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Abstract In the recent literature a growing number of research papers have been dedicated to apply
the techniques of global stability and sensitivity analysis to the design of flow controls. The controls
that are designed in this way are mainly passive or open-loop controls. Among those, we consider here
controls that are aimed at linearly stabilizing flow configurations which would be otherwise globally
unstable. In particular, a review of the literature on flow controls designed on the basis of stability
and sensitivity analysis is presented. The mentioned methods can be rigorously applied to relatively
simple flow regimes, typically observed at low values of the Reynolds number. In this respect, the recent
literature also demonstrates a large interest in the application of the same methods for the control of
coherent large-scale flow structures in turbulent flows, as for instance the quasi periodic shedding of
vortices in turbulent wakes. The papers dedicated to this subject are also reviewed here. Finally, all
the described methods imply the solution of eigenvalue problems which are at the state-of-the-art for
computational complexity. On one hand, there are attempts to reduce the complexity of the involved
computational problems by applying local stability analysis, and some examples are illustrated. On the
other hand, recent advances in numerical methods, also concisely reviewed here, allow the manipulation
of large eigenvalue problems and greatly simplify the development of numerical tools for stability and
sensitivity analysis of complex flow models, often built using existing fluid-dynamics codes.

Keywords Flow control · Global stability analysis · sensitivity analysis · adjoint methods

1 Introduction

Flow control is an important subject from both the scientific and the engineering points of view,
and therefore it is widely treated in the literature (see for instance [67,17,86,32,28]); the same is
true for hydrodynamic stability (see for instance [147,33,148,166,64,149]). The two fields are strongly
interconnected. Indeed, control is often designed in order to stabilize flow configurations that would
be otherwise unstable, so that control design and/or verification heavily relies on stability analysis.
The interest of the scientific community in control design based on linear stability analysis is testified
by a continuously growing number of dedicated review papers (see, for instance, [10,157,9,8]). Among
those, [157] is the closest one to the subjects covered by the present review, and for this reason we will
often refer to that work.

Clearly, the class of flow controls designed using stability analysis is far too wide to be covered in
a single review paper. For this reason, the present review focuses on a definitely smaller subclass of
controls. We consider here controls that are designed to stabilize flow configurations which would be
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unstable in the uncontrolled system. The target configurations considered here are globally unstable
flows, which are characterized by an intrinsic self-sustained dynamics that can be observed also in the
absence of external noise or of other sources of excitation. The review focuses on cases in which the
design of the control completely relies on the results of a linear stability analysis of the flow and of the
sensitivity analysis of the identified instabilities to a generic variation of the free control parameters.
In the reviewed examples the sensitivity analysis is carried out systematically by adjoint methods.
The word ”inspired” has been added in the title because, as will be shown, several reviewed works
provide detailed information to design a generic flow control but they do not implement or test any
specific control design. With the exception of a few examples, we focus on passive controls of globally
unstable flows. Passive controls do not employ actuators or sensors, and they are implemented by
modifications which do not need any energy supply to work, as happens for instance when a control
body is introduced in the flow. Conversely, open-loop active controls employ actuators which need
an energy supply, as for instance blowing or suction over a permeable surface, and their action is
independent of the behavior of the flow, since sensors are not employed. A few examples of open-loop
controls are also considered here. Thus, the main part of the present review is dedicated to introducing
the methods and the strategies to perform a sensitivity analysis of a global instability to a generic
variation of the free control parameters. Subsequently, the different kinds of perturbations usually
considered in the literature are illustrated, and it is shown how to use the results of this analysis to
design a control which stabilizes a considered instability. This part of the work is strongly based on
global stability analysis, which implies the solution of large eigenvalue problems, with computational
costs that easily become prohibitive for three-dimensional configurations. In order to reduce the size
of the associated eigenvalue problems, global instabilities are sometimes investigated by means of local
stability analysis and dedicated asymptotic methods. For this reason a section is dedicated to reviewing
examples of control of globally unstable flows designed on the basis of local stability analysis.

The methods described above are usually rigorously applicable only at very low values of the
Reynolds number, which are generally far from practical applications except for particular cases, as
for instance in micro-fluidics. However, in the recent literature there is a growing number of works
dedicated to extending the above mentioned tools for control design to flows at the high Reynolds
numbers typical of engineering applications. As an example, this is possible in turbulent flows that are
characterized by large-scale vortical structures, as it happens in the wakes past bluff bodies. Due to
the great practical importance of such methods and to the attention of the scientific community to this
kind of applications, a part of the present paper is devoted to review the recent literature on global
stability analysis and control based on mean flow fields of a turbulent flow.

Finally, as highlighted above, stability analysis implies the solution of eigenvalue problems whose
complexity is at the state-of-the-art for 3D flow configurations. Thus, advanced numerical methods
play a key role in the development of the methods considered here. For this reason, a quick overview
of the most recent works in the literature on numerical methods for stability and sensitivity analysis
is also reported, referring to [166] for a detailed review of the works published before 2011.

For the sake of brevity, we omit to systematically review examples of closed-loop control (i.e.
controls employing sensors and actuators) of globally and, especially, of convectively unstable flows,
which is a widely considered subject in the recent literature. For this specific subject we refer to the
reviews in [10,157,9], where it is shown that for such cases the controls are usually designed by applying
classical control techniques to reduced-order models mimicking the linearized dynamics of the systems
to be controlled. Reduced-order models are necessary because the size of the discretized flow equations
is generally far larger than what can be managed computationally by straightforward application of
classical methods in control theory, although a few exceptions exist in which the use of a reduced-order
model is bypassed (see, for instance, [137,150]). We suggest to integrate the above-cited reviews with
more recent works on reduced-order modeling aimed at flow control of linearly unstable flows (see, for
instance, [100,13,45,46,162,72,44,36]).

Before entering in more details on the specific class of controls considered in the present review,
we dedicate the next section to introducing concepts, definitions and nomenclature, with the objective
of making the paper as self-contained as possible and of rendering it accessible to the fluid mechanics
community in general, and not only to specialists in the field of hydrodynamic stability.
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2 Generalities on hydrodynamic stability

Hydrodynamic stability studies the behavior of a flow when disturbances are introduced in it. If the
flow is initially in a precise configuration, which is often a steady one but it can be a time-periodic
state as well, and it eventually returns to the initial configuration after the introduction of a generic
disturbance, the configuration is defined as a stable one. This concept can be formalized by monitoring
the energy of the disturbance in time, E(t). If E(t) vanishes monotonically in time, whatever the
initial energy E0 = E(0) is, the flow is monotonically stable. If E(t) vanishes asymptotically but not
monotonically in time the flow is globally stable. If E(t) vanishes asymptotically in time provided
that E0 < δ0, δ0 being an energy threshold, the flow is conditionally stable. Finally, if at least one
infinitesimal disturbance exists which is unstable, the flow is linearly unstable. (see for instance [75,
147] for more details).

We consider here flow controls that are designed to stabilize a target configuration that is an
unstable solution of the flow equations. To this purpose, tools are needed in order to characterize
the stability of a flow configuration (see [147]). The monotonic, global and conditional stability are
very difficult to be characterized because of the role of non-linearities, and most of the results are
available for very simple flow configurations. For instance, generalized energy methods can be used
to identify conditional stability but applications are limited to extremely reduced-order models (see,
for instance, Refs. [159,41,128,25]). In this respect, techniques exist for systematically formulating
generalized energy (see for instance [30]). Other works attempt to characterize the conditional stability
by an iterative use of direct numerical simulation (DNS) and linear stability analysis, as for instance
for the investigation of secondary instabilities (see, for instance, Refs. [147,37]). Some attempts and
techniques also exist based on the direct use of DNS to explore the conditional stability limits of a flow,
as for instance those based on the identification of edge states (see for instance [50,90]). Finally, we
refer to the review in [84] as an example of a non-linear stability analysis relying on an adjoint-based
optimization approach. At difference with conditional stability, linear stability is a simpler property to
be investigated since it involves linear equations. In this review we focus on control design based on
linear stability analysis.

2.1 Global linear stability analysis

Although most of the reviewed papers deal with incompressible homogeneous Navier-Stokes Equations
(NSE), there are examples in which different models are considered. For this reason we will use here a
more general notation. Let us consider a non-linear evolutive PDE of the following type:

∂q

∂t
= N(q) (1)

where q (x, t) is the solution vector, which is a function of space x and time t, and N is a generic
non-linear differential operator. We assume that proper boundary conditions are provided, depending
on the specific problem. For the sake of simplicity, in the case of the incompressible NSE we consider q
as the divergence-free velocity field, thus avoiding to include the divergence-free constraint directly in
the system of equations, which would be otherwise slightly more complicated than (1). Let us consider
a steady solution of Eq. (1), Qb (i.e. such that N(Qb) = 0, Qb being denoted in the following as the
baseflow of the stability analysis), and the linearized dynamics of a small disturbance q′ superposed
to Qb:

∂q′

∂t
= L (Qb) q′ (2)

where L (Qb) is the linearization of N around Qb

L (Qb) q′ = lim
ε→0

N(Qb + εq′)−N(Qb)

ε
=
∂N(q)

∂q

∣∣∣∣
q=Qb

q′ (3)

The last equality in Eq. (3) generalizes the notation of partial derivative to the Fréchet derivative of
an operator, and the same notation is used in the following. The boundary conditions (BCs) for q′ are
homogeneous, or in general such that q′ ≡ 0 is a solution of Eq. (2) and satisfies the BCs. Since the
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stability problem is linear, the solution to Eq. (3) can be searched in modal form, q′(x, t) = eλ tq̂(x),
leading to the following EigenValue Problem (EVP):

λ q̂ = L (Qb) q̂ (4)

where λ = σ + iω is a generic complex-valued eigenvalue of the spectrum. The associated eigenmode
is linearly unstable when σ > 0. This instability is also called modal instability, or even exponential
instability, and the flow is denoted as globally unstable. Conversely, if all the eigenvalues of the system
have negative real part (σ < 0), a generic disturbance will eventually decay at large times, and the
baseflow is defined as asymptotically stable or globally stable. The imaginary part ω of λ is the angular
frequency of the mode, while its frequency in time is ω/(2π). In the following we will refer to ω
generically as the frequency of the mode. As discussed in [166], the notion of global stability analysis
has different meanings in the literature. Here we denote as global stability analysis the solution of
the EVP in Eq. (4), in which no assumption is made on the existence of special spatial directions
along which the baseflow is slowly evolving. The continuous eigen-problem in Eq. (4) can be solved
numerically by properly discretizing the involved partial differential equations. The numerical methods
used for the discretization are those typically employed in computational fluid dynamics, and they are
reviewed for instance in [166]. As a result, the discretization of Eq. (4) leads to a generalized eigenvalue
problem whose size equals the number of degree of freedom of the discretization. The problem can be
formally recast in a form identical to Eq. (4), indicating this time with q̂ a vector collecting the discrete
solution of the problem and with L a matrix depending on the discretized baseflow vector Qb and on
the numerical method employed for the discretization. The boundary conditions are included in the
discretized problem and, depending on the numerical method, a mass matrix can arise which multiply
the vector q̂ in the l.h.s. of Eq. 4, thus leading to a generalized EVP. Analogously the non-linear PDE
in Eq. (1), once semi-discretized in space, can be recast in the same form of Eq. (1) but indicating
in this case with q a vector collecting the discrete solution of the problem and with N a vector of
non-linear functions depending on q. In the descrete framework, Eq. (3) simply indicates that L is
the Jacobian matrix associated to N. Since all the problems described in the following necessarily
need a numerical discretization to be solved, we invite the reader to always consider this duality of
the adopted notation, which can be thought as a continuous or a discrete approach. More details on
the descrete approach to sensitivity analysis are given in Sec. 3.1.3. Usually, the size of the resulting
eigenvalue problem can be very large, leading to a computational complexity at the state-of-the-art
for 3D flows. For this reason, most of the global stability analyses documented in the literature are
applied to 2D flows. Numerical methods employed in the solution of stability eigenvalue problems
are also reviewed in [166]. For general flows in a bounded domain a countable number of isolated
eigenvalues of the EVP exists, while in open flows EVP (4) may admit also a continuous spectrum (see
for instance [147,157]).When the EVP is discretized numerically [169] the spectrum necessarily becomes
of finite dimension due to the numerical discretization. As a consequence, only a few eigenvalues of
the discretized EVP are meaningful, and those show (i) convergence with the numerical discretization
and (ii) independence from the computational domain dimension. It is important to stress that the
other eigenvalues of the spectrum are not physically meaningful since they are extremely affected by
domain truncation and by numerical discretization. We refer to [12,157] for more details. Any use of
such eigenmodes, as for instance to build reduced-order models (ROMs), leads to problems which can
easily become ill-conditioned [13].

As an example of global stability analysis, let us consider the incompressible flow past a circular
cylinder, which is often mentioned in the following. In this case flow stability is governed by the
sole Reynolds number. The critical value for the primary instability is Re ' 47 (based on the cylinder
diameter and the incoming velocity), and the instability is characterized by an Hopf bifurcation leading
the flow from a steady symmetric state to a non-symmetric periodic state. The spectrum obtained by
stability analysis, shown in Fig. 1 for Re = 50 with filled symbols (consider only the uncontrolled
case in the figure), is thus characterized by a couple of complex conjugate unstable eigenvalues, with
a temporal frequency equal to that of the primary wake instability for slightly supercritical values
of Re (see Fig. 1). The flow remains perfectly two-dimensional up to a critical value in the range
180 ≤ Re ≤ 190 (see for instance [16,174]), thus all investigations concerning the primary wake
instability are carried out by two-dimensional analyses. The same qualitative behavior is generally
typical for all plane bluff-body wakes; see for instance Fig. 10(b) for the flow past a square cylinder
confined in a plane channel (consider only the uncontrolled case in the figure, i.e. the plus symbols).
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Fig. 1 Data from [110]: spectrum of the uncontrolled (filled symbols) and controlled (hollow symbols) flow
past a circular cylinder at Re = 50 with the control cylinder placed at point x0 = (1.2, 1.0) (see map in
Fig. 6(b)): the arrow indicates the shift of the globally unstable mode which is stabilized by the control, while
the other eigenvalues are only slightly influenced by the control and they remain stable.
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FIGURE 2. (Colour online) Least stable eigenvalues of Jacobian matrix for Re = 5396
(squares) and for Re = 6250 (open symbols). At the critical Reynolds number Re = 5396,
there is one marginal global mode characterized by ωc = 7.0. For the supercritical Reynolds
number Re = 6250, this global mode becomes unstable.

Equation (2.4) is an eigenproblem with eigenvalue λ = iωc and eigenvector qA.
Following Sipp & Lebedev (2007), such a problem may be solved thanks to a Krylov
subspace method associated with a shift-and-invert technique ( http://www.caam.rice.
edu/software/ARPACK/, Lehoucq & Sorensen (1996)). The least stable eigenvalues
for Re = 5396 and Re = 6250 are represented in figure 2 in the (ω, σ ) plane, where
ω and σ respectively refer to the frequency and the amplification rate. We observe
that at Re = 5396 there exists one marginal global mode satisfying (σc = 0, ωc = 7.0).
For a slightly larger Reynolds number Re = 6250, this global mode becomes unstable
while all other global modes remain stable. In the following, qA will refer to the
marginal global obtained at criticality Re = Rec = 5396. The streamwise component
of the velocity field of this global mode is represented in figure 1(c). This mode
is seen to take advantage of the Kelvin–Helmholtz instability that develops on the
shear layer. Note that the global mode verifies the following arbitrary condition:
vA(x = 0.75, y = 0) = −0.52052 − 1.57966i. This sets the amplitude and phase of
the global mode.

Equations (2.5)–(2.7) are non-degenerate linear systems (from figure 2, it is seen
that at Re = 5396 there are no eigenvalues at (σ = 0, ω = 0) and (σ = 0, ω = 2ωc)),
that may be straightforwardly inverted. The base flow modifications related to the
increase of Reynolds number qδ, the zeroth harmonic qAĀ and the real part of the
second harmonic qAA are shown in figure 1(b,e,f ) with iso-values of the streamwise
velocity. The zero harmonic results from the nonlinear interaction between the global
mode qA with its conjugate qA, while the second harmonic stems from the interaction
between the global mode qA with himself. The spatial structures of the various
flows reflect their frequency: large-scale structures for the base flow modification
and the zeroth harmonic, small-scale features for the second harmonic, which beats at
frequency 2ωc = 14.0.

(a)

084102-8 Fani, Camarri, and Salvetti Phys. Fluids 24, 084102 (2012)
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FIG. 4. (a) Streamlines of the asymmetric stable solution at Re = 100. (b) Location of the reattachment point as a function
of the Reynolds number.

of the flow configuration, the two reattachment points differ as reported in the figure. Data from
Alleborn et al.8 and Battaglia et al.5 are also shown, in order to validate the present results. An
overall very good agreement is observed.

The global stability of the base flow is investigated by looking for the leading global mode
(û, p̂), defined as the global mode of largest growth rate.

The domain for the stability problem is the entire channel, and in order to limit the computational
costs, L2 (see Fig. 1) has been reduced to L2 = 35d. Tests have been carried out showing that the
results of the stability and sensitivity analysis are not affected by this reduction. This is also confirmed
by the results reported in Sec. III C. Once the base flow has been computed on the mesh Mbfh, it
is interpolated on a mesh Mst, discretizing the whole diffuser and having practically the same
resolution as Mbfh, on which the stability problems (21) and (22) are solved. The mesh has about 4.1
× 104 nodes and 9.6 × 104 triangles. The eigenvalue of the leading global mode has been used to
check the sensitivity of the results to the grid resolution, justifying the use of this mesh. Figure 5(a)
shows the growth rate of the leading global mode as a function of the Reynolds number. As expected,
the imaginary part of both the eigenvalue and of the global mode is null, because it is linked to a
stationary mode. The growth rate crosses the real axis at the critical Reynolds number Rec = 81.2,
at which the base flow becomes unstable. This value of the critical Reynolds number is in excellent
agreement with works of other authors.5, 7, 11

FIG. 5. (a) Growth rate λ of the leading global mode as a function of the Reynolds number Re. (b) Leading global mode at
Re = 90: streamwise (û) and cross-stream (v̂) velocity.

(b) (c)

Fig. 2 Spectrum of the LNSE for (a) an open cavity flow (from [154]) and dominant eigenvalue (b) and
eigenmode (c) for a suddenly expanded channel flow (from [53]).

Other 2D examples considered in the following are the flow in an open cavity with an incoming
thin and controlled boundary layer and the flow in a suddenly expanded channel, whose stability
spectra are shown in Fig. 2(a) and (b), respectively. Note that in the case of a suddenly expanded
channel the instability starts as a symmetry-breaking pitchfork bifurcation and the resulting unstable
eigenvalue is real-valued. The associated unstable global mode is reported in Fig. 2(c), showing that
the mode implies an asymmetry of the flow when it is summed to a symmetric baseflow. Note that
the intensity of the mode is arbitrary, this being an eigenmode of an eigenvalue problem. Finally, as
a 3D example we consider the flow in a T-mixer with two rectangular inlet channels merging into
one rectangular outflow channel. For the geometry considered in [54,55] and sketched in Fig. 3(e)
the flow undergoes a symmetry-breaking pitchfork bifurcation at 140 < Re < 160 (based on the
hydraulic diameter of the outflow channel and on the bulk velocity) (at Re = 140 the less damped
eigenvalue is λ = −1.52× 10−2) leading to a steady and asymmetric regime, called engulfment regime.
At 220 < Re < 230 the engulfment regime finishes and the flow undergoes an Hopf bifurcation leading
to a time-periodic regime at 220 < Re < 230 (at Re = 230 we have λ = 2.33 × 10−2 + 0.997i). The
associated global mode is depicted in Fig. 3(a).
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Fig. 3 From [55]: Hopf bifurcation occurring in the T-mixer of subfigure (e) (H = 0.83, W = 0.625 and
W0 = 1.25) at Re ' 220: (a) global and (b) adjoint modes depicted by a small-value isosurface of the real part
of the velocity magnitude; (c) three dimensional view and (d) slice at y = 0.5 of the quantity

∥∥q̂+ (x0)
∥∥ ‖q̂ (x0)‖.

2.2 Non-modal instability

Although asymptotic stability implies that a generic disturbance vanishes for t→∞, no information is
provided on its transient behavior. In particular, the disturbance might experience a strong transient
amplification before vanishing, thus invalidating the accuracy of a linearized model for the disturbance
dynamics. This aspect can be quantified by monitoring the temporal evolution of the disturbance
energy, which can be derived from Eq. (3). In particular, if we consider for simplicity the discretized
form of Eq. (3), thus indicating with L a matrix and with 〈·, ·〉 the scalar product in CN , the temporal
evolution of the discretized disturbance energy is given by:

d

dt
〈q′,q′〉 =

〈
q′,
(
L + LH

)
q′〉 (5)

where H stands for the conjugate transpose matrix. Equation (5) shows that instantanous energy
growth is possible provided that the matrix

(
L + LH

)
has positive eigenvalues. It can be shown that,

if L is self-adjoint (L = LH), the eigenfunctions of L are orthogonal with respect to the considered
scalar product and transient growth of energy is absent if the flow is asymptotically stable. Conversely,
for non-self-adjoint matrices (as that arising from the discretization of the linearized Navier Stokes
Equations, LNSE) the eigenfunctions can be strongly non-normal (see [157] and referenced papers
for criteria to quantify non-normality), and the disturbance can experience large transient growth of
energy even if the flow is globally stable. This behavior is denoted in the literature as non-modal,
algebraic instability or short-term instability (see for instance [148]).

2.3 Local stability analysis

If a direction x exists along which variations of the baseflow are weak, i.e. the streamwise direction in
flows like boundary layers, the linear stability analysis can be simplified avoiding the direct solution of
Eq. (4), which is often computationally demanding. Indeed, at first order, linear stability can be studied
by a set of local analyses, each one carried out independently at a particular streamwise section of the
flow. In each local analysis the baseflow is assumed locally parallel and invariant in the streamwise
direction, so that periodicity of disturbances in that direction can be assumed and q′ in Eq. (2) can
be searched in the following modal form:

q′(x, t) = eiω t eik xq̂(y, z) (6)
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If ω is real and fixed and k is problem eigenvalue, the analysis is a spatial stability analysis and the
identified modes are harmonic in time but they can grow (unstable) or be damped (stable) in space
as they are convected by the baseflow. In the opposite case, i.e. with fixed real-valued k, the analysis
is a temporal one and disturbances are periodic in x and they can be amplified or damped in time.
Non-parallel effects can be taken into account in the framework of local stability analysis for weakly-
non-parallel flows using asymptotic methods, as for instance the Wentzel-Kramers-Brillouin-Jeffreys
(WKBJ) method or the Parabolized Stability Equations (PSE). We refer to [147] for a general overview.

2.4 Convectively and absolutely unstable flows, oscillators and noise amplifiers

In the local stability analysis of open parallel flows the concept of convective and absolute instabil-
ity [147], related to the spatio-temporal analysis of the evolution of a generic disturbance, plays an
crucial role so as to connect the results of the local stability analysis to those of global stability one.
The definitions of convective and absolute instability are related to the linear response of the flow
system to an impulse, localized in space and time. A linearly unstable flow is absolutely unstable if
the wave packet generated by the applied impulse is amplified and its fronts travel both upstream and
downstream with respect to the point of introduction of the impulse itself, so that the disturbance
is amplified in time when observed in the laboratory frame (see [33]) at the fixed location in space
where the impulse was initially applied. If, conversely, the wave-packet is amplified but contemporarily
convected downstream the flow is convectively unstable. Flows that are absolutely unstable show an
intrinsic dynamics even when external disturbances are absent, as for instance mixing layers, wakes
and jets which may sustain, for specific flow conditions, synchronized periodic oscillations over large
regions of the flow domain. For this reason absolutely unstable flows are also denoted as oscillators.
If a global stability analysis of an absolutely unstable flow is carried out, a corresponding unstable
global mode is found whose frequency is similar to that of the sustained periodic oscillations. It is
indeed shown in [74] that the existence of a sufficiently extended region of absolute instability is a
sufficient condition for global instability. The connection between the global mode identified by the
global stability analysis and the mode identified by the local analysis, both in the linear and nonlinear
regimes, can be obtained for slowly evolving flows in the streamwise direction using the WKBJ ap-
proach, which provides a criterion to predict the frequency of the self-sustained instability using local
spatio-temporal stability analysis [34,125,94,33]. The criterion is shown to be accurate also in wakes,
where the assumption of slow evolution in the streamwise direction is questionable [61,83]. From a
technical viewpoint, the criterion is based on the identification of a saddle point in the analytic contin-
uation of the local absolute frequency curve in the complex x-plane (x being the streamwise direction).
Recently, a generalized frequency selection criterion in the general case of multiple saddle points has
been proposed in [134]. Comparisons between local and global stability analysis for oscillators can be
found in several works in the literature (see for instance [61,83,82]).

When a flow is convectively unstable, the global stability analysis identifies only stable eigenvalues,
thus the flow is globally stable and it shows the characteristics of a noise amplifier, i.e. external noise
is necessary to sustain flow unsteadiness. Moreover, the flow can sustain selective strong amplifications
of external noise, showing particularly intense response near particular excitation frequencies which
can differ from the natural frequencies of the system because of the non-normality of the linearized NS
operator. This behavior is known as pseudoresonance [170]. In the spirit of global stability analysis,
attempts to describe the dynamics of convectively unstable flows as a superposition of stable global
modes exist in the literature (see for instance [2,71]), expecially to build ROMs for the flow, but as
shown in [13] this approach can be ill-conditioned, not leading to robust ROMs and a clear criterion
does not exist to select dynamically meaningful stable global modes. Finally, methods exist to study
convective instabilities in the framework of global stability analysis [124,121,122], even if they are not
widely used in the literature.

3 Control design of globally unstable flows inspired by sensitivity analysis

In this section we focus on controls that are aimed at linearly stabilizing flows which are globally
unstable. We review examples in which the control, which is most of the times a passive control, is
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Fig. 4 Sketch of the trajectories of three eigenvalues (λ) in the complex plane, identified by a global stability
analysis of the system, as the control parameter c is varied: (circles) an unstable eigenvalue which is stabilized
by the control, (stars) an stable eigenvalue which remains stable in the controlled case and (squares) a stable
eigenvalue which is destabilized by the control.

designed or suggested on the basis of the sensitivity analysis of the unstable eigenvalues, carried out
by adjoint methods [102].

3.1 General approach

Given the generic non-linear PDE (1), the action of a generic time-invariant control can be modeled
as F (q, c), where c is a scalar parameter governing the control such that F (q, 0) = 0:

∂q

∂t
= N(q) + F (q, c) (7)

The spectrum of the EVP stability problem for Eq. (7) depends on c and it is equal to that of the
uncontrolled system for c = 0. Let us focus on a generic unstable eigenvalue λ (σ > 0). Eq. (7) and the
following discussion can be easily generalized to a set of control parameters F(q, cj), j = 1 . . . Nc. We
consider here only one control parameter for the sake of simplicity. In the controlled case λ is a function
of c, and it moves on a trajectory in the complex plane as c is varied, as shown for instance in Fig. 4.
Acting with the control c so as to obtain σ(c) < 0 is equivalent to linearly stabilize the eigenvalue,
while changing its imaginary part ω(c) consists into changing the frequency of the linearized unstable
mode, which however may differ from that of the non-linearly saturated limit cycle (see, for instance,
[15,155] and Sec. 4). Adjoint methods are now used to compute the gradient of λ with respect to c, i.e.
its linearized displacement in the complex plane for a generic variation δc of c (sufficient regularity of
the problem is assumed). The real advantage of adjoint methods is that the cost for the computation
of the gradient is independent of the number of control parameters, thus they are efficiently employed
in cases in which several control parameters are involved. The gradient ∇cλ indicates the angular
coefficient of a tangent line to the trajectories of the eigenvalues in the complex plane (see Fig. 4)
at the position corresponding to a generic value of c. In most of the reviewed works, the reference
configuration to compute ∇cλ is the uncontrolled flow (c = 0), thus we will consider this case without
loss of generality. Linearizing F (q, c) around c = 0 and deriving the stability problem from Eq. (7) for
a small variation δc of the control, as done in Eqs. (1), (2) and (4), we have a perturbed EVP:

N(Q̃b) + δcC1(Q̃b) = 0 (8)

λ̃ ˜̂q = L
(
Q̃b

)
˜̂q + δcC2(Q̃b)˜̂q (9)

with C1(q) = ∂F(q,c)
∂c

∣∣∣
c=0

and, using the notation in Eq. (3) for the Fréchet derivative of an operator,

C2(Q̃b) = ∂C1(q)
∂q

∣∣∣
q=Q̃b

. The symbol ˜ indicates quantities that are perturbed with respect to the
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uncontrolled case due to the control. In particular, λ̃ = λ + δλ and the objective of the analysis is
to find the linearized eigenvalue perturbation δλ caused by the control. As can be noticed in Eqs. (8)
and (9), the action of the control modifies λ in two ways: (i) by directly modifying the linearized
EVP problem (9) through the term C2 and (ii) by indirectly modifying the linearized operator L (Qb)

due to a modification of the baseflow (Q̃b) induced by C1 in the baseflow equation (8). These two
kind of perturbations can be considered separately in a linearized framework and the corresponding
effects can be summed together (δλ = δλ1 + δλ2). The sensitivity analysis can be carried out by using
a perturbation approach, as for instance in [61]. In this case the starting point are the Eqs. (8)-(9),
which are successively linearized in terms of perturbations and manipulated so as to derive the term
δλ. As an example, the starting point of the perturbation approach are the Eqs. (8)-(9) linearized in

terms of perturbations δQb = Q̃b −Qb and δq̂ = ˜̂q− q̃:

L (Qb) δQb + δcC1(Qb) = 0 (10)

δλ q̂ + λ δq̂ =

[
∂L (q)

∂q

∣∣∣∣
q=Qb

δQb

]
q̂ + δcC2(Qb)q̂ (11)

Equivalently, the same result can be obtained by applying a classic augmented Lagrangian method,
where lagrangian multipliers (i.e. the adjoint variables) are used to satisfy the constraints of the
problem, as done for instance in [110] (see also [102] for a general overview). In both cases it is
necessary to use a properly defined scalar product, which is usually the one associated with the energy
of the disturbance q′. As an example, for the incompressible flow in a bounded flow domain Ωf the
scalar product 〈·, ·〉 is given by:

〈u,v〉 =

∫

Ωf

u∗(x) · v(x) dΩ(x) (12)

where u and v are two generic velocity fields and the symbol ∗ stands for complex conjugate, for the
generic case of application to complex-valued velocity fields.

3.1.1 Perturbation of the linearized flow equations

The effect on δλ of the sole C2 term in Eq. (9) (δλ2) is given by [61]:

δλ2 = δc
〈
q̂+,C2 q̂

〉
(13)

with q̂+ solution of the adjoint EVP problem:

λ∗ q̂+ = L+q̂+,
〈
q̂+, q̂

〉
= 1 (14)

The adjoint operator L+ and field q̂+ satisfy the definition:
〈
q̂+,L q̂

〉
=
〈
L+ q̂+, q̂

〉
(15)

which is formally derived by integration by parts, transferring the differential operators from q̂ to q̂+.
The boundary conditions for the adjoint field q̂+ are derived together with Eq. (15), and they are
chosen so as to nullify the boundary integrals coming from the integration by parts. As an example,
suppose that L is a scalar linear real-valued convection-diffusion equation on the domain Ω with
constant coefficients u (convection velocity) and ν (diffusivity):

L q = −u · ∇q + ν∇2q (16)

Let us suppose that q satisfies homogeneous Dirichlet boundary conditions on ΓD and homogeneous
Neumann conditions on ΓN , the union of ΓD and ΓN forming the entire boundary of Ω. By applying
the definition in Eq. (15):

〈
q+,L q

〉
=

∫∫

Ω

q+L qdΩ =

∫∫

Ω

[
q+
(
−u · ∇q + ν∇2q

)]
dΩ =

∫∫

Ω

[(
u · ∇q+ + ν∇2q+

)
q
]

dΩ +

∫

ΓD+ΓN

(
q q+ (u · n)

)
dγ + ν

∫

ΓD+ΓN

(
q+

∂q

∂n
− q ∂q

+

∂n

)
dγ =

〈
L+ q+, q

〉
+

∫

ΓN

(
q q+ (u · n)− q ∂q

+

∂n

)
dγ + ν

∫

ΓD

q+
∂q

∂n
dγ

(17)
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where the formal integration by parts has been applied, and n indicates the external normal to the
boundary of Ω. Consequently, following the equalities in Eq. (17) the adjoint operator L+ is:

L+ q+ = u · ∇q+ + ν∇2q+ (18)

with q+ satisfying homogeneous Dirichlet boundary conditions on ΓD and the following homogeneous
Robin boundary conditions on ΓN :

q+ (u · n)− ∂q+

∂n
= 0 (19)

The boundary conditions on q+ allows the nullification of all the boundary integrals arising by integra-
tion by parts, reported in the last identity of Eq. (17), leading to the identity in Eq. (15). The other
boundary integrals vanish for the boundary conditions applied to q.

An example of a global adjoint mode for an incompressible flow is depicted in Fig. 3(b) for the flow
in a T-mixer. Adjoint stability equations (14) are derived for incompressible flows in [61], considering
perturbations acting both in the momentum and in the continuity equations, and for 3D perturbations
superposed to 2D baseflows in [35]. Derivation for compressible NSE in subsonic regime can be found in
[117,118,29,140]. Non-newtonian fluids are considered in [70,92,62]. The adjoint equations of a ROM
for a Rijke tube containing a hot wire are derived in [105,106,104]. The computational complexity
associated to the numerical solution of the adjoint problem in Eq. (14) is identical to that of the
stability EVP in Eq. (4), which can be very demanding depending on the size of the problem. In order
to reduce the computational complexity in [82] it is shown how to reconstruct the global direct (q̂)
and adjoint (q̂+) modes by local stability analysis showing applications to wakes, drastically reducing
the cost for their computation.

The analysis in Eq. (13) is a linearized analysis in the perturbation δc. In other words, only consider-

ing for the moment the effect of δcC2 on λ, we have λ̃ ' λ+δλ2, δλ2 being linear in δc. The second-order

variation of the eigenvalue could also be computed, i.e. the term δλ2b such that λ̃ ' λ + δλ2 + δλ2b
with δλ2b scaling as δc2. This analysis has been proposed for the first time for incompressible flows in
[164], where it is applied to study particular cases in which the first-order sensitivity δλ2 is null.

A particular form of the perturbation C2 is considered in the literature in order to define the
structural sensitivity of the flow, proposed for the first time in [61]. This is the sensitivity of a global
unstable mode to a local linear feedback of the type C2 = Mδ (x− x0), x0 being the local point of
application of the feedback, δ the Dirac function and M a constant square matrix of compatible size
with q. It is shown in [61] that when the previous local feedback is considered, Eq. (13) leads to

δλ2 = δc q̂+ (x0) Mq̂ (x0) = δcM : S1 (x0) ≤ δc ‖M‖
∥∥q̂+ (x0)

∥∥ ‖q̂ (x0)‖ (20)

where the norms in Eq. (20) are a generic vector and the induced matrix norms, the symbol : indicates
the Frobenius matrix inner product and S1 (x0) is a sensitivity tensor. The regions where S1 (x0)
is significantly non-null, i.e. in the overlapping regions between the direct and the adjoint modes as
highlighted by the last inequality, are denoted also as the core of the instability or, alternatively,
the wavemaker region. It is also shown in [61] that it is sufficient to include the instability core in
the computational domain for global stability analysis in order to have an accurate prediction of the
unstable eigenvalue. This second information is used in [22] to discriminate a-posteriori the physically
meaningful global modes obtained from the stability analysis of experimental PIV data past a porous
cylinder. Giannetti & Luchini [61] carried out the structural sensitivity analysis, illustrated in general
terms in Eq. (20), for the incompressible flow past a circular cylinder by considering a local velocity-
force feedback acting on the momentum equation, thus identifying the wavemaker region. This region
is shown in Fig. 14(a), where the last term of the inequality in Eq. (20) is plotted for the primary
instability at Re = 50 and in Fig. 3(c-d) for the Hopf bifurcation in a 3D T-mixer. Maps of structural
sensitivity are reported in several works in the literature for both the analysis and the possible control
of a global instability. See, for instance, [31] for the separation bubble localized on a flat plate, [115] for
the steady axisymmetric wake of a disk and a sphere, [109] for the separated flow in a S-shaped duct.
Moreover, [11,79,54,55] are, to the author’s knowledge, among the very few works in the literature in
which a stability and sensitivity analysis is carried out for a genuinely three-dimensional flow.

Equation (13) and the concept of structural sensitivity are generalized to time-periodic baseflows
(Qb(t) is T -periodic in time) through a Floquet analysis in [60]. In this case q̂ is also a function of
time and it is T -periodic, T being the period of the baseflow, and stability is again characterized by
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FIGURE 7. Dominant Floquet multipliers as a function of spanwise wavenumber at Reynolds 
numbers Re = 230, Re = 259, and Re = 280. For clarity, only a portion of the spectrum 
(6.5 < a < 9.3) at Re = 259 is plotted in the vicinity of the local maximum: p = 1, = 7.64. Filled 
circles indicate real, positive multipliers; hollow circles indicate complex-conjugate pair multipliers. 
Branches of real multipliers at both low and high a are connected by solid lines. 

symmetry, has a value p = 0.52 corresponding to a linear perturbation that decreases 
by a factor of about 2 each wake period. We did not attempt accurate computations of 
the second multiplier branch at #? = 0 for other values of Re, but in general we found 
that over the range of our computations ( R e  < 300) the wake is two-dimensionally 
stable. The value p = 0.52 is in agreement with the result of Noack & Eckelmann 
( 1 9 9 4 ~ )  that Ipl = 0.6 throughout the range 50 < Re < 300. The two-dimensional 
stability of the cylinder wake over this range of Reynolds number can also be inferred 
from previous direct numerical simulations (e.g. Karniadakis & Triantafyllou 1989, 
1992). 

Figure 7 shows the behaviour of the dominant Floquet multiplier over a wider 
range of spanwise wavenumbers. It can be seen that at Re = 220 the multipliers 
remain small in magnitude for all p larger than about 2.5, and hence the only unstable 
wavenumbers for R e  = 220 and lower R e  are those shown in figure 5. In the range 
3 5 p 5 8 the dominant multipliers are complex and we did not attempt to resolve 
the details of these multiplier branches. For #? 2 8 the dominant multiplier is again 
real and positive. We verified that as #? becomes large ( p  > 12) this multiplier goes 
to zero as lnp  - -p2. This scaling is to be expected because the viscous term 
(i?'/d? = -b2) begins to dominate the linearized equations when #? - Re'". Once 
this viscous-dominated regime is reached, no further instabilities are possible for 
larger #?. 

As the Reynolds number is increased above 220, the maximum in the real multiplier 
branch at #? z 8 grows, reaching p = 1 at Re', = 259 & 2, as shown in figure 7.  The 
associated wavenumber is #?; = 7.64k0.06 corresponding to a spanwise wavelength of 
2; = 0.822 0.007 cylinder diameters. For larger Re there are two bands of unstable 
wavenumbers, as shown for the case R e  = 280. 

(a) (b) (c)

Fig. 5 (a) Floquet multipliers of the three-dimensional stability analysis of the wake past a circular cylinder
(From [16] ) parametrized with Re and spectral norm of the mean structural sensitivity tensor for (b) mode A
(Re = 190, kz = 1.585) and (c) mode B (Re = 260, kz = 7.64) (from [60]).

monitoring the eigenvalue λ or, more often, the Floquet multiplier µ = eλT , the flow being unstable
when |µ| > 1. An example of the spectrum of 3D stability in the wake past a circular cylinder is
shown in Fig. 5(a), where µ is shown vs the wavenumber of the perturbation in the spanwise direction,
kz, indicating that two continuous bands of unstable modes are found: a first one, with space-time
symmetries denoted as mode A, becomes unstable at Re ' 189 and kz ' 1.6 (kz is denoted as β in the
referenced figure), and a second one, mode B, for Re ' 260 and kz ' 7.6. In this case the flow is periodic
and the structural perturbation can be applied steadily or locally in time at a precise phase of the
baseflow, thus deriving average and instantaneous sensitivity tensors which generalize the sensitivity
sensor S1 in Eq. (20). Norms of the averaged structural sensitivity tensors for the floquet multiplier of
modes A and B are reported in Fig. 5(b) and (c), respectively. In [60] the sensitivity analysis is applied
to investigate the secondary three-dimensional instability of the wake past a cylinder and to explain
the previous results reported in [14] showing heuristically that it is possible to accurately predict the
Floquet multipliers by carrying out a stability analysis on a small sub-part of the computational domain
just including the separation region of the wake. The explanation is provided showing that the necessary
condition to obtain an accurate prediction of the Floquet multipliers is that the computational domain
contain the region of high structural sensitivity, similarly to what observed in [61] for the primary
instability. Structural sensitivity maps of the three-dimensional instability in a time-periodic confined
wake are reported in [23]. In [27] structural sensitivity maps of a time-periodic baseflow are provided
to investigate the flip-flop instability in the wake past two side-by-side circular cylinders.

3.1.2 Perturbation of the baseflow equations

The analysis described in Sec. 3.1.1 can be used also to estimate the effect on λ of a generic perturbation
of the baseflow, δQb. In this case Eq. (13) becomes [20,110]:

δλb = δc

〈
q̂+,

∂  L(Q)

∂Q

∣∣∣∣
q=Qb

δQb q̂

〉
(21)

Equation (21) highlights that the sensitivity to generic variations of the base flow is related to the
Hessian of the Navier-Stokes operator (see also(11)). This idea is at the basis of the discrete method
for sensitivity analysis proposed in [119] and described in the following. If the perturbation is localized,
i.e. δQb = eiδ(x − x0), ei being the generic i-th versor, Eq. (21) leads to an associated sensitivity
vector map Sb(x0). An example is shown in Fig. 7(a) for the flow past a circular cylinder.

The perturbation δQb in Eq. (21) is generic and thus it can be even not realizable in practice. One
indirect way to obtain a realizable baseflow perturbation is to apply a steady forcing to the baseflow
equations, namely the term proportional to C1 in Eq. (8). The resulting effect δλ1 on the eigenvalue
shift is given by [110]:

δλ1 = δc
〈
Qb

+,C1(Qb)
〉

(22)
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where the adjoint baseflow Qb
+ is the solution of a forced non-degenerate linear PDE where the

forcing is a function of both q̂ and q̂+, which can be formally written as follows (if derived around the
uncontrolled state c = 0):

[
L+(Qb)

]
Qb

+ = −

[
∂

∂Q
[L (Q) q̂]

∣∣∣∣
Q=Qb

]+
q̂+ (23)

the symbol + on rhs indicating the adjoint of the operator contained between square brackets. If a
localized forcing is applied, C1 = δ (x− x0) ei, Eq. (22) shows that the complex number Qb

+ (x0)
represents the variation of λ in the complex plane for unitary δc. Thus the real and imaginary parts
of Qb

+ (x) are vector sensitivity maps for the growth factor and frequency of the global mode to a
local introduction of a constant forcing in the equations. Equation (22) has been proposed for the first
time in [110] and computed for the primary instability in the cylinder wake, as shown in Fig. 7(b). The
application to the unstable global modes of the flow past a rotating cylinder is documented in [135,
136]. Examples of computation of Qb

+ for fully 3D incompressible flows are documented in [54,55].
Compressible flows are treated in [117], where sensitivity to a variation of the Mach number is also
computed, in [118], where forcing in the mass, momentum, and energy equations are considered. See
[105,106,104] for a model of Rijke tube containing a hot wire.

In the case of a time-periodic baseflow, an original sensitivity analysis is proposed in [103], where
the baseflow for the stability analysis is the non-linearly saturated periodic flow past a circular cylinder
with Re in the range 50 ≤ Re ≤ 100. Using Floquet analysis and an original transformation of the
temporal variable so as to avoid secular terms in the asymptotic analysis, the authors investigate the
sensitivity of the vortex shedding frequency to a localized force-velocity feedback in the momentum
equations of the NSE. The considered generic perturbation acts directly on the baseflow and modifies
the period of the saturated instability. The result is a sensitivity tensor map indicating the variation
of the Strouhal number of the saturated vortex-shedding instability as a function of the position of the
localized force-velocity feedback perturbation.

The globally unstable eigenvalues can also be controlled by a proper modification of the boundary
conditions of the problem. In this way it is possible to model, for instance, blowing/suction from a solid
surface or a variation in the inflow boundary conditions. Receptivity of a global mode to a boundary
forcing is investigated in [61]. The derivation of the linearized effect of a steady forcing acting on the
boundaries in the baseflow equations can be found in [35,110,112] for incompressible flows and in [118]
for compressible flows. As for bulk forcing, adjoint methods are used to study sensitivity to a generic
modification of Dirichlet boundary conditions and, using a localized perturbation, surface sensitivity
maps can be obtained. Example of surface sensitivity maps are shown in Fig. 9, which is commented
in Sec. 3.3.

3.1.3 Discrete approach to sensitivity analysis

In the previous sections, sensitivity has been introduced in a continuous framework, i.e. working directly
on the PDEs which govern the considered problem. As a result, systems of PDEs are derived whose
results are involved in the sensitivity analysis, i.e. the linearized and adjoint stability problems and the
adjoint baseflow problem. When a numerical solution to a sensitivity analysis is searched, the derived
PDEs are discretized and the results used as indicated above to estimate sensitivities. This approach is
one possible way to compute sensitivities. In this approach PDE systems involved in the computation
of sensitivities and the corresponding boundary conditions are well defined before discretization. As a
drawback, their derivation, including the associated boundary conditions, is sometimes difficult to be
found and sensitivities, as well as other properties of the adjoint modes as bi-orthogonality between
adjoint and direct modes (

〈
q̂+
i , q̂j

〉
= δcij , δ

c
ij being the Kronecker symbol), are affected by discretization

errors.
An alternative approach which is widely used in the literature consists in semi-discretizing in

space the original non-linear problem (7), thus obtaining a system of non-linear evolutive ordinary
differential equations (ODEs), and to perform sensitivity analysis directly on the discretized system.
The subsequent method for global stability and sensitivity analysis is analogous to what is described in
the previous sections. Analogy is so strong that the previous equations can be left formally unchanged,
as already stated in Sec. 2.1, and interpreting in this case q as the vector collecting all the unknowns
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in the discretized system, N as a vector collecting non-linear functions of q, L (Qb) as the jacobian
matrix of N computed for q = Qb, the scalar product 〈·, ·〉 as a scalar product in CNg (Ng being the
size of q) and so on for all the other quantities involved. As stated in Sec. 2.1 a mass matrix multiplying
the evolutive term in the equations can be present depending on the numerical method used for the
spatial discretization. Since the discrete starting problem contains the boundary conditions, in the
subsequent derivations boundary conditions are automatically taken into account and derivation of
the adjoint problems is obtained by trivial algebric operations. Moreover, the computed sensitivities,
as well as other properties of the adjoint modes, are statisfied exactly by the discrete solutions except for
truncation errors. As an example of this approach, in [119] the stability analysis, the associated global
direct and adjoint modes and the related sensitivity maps are computed in a discrete framework solely
by evaluations of the residuals of the discretized nonlinear Navier-Stokes equations. In the derivation of
sensitivity maps by a discrete approach care is necessary in the definition of a discrete Dirac function,
as discussed for instance in [61]. A very detailed discussion of differences and advantages between a
continuous and a discrete approach can be found in [102].

3.2 Examples of passive control by means of controlling devices in the flow

In the examples reviewed here, the flow is controlled by the introduction of a small control body
in the flow, and the sensitivity analysis described in Sec. 3.1 is used to estimate its linearized effect
on a globally unstable mode. Usually the control body is modeled as a localized force, acting on
the momentum equations and depending on the local velocity field by means of the aerodynamic
characteristics of the control body. A generic model for the force exerted by a small control body on
the flow has the form FT = αF(U)δ (x− x0), where α is a small parameter related to the size of the
control body positioned in x0. Provided that FT is sufficiently regular, its linearization around Ub has
the following form:

FT ' α
[
F(Ub) +∇U F|U=Ub

u′
]
δ (x− x0) (24)

The term proportional to F(Ub) in Eq. (24) acts as a steady forcing in the baseflow equations, leading
to a shift of a considered eigenvalue which is quantified by Eq. (22). The term proportional to ∇UF
in Eq. (24) is a perturbation of the linearized NS operator, and its effect on the eigenvalue is given by
in Eq. (13). Consequently, as shown for instance in [53,135] the eigenvalue shift is given by the two
contributions just mentioned and can be recast in the form δσ = α(Sl(x0) +Sb(x0)) = αS(x0), where
Sl, Sb and S = Sl + Sb are complex-valued scalar sensitivity maps for control (due to a modification
of the linearized stability operator and to a perturbation of the baseflow, respectively), which can be
derived combining Eqs. (24), (22) and (13), indicating the effect of the local introduction of a small
control body in the flow. The fact that a control body induces two contributions, one at the base-
flow level and one at the perturbation level, has first been shown in [111] (see also [73,118]). The
quasi-steady aerodynamic characteristics of the control body in terms of force response to an incoming
velocity are given by specifying FT. The real part of the sensitivity map S is related to the effect of
the control in terms of amplification factor, and the imaginary part gives to the shift of the eigenmode
frequency. When compressible flows are considered, the action of the control body also affects the
energy equation, as shown for instance in [118,140] for compressible subsonic regimes. Finally, fluid
injection/extraction, for instance through a porous surface of the control body, can be modeled by
adding a localized source perturbation term, formally analogous to FT, in the continuity equations.

In the following we will list examples in the literature of passive controls designed on the basis of
the sensitivity analysis and obtained by introducing small control devices in the flow. One classical
example is treated separately in Sec. 3.2.1, in order to describe the whole procedure. Other examples
are reviewed successively.

3.2.1 Primary instability of the flow past a circular cylinder

The seminal work documented in [110] is entirely dedicated to the use of sensitivity analysis for the
passive control of the primary instability past a circular cylinder. The control body in the experiments
is a small circular cylinder. This work is inspired by the classical experiments in [160], where a small
control cylinder with diameter in the ratio 1 : 10 with the main circular cylinder is systematically
displaced in the near wake and its effect on vortex shedding is measured. Experimental results from
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Figure 10. Results of passive control by Strykowski & Sreenivasan (1990). A control cylinder
10 times smaller than the main cylinder is placed at various locations of the flow. For each
location of the control cylinder and for various Reynolds numbers, the growth rate ar of the
perturbations is measured. Contours where the growth rate is nil (ar = 0) are represented for
each Reynolds number.

the control cylinder suppresses the vortex shedding. For a Reynolds number close
to the critical Reynolds number (Re = 48), the vortex shedding is suppressed if the
control cylinder is placed either in the outer region or inside the recirculation region.
When the Reynolds number is increased, the stabilizing region inside the recirculation
region vanishes and the spatial extent of the stabilizing region inside the outer region
is reduced. Note that the vortex shedding is never suppressed if the control cylinder
is located in the separation region.

In this section, we attempt to retrieve these results using the sensitivity analysis
to a steady force. We propose to model the presence of the small control cylinder
by a point source of momentum f in the Navier–Stokes equations (2.1), applied
at the location of the control cylinder centre (x0, y0). First, note that, whatever the
position of the control cylinder, its wake is steady due to the low Reynolds number
based on the control cylinder diameter and the local velocity of the base flow. The
force exerted by the flow on the control cylinder is therefore steady and may be
characterized in direction and intensity using a low-Reynolds-number model. By the
action and reaction principle, the control cylinder exerts a force of the same strength
but of opposite direction on the flow. The presence of this force in the momentum
equations governing the base flow simulates the presence of the control cylinder. If
the diameter of the control cylinder is sufficiently small, such a force may be localized
at the station (x0, y0) where the control cylinder is placed. The effect of a control
cylinder on the flow stability can now be investigated using the sensitivity analysis to
a steady force.

5.1. Sensitivity for a Reynolds number close to the bifurcation: |Re − Rec| ! 0.1

The control of the unsteady wake is first investigated at the critical Reynolds number
Rec = 46.8 ± 0.05. The introduction of the control cylinder at (x0, y0) into the flow is
modelled by a steady force localized at the same station. This force is applied to the
unforced base flow, solution of equations (2.2) with F = 0, and is therefore denoted
δF according to the general formalism developed in § 2.2. For simplicity, this steady
force is first considered to be proportional to the square of the steady velocity, i.e.

δF(x, y) = −α ||U || U δ(x − x0, y − y0), (5.1)
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Figure 12. Contours where the linear estimation of the growth rate is nil, i.e.
λ(Re) + δλ(Re) = 0, when the local force expressed by (5.4) is used to model the presence
of the cylinder. Values of the Reynolds number are indicated in the figure. Parameter setting:
d = 0.1

The amplitude of the modelled force given by (5.4) and (5.5) is no longer
infinitesimal as in the previous subsection. The induced base-flow modifications
may thus become large enough to invalidate the assumption of linearity underlying
the sensitivity analysis. In this case, the base-flow modifications which are taken into
account by this analysis are only a linear approximation of the base-flow modifications
induced by the force (see equation (2.12)). The growth rate variation determined by
means of this analysis is therefore a linear estimation of the true nonlinear growth
rate variation. The latter is computed in Appendix B where the question of how the
nonlinearities alter the results of the sensitivity analysis is addressed. Fortunately, it
turns out that the effect of the nonlinearities does not invalidate the present linear
approach.

Regions of the flow where the force modelled by equation (5.4) suppresses the
instability are determined as follows. The unforced base flow U(Re) and the growth
rate λ(Re) of the leading global mode are successively computed for various Reynolds
numbers. The growth rate sensitivity analysis to a steady force is then carried out
as described in § 2.2 for each value of the Reynolds number Re: we determine the
sensitivity of the growth rate ∇Fλ and the associated variation of the growth rate
δλ(Re) = (∇Fλ, δF) with δF given by (5.4). The growth rate variation δλ(Re) term is
then added to the unforced growth rate λ(Re) to finally obtain a linear estimation
of the controlled growth rate λ(Re) + δλ(Re). Figure 12 reports for several Reynolds
numbers the loci of all points in the (x, y)-plane corresponding to λ(Re)+ δλ(Re) = 0.
It should be compared with the experimental results of Strykowski & Sreenivasan
(1990) given in figure 10. The patterns in these two figures are very similar, indicating
that the sensitivity analysis predicts well the regions of the flow where the placement of
a control cylinder suppresses the instability. All the features described at the beginning
of this section are retrieved. For Re = 48, the existence of the two stabilizing regions,
observed in figure 10, is reproduced well. When the Reynolds number is increased,
the spatial extent of the stabilizing region in the outer region is seen to be reduced,
in accordance with the experimental observations. Also the stabilizing region in the
recirculation region vanishes and the spatial extent of the stabilizing outer region
tends to shrink towards a region close to the cylinder. However, we note some
differences with the experimental results. First, the curves obtained for Reynolds
numbers Re =48 and 50, exhibit concavities quite different, in the outer region, from
the experimental curves, leading to predictions of a larger stabilizing region. Secondly,

(b)

Fig. 6 Figure (a) (from [160]): spatial map of the critical Reynolds number for primary wake instability past
a circular cylinder with diameter D as a function of the placement of a control cylinder with diameter equal to
D/10; (b) estimation of the experimental map (a) made on the basis of map in Fig. 7(b) and on the estimation
of the force acting on the control cylinder (from [110]).
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Fig. 7 Vector sensitivity maps of the growth rate of the unstable mode (a) to a generic variation of the
baseflow and (b) to a localized force applied to the momentum equation, the color indicating the intensity and
the vectors both the direction and intensity of the map (an equivalent figure is reported in[110]).

[160] are reported in the map in Fig. 6(a), which indicates where to place the control cylinder in order
to obtain a desired critical Re for the vortex shedding instability. As shown in Fig. 6(a), the control
cylinder has a stabilizing effect on the primary instability when placed near the detached shear layers
in the cylinder near-wake. In [110] the control cylinder is modeled as a pure localized drag depending
quadratically on the local velocity through an analytical expression of the drag coefficient vs Re, tuned
on the basis of dedicated DNSs. Sensitivity of the growth rate of the global mode to a steady forcing
Re(Qb

+), (see Eq. (22)), is reported in Fig. 7(b). When this is combined with the drag law of the
control cylinder, the final result is reported in Fig. 6(b), which compares fairly well with Fig. 6(a).
As a general comment, the control maps are obtained on the basis of a linearized analysis around
the uncontrolled baseflow. As already highlighted, in the controlled configuration the action of the
control is usually intense enough to trigger also non-linear effects which are neglected in the analysis.
The design carried out solely on the basis of a linearized analysis around the uncontrolled baseflow
is conceptually equivalent to approximate the root of a non-linear function using only the first step
of a Newton method, i.e. linearizing the function around a given starting point. Obviously, as in the
Newton method, the methodology described here can be iterated but, to the author’s knowledge, only
one example exists of such a procedure [24] which is reviewed in Sec. 3.4. Moreover, the control might
destabilize other stable modes (see the sketch in Fig. 4). In [110] the control is verified by DNS of the
controlled system and by carrying out the stability analysis of the controlled baseflow, whose spectrum
is plotted in Fig. 1 showing that in this case only the unstable mode is significantly affected by the
control.

3.2.2 Other examples

The procedure described in Sec. 3.2.1 is followed in several works in the literature. In most of them the
control body is a circular cylinder, modeled as a pure drag. For instance a cylinder modeled as a force
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FIG. 14. (a)–(d) Linear estimation λ̄ (dashed line denoted as “linear”) and λf (continuous denoted as “nonlinear”) for various
Reynolds numbers, as a function of force amplitude α.

Results are shown in Fig. 14, where λ (Eq. (24)) is evaluated for increasing values of the force
(α), and compared with the corresponding value of λf. The cross, square, and triangle symbols in
the figure indicate the force amplitudes equivalent to control cylinders with diameter equal to 0.01,
0.02, and 0.05, respectively, according to Eq. (17). For small amplitudes of the force (α ! 1) λf and
λ coincides to the plot accuracy. This result validates the sensitivity analysis and, in particular, the
accuracy of the gradient estimation through the sensitivity function. For larger amplitudes nonlinear
effects become important and, in particular, for Re ≥ 100, we observe the presence of a local
minimum for λf at α = αc. For α < αc we have that λ f < λ indicating that in this particular case
the nonlinear effects increase the stabilizing action of the control force. However, if the growth rate
at the local minimum remains positive, it is not possible to control the instability for any value of α

in the considered range, despite the indications from the sensitivity analysis.
A similar case is described in Camarri and Iollo14 for the control of the vortex-shedding in the

wake of a confined cylinder, showing that the indications of the linear analysis carried out around
the uncontrolled flow may give indications for flow stabilization that quickly loose accuracy as the
actuation intensity increases, due to nonlinear effects, especially as the flow Reynolds number is
increased. To overcome this problem, in Camarri and Iollo14 it is proposed to design the control
iteratively, i.e., to use the results of a linearized analysis in its validity range and to progress in the

(a)

084102-14 Fani, Camarri, and Salvetti Phys. Fluids 24, 084102 (2012)

0 0.02 0.04 0.06 0.08 0.1

−0.03

−0.02

−0.01

0

0.01

α

λ

Re=90

Linear
Non linear
d*=0.01

d*=0.02

d*=0.05

(a)

0 0.05 0.1 0.15
−0.02

−0.01

0

0.01

α

λ

Re=100

(b)

0 0.05 0.1 0.15 0.2
−0.02

−0.01

0

0.01

0.02

0.03

0.04

α
λ

Re=110

(c)

0 0.05 0.1 0.15 0.2
−0.01

0

0.01

0.02

0.03

α

λ

Re=120

(d)

FIG. 14. (a)–(d) Linear estimation λ̄ (dashed line denoted as “linear”) and λf (continuous denoted as “nonlinear”) for various
Reynolds numbers, as a function of force amplitude α.

Results are shown in Fig. 14, where λ (Eq. (24)) is evaluated for increasing values of the force
(α), and compared with the corresponding value of λf. The cross, square, and triangle symbols in
the figure indicate the force amplitudes equivalent to control cylinders with diameter equal to 0.01,
0.02, and 0.05, respectively, according to Eq. (17). For small amplitudes of the force (α ! 1) λf and
λ coincides to the plot accuracy. This result validates the sensitivity analysis and, in particular, the
accuracy of the gradient estimation through the sensitivity function. For larger amplitudes nonlinear
effects become important and, in particular, for Re ≥ 100, we observe the presence of a local
minimum for λf at α = αc. For α < αc we have that λ f < λ indicating that in this particular case
the nonlinear effects increase the stabilizing action of the control force. However, if the growth rate
at the local minimum remains positive, it is not possible to control the instability for any value of α

in the considered range, despite the indications from the sensitivity analysis.
A similar case is described in Camarri and Iollo14 for the control of the vortex-shedding in the

wake of a confined cylinder, showing that the indications of the linear analysis carried out around
the uncontrolled flow may give indications for flow stabilization that quickly loose accuracy as the
actuation intensity increases, due to nonlinear effects, especially as the flow Reynolds number is
increased. To overcome this problem, in Camarri and Iollo14 it is proposed to design the control
iteratively, i.e., to use the results of a linearized analysis in its validity range and to progress in the

(b)

084102-14 Fani, Camarri, and Salvetti Phys. Fluids 24, 084102 (2012)

0 0.02 0.04 0.06 0.08 0.1

−0.03

−0.02

−0.01

0

0.01

α

λ

Re=90

Linear
Non linear
d*=0.01

d*=0.02

d*=0.05

(a)

0 0.05 0.1 0.15
−0.02

−0.01

0

0.01

α

λ

Re=100

(b)

0 0.05 0.1 0.15 0.2
−0.02

−0.01

0

0.01

0.02

0.03

0.04

α
λ

Re=110

(c)

0 0.05 0.1 0.15 0.2
−0.01

0

0.01

0.02

0.03

α

λ

Re=120

(d)

FIG. 14. (a)–(d) Linear estimation λ̄ (dashed line denoted as “linear”) and λf (continuous denoted as “nonlinear”) for various
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Results are shown in Fig. 14, where λ (Eq. (24)) is evaluated for increasing values of the force
(α), and compared with the corresponding value of λf. The cross, square, and triangle symbols in
the figure indicate the force amplitudes equivalent to control cylinders with diameter equal to 0.01,
0.02, and 0.05, respectively, according to Eq. (17). For small amplitudes of the force (α ! 1) λf and
λ coincides to the plot accuracy. This result validates the sensitivity analysis and, in particular, the
accuracy of the gradient estimation through the sensitivity function. For larger amplitudes nonlinear
effects become important and, in particular, for Re ≥ 100, we observe the presence of a local
minimum for λf at α = αc. For α < αc we have that λ f < λ indicating that in this particular case
the nonlinear effects increase the stabilizing action of the control force. However, if the growth rate
at the local minimum remains positive, it is not possible to control the instability for any value of α

in the considered range, despite the indications from the sensitivity analysis.
A similar case is described in Camarri and Iollo14 for the control of the vortex-shedding in the

wake of a confined cylinder, showing that the indications of the linear analysis carried out around
the uncontrolled flow may give indications for flow stabilization that quickly loose accuracy as the
actuation intensity increases, due to nonlinear effects, especially as the flow Reynolds number is
increased. To overcome this problem, in Camarri and Iollo14 it is proposed to design the control
iteratively, i.e., to use the results of a linearized analysis in its validity range and to progress in the
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Fig. 8 Figure from [53]: linear estimation of the real-valued unstable eigenvalue (dashed line, based on the
analysis of the uncontrolled flow) and non-linear behavior (continuous line, computed by performing the sta-
bility analysis of the partially controlled flow field) for various Reynolds numbers, as a function of control
amplitude α (proportional to the size of the control cylinder), the position of the control cylinder being fixed.
Symbols indicate the value of α corresponding to 3 control cylinders of different normalized diameter.

depending quadratically on the local velocity is used in [53,26], the drag coefficient being specified
as a function of Re. A linear Lamb-Oseen drag force is used to model the control cylinder in [135,
163]. A pure drag force, independent of a specific control body, is considered in [165]. Finally, both
an elongated cylinder and a ring with a circular cross section are considered for axi-symmetric flows
in [118]. In particular, the case of a heated control ring is also treated in [118]. A small wing section
modeled as a pure lift, according to the theory of wing sections, is considered in [112].

As for the example in Sec. 3.2.1, most of the works reviewed here design the control on the basis
of linearized sensitivity maps derived around the uncontrolled configuration. As already highlighted,
in this case non-linear effects need to be estimated a-posteriori, together with a check on the existence
of short term instabilities due to transient behaviors of the system, even if this last aspect can also
be quantified from the non-orthogonality degree of the global modes in the controlled case (see for
instance [157]). An interesting quantification of the non-linear effects by DNS is reported in [53] for the
stabilization of a pitchfork bifurcation in a suddenly expanded channel (see the stability spectrum in
Fig. 2(b)). Results are reported in Fig. 8. This figure sheds light on the possible effect of non-linearities,
and shows that, as in the case of the circular cylinder [110], the non-linear effects initially (in terms
of intensity of the control) have a stabilizing effect, and the results of the linearized analysis correctly
predict the tangent line for vanishingly small control intensity (proportional to α). However, as the
control intensity is increased, non-linearities start to be destabilizing and an optimal control intensity
exists for the maximum stabilization of the unstable eigenvalue. This maximum stabilizing effect is not
sufficient to stabilize the controlled flow when Re ≥ 120.

As deduced from Eq. (22), Qb
+ represents the sensitivity of λ to a steady forcing in the momentum

equations. Thus, its shape is a sensitivity map to a local forcing (see Fig 7(a) for a circular cylinder). In
[165], where the flow stability around a fixed spheroidal bubble is considered, attention is dedicated to
the differences in terms of Qb

+ between the case of a rigid bubble and that of a real bubble. Differences
among the two are in the boundary conditions applied to the surface. It is shown that for the real
bubble the adjoint baseflow Qb

+, for which convection is oriented in the upstream direction, does
not separate from the bubble surface as it happens if no-slip boundary conditions are applied on the
bubble surface (solid bubble). This explains the remarkable feature specific to bubbles that a small
body placed upstream with respect to the bubble has a destabilizing effect on both the two unstable
global modes of the flow, while it is stabilizing if the bubble is considered as a rigid body.

As stated previously, one of the main limitations of the considered approach for control design is
that only one or a few unstable global modes are followed in the design of the control, but the action
of the control affects all the stability spectrum and it may destabilize other stable eigenvalues, as
illustrated in detail for instance in [24]. An example of destabilization of stable modes while trying to
control an unstable mode is reported in [163] for the case of globally unstable wakes with co-flow. In
that case the sensitivity analysis of the baseflow leads to the identification of two separate regions with
high structural sensitivity. One region is similar to the case of unconfined wakes and is located near the
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inlet in the wavemaker region; a second region of high sensitivity is identified further downstream and it
is very elongated, which is probably related to a pressure feedback. The sensitivity to a perturbation of
the baseflow identifies an alternating sequence of stabilizing and destabilizing regions in the streamwise
direction, located inside the downstream region of high structural sensitivity. The passive control is
designed to stabilize the flow when the control body is placed in the downstream sensitivity region,
but when this is truly introduced in the DNS it is shown that several stable modes are destabilized by
the control.

Another example of mode destabilization is reported in [26], where the primary instability of the
flow past two side-by-side circular cylinders is considered. In this example two unstable global modes
are identified and the control is designed so as to suppress both, i.e. more than one global mode
at the same time. This is possible because the sensitivity maps of the two modes are quite similar
with large overlapping, so that it is possible to find positions for the control cylinder which have
a stabilizing effect for both the unstable modes. A first control is designed using only one control
cylinder, asymmetrically placed as regards the geometric symmetry of the flow, which is thus broken
in the controlled case. However, when the control with one cylinder is checked by DNS, it is shown
that although the target modes are stabilized, other modes are excited and destabilized by the control.
Since the destabilization is related to a symmetry breaking of the controlled flow, a second control
is built using a couple of control cylinders symmetrically positioned in the flow. In this case all the
unstable modes are stabilized.

Finally, since the target of the control is to obtain a linearly stable flow on the basis of a linear
sensitivity analysis, no information is provided on the conditional stability of the system, which can be
also extremely reduced. Attempts to verify the robustness of the control and thus, indirectly, to test
the conditional stability of the controlled system, can be carried out a-posteriori by DNS, as done for
instance in [24,53].

3.3 Examples of passive control by modifications of the boundary conditions

Following the methods mentioned in Sec. 3.1.2, sensitivity analysis can be carried out to estimate
an appropriate variation of the boundary conditions for the stabilization of global instabilities. For
example, in [118] base-bleed estimated by sensitivity analysis is applied to stabilize the flow past an
axy-symmetric bluff-body and the effect verified by DNS. Since compressible flows are considered,
suction from the base affects also the energy equation in that case. In [24] actuation is implemented
by blowing/suction slots on the wall of a bluff-body. Control maps to a localized blowing/suction from
solid walls in incompressible flows are reported in [112,165,54,55,93,35]. In particular, [54] investigates
the instability of the flow in a T-mixer which drives the flow from a steady symmetric configuration,
i.e. the vortex regime, to a steady asymmetric regime, i.e. the engulfment regime, through a pitchfork
bifurcation. Sensitivity of the engulfment regime to a variation of the inflow velocity profile in a T-
mixer is investigated and the maps are verified by DNS showing that non-fully-developed velocity
profiles at the inlet of the mixer lead to a stabilization of the engulfment regime. Examples of surface
sensitivity maps of the unstable real-valued eigenvalue to a perturbation of the normal boundary
velocity are shown in Fig. 9 for the geometry reported in Fig. 3(e). The map in Fig. 9(a) indicates
that a decrease of the inflow velocity at a generic location of the inflow section, which corresponds
to a positive velocity perturbation due to the fact that the normal to the computational domain is
oriented externally, always implies a negative shift of the eigenvalue, and this means that the instability
eventually leading to engulfment occurs at larger Reynolds numbers. However, the map also shows that
the stabilizing or destabilizing effect depends on the location of the velocity perturbation and that the
sensitivity is not symmetric. Analogously, maps in Figs. 9(b-c) indicates the effect of blowing/suction
on the top and lateral walls of the mixer, respectively.

In [93] the instabilities occurring in a planar X-Junction are investigated. As in the case of the
T-mixer, the primary instability of this flow is a symmetry-breaking pitchfork bifurcation. Sensitivity
maps of this instability with respect to suction or blowing from the junction walls are derived and used
to design a passive control, which is shown to significantly delay the onset of the instability.
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FIG. 18. Sensitivity to base flow modifications at different x sections: arrows indicate the in-plane sensitivity components,
whose maximum magnitude is approximately equal to 66, and contours represent the sensitivity component normal to the
plane, ranging from −50 (dark color) to 50 (light color); sections at x = 0.2 (a), x = 0.4 (b), and x = 0.6 (c).

at a generic location of the inflow section, which following the previous definition corresponds to
a positive Ui, always implies a negative shift of the eigenvalue, and this means that the instability
eventually leading to engulfment occurs at larger Reynolds numbers. However, Fig. 19(a) also shows
that the stabilizing or destabilizing effect depends on the location of the velocity perturbation and
that the sensitivity is not symmetric with respect to the plane y = W/2.

As an application and validation of the map provided in Fig. 19(a), we consider a perturbation
of the inflow velocity obtained by the following procedure. A DNS simulation (denoted as S2) has
been carried out at the same Re (which implies the same mass flux) as the one carried out to compute
the base flow in the previous stability and sensitivity analysis, but with a geometry having longer
inflow pipes (Li = 10) and with a uniform inflow velocity distribution. In this way, we mimic a
case in which the velocity profile is not fully developed at the x sections where sensitivity has been
studied (x = xsi = ±6.875). We consider as a velocity perturbation δUi the difference between the
fully developed velocity distribution and the one predicted at x = xsi = ±6.875 in simulation S2,
reported in Fig. 19(b). It is evident that, as expected, there is a decrease of the inflow velocity in
the center of the channel (positive Ui) and an increase in the near wall regions, corresponding to
a flatter profile with respect to the fully-developed one, which is typical of non-fully developed
conditions (see also Galletti et al.6). Successively, the unstable eigenvalue has been estimated on
the basis of the map in Fig. 19(a), leading to a value λ " −0.010, which means that the base flow
with the non fully-developed velocity profile is slightly more stable than the unperturbed one, which
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was marginally stable at the considered Reynolds number (precisely, with an associated eigenvalue
equal to λ0 ! −2.4 × 10−3). This is in agreement with the conclusions drawn in Galletti et al.6 As
a validation, the value of λ compares well with the exact one computed by stability analysis carried
out on the whole domain of simulation S2, leading to λex ! −0.014. We remind that the considered
perturbation is not infinitesimal, its maximum intensity being approximately equal to 0.1, and this
is the reason of the discrepancy between λ and λex. When the same test was carried out in the 2D
case of Sec. III, since the variation of λ was one order of magnitude smaller than the present one, the
predicted and true values of the eigenvalue of the perturbed problem were in excellent agreement,
with discrepancies of the order of 4%. However, a further assessment of the provided 3D maps is
detailed in the following. If we consider a velocity perturbation distributed over a surface, e.g., the
inflow surface in the previous case, the area-weighted averaged value of the adjoint pressure term
in Eq. (7) has no influence only for perturbations δUi with a global zero mass flux, as the one in
Fig. 19(b). Conversely, for perturbations with a net mass flux, the mean value of P+

b affects the
results. However, the problem remains well posed because the outflow boundary condition for the
problem (8) involves the value of P+

b , and consequently its mean value is not arbitrary although
only the gradient of P+

b enters in the field equations. To better illustrate this issue and for a further
assessment of the provided sensitivity maps, as a particular case, we consider a perturbation which
is proportional to the inflow profile; then the resulting value δσ is the same as the one that could
be found by considering a small variation of the flow Reynolds number, since the bulk velocity is
thus changed while keeping the same inflow velocity profile. To this purpose, we consider at
Re = 140 a perturbation intensity such that, when summed to the inflow profile, leads to a bulk
velocity equal to 139/140 of the one in the reference case. This configuration is equivalent to one
with unit bulk velocity and Reynolds number equal to Re = 139. Successively, the most unstable
eigenmode can be computed directly at Re = 139 (with unitary bulk velocity) or estimated by the
maps derived from the unperturbed case at Re = 140. By carrying out the linear stability analysis
at Re = 139, the most unstable eigenmode is found to be λ = −7.7 × 10−3, while, by using the
sensitivity map, this is estimated to be λ = −8.1 × 10−3. This test further validates the sensitivity
map in Fig. 19(a) and its use in case of perturbations implying a global mass flux variation. Moreover,
it confirms that, if the considered perturbation is small enough, the sensitivity maps provide much
more accurate predictions.

The same Eq. (7) used here to study the sensitivity to the inlet conditions, can be applied as
well to investigate the possibility to control the instability by applying micro-jets on the walls of the
mixer. Indeed, Eq. (7) is also valid if the scalar product is obtained by integration not only over $i,
as it is written now, but also in general over all the domain boundaries on which Dirichlet boundary
conditions are applied for the velocity, as for instance the no-slip walls of the mixer. A variation of
the wall-normal component of the velocity on a no-slip wall can be considered as an approximate
representation of the effect of a local (suction/blowing) jet, and Eq. (7), integrated on the appropriate
boundaries, can thus characterize the effects of such a control on the instability. An example is given
in Fig. 20, where the sensitivity S of the instability is characterized with respect to the introduction
of a localized velocity, normal to the boundary, on the walls y = W and z = 0 (in the latter case
only the more interesting part of the wall surface is shown). In particular, a jet implies a negative
wall-normal velocity with respect to the normal pointing outside the flow domain, thus it can have
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was marginally stable at the considered Reynolds number (precisely, with an associated eigenvalue
equal to λ0 ! −2.4 × 10−3). This is in agreement with the conclusions drawn in Galletti et al.6 As
a validation, the value of λ compares well with the exact one computed by stability analysis carried
out on the whole domain of simulation S2, leading to λex ! −0.014. We remind that the considered
perturbation is not infinitesimal, its maximum intensity being approximately equal to 0.1, and this
is the reason of the discrepancy between λ and λex. When the same test was carried out in the 2D
case of Sec. III, since the variation of λ was one order of magnitude smaller than the present one, the
predicted and true values of the eigenvalue of the perturbed problem were in excellent agreement,
with discrepancies of the order of 4%. However, a further assessment of the provided 3D maps is
detailed in the following. If we consider a velocity perturbation distributed over a surface, e.g., the
inflow surface in the previous case, the area-weighted averaged value of the adjoint pressure term
in Eq. (7) has no influence only for perturbations δUi with a global zero mass flux, as the one in
Fig. 19(b). Conversely, for perturbations with a net mass flux, the mean value of P+

b affects the
results. However, the problem remains well posed because the outflow boundary condition for the
problem (8) involves the value of P+

b , and consequently its mean value is not arbitrary although
only the gradient of P+

b enters in the field equations. To better illustrate this issue and for a further
assessment of the provided sensitivity maps, as a particular case, we consider a perturbation which
is proportional to the inflow profile; then the resulting value δσ is the same as the one that could
be found by considering a small variation of the flow Reynolds number, since the bulk velocity is
thus changed while keeping the same inflow velocity profile. To this purpose, we consider at
Re = 140 a perturbation intensity such that, when summed to the inflow profile, leads to a bulk
velocity equal to 139/140 of the one in the reference case. This configuration is equivalent to one
with unit bulk velocity and Reynolds number equal to Re = 139. Successively, the most unstable
eigenmode can be computed directly at Re = 139 (with unitary bulk velocity) or estimated by the
maps derived from the unperturbed case at Re = 140. By carrying out the linear stability analysis
at Re = 139, the most unstable eigenmode is found to be λ = −7.7 × 10−3, while, by using the
sensitivity map, this is estimated to be λ = −8.1 × 10−3. This test further validates the sensitivity
map in Fig. 19(a) and its use in case of perturbations implying a global mass flux variation. Moreover,
it confirms that, if the considered perturbation is small enough, the sensitivity maps provide much
more accurate predictions.

The same Eq. (7) used here to study the sensitivity to the inlet conditions, can be applied as
well to investigate the possibility to control the instability by applying micro-jets on the walls of the
mixer. Indeed, Eq. (7) is also valid if the scalar product is obtained by integration not only over $i,
as it is written now, but also in general over all the domain boundaries on which Dirichlet boundary
conditions are applied for the velocity, as for instance the no-slip walls of the mixer. A variation of
the wall-normal component of the velocity on a no-slip wall can be considered as an approximate
representation of the effect of a local (suction/blowing) jet, and Eq. (7), integrated on the appropriate
boundaries, can thus characterize the effects of such a control on the instability. An example is given
in Fig. 20, where the sensitivity S of the instability is characterized with respect to the introduction
of a localized velocity, normal to the boundary, on the walls y = W and z = 0 (in the latter case
only the more interesting part of the wall surface is shown). In particular, a jet implies a negative
wall-normal velocity with respect to the normal pointing outside the flow domain, thus it can have
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Fig. 9 Figures from [54]: sensitivity of the growth factor of the unstable eigenvalue in a 3D T-mixer to a
perturbation of the inlet velocity distribution (a) and to local blowing/suction jets on the top (b) and lateral (c)
walls of the mixer at nearly critical conditions for the engulfment instability (pitchfork bifurcation, Re ' 140).

3.4 An example of feedback control designed by sensitivity analysis

In the work documented in [24] sensitivity analysis is used to design a closed-loop control for the
primary instability in the wake past a bluff-body. A prototypical bluff-body flow is considered and
control is implemented as a simple proportional feedback control, in which actuation is provided by
two jets localized on the cylinder surface and a few velocity sensors are used for feedback control.
Since only the perturbation velocity enters in the feedback, the baseflow is not affected by the control.
The free control parameters are: the position of each sensor, the component of velocity measured by
each sensor and the associated feedback coefficient. The sensitivity analysis allows the construction
of sensitivity maps for the optimal placement of the sensors in the flow. The original aspects of the
work are basically two. Firstly, the design of the control includes, besides the unstable mode, those
stable eigenvalues that are physically meaningful, significantly affected and potentially destabilized
by the controller. Thus, information from the sensitivity analysis of all the monitored eigenvalues is
used contemporarily in the design of the controller. Secondly, the design of the controller is carried
out iteratively by minimizing a scalar function, which reaches its minimum value when the monitored
eigenvalues reach a desired target configuration in the complex plane. The minimization is carried out
by a gradient method, and at each iteration the gradient of the function to be minimized is computed
using the sensitivity analysis of all the monitored eigenvalues carried out around the partially-controlled
flow. The paper shows that, if the controller is designed as usually done in the literature, i.e. using only
the results of the linearization around the uncontrolled state of the system, the stabilization may not be
possible, whereas it can be obtained with the proposed iterative procedure. An example of the behavior
of the monitored eigenvalues is shown in Fig. 10(b). In Fig. 10(a) sensitivity maps of the uncontrolled
flow to a local placement of a unitary feedback sensors on the flow symmetry line are shown for a
given value of Re. Fig. 10(a) shows that it is not possible to place the sensor so that the action of
the controller is contemporarily stabilizing for all the monitored modes. Moreover, when the sensor
position is chosen to be reasonably stabilizing according Fig. 10(a), i.e. according to a linearization
around the uncontrolled configuration, Fig. 10(b) shows that the system cannot be stabilized. The
linearized map Fig. 10(a) only provides the correct tangent line along which the eigenvalues move for a
small action of the control, but the trajectories of the eigenvalue quickly depart from linearity so that
the linearized information in Fig. 10(a) is no longer representative. Fig. 10(b) shows that if the control
design is carried out iteratively leaving also the sensor position as a free control parameter, the flow
can be stabilized at the considered Reynolds number. The potentially erroneous indications that may
derive from the sole linearized analysis on the uncontrolled system are also highlighted in [42,43,164]
for the case of a spanwise-varying control past a circular cylinder, as commented in Sec. 3.6.
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checked a posteriori! and that the target rt was successfully
reached. In the figure cited above, a line connects the initial
"cross! and the final position of each eigenvalue; that line is
only for visualization purposes and it is the locus of the
positions of the eigenvalue obtained by fixing x=3.01 and by
progressively increasing K up to K#0.61. Note that, for
small values of K, the directions in which the eigenvalues are
displaced agree with the maps reported in Fig. 4. The spec-
trum of the controlled system has been checked also using
grid GR2, in order to check its sensitivity to grid refinement,
and the results are reported using filled circles in Fig. 6. The

linear stability limit of the controlled system has been evalu-
ated using GR1 and it was found that the system becomes
unstable for 108!Re!109. We recall that, in the uncon-
trolled case, Recr#59. Moreover, the robustness of the de-
signed controller has been tested in an unsteady nonlinear
simulation "grid GR1, "t=7.5#10−3! by activating it impul-
sively once the vortex-shedding instability was nonlinearly
saturated. As stated above, there is no guarantee that the
controller is able to stabilize the flow in such conditions and
this capability must be explored a posteriori. In the present
case the controller was able to completely stabilize the flow,
as shown in Fig. 7"a!, where the vertical velocity measured at
the point of coordinates "5,0! is plotted against time. In Fig.
7"b! we also plotted the time history of the velocity at the
exit of the jets, which is proportional, through K, to the ve-
locity measured by the sensor. In the two figures cited above,
the origin of the time axis is chosen so that the controller is
activated impulsively at time t=0.

As already stated above, the information provided by the
maps reported in Fig. 4 is the result of a linearized analysis
in K and is not sufficient, in general, to properly place the
sensor of the controller. In order to prove this statement, we
carried out two additional tests. In the first one, we con-
strained the sensor to remain in the position selected accord-
ing to the maps, x=2.5, which was the initial position for the
iterative minimization procedure of the previous test. Conse-
quently, the only design parameter in the present case is the
feedback coefficient K, whose initial value is again set to
zero. At the end of the minimization procedure, we found
K=0.98 but the system was not stabilized, as shown in Fig.
6, where the final position of the three eigenvalues is plotted
with a diamond-shaped symbol. The trajectory of the eigen-
value $1 as K is progressively increased indicates that the
minimization ended correctly, since the isolines of the func-
tion fb are straight lines parallel to the imaginary axis and
eigenvalues $2 and $3 in this case do not contribute to the
value of f , their real part being smaller than rt. In the second

FIG. 5. Real parts of the maps m1"xs ,ys ,0! "a! and m1"xs ,ys ,% /2! "b! as a
function of xs and ys obtained using GR1 at Re=90.
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y=0, and K=0.61! impulsively applied at t=0: "a! vertical velocity mea-
sured at point "5,0! and "b! normal velocity at the exit of the upper jet
"positive values stand for outflowing jet!.
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Fig. 10 Figure from [24]: (a) (adapted figure) sensitivity maps for the three monitored eigenvalues σj , j =
1, 2, 3 to the introduction of a sensor measuring the vertical component of velocity in the uncontrolled config-
uration at Re = 90 and feeding back the measurement to the actuators with unitary feedback coefficient (x is
measured from the square cylinder center whose edge length is D); (b) trajectories of the monitored eigenvalues
when both the feedback coefficient and the sensor position are optimized together (continuous line), verification
of their final position on a refined grid (filled circles), trajectories (dotted lines) in case the position is fixed
(x1 = 4.9 and x1 = 2.5) and the feedback coefficient K is varied so as to stabilize the unstable mode (K > 0
for x1 = 2.5 and K < 0 for x1 = 4.9, in agreement with maps (a)).

3.5 Open-loop control of global instabilities by harmonic forcings

As for a steady forcing, harmonic forcing for flow control can be applied only to the LNSE or directly
to the NSE. As concerns the first case, it is shown in [157] that a harmonic forcing of the form f̃ eiωt

(ω real-valued) acting on the discretized linearized Eq. (2) leads to a system response q̃ eiωt which can
be formally written in terms of eigenvalues/eigenvectors/adjoint eigenvectors (λj , q̂j , q̂

+
j ) of the EVP

problem in Eq. (4):

q̃ =
∑

j

〈
q̂+
j , f̃
〉

iω − λj
q̂j (25)

Equation (25) shows that, if a marginally stable global mode exists (say, the j-th mode), i.e. a mode
with null growth rate, this mode is strongly excited if the forcing is applied at a frequency close to that
of the mode (Im(λj)) with a spatial distribution f̃ as close as possible to the adjoint mode q̂+

j . Thus,

q̂+
j characterizes the receptivity of the global mode to near-resonance harmonic forcing. An extensive

discussion on receptivity of global modes can be found in [102]. A discussion on the effect of harmonic
forcing through body force and through periodic blowing and suction at the body wall can be found in
[115]. Several examples exist in the literature of forcing based on a receptivity analysis so as to excite
a particular global mode.

When a convectively unstable flow or the stable subspace of a globally unstable flow are considered,
the harmonically-forced discretized equations governing the linearized dynamics Eq. (2) can be written
as follows:

∂q′

∂t
= Lq′ + f̃ eiωt (26)

The asymptotic harmonic solution of Eq. (26) is q′(x, t) = q̂(x) eiωt with:

q̂ = R (ω) f̃ (27)

where R (ω) = (iωI− L)
−1

is the global resolvent of the flow, and it is well defined for a generic real
value of ω when a globally stable (sub-)system is considered. In the case of globally unstable flows the
homogeneous unstable solution related to the global instability is summed to the particular harmonic
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solution (Eq. (27)) of Eq. (26). If an optimal forcing is searched in terms of the output asymptotic
energy, the problem to be solved is the following:

µ2 = supf̃

〈q̂, q̂〉〈
f̃ , f̃
〉 (28)

which can be shown to be related to the solution of the following self-adjoint eigenvalue problem:

RH R f̃ = µ2f̃ (29)

By indicating with (µ2
j , f̃ j) the solutions to the eigenproblem (29) (µj is necessarily real-valued), the

generic response to a forcing f̃ can be written as follows:

q̂ =
∑

j

µj

〈
f̃j, f̃

〉
q̂j (30)

The global resolvent operator is investigated in several recent works in the literature (see for instance [4,
126,156,59]). In [44] the singular value decomposition of the global resolvent is used to build reduced-
order models for amplifier flows. See also [157] for more details.

In [154] the case of a harmonic forcing acting on the NSE is considered, both as a volume force
in the momentum equation and as blowing/suction from a wall. The strategy followed in [154] and
concisely described here consists into deriving, on the basis of a weakly-non-linear analysis and adjoint
methods, an evolutive equation of the amplitude of the globally unstable mode in the controlled system
(Eq. (34)) arising from a supercritical Hopf bifurcation; successively the control is designed on the basis
of this equation, showing an application to the flow in an open cavity (see the uncontrolled spectrum
in Fig. 2(a)). The starting point is the work in [155] where a global and weakly nonlinear analysis is
carried out considering the small parameter ε = Re−1cr − Re−1, Recr being the critical value of Re for
the global stability. It is shown that the complex-valued amplitude A of the unstable mode arising
from a supercritical Hopf bifurcation as Re > Recr obeys a Stuart-Landau equation:

dA

dt
= ε λA− ε (µ+ ν) A |A|2 (31)

An original aspect of [155] is that the complex-valued constants λ, µ and ν in Eq. (31) are computed
rigorously using adjoint methods and a multiple scale analysis, at difference with previous works
employing single-point measurements (see for instance [138,49]). The analysis shows that the eigenvalue
of the global stability analysis carried out on the baseflow is σBF + iωBF with

σBF = εRe (λ) , ωBF = ω0 + εIm (λ) (32)

ω0 being the frequency at critical conditions ε = 0 (see also the example in Fig. 13 concerning the flow
past a circular cylinder). The frequency of the non-linearly saturated limit cycle resulting from the
analysis of Eq. (31) is (see again Fig. 13 as an example):

ωLC = ω0 + εIm (λ)− εRe (λ)
Im (µ) + Im (ν)

Re (µ) + Re (ν)
(33)

When a periodic volume force is applied to the momentum equation of the incompressible NSE,
E eiωf t fE(x) + c.c. (fE(x) being the spatial distribution of the forcing and c.c. stands for complex
conjugate), the amplitude equation modifies as follows for a non-resonant case (i.e. ωf sufficiently
different from the frequency of the uncontrolled mode ω0 and its sub- and super-harmonics):

dA

dt
= ε λA− ε (µ+ ν) A |A|2 −

(
µ2 (ωf ) E2

)
A (34)

Equation (34) shows that the considered harmonic forcing modifies the linear part of the amplitude
equation, and the complex coefficient µ2 (ωf ) is the result of non-linear interactions between the forced
response at frequency ωf with its complex conjugate, and between the forced response and the global
mode (frequencies ωf + ω0 and ωf − ω0). Equation (34) suggests two types of control, one aimed at
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control. This quantity is only defined when the forcing is stabilizing (µr(ωf ) > 0). If not
(µr(ωf ) < 0), then the value of r is set to an arbitrarily large value. Thick black line, with
fixed forcing defined in (3.1); grey line with symbols, with optimal forcings.

displays local maxima near ωf = 4.5 and ωf = 9.2. This may be explained by
analysing the energy of the forced response �uE, uE� as a function of frequency ωf .
The square root of this quantity is represented in figure 5(a) by a thick solid line. We
see that the same forcing structure may yield different energy responses depending on
the forcing frequency ωf : for example, frequencies around ωf = 4.5 and ωf = 9.2 are
particularly sensitive. This probably stems from the existence of two weakly damped
global modes in the vicinity of these frequencies. These two global modes (together

(a)

(b)

(c)

Fig. 11 Figure from [154]: (a) plot of Re (µ2 (ωf )) (absolute value as solid line and sign as dashed line) in
case of optimal forcing distribution fE(x); (b-c) DNS at Re = 6250 in which the control (optimal fE, ωf = 13)
is turned on at time t = 92.2. The horizontal lines in (b) indicate the values predicted by the amplitude
equation (34) in the uncontrolled (left) and controlled (right) cases; (c) indicates the local frequency of A(t),
the arrows indicating the natural frequency of the flow, ω = 7.23, and and the forcing frequency, ωf = 13.

modifying the growth rate of the global mode, which could be thus stabilized, and the second one
aimed at modifying the frequency of the non-linearly saturated global mode. In the first case, the
growth rate of the controlled mode is given by:

σ
(c)
BF = σBF − Re (µ2 (ωf )) E2 (35)

while the frequency of the controlled limit-cycle of Eq. (34) is

ωLCC = ωLC − Re (µ2 (ωf ))

(
− Im (µ2 (ωf ))

Re (µ2 (ωf ))
+

Im (µ) + Im (ν)

Re (µ) + Re (ν)

)
E2 = ωLC + γ (ωf ) E2 (36)

Depending on the behavior of µ2 (ωf ) and γ (ωf ), which also depend on the spatial distribution of the
forcing fE(x), the amplitude and frequency of forcing can be chosen to obtain a target amplification
factor of the global mode (Eq. (35)) and/or a target frequency of the saturated limit cycle (Eq. (36)).
For a fixed control frequency ωf , the distribution fE(x) can be also optimized so as to reduce the
amplitude of the control. In Fig. 11(a) µ2 (ωf ) is reported for optimal fE(x) in a cavity flow. This
map is used to design the control tested by DNS in Fig. 11(b), which shows that Eq. (34) correctly
predicts the frequency and the amplitude of both the uncontrolled and the controlled flow. Fig. 11(b)
also shows that the control, which suppresses the global mode with ω = 7.23, does not lead to a steady
flow since the flow is forced harmonically at ωf = 13, this frequency thus persists also in the controlled
flow.

In the case in which the forcing frequency is similar to that of the uncontrolled mode (ωf ' ωo) its
action can be represented in the amplitude equation (31) as a constant term [154]. In this case the forced
amplitude equation predicts, for a sufficiently large amplitude of the control but still significantly lower
than in the non-resonant case, a lock-in phenomenon, i.e. the frequency of the forced system becomes
identical to that of the harmonic forcing ωf . As a consequence, the frequency of the globally unstable
mode, at saturation, is synchronized with the forcing frequency. This is a very well known phenomenon
in the excited wake past bluff bodies, and it is already used for controlling or regularizing the frequency
of vortex shedding (see, for instance, [138,127,176]) and for globally unstable oscillators in general (see,
for instance, [99,98] and referenced bibliography for excited jets).

The strategy followed in [154] consists into designing a control on the basis of a model equation for
the amplitude of the unstable mode, and the same strategy, even if not directly involving harmonic
forcing, is used in other works in the literature. For example, in [113] a system of two equations
is derived to represent the dynamics of the globally unstable mode of a circular cylinder elastically
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constrained in a uniform flow. This system of equations is subsequently used in [114] to explore and
design a feedback control so as to extract energy from the flow by vortex-induced vibrations of the
cylinder.

3.6 Controls of global instabilities based on local stability analysis

In the previous sections works have been reviewed which rely entirely on the global stability analysis
of the flow. As already stated, a sufficient condition for global instability of a slowly evolving flow is
that a sufficiently extended region of absolute instability exists in the flow and a criterion for frequency
selection of the global mode is provided by the local analysis. Thus, a passive control for a globally
unstable flow can be designed or verified also by local stability analysis, checking the effect of the
control on the absolute instability. In this way a global stability analysis, which is far more demanding
from a computational viewpoint, can be bypassed. Most of this kind of works investigate modifications
of the baseflow so as to suppress or modify the absolute instability.

A classical example, which however focuses on the spectrum of a convectively unstable flow (plane
Couette flow), is documented in [20] . In this work the sensitivity analysis of the spectrum of the Orr-
Sommerfeld operator is investigated to generic perturbations of the baseflow by adjoint methods. The
work in [20] has been generalized in a probabilistic framework in [89], where a random perturbation of
the baseflow is considered, which is modeled as a Gaussian random field of prescribed correlation length,
and the resulting effect on the stability spectrum of a Couette flow is investigated using a generalized
polynomial chaos method. In [76] the effect of baseflow modification on the absolute instability in
two-dimensional parallel wakes at low Reynolds numbers is investigated. In [76] the sensitivity analysis
of absolute instability suggests how to modify the baseflow so as to suppress or enhance the absolute
instability in the wake past a circular cylinder. In [96] the onset of absolute instability in low-density jets
is investigated for a large variety of velocity- and density-profile shapes. Following the approach in [76]
optimal velocity and density profiles are found that promote the absolute instability. In [68] using the
same method proposed in [76] it is shown that low-density axisymmetric jets can shift from absolute to
convective instability when sufficient co-flow is provided around the jet periphery, suggesting a control
strategy for suppressing the global instability of the jet. In [151] local analysis is used to show that
base-bleed suppresses the absolute instability in the wake past an axisymmetric body with a blunt
trailing edge. In [52] local spatio-temporal stability analysis is used to explain the observed effect
of the density ratio in the wake characteristics of flames that are stabilized by a bluff-body. In [97]
local analysis is applied to show that base-bleed from the trailing edge of a thick plane splitter-plate
eliminates the absolute instability of the wake and, thus, the resulting vortex shedding instability.

The method proposed in [76] is used in [78] to investigate the stabilization of a plane wake past a
nominally 2-D bluff-body by means of spanwise-varying passive actuation (namely three-dimensional
control) which modifies the baseflow in a varicose or sinuous way, the first being far more effective. It
is also shown that the variations of the absolute growth rate depend linearly on the amplitude of the
spanwise (2D) perturbations of the base flow [76], and quadratically for 3D perturbations, those being
more effective. In [42] it is shown that optimal 3D perturbations, artificially forced in parallel wakes in
order to generate velocity streamwise streaks by a lift-up mechanism ([51,91]), can completely suppress
the absolute instability of the flow. A similar effect is obtained by periodically distributed porosity in
[132]. In agreement with [78] it is shown that the absolute growth rate of the primary instability
depends quadratically on the streaks amplitude measured in the region of absolute instability. This
is an interesting example of how to critically evaluate the results of a linearized sensitivity analysis
based on the uncontrolled flow. Indeed, since the dependence of the absolute growth is quadratic on the
amplitude of 3D perturbations (A3D), the sensitivity analysis carried out around the uncontrolled flow
(A3D = 0) predicts a null effect on the instability. Thus, according to the analysis of the uncontrolled
flow, the 3D control would be ineffective and the 2D one preferable. However, it is shown in [78,42,43]
that for finite control amplitudes the 3D control is far more effective than the 2D one. This is shown
concisely in Fig. 12. A second-order sensitivity analysis as that proposed in [164] would be needed in
this case to properly investigate the effect of A3D on the instability, carrying out the analysis on the
uncontrolled flow. In particular, in [164] a very similar case is considered, i.e. the effect of a steady
perturbation which is periodic in the spanwise direction on the primary instability of a plane wake,
and the proposed second-order global analysis is shown to be able to reproduce curves equivalent to
those reported in Fig. 12.
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FIG. 8. Dependence of the growth rate of the global eigenvalue sr on the inflow optimal perturbation amplitude A0
(panel (a)) and on the streak amplitude As(x = 2.7) measured in the centre of the absolute region of the reference 2D
wake (panels (b) and (c) for a zoomed plot). A spanwise uniform perturbation (2D) has been also considered for comparison.
Symbols denote data points, while lines are best fits to the data points.

amplitudes A0. The dependence of the global growth rate sr on the inflow optimal perturbation
amplitude A0 is displayed in Fig. 8(a). If this dependence is also to be reported in term of streaks
amplitudes, for the considered streaks with β = 1, it makes no sense to report it in terms of As,max

because this value is attained far downstream, in the convectively unstable region. We instead take
as an indicator of the “useful” streak amplitude the amplitude of the streaks in the middle of the
absolute region of the unperturbed flow As(x = 2.7). The dependence of sr on this amplitude is
reported in Fig. 8 (panels (b) and (c) for a zoom).

In the same figures the variation of the growth rate sr induced by a 2D perturbation of the basic
flow is also reported for comparison. The 2D perturbation has the same y shape as the optimal streak
shape in the middle of the absolute region (x = 2.7) but is uniform instead of periodic in the spanwise
direction. For this 2D perturbation, A0 is unambiguously defined and As is defined as the maximum
associated "U taken at x = 2.7.

From the figures it is clearly seen how the first order sensitivities dsr/dA0 and dsr/dAs computed
for A0 = As = 0 are zero for the 3D perturbations and non-zero for the 2D perturbations as predicted
by the first order sensitivity analysis. According to a first-order sensitivity analysis one would expect
the 2D perturbations to be more effective than 3D ones in quenching the global instability, but exactly
the opposite is observed. Indeed, 2D perturbations are more effective than 3D ones in reducing sr

only for very small perturbation amplitudes, while the opposite is observed for larger amplitudes
where the higher order dependence of sr on A0 and As induces more important reductions of sr. We
indeed find that 3D perturbations stabilize the global mode at a value of As(x = 2.7) more than five
times smaller, and more than ten times smaller in terms of A0. A higher efficiency of 3D perturbations
was expected for results expressed in terms of A0, due to the gain associated with the lift-up of the
3D optimal perturbations. However, such a result was somehow unexpected when expressing the
growth rate reductions in terms of As.

D. Nonlinear simulations

Non-linear simulations of the full Navier-Stokes equations have finally been performed to assess
the effect of the inflow forcing of 3D optimal perturbations in the nonlinear regime. The same grid
used in linear simulations has been used in the nonlinear ones. In a first simulation, the permanent
harmonic self-sustained state supported by the reference 2D wake is allowed to develop. This 2D
(spanwise uniform) self-sustained state is then given as an initial condition to simulations in the
presence of the optimal perturbations (streaky wakes) of increasing amplitude. As expected from the
linear analysis, the global perturbation kinetic energy E′ associated to the self-sustained oscillations
in the wake is reduced when the amplitude of the enforced optimal perturbations is increased (see
Fig. 9). A stable steady streaky wake is found for case E, where the oscillations are completely
suppressed.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
131.114.221.45 On: Tue, 04 Mar 2014 10:46:12

Fig. 12 Figure from [43]: dependence of the growth rate of the global unstable eigenvalue (sr) (a) on the
inflow 3D optimal perturbation amplitude A0 and (b-c) on the resulting streak amplitude As measured in the
centre of the absolute region of the reference 2D wake (circles). An equivalent spanwise uniform perturbation
(2D) is also reported for comparison (triangles); (c) is a zoomed view of (b).

When the flow has two non-homogeneous directions orthogonal to the streamwise direction, local
stability analysis is generally denoted as bi-global stability analysis (see, for instance, [166] and reported
bibliography). To the author’s knowledge, in the literature there are not examples of local spatio-
temporal bi-global analysis and the only examples of adjoint-based sensitivity analysis within the
framework of bi-global stability analysis are documented for a convectively unstable flow in [6,18]. In
[6] the flow formed by the intersection of two perpendicular flat plates, both parallel to the incoming
flow, is considered. In [18] a sensitivity analysis is carried out to quantify the effect of a perturbation
of the baseflow in a duct flow on the dynamics of the traveling waves identified as responsible for rapid
breakdown to turbulence.

4 Control design inspired by stability and sensitivity analysis of mean flows

4.1 General approach

As already pointed out, the stability and sensitivity analysis described in Sec. 3.1 can be rigorously
applied when the target baseflow is at flow conditions of incipient instability. As the flow conditions
depart from those of incipient instability, the predictions of the stability analysis, and consequently
the provided indications for the control of global instabilities, progressively become less accurate. This
is shown for instance in [155] for the flow past a circular cylinder and the flow in an open cavity.
In both cases the frequency associated to the unstable mode found by the linear stability analysis
of the steady unstable flow (ωBF ) differs progressively from that of the saturated instability as Re
is increased beyond the critical one. This behavior is shown in Fig. 13 for the flow past a cylinder,
showing that ωBF progressively becomes larger than that of the saturated vortex shedding instability
as Re is increased.

Consequently, rigorous application of the methods described in Sec. 3 is limited to low Reynolds
numbers. However, there are classes of oscillators characterized by the peculiarity that, if the linear
stability analysis is applied to the time-averaged flow field, even if the contribution of the Reynolds
stresses is neglected and thus using only the molecular viscosity in the stability equations, the analysis
predicts a nearly marginally stable mode with the same frequency of the non-linearly saturated instabil-
ity. This was firstly noticed for wake flows as for instance [69,133,171], where the local linear criterion
for weakly nonparallel flows [125] applied to the mean flow field is shown to yield the correct prediction
of the saturated wake instability. In [168] it is shown that that the effect of rotational oscillations of
a circular cylinder on the frequency of the vortex shedding can be predicted by the stability analysis
of the mean flow field, the modifications of which thus accounting for the main effects of control. The
same behavior, i.e. the accurate prediction of the vortex shedding frequency by the stability analysis
of the mean flow field, was observed, by global stability analysis, for the flow past a circular cylinder
up to Re = 180 by [15,155,121] and it was confirmed up to Re = 600 in [95]. In both the referenced
papers the mean flow field was computed by DNS and stability analysis was carried out on the mean
(i.e. time-averaged) flow field. In [85] local spatio-temporal analysis is applied to mean wake profiles
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Figure 1. Cylinder flow. (a) Pulsation ω against Reynolds number Re. The solid line represents
the experimental results of Williamson (1988). The dotted line sketches the pulsations obtained
by Barkley (2006), thanks to linear global stability analyses applied to the base flows. The
triangles, also from Barkley (2006), refer to analogous calculations applied to the mean flows.
The dashed line represents ωBF as defined in (2.29), while the long-dashed line represents
ωLC and ωMF as defined in (2.35) and (2.45). (b) The same information as in (a), but for the
amplification rate σ . Note that there is no solid line representing experimental data and that
the long-dashed line only represents σMF since σLC is not defined.

using a solid line in figure 1(a). It clearly appears that in figure 1(a) the triangles
closely follow the experimental data for the pulsation, i.e. the mean flow calculations
yield the true nonlinear frequency, and that in figure 1(b) the triangles are located on
the horizontal axis for the amplification rate, i.e. the mean flow is stable. The aim of
this article is to give a theoretical justification of these two observations thanks to a
global weakly nonlinear analysis valid in the vicinity of the critical Reynolds number.
More precisely, the final outcome of this paper will be a condition for the mean flow
to be stable and for the mean flow eigenfrequencies to match the experimental ones.

The present article is based on a weakly nonlinear stability analysis performed in
a global framework, i.e. the unknowns depend on two spatial coordinates x and y.
From a historical point of view, Jackson (1987) and Zebib (1987) were the first to
approach the linear stability problem globally. In the case of the cylinder flow, several
authors, including Ding & Kawahara (1999), Barkley (2006) and Giannetti & Luchini
(2007), revisited the linear stability of this flow recently. The idea of performing a
weakly nonlinear stability analysis in a global framework has been suggested by
Chomaz (2005). By the way, it is interesting to note that a weakly nonlinear analysis
is ill-posed in the case of a weakly non-parallel flow (see Le Dizès, Huerre & Chomaz
1993) and that it is well-posed again in the strongly non-parallel case, i.e. in the global
framework.

The paper is organized as follows. Section 2 is devoted to the cylinder flow and to
the derivation of the two conditions that exist for a mean flow to be approximately
marginally stable and for the mean flow eigenfrequencies to match the true frequencies
of the unsteadiness. We will show that these conditions are satisfied in the case of
the cylinder flow. In § 3 we demonstrate that these conditions are not satisfied for
all globally unstable open flows by considering a counter-example, i.e. the case of an
open cavity flow.

Fig. 13 Figure from [155]: Results for the flow past a circular cylinder. (a) Pulsation ω against Reynolds
number Re. The solid line represents the experimental results of Williamson (1988). The dotted line sketches
the pulsations obtained by linear stability analysis of the baseflow ([15]). The triangles ([15]) refer to analogous
calculations applied to the mean flows. Quantities ωBF (σBF ), ωLC and ωMF (σMF ) are defined in Eq. (32),
Eq. (33) and Eq. (37), respectively.

fitting experimental measurements past a circular cylinder in the range 600 ≤ Re ≤ 4600 showing a
good agreement between the predicted and the measured vortex shedding frequency. In [22] the global
stability analysis is applied to the PIV experimental mean flow field past a porous circular cylinder at
Re = 3.5 × 103, showing that the stability analysis leads to the identification of only one mode that,
for all the considered transpiration ratios from the cylinder surface, is nearly marginally stable with
a frequency very close to that of the vortex shedding in the turbulent wake. Analogous results have
been observed for a variety of oscillators as, for instance, in [66,161] for jets. In general, as pointed out
in [120], it is reasonable to expect that the stability analysis of the mean flow field leads to a correct
prediction of the frequency of the saturated instability in flows that are driven by Kelvin-Helmholtz
like instabilities (jets, shear-layers, wakes).

To the authors knowledge, the first work conjecturing the property of marginal stability of a mean
flow field is documented in [107]. In the cited reference this conjecture is assumed as a constraint for
the mean flow field in a fully developed turbulent flow, together with the assumption that neglected
turbulent transport due to turbulent fluctuations have a stabilizing effect. The mean flow field is thus
found as a result of an optimum constrained problem by maximizing the dissipation rate of energy. In
the specific context of bluff-body wakes, an interpretation of the above behavior was reported already
in [129], suggesting that the amplitude of the oscillating wake saturates precisely when the mean flow
becomes nearly marginally stable. The same conjecture has been recently used in [108] in order to
formulate a self-consistent model that provides, for a given supercritical value of Re, the saturation
amplitude of the primary instability in the wake past a circular cylinder, the saturated frequency, the
mean flow field and the distribution of the Reynolds stresses. The model is made by one equation for
the mean flow field, coupled with a second equation which is the stability problem of the mean flow
field. The equations are coupled because the unstable mode gives rise to Reynolds stresses in the mean
equation. The amplitude of the unstable mode and the resulting mean flow field are found imposing
that the mean flow field is marginally stable. Predictions of the model are in excellent agreement with
DNS up to Re = 110.

A first attempt to perform a systematic study on the results that can be obtained by carrying
out a global stability analysis of time-averaged flow fields without including any Reynolds stress effect
can be found in [155] for laminar flows. The investigation is carried out using, as in [154], the weakly
nonlinear analysis to the small parameter ε = Re−1cr − Re−1 for the flow past a circular cylinder. The
complex amplitude of the globally unstable eigenvalue obeys Eq. (31), the global mode obtained by
the linearized dynamics around the baseflow is σBF +iωBF given in Eq. (32); the frequency ωLC of the
non-linearly saturated limit cycle is given in Eq. (33). It is shown in [155] that the stability analysis
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applied to the mean flow field identifies the following eigenvalue σMF + iωMF :

σMF = εRe (λ)
Re (ν)

Re (µ) + Re (ν)
, ωMF = ω0 + εIm (λ)− ε Im (µ)

Re (µ) + Re (ν)
(37)

The behavior of the quantities in the above equations are shown in Fig. 13 for the primary instability
of a circular cylinder. By comparison between Eq. (33) and Eq. (37) two conditions can be derived for
the stability analysis of the mean flow field to be significant:

– if r1 = |Re (ν) /Re (µ)| � 1 then the mean flow is marginally stable
– if r2 = |Im (ν) /Im (µ)| � 1 then ωMF ' ωLC , i.e. the marginally stable mode computed on the

mean flow field has a very similar frequency to that of the non-linearly saturated instability

Not every flow satisfies the above conditions. For example, the above conditions are fulfilled for the
flow past a circular cylinder (r1 ' 0.03, r2 ' 0.03), and they are not fully satisfied for the case of the
flow in an open cavity (r1 ' 0.34, r2 ' 0.09). In this last case the mean flow field remains unstable and
the frequency of the dominant mode is progressively different from that of the non-linearly saturated
instability as Re is increased. In the literature it is accepted that conditions listed above hold for bluff-
body wakes even if the majority of examples concern the flow past a circular cylinder. Moreover, the
asymptotic analysis in [155] provides indications only for flow conditions which are slightly supercritical,
and by itself it is not sufficient to explain why the stability analysis of mean velocity fields past bluff-
body continues to be meaningful even for turbulent wakes at very high Reynolds numbers [22,85].

When the considered flows are general and turbulent, a formally consistent approach to justify the
stability analysis of mean flow fields was originally proposed in [143] (see also [141]), where a triple
decomposition is used for the flow variables (q(x, t)), separating the following contributions: (i) the
time-averaged flow field (qm(x)), (ii) the large-scale coherent part (qc(x, t)) and (iii) the fluctuating
part (qf (x, t)). The coherent part qc is related to low-frequency large-scale periodic motions and it
can be obtained through phase-averaging (mean flow is subtracted) applied at the fundamental period
of the low-frequency motions. The fluctuating part qf = q − qm − qc is related to the turbulent
fluctuations. A systematic classification and interpretation of the stability analysis of a turbulent flow
based on the triple decomposition is given in [120] and it is concisely summarized here. The objective
of the stability analysis of a time-averaged turbulent flow qm can be two-fold: (1) to check whether
an unstable organized wave qc can grow on qm thus leading to the generation of large-scale organized
motions and/or (2) to estimate the frequency of a non-linearly saturated large-scale organized motion
developed on qm. If goals (1) and (2) are achieved, then by the adjoint methods described in Sec. 3
it is possible to devise control strategies (1) to suppress large-scale instabilities or (2) to modify their
frequencies. Thus, it is desirable to recast the objectives (1) and (2) in the form of a classical stability
analysis. The two objectives imply two different types of stability analysis, which are denoted in [120]
as the base-flow and mean-flow approaches, respectively, and are now illustrated. If the exact equations
of motion for qm and qc are derived (see for instance [120,173]) it is found that qm depends on the
Reynolds stresses qcqc and qfqf generated by qc and qf , respectively, and qc depends on qm and on
the phase-averaged Reynolds stresses q̃fqf due to turbulence (mean value is subtracted before phase
averaging). A RANS model can be used to model the Reynolds stresses due to qf in the dynamics of
both qm and qc.

If the objective of the analysis is to verify the possible existence of coherent large-scale motions

on a mean flow, the mean flow that is considered for the stability analysis, q
(1)
m , must be a field

which is generated solely by the contribution of qfqf , since it is assumed that qc is a small-amplitude

perturbation not affecting q
(1)
m itself. Provided that a RANS closure model is used, q

(1)
m is the steady

solution of the RANS equations for the mean flow. The linearized dynamics of qc on q
(1)
m leads to a

stability problem analogous to a classical one with an additional term modeling the effect of q̃fqf ,
which is naturally given by the linearized RANS model used for qm. If no unstable modes exist,
thus qm is the real meanflow that can be observed in an experiment, provided the closure RANS

model is sufficiently accurate. Otherwise, an organized large-scale motion qc will grow on q
(1)
m and

non-linearly saturate, giving origin in the case of an oscillator to a periodic motion with a mean flow

field different from q
(1)
m . The frequency of the saturated instability will differ from the one predicted

by the stability analysis if the flow conditions are far from incipient instability or, equivalently, if the
associated amplification factor is sufficiently large. Conversely, the amplification factor of an identified
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unstable mode is physically meaningful, and a control which is able to stabilize unstable modes will
lead to the suppression of large-scale fluctuations in the real flow. This approach, denoted in [120] as
the base-flow approach, is followed for instance in the global stability analyses documented in [39,40]
to study the buffeting flow on transonic airfoils and in [119] for a cavity flow. Thus, summarizing, the
base-flow approach consists in carrying out a stability and sensitivity analysis of the URANS equations,
including the turbulence closure.

If the objective of the stability analysis is to predict the frequency of the saturated large-scale

fluctuations, it is necessary to perform the stability analysis on a mean flow q
(2)
m which results from the

contribution of both Reynolds stresses qfqf and qcqc. This is for instance the time-averaged flow field
that can be measured experimentally in a flow where the large-scale instability is already non-linearly
saturated, as for instance in [22], or by averaging in time the flow field resulting from a DNS/LES or
URANS simulation, as done for instance in [116,120]. In this case the stability analysis of an oscillator
identifies, as discussed above for mean laminar flows (see [155]), a nearly marginally stable mode whose
frequency is close to that of the saturated instability. Thus, the amplification factor is meaningless while
the frequency of the observed large-scale fluctuations is well predicted and, thus, a control designed
to shift the frequency of the identified mode will change equivalently the frequency of the large-scale
motions in the turbulent flow. In this kind of stability analysis, denoted in [120] as mean-flow approach,
the contribution from q̃fqf on the linearized stability equations can be neglected without affecting the
accuracy of the results, as demonstrated heuristically by the examples cited at the beginning of this
section and as discussed in [143,120]. Thus, the stability equations used in the mean-flow approach
are formally identical, even if conceptually different, to those used for the stability analysis of laminar

flows. As stated above, in the mean-flow approach the mean flow q
(2)
m is measured from experiments

or is obtained by time-averaging unsteady simulations; therefore, it is not usually obtained as the
steady solution of a given set of equations. For this reason the sensitivity to a steady forcing cannot

be found straightforwardly by perturbation methods applied to the governing equations for q
(2)
m . Two

possible solutions that can be found in the literature (see [120]) are to assume that a perturbation of

q
(2)
m caused by a localized small-amplitude volume force is governed (a) by the laminar Navier-Stokes

equations (quasi-laminar approach) or (b) by the RANS equations in which the turbulent viscosity is

considered to be unchanged by the corresponding perturbation of q
(2)
m (quasi-laminar mixed approach).

Both approaches are shown to be accurate for a bluff-body flow in [120].
Finally, many examples also exist in the literature of local stability analysis of mean flow fields

(EVP and IVP) explicitly based on the triple decomposition and employing models for the Reynolds
stresses in the linearized equations (see, for instance, [173,87,88,77,38,139,3,21,143]). For instance in
[5] the linear amplification of coherent structures on a turbulent boundary layer is studied by stability
analysis of RANS equations and adjoint methods are used to derive its sensitivity to a perturbation of
the mean flow field.

4.2 Examples of control of turbulent flows

We review here examples of controls of turbulent flows based on stability and sensitivity analysis,
designed following the strategies illustrated in Sec. 4.1. Almost all the examples that can be found in the
literature concern turbulent wakes past bluff-bodies. This can be explained by the strong engineering
impact of such problems, by the fact that mean flow fields in this case are a sufficient information
to predict the frequency of the saturated instability even neglecting the contribution of the Reynolds
stresses and by the fact that stability analyses of mean flow fields past bluff-bodies have been carried
out by several decades in the literature, well before attempting to explain the reason for their success
in the prediction of the instability frequency.

In [22] a global direct and adjoint stability analysis is carried out on the experimental mean flow field
measured by PIV past a porous circular cylinder following the mean-flow approach, i.e. using only the
molecular viscosity in the stability equations. Different transpiration ratios Γ = 100Vt/U∞ (Vt and U∞
being the transpiration and the asymptotic velocities) through the cylinder surface are considered. To
the author’s knowledge, this is the first example of direct-adjoint analysis carried out on experimental
flow fields. As a first output of the study, a criterion is proposed, based on the identification of the
region of structural sensitivity of the instability, to evaluate a-posteriori the adequacy of the size of
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Figure 17. Receptivity to spatially localized feedbacks at Re =50.

perturbation. In a sense, a similar mechanism can be considered as the ‘wavemaker’
of the asymptotic theory. In a linear theory approach, the feedback process can be
mathematically described through a relation of the form

f = C(x, y) · u (8.8)

where C is the 2×2 matrix of the coupling coefficients, while u and f are the velocity
and the force fields in (2.6). Generally, the coupling coefficients in the matrix are
functions of the coordinates (x, y). However, if the feedback is localized in space, we
can simplify the model by assuming

C(x, y) = δ(x − x0, y − y0)C0, (8.9)

where C0 is here a constant coefficient matrix, (x0, y0) indicates the position where the
feedback acts and δ(x − x0, y − y0) denotes the Kronecker delta function. A bound
for the eigenvalue drift due to the localized feedback mechanism can be derived
by considering the Laplace transform of (8.8) and taking δH(û, p̂) = C(x, y) · û and
δR(û, p̂) = 0 in (8.7). In this way, using (8.9), we obtain

|δσ1| =

∣∣∣∣
∫

D

f̂
+ · C(x, y) · û dS

∣∣∣∣
∣∣∣∣
∫

D
f̂

+ · û dS

∣∣∣∣
! ‖C0‖λ(x0, y0) (8.10)

where we have defined the function λ(x, y) as

λ(x, y) =
‖ f̂

+
(x, y)‖‖û(x, y)‖∫

D
f̂

+ · û dS

∣∣∣∣∣∣∣∣
. (8.11)

Equation (8.10) shows that the product between the direct and adjoint fields gives
the maximum possible coupling among the velocity components. The function λ(x, y)
can therefore be used to determine the locations where the feedback is stronger,
identifying in this way the regions where the instability mechanism acts. Figure 17
shows that large values of λ(x, y) are attained in two lobes located symmetrically
across the separation bubble. Note that both close to the cylinder and far from it,
the product of the adjoint and direct modes is small, showing that these areas of the
flow are not really important for the instability dynamics.
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Fig. 14 Maps of the quantity Λ(x) =
∥∥q̂+ (x)

∥∥ ‖q̂ (x)‖ (see Eq. (20)) for modes computed by global stability
analysis of (a) the baseflow at Re = 50 (DNS, from [61]), (b) the mean flow at Re = 400 (DNS, from [22]) and
(c) the mean flow at Re = 3.5 × 103 (experimental mean flow, figure from [22]). Streamlines of the baseflow
(meanflow) are also reported in (b) and (c), while the dotted line in (a) indicates the recirculation region of
the near-wake.

Γ Estimated St (sensitivity) Computed St (linear stab. analysis) Difference (%)
-5.0 0.333 0.290 14.8
-3.86 0.261 0.266 -1.9
-3.21 0.252 0.255 -1.2
-2.57 0.282 0.285 -1.0

0 0.223 0.232 -3.9
0.68 0.210 0.218 -3.7
1.93 0.161 0.193 -16.6

Table 1 Data from [22]: estimation of the Strouhal number of vortex shedding using the sensitivity maps
obtained for Γ = −1.9 and the experimental averaged flow fields at Re = 3.5×103; comparison with respect to
the same quantity computed by linear stability analysis carried out on the averaged flow fields is also provided.

the PIV window used in the experiments for a meaningful application of the stability analysis. In the
spirit to investigate how the structural sensitivity changes with respect to the classical case when the
analysis is applied to the mean flow field and the Reynolds number is progressively increased, we report
in Fig. 14 the same map computed for a circular cylinder without transpiration at Re = 50 (DNS),
Re = 400 (DNS) and Re = 3.5× 103 (experiments). As shown in the figure, the sensitivity increases in
amplitude and it is progressively more localized on the boundaries of the recirculation region past the
cylinder. The same behavior can be observed for the sensitivity to a generic variation of the baseflow,
not reported here for the sake of brevity.

Results of the global stability analysis identify only one unstable mode, and they show a good agree-
ment between the predicted and the measured frequencies in the flow as a function of the transpiration
parameter. This is in line with the finding of [168] concerning the role of mean-flow modifications due
to control in the results of the stability analysis. In order to provide indications on the capabilities of
the global analysis for flow control, the transpiration Γ is considered as a control parameter for the
flow. Sensitivity analysis to baseflow modifications (see Eq. (21)), carried out for Γ = Γ0 = −1.9 is
used to estimate the variation of the vortex shedding frequency for Γ 6= Γ0 and results are compared
against the values directly computed by stability analysis, showing a fairly good agreement between
the two, as reported in Tab. 1. This result shows the potential of the methods based on global sta-
bility and sensitivity analysis for the prediction of possible controls of high-Reynolds-number flows,
and it shows that for bluff-body wakes this result can be obtained also neglecting the contributions
of the Reynolds stresses, thus significantly simplifying the complexity of the stability problem. Since
the meanflow is obtained experimentally and not as the solution of a given set of equations, direct
application of the methods described in Sec. 4.1 for the estimation of sensitivity to a localized steady
forcing was not carried out in [22]. This kind of analysis is carried out for controlling the frequency
of the turbulent vortex shedding past a bluff body in [116,120]. The work documented in [116,120] is
based on the experiments in [130,131]. In the same spirit of [160], in [130,131] the sensitivity of the
global characteristics of the turbulent wake past a plane D-shaped cylinder at Re = 13000 is inves-
tigated experimentally by placing a small control cylinder in generic positions of the wake. Among
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(a) (b) (c)

Fig. 15 (a) map of the vortex-shedding frequency variation caused by the introduction of a small control
cylinder of normalized diameter d∗ = 0.04 and comparison with the equivalent experimental map derived in
[130] (from [116]); equivalent map obtained by a quasi-linear (b) and mixed quasi-linear (c) approaches (from
[120]).

several sensitivity maps provided, a sensitivity map for the frequency of the vortex shedding is ex-
perimentally built. The same map is estimated in [116] on the basis of a sensitivity analysis which
mixes the base-flow and the mean-flow approaches introduced in Sec. 4.1. In particular, the URANS
equations for the mean flow, using the Spalart-Allmaras (SA) one equation closure [158], are solved for
the same flow configuration of the experiments in [130,131]. The resulting flow is averaged in time to

obtain the field q
(2)
m for the stability analysis, as in the mean-flow approach. The stability analysis is

carried out, as in the base-flow approach, using the linearization of the URANS equations (including
the additional equation for the SA model) employed for the simulation of the mean flow field. The
control cylinder is modeled as a pure drag force, as described in the examples in Sec. 3.2.2, estimating
the drag coefficient by interpolation of the results tabulated in [56]. The resulting sensitivity map for
the vortex shedding frequency is reported in Fig. 15(a), where it is compared to the experimental one
showing a good agreement and thus demonstrating the potential of the described strategy to control
large-scale instability in the turbulent wake past a bluff body.

In [120] the same control map derived in [116] and plotted in Fig. 15 is estimated using the mean-
flow approach. Although the followed approach can be applied to a mean flow field that can be obtained

also from experiments, the mean flow field q
(2)
m is computed in [120] by time-averaging the unsteady

3D flow field obtained by a dedicated and validated URANS simulation. The sensitivity analysis to
a localized steady forcing is carried out using both the quasi-laminar and the mixed quasi-laminar
approaches introduced in Sec. 4.1, and results are shown in Figs. 15(b) and (c), respectively. In the
first case the molecular viscosity is used and, despite the strong assumptions behind this choice, results
are in good agreement with the experiments and the resulting approach is definitely simpler than that
followed in [116]. In the second case, the Reynolds stresses deriving only from the modeled part, i.e.

qfqf , are included in the approximate equation for q
(2)
m in order to estimate the linearized variation

of q
(2)
m due to the localized forcing. It is shown in Fig. 15 that this approach leads to an improvement

of the predicted sensitivity maps if compared to the quasi-laminar approach.
As discussed in Sec. 4.1, the mean-flow approach used in the examples cited above can be used to

devise controls for shifting the frequency of the large-scale organized fluctuations in a turbulent flow.
For controls aimed at suppressing the large-scale fluctuations a base-flow approach need to be used.
This approach, which strongly relies on the accuracy of the RANS closure used for the equations, is
used, for instance, in [119] for the turbulent and compressible flow in a deep cavity. The sensitivity
maps of the amplification factor of the identified unstable complex-conjugate modes to a localized
forcing are shown in [119], thus suggesting strategies for their passive suppression. The maps are also
derived using different RANS closures, so as to show the effect of the turbulence model on the results.

In the literature there are also examples of sensitivity maps for flow control derived experimen-
tally, using the same method followed in [130,131]. These works provide experimentally built control
maps which can be used directly for control design or as validation for future numerical works as
those documented in [22,116]. For instance in [65] the flow past an axisymmetric bluff body with a
blunt trailing edge is investigated, for which a global unsteady mode is identified, and its sensitivity
investigated when controlled by placing a small control cylinder (m = 1 disturbance, m being the
azimuthal wavenumber) or by a thin control ring (m = 0 disturbance). In [172] the effect of placing



29

a small control sphere in the flow past a sphere at Re ' 3.3 · 104 (based on the sphere diameter) is
investigated experimentally. In [167] the effect of a small control cylinder placed in the wake past a
bluff-body with a blunt trailing edge is investigated, with focus on the effects on the globally unstable
mode and on the drag coefficient. Reference [175] investigates experimentally the effect of a detached
downstream plate on the near wake of a circular cylinder. Similarly, in [152] the effect of a narrow
strip in the near-wake of a circular cylinder is investigated experimentally. The suppression of vortex
shedding at low Reynolds numbers from a two-dimensional rectangular cylinder by using additional
control bodies of different shape is studied in [81].

5 Recent advances in numerical methods for global stability and sensitivity analysis

A detailed review on numerical methods for large-scale eigenvalue problems related to global stability
analysis can be found in [166]. Thus we concisely review here references that have been mainly published
afterwards. As it will be shown, the recent literature on the subject is aimed at using existing codes
for DNS/RANS simulations also for stability analysis by limiting as much as possible any additional
programming or modification. Thus, most of the methods are aimed at using existing codes as time-
steppers, coupling them with matrix-free algorithms for eigenvalue estimation.

The first step in the stability analysis is the computation of a steady solution of the NSE (or,
equivalently, of the RANS equations). To this purpose Newton methods [47] are often used but they
are limited to problems of relatively small size. An alternative method which employs an existing code
as a time-stepper is the ”selective frequency damping method” proposed in [1] and successfully used in
the literature for very large 3D problems (see, for instance, [11,79,54,55]). Recently, a new formulation
of the same method has been proposed in [80], which simplifies its implementation when coupled with
an already existing code used as a ”black box”. The Recursive Projection Method (RPM) proposed in
[153] is also suited to find steady and periodic solutions of large-scale discrete systems (see for instance
[142] and references therein) and it consists in identifying the unstable subspace of a given system
and in applying Newton iterations only in this subspace, while iterating in time in its orthogonal
complement, which is stable. An original alternative to RPM is used in [27]. Continuation methods in
time have been developed in the field of nonlinear dynamical systems to track the solutions (e.g. fixed
points, limit cycles, bifurcation points) of a dynamical system as the system parameters are changed.
Most of these methods can be applied to systems with a very few degrees of freedom. Examples of
matrix-free methods that can be applied to large systems, as those arising from the discretization of
the NSE, are described for instance in [145,48,144,146] and in their bibliographies.

For the localization of particular eigenvalues in the spectrum of extremely large matrices, as those
deriving from the discretization of the LNSE in 2D or 3D, spectral transformations are of fundamental
importance. We refer to [166] for a detailed list. Recently, in [58] an original transformation has been
proposed which allows the computation of the least stable eigenmodes in a prescribed frequency range,
showing an application for a compressible jet flow. A new time-stepping shift-invert algorithm based on
a Krylov subspace iteration for linear stability analysis of large-scale problems is proposed in [19] having
the advantage of converging to specific parts of the global spectrum. In [7] a matrix-free method is
proposed for global stability analysis based on a multi-domain DNS code, discretizing the equations in
multi-connected rectangular subdomains and using an Arnoldi method. In [101] matrix-free method is
proposed for the computation of the perturbation fields induced by harmonic forcing of the linearised
Navier-Stokes equations. In [123] a stabilized finite element method is proposed for global stability
analysis, in which elements of equal order are used for both velocity and pressure in an incompressible
flow, thus simplifying the implementation and solution of the problem.

Concerning the use of existing RANS/DNS codes for global stability analysis, with minimal pro-
gramming and possibly as ”black-boxes”, in [57] a novel technique for the evaluation of the direct
and adjoint operators directly from compressible flow solvers is presented and extended to include
nonlinear differentiation schemes and turbulence models. In [63] a general Jacobian-free approach is
proposed for the solution of large-scale global stability analysis by coupling a time-stepping algorithm
with industry-standard second-order accurate aerodynamic codes, showing examples with the Open-
FOAM toolbox ( www.openfoam.org). Finally, in [119] a fully discrete method is proposed to perform
global stability and sensitivity analysis of complex 3D flows using an existing code as a ”black-box”.
The code is used to compute the residual of the equations, and second-order finite-difference schemes



30

are used to approximate the Jacobian and the Hessian matrices of the discretized equations. As high-
lighted in Sec. 3.1.2 the Jacobian matrix is related to the stability problem and the Hessian to the
sensitivity to baseflow modifications. As an example, this general method is applied in [119] to a RANS
2D compressible code and control maps for the introduction of a small control cylinder in the flow are
derived for the turbulent flow in an open cavity.

6 Final remarks and future perspectives

In this paper we have reviewed the recent literature dedicated to the application of the techniques of
global stability and sensitivity analysis for the control of global instabilities. Considering the growing
number of dedicated review papers, there is an evident attention of the fluid dynamics community
on this subject. While the methods for global stability and sensitivity analysis can be considered well
established, their application to flow control is more recent and still in evolution. The design of passive
controls of classical flow configurations, as for instance the flow past a circular cylinder, is also starting
to be well established and it is treated in very recent review papers. However, some peculiar aspects,
such as the theoretical investigation of open-loop harmonic forcing for the control of global instabilities,
are very recent and less known. Moreover, the application of these methods to complex flow systems
is still an open problem in the literature with very significant scientific and technological implications.
These systems can range from multiphase flows and free-surface fluid systems to applications involving
elastic bodies and fluid-structure interactions. The very recent literature also indicates a strong interest
in extending the methods for global stability and sensitivity analysis to the control of coherent large-
scale flow structures in turbulent flows. Some examples are dedicated to turbulent wakes past bluff
bodies, indicating that in this case the analysis of mean flow fields can provide quantitative information
on flow control even neglecting the effects of the Reynolds stresses. For other flows, Reynolds stresses are
taken into account by performing the stability analysis of the (U)RANS equations including standard
turbulence closures. In this respect several aspects are still open, as for instance the formulation of
proper turbulence closures for stability analysis of mean flow fields or the identification of strategies to
include experimentally measured Reynolds stresses in the stability analysis of experimental databases
(see for instance [87,173]). The analysis of the literature suggests that probably this kind of applications
will become more and more popular in the near future. An additional indication in this direction is
given by very recent advances in numerical methods, most of which are dedicated to simplify the
implementation of numerical tools for global stability and sensitivity analysis, so as to include, with
minimal effort, existing CFD codes used as ”black-boxes”. In this way, the application of stability
analysis to complex flow models, such as RANS equations or models for multiphase flows, is greatly
simplified. As a side effect, the interest of the scientific community to this kind of applications drives
the research in high-performance parallel algorithms for large-scale sparse eigenvalue problems, and a
growing number of dedicated numerical libraries are now available and in continuous evolution.
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