnetic field produced by the fed probe loop. 

At this point, the only undetermined unknowns remained the 

RLC parameters of the specific SR under test. By using a 

specifically designed Matlab algorithm, the RLC parameters 

were derived, according to (3) and (4), for each spiral 

configuration reported in Table I. We exploited the initial RLC 

seeds derived according (7) and (8). 

As already stated, it is interesting at this point to evaluate 

the behavior of the R, L and C of the spiral resonator as a 

function of the number of turns when the external dimensions 

of the spiral are fixed. Fig. 5 shows the behavior of the RLC  

 
Fig. 6. Q-factor behavior of the spiral resonators (rectangular and square) with 

the increasing number of turns. 

TABLE II 

ANALYZED RECTANGULAR SPIRAL RESONATORS WITH OUR FITTING PROCEDURE 

N R (Ω) L (nH) C (pF) Q-factor 
R seed 

(Ω) 

L seed 

(nH) 

3 1.2 45 2.266 117.4 1.2 45 

4 4.5 217 0.782 117.1 4.5 217 

5 8.0 442 0.515 115.8 7.9 443 

6 10.8 739 0.398 126.2 10.6 744 

7 14.8 1124 0.312 128.3 14.8 1129 

8 18.9 1477 0.272 123.3 18.8 1491 

9 24.9 1924 0.231 116.3 24.2 1928 

10 30.1 2368 0.200 114.3 29.9 2392 

11 37.1 2909 0.171 110.8 36.9 2929 

12 38.4 2997 0.170 109.1 38.3 2994 

13 41.0 3139 0.165 106.1 40.8 3132 

 
TABLE III 

ANALYZED SQUARED SPIRAL RESONATORS WITH OUR FITTING PROCEDURE 

N R (Ω) L (nH) C (pF) Q-factor 
R seed 

(Ω) 

L seed 

(nH) 

3 2.0 47 0.800 121.8 1.9 48 

5 8.4 299 0.254 128.5 8.3 310 

7 17.2 685 0.152 123.6 16.9 689 

9 29.0 1176 0.101 117.4 28.6 1187 

11 42.5 1703 0.073 113.5 42.3 1705 

13 57.4 2278 0.055 112.1 56.9 2267 

 

parameters for the previously fitted spirals (rectangular and 

square) when the number of turns spanned as described in 

Table I. Once computed the actual RLC parameters, it is also 

possible to derive the Q-factor of the spiral resonator, which is 

important for correctly describing the selectivity of the 

resonance. 

Q-factor can be typically described as [30]: 

 
1res L L

Q
R R C


= =  () 

where ωres is the resonant frequency whereas R, L, C are the 

extracted electrical lumped parameters of the considered spiral 

resonator. As shown in Fig. 6, the Q-factor for the rectangular 

SR increases as a function of the number of turns up to a 

particular value, when it starts to diminish. The same analysis 

was performed also for the square spiral resonator. The results 

of the estimated lumped RLC parameters and the Q-factor are 

finally summarized in Table II and Table III, along with the 
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comparison with the initial seeds estimated from the de-

embedded simulated impedance of each spiral resonators. 

IV. PHYSICAL CONSIDERATIONS ON EXTRACTED PARAMETERS 

The results obtained through the fitting procedure are well 

suited for a physical interpretation. 

First of all, it can be seen from Fig. 5 that the resistance 

term increases almost linearly with the increase of the turns. 

This effect is expected because each turn added to the spiral 

resonator raises the total copper length and, thus, the losses in 

the spiral. In the same way, the inductance presents an 

approximately quadratic behavior with the number of turns 

which is meaningful for spiral-shaped object [31]–[34]. 

More importantly, the behavior of the inductance (as well as 

the resistance) of the spiral resonators show a saturation with 

the increase of the number of turns; this can be easily 

explained by the increasing filling factor of the spiral area (i.e. 

each added turn becomes smaller than the previous) that is 

more evident for the rectangular spiral rather than for the 

square shape. This result is opposite to that presented by [22], 

[5]; the fully analytical model therein developed presents an 

inductance that decreases with the increase of the number of 

turns. However, our fitting procedure demonstrated an 

opposite behavior, which is in accordance with the classical 

physical background of the phenomenon. 

Moreover, the behavior of the retrieved capacitance is 

clearly decreasing with the number of turns. Such behavior is 

compatible with a distributed capacitance obtained by the 

summation of capacitors in series. Again, our result is opposite 

to what developed in the literature through only analytical 

formulation [22], [5]. 

Finally, Fig. 6 describes the Q-factor of the considered 

spiral resonator with the increase of the number of turns. As it 

can be observed, there is a particular value of the number of 

turns, which brings to the maximum of the Q-factor. This is 

due to the simultaneous behavior of the resistance and the 

inductance of the spiral resonator (see (9)). When the number 

of turns is raising beyond a certain value, the total losses 

introduced in the spiral become predominant over the 

inductance increase. Such information is very important from a 

design point of view [35], [36], especially when the selectivity 

of the SR’s resonance is a fundamental feature to obtain. It is 

finally worth to underline that our proposed procedure takes 

into account the presence of dielectrics by incorporating the 

effect on the losses and the distributed capacitance of its 

presence inside the extracted parameters. 

V. EXPERIMENTAL RESULTS 

We performed also experimental tests on fabricated spiral 

resonators: three different rectangular spirals and one square 

spiral resonator. A summary of the four investigated structures 

is shown in Fig. 7. The geometrical properties are reported in 

Table IV. The chosen dielectric substrate is a 0.8 mm thick 

Arlon substrate ( 3.58r = , tan 0.0035 = ). 

 
Fig. 7. Spiral resonators numerical 3D CAD model: (a) Rectangular N=4; (b) 

Rectangular N=5; (c) Rectangular N=6; (d) Square N=11. 

TABLE IV 

PROPERTIES OF THE SPIRAL RESONATORS IN FIG. 7; SIMULATED AND MEASURED 

RESONANCE FREQUENCIES ARE SHOWN FOR COMPARISON 

N 
w = s 

(mm) 
lx (mm) ly (mm) 

fsim 

(MHz) 

fmeas 

(MHz) 

Relative 

error 

(%) 

4 0.127 13.7 6.7 386.8 378 2.3% 

5 0.127 13.7 6.7 334 327 2.1% 

6 0.127 13.7 6.7 293.6 289 1.6% 

11 0.127 6.7 6.7 453 442 2.4% 

 

In order to test the spiral resonators, we fabricated also a 

probe loop characterized by the same dimensions as in 

Section III. The testing setup is shown in Fig. 8. We 

exploited the mutual coupling between the small non-

resonating probe loop and the passive spiral unit cell to be 

measured. 

The spiral resonator was accommodated exactly in the 

center of the probe loop. The loop was connected to the 

Vector Network Analyzer (Keysight E5071C-ENA) through 

a RF cable with a 50-Ω SMA connector. The resonant 

frequencies of the four investigated spiral resonators have 

been obtained by identifying the local minimum in the S11 of 

the probe. Table IV reports the measured resonant 

frequencies of all the four investigated spiral resonators. We 

observed a very good agreement between the full-wave 

numerical result of the resonant frequency (fsim) and the 

measured frequency (fmeas) with the proposed method. The 

relative error between the measurements and numerical 

simulations was always less than 3% for the considered 

spiral resonators samples, demonstrating the effectiveness of 

our approach. Analogously as in previous sections, also the 

measured S11 could be used to quantify the RLC parameters 

of the spiral resonators in addition to the resonant frequency. 

We replicated the procedure followed for the full-wave 

simulations for the three rectangular spirals. The lumped 

parameters estimated through the fitting procedure (Table V) 

show the same trend obtained with the simulations when the 

number of turns increases (i.e. R and L increasing and C 

decreasing). In particular, Fig. 9 shows one of the 

reconstructed S11 parameter starting from the experimentally 

extracted lumped RLC parameters (N=6, lx=13.7 mm, ly=6.7 

mm). In addition, the figure reports also the de-embedded 

spiral impedance, fitted with our procedure.  
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Fig. 8. Testing setup for the measurement of the resonance frequency and the 

impedance of the spiral resonator.  

 
(a) 

 
(b) 

 
(c) 

Fig. 9. (a) Comparison between measured S11 of the larger probing loop with 

and without the rectangular spiral resonator (N = 6, lx = 13.7 mm, ly = 6.7 

mm) inside and S11 reconstructed from the RLC parameters estimations 

(fitting); (b) and (c): Real and imaginary de-embedded measured spiral 

impedance and relative fitting results. 

 
TABLE V 

OBTAINED LUMPED PARAMETERS OF RECTANGULAR SPIRAL RESONATORS: 

MEASUREMENTS (SIMULATIONS) 

N R (Ω) L (nH) C (pF) Q-factor 

4 7.3 (4.5) 142 (217) 1.251 (0.782) 46.2 (117.1) 

5 15.9 (8.0) 404 (442) 0.587 (0.515) 52.2 (115.8) 

6 21.6 (10.8) 910 (739) 0.334 (0.398) 76.5 (126.2) 

 

Finally, it must be pointed out that we observed some 

variations of the RLC experimental values with respect to the 

full wave simulations; this can be addressed to the 

difficulties to realize a stable measurement environment 

(presence of losses and distortions). One direct effect of the 

fabrication of the prototype was the increase of the losses, 

due to soldering artifacts and connections. Moreover, the 

etching process can produce a pitting phenomenon, 

especially for extremely small width copper track as in this 

case, thus increasing the overall resistance of the path. 

VI. CONCLUSION 

A novel accurate procedure for the extraction of the RLC 

parameters representing an isolated metamaterial spiral 

resonator has been introduced. We employed an experimental 

set-up consisting of a probe loop mutually coupled to the spiral 

resonator under test, which has been schematized through a 

suitable equivalent circuit topology. We firstly characterized 

the electromagnetic behavior of the stand-alone probe loop; 

then, following a magneto-static approach, we evaluated the 

mutual coupling coefficient existing between the probe and the 

spiral resonator under test. Finally, after a numerical 

simulation of the complete system, we extracted the Z11 of the 

probe loop inductively coupled to the spiral resonator and we 

analytically matched the simulated impedance to the one of the 

lumped equivalent circuit, to retrieve RLC parameters of the 

spiral resonator. In this way, we obtained an accurate and 

unambiguous description of the electromagnetic properties of 

the spiral resonator. We also studied the variation of the RLC 

parameters and the Q-factor as a function of the shape (square 

or rectangular) and for different number of turns. We 

discussed the obtained results in terms of their physical 

meaning and we showed that a different behavior with respect 

to some popular models available in the literature has been 

observed. Finally, we performed measurements of some spiral 

resonators’ shapes, by using a fabricated probe loop. The 

measured resonant frequencies of SRs are in good agreement 

with numerical simulation (relative error less than 3%). We 

also accomplished the RLC parameters extraction from the 

measurements, obtaining a good correspondence with respect 

to the full-wave simulations, showing the consistency of our 

approach. 

It must be worth noting that the developed procedure is 

completely general and can be applied to any typology of 

resonator, allowing a deeper understand and a more effective 

design of metamaterials. 
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