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RIGIDITY OF HIGH DIMENSIONAL GRAPH
MANIFOLDS

Roberto Frigerio, Jean-François Lafont, Alessandro Sisto

Abstract. — We define the class of high dimensional graph manifolds. These are
compact smooth manifolds supporting a decomposition into finitely many pieces, each
of which is diffeomorphic to the product of a torus with a finite volume hyperbolic
manifold with toric cusps. The various pieces are attached together via affine maps
of the boundary tori. We require all the hyperbolic factors in the pieces to have
dimension ≥ 3. Our main goal is to study this class of graph manifolds from the
viewpoint of rigidity theory.

We show that, in dimensions ≥ 6, the Borel conjecture holds for our graph mani-
folds. We also show that smooth rigidity holds within the class: two graph manifolds
are homotopy equivalent if and only if they are diffeomorphic. We introduce the notion
of irreducible graph manifolds. These form a subclass which has better coarse geo-
metric properties, in that various subgroups can be shown to be quasi-isometrically
embedded inside the fundamental group. We establish some structure theory for
finitely generated groups which are quasi-isometric to the fundamental group of an ir-
reducible graph manifold: any such group has a graph of groups splitting with strong
constraints on the edge and vertex groups. Along the way, we classify groups which
are quasi-isometric to the product of a free abelian group and a non-uniform lattice
in SO(n, 1). We provide various examples of graph manifolds which do not support
any locally CAT(0) metric.

Several of our results can be extended to allow pieces with hyperbolic surface
factors. We emphasize that, in dimension = 3, our notion of graph manifold does
not coincide with the classical graph manifolds. Rather, it is a class of 3-manifolds
that contains some (but not all) classical graph 3-manifolds (we don’t allow general
Seifert fibered pieces), as well as some non-graph 3-manifolds (we do allow hyperbolic
pieces).
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Résumé (Rigidité des variétés graphées de grande dimension)
Ce texte est consacré à la définition et à l’étude systématique des variétés graphées

de grande dimension. Celles-ci sont des variétés lisses, ayant une décomposition en un
nombre fini de morceaux géométriques. Chaque morceau est difféomorphe au produit
d’un tore et d’une variété hyperbolique de volume fini dont tous les bouts sont des
tores. Les morceaux sont recollés par des applications affines des tores qui en sont
les bords. Nous exigeons que le facteur hyperbolique dans chaque morceau soit de
dimension ≥ 3. Notre but principal est d’établir divers résultats de rigidité pour cette
classe de variétés graphées.

Nous démontrons, en dimension ≥ 6, la conjecture de Borel pour les variétés
graphées : une variété quelconque est homotopiquement équivalente à une variété
graphée si et seulement si elle est homéomorphe à cette même variété graphée. Nous
établissons la rigidité lisse pour la classe des variétés graphées : deux variétés graphées
sont homotopiquement équivalentes si et seulement si elles sont difféomorphes. Du
point de vue de la géométrie à grande échelle, la distorsion des groupes fondamen-
taux des morceaux dans le groupe fondamental de la variété graphée joue un rôle
essentiel. Nous introduisons la notion de variété graphée irréductible. Elles forment
une sous-classe pour laquelle ces sous-groupes sont toujours non-distordus. Ceci nous
permet d’analyser la structure des groupes quasi-isométriques au groupe fondamental
d’une variété graphée irréductible: un tel groupe a (virtuellement) une action sur un
arbre, avec de fortes contraintes sur les stabilisateurs de sommets et d’arêtes. Cette
analyse comprend, entre autre, une classification des groupes quasi-isométriques au
produit d’un groupe abélien libre et d’un réseau non-uniforme dans SO(n, 1). Nous
présentons plusieurs exemples de variétés graphées qui n’admettent aucune métrique
locallement CAT(0).

Certains de nos résultats s’appliquent aussi bien en présence de morceaux ayant
commes facteurs des surfaces hyperboliques. Nous précisons que, en dimension trois,
notre notion de variété graphée ne cöıncide pas avec la notion classique de variété
graphée. Nos variétés forment une classe comprenant certaines des variétés graphées
classiques (mais pas toutes: nous excluons certaines sous-variétés de Seifert), ainsi
que des variétés que ne sont pas des variétés graphées classiques (nous admettons des
morceaux purement hyperboliques).
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INTRODUCTION

In recent years, there has been an extensive amount of work done on proving
rigidity results for various classes of non-positively curved spaces. In this monograph,
we are interested in establishing similar rigidity theorems in the context of spaces
which may not support any non-positively curved metrics.

To motivate our class of manifolds, we briefly recall some basic notions from 3-
manifold topology. In the theory of 3-manifolds, a central role is played by Thurston’s
geometrization conjecture, recently established by Perelman. Loosely speaking, this
asserts that a closed 3-manifold can be decomposed into pieces, each of which supports
a geometric structure, i.e. a complete metric locally modelled on one of the eight 3-
dimensional geometries. When restricted to the class of 3-manifolds which support
a non-positively curved metric, the geometrization conjecture states that such a 3-
manifold contains a finite collection of pairwise disjoint, embedded 2-tori, and each
component of the complement is either hyperbolic (supports a metric modeled on H3)
or is non-positively curved Seifert fibered (supports a metric modeled on H2×R). In
the case where there are no hyperbolic components, the 3-manifold is an example of
a graph manifold. The class of manifolds we consider are inspired by these notions.

Definition 0.1. — We will say that a compact smooth n-manifold M , n ≥ 3, is a
graph manifold provided that it can be constructed in the following way:

1. For every i = 1, . . . , r, take a complete finite-volume non-compact hyperbolic
ni-manifold Ni with toric cusps, where 3 ≤ ni ≤ n.

2. Denote by N i the manifold obtained by “truncating the cusps” of Ni, i.e. by
removing from Ni a horospherical neighbourhood of each cusp.

3. Take the product Vi = N i × Tn−ni , where T k = (S1)k is the k-dimensional
torus.

4. Fix a pairing of some boundary components of the Vi’s and glue the paired
boundary components using affine diffeomorphisms of the boundary tori, so as
to obtain a connected manifold of dimension n (see Section 2 for the precise
definition of affine gluing in this context).
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Observe that ∂M is either empty or consists of tori. The submanifolds V1, . . . , Vr will
be called the pieces of M . The manifold N i is the base of Vi, while every subset of
the form {∗} × Tn−ni ⊆ Vi is a fiber of Vi. The boundary tori which are identified
together will be called the internal walls of M (so any two distinct pieces in M will
be separated by a collection of internal walls), while the components of ∂M will be
called the boundary walls of M .

Informally, our manifolds can be decomposed into pieces, each of which supports
a finite-volume product metric locally modeled on some Hk × Rn−k (k ≥ 3).

Our notion of generalized graph manifolds includes both the classical “double” of
a finite volume hyperbolic manifold with toric cusps, as well as those twisted doubles
of such manifolds (in the sense of Aravinda and Farrell [ArFa]) that are obtained via
affine gluings.

A restriction that we have imposed on our graph manifolds is that all pieces have a
base which is hyperbolic of dimension ≥ 3. The reason for this restriction is obvious:
hyperbolic manifolds of dimension ≥ 3 exhibit a lot more rigidity than surfaces.
However, some of our results extend also to the case when surfaces with boundary
are allowed as bases of pieces. To allow for these, we introduce the following:

Definition 0.2. — For n ≥ 3, an extended graph n−manifold is a manifold built
up from pieces as in the definition of graph manifold as well as surface pieces, that
is manifolds of the form Σ × Tn−2 with Σ non-compact, finite volume, hyperbolic
surface. Also, we require that each gluing does not identify the fibers in adjacent
surface pieces.

Let us briefly comment about the last requirement described in the above Defini-
tion. If we allowed gluings which identify the fibers of adjacent surface pieces, then the
resulting decomposition into pieces of our extended graph manifold would no longer
be canonical, and some of our rigidity results (see e.g. Theorem 0.5) would no longer
be true. Indeed, within a surface piece Σ × Tn−2, we can take any non-peripheral
simple closed curve γ ↪→ Σ in the base surface, and cut the piece open along γ×Tn−2.
This allows us to break up the original piece Σ×Tn−2 into pieces (Σ\γ)×Tn−2 (which
will either be two pieces, or a single “simpler” piece, according to whether γ separates
or not). Our additional requirement avoids this possibility. Note however that if one
has adjacent surface pieces with the property that the gluing map matches up their
fibers exactly, then it is not possible to conclude that the two surface pieces can be
combined into a single surface piece (the resulting manifold could be a non-trivial
S1-fiber bundle over a surface rather than just a product).

We emphasize that, restricting down to 3-dimensions, our notion of (extended)
graph manifold do not coincide with the classical 3-dimensional graph manifolds.
For instance:

– we do not allow general finite volume quotients of H2 × R,
– we allow purely hyperbolic pieces in our decompositions (i.e. the case where a

piece is just a truncated cusped hyperbolic 3-manifold),
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– in the case of genuine graph manifolds, we do not allow pieces to be products
of a hyperbolic surface with a circle.

Now our (extended) graph manifolds are “built up”, in a relatively simple man-
ner, from non-positively curved manifolds. If we know some property holds for non-
positively curved manifolds, and hence for all the pieces in our decomposition, we
could expect it to hold for the (extended) graph manifold. This monograph pursues
this general philosophy, with a view towards establishing analogues of various rigidity
theorems for the class of (extended) graph manifolds.

In some special cases, the implementation of the strategy we have just described is
quite plain. This is the case, for example, for purely hyperbolic graph manifolds, which
we now define. We say that a graph manifold is purely hyperbolic if the fiber of each of
its pieces is trivial (i.e. each piece is just a truncated hyperbolic manifold). Such man-
ifolds enjoy additional nice properties, that are of great help in understanding their
geometry: for example, they support nonpositively curved Riemannian metrics (The-
orem 0.3), and their fundamental groups are relatively hyperbolic (Theorem 0.12). As
a consequence, many of our results are much easier (and sometimes already known)
for purely hyperbolic graph manifolds. In order to support the reader’s intuition of
our arguments, in this introduction we pay a particular attention to this subclass of
manifolds, pointing out how some of our arguments could be shortened in the case of
purely hyperbolic manifolds.

Let us now briefly describe the content of each Chapter.

Chapter 1 starts out with a review of some basic notions: quasi-isometries, quasi-
actions, and the Milnor-Sv̌arc Lemma.

In Chapter 2, we introduce our (extended) graph manifolds, and establish some
basic general results. A result by Leeb [Le, Theorem 3.3] ensures that every (ex-
tended) 3-dimensional graph manifold containing at least one purely hyperbolic piece
supports a non-positively curved Riemannian metric with totally geodesic boundary.
A slight variation of Leeb’s argument allows us to prove the following:

Theorem 0.3. — Let M be a purely hyperbolic graph manifold. Then M supports a
nonpositively curved Riemannian metric with totally geodesic boundary.

On the other hand, in Section 2.6 we provide a first family of examples of (extended)
graph manifolds which cannot support any locally CAT(0)-metric. More precisely, for
n ≥ 4 we construct examples of n-dimensional (extended) graph manifolds M where
the fundamental group of the walls is not quasi-isometrically embedded in π1(M)
(these examples are genuine graph manifolds for n ≥ 5). By the Flat Torus Theorem,
for these examples π1(M) cannot act via semisimple isometries on any CAT(0) space,
so M cannot support a locally CAT(0)-metric. In fact, the fundamental groups of our
examples contain distorted cyclic subgroups, so by the work of Haglund [Hag] they
cannot act properly on any (potentially infinite-dimensional) CAT(0) cube complex.
This contrasts with the recent advances in 3-manifold theory.
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We also stress that our non-CAT(0) examples may contain purely hyperbolic pieces.
Therefore, in contrast with Leeb’s result in dimension 3, the hypothesis of Theorem 0.3
cannot be weakened by replacing the condition that M is purely hyperbolic with the
condition that it contains a purely hyperbolic piece.

These first results already suggest that the geometry of generic graph manifolds
may be more complicated than the one of purely hyperbolic graph manifolds. As a
consequence, more care is needed in our analysis when non-trivial fibers are present.

In Chapter 3, we study the topology of our graph manifolds. Recall that the Borel
Conjecture states that if M,M ′ are aspherical manifolds with isomorphic fundamental
group, then they are in fact homeomorphic. If the manifold M is assumed to support
a Riemannian metric of non-positive curvature and has dimension ≥ 5, then the
validity of the Borel Conjecture is a celebrated result of Farrell-Jones. Our next
result establishes (Section 3.3):

Theorem 0.4 (Topological rigidity). — Let M be an (extended) graph manifold
(possibly with boundary), of dimension n ≥ 6. Assume M ′ is an arbitrary topological
manifold and ρ : M ′ → M is a homotopy equivalence which restricts to a homeo-
morphism ρ|∂M ′ : ∂M ′ → ∂M between the boundaries of the manifolds. Then ρ is
homotopic, rel ∂, to a homeomorphism ρ̄ : M ′ →M .

Recall that purely hyperbolic graph manifolds admit a nonpositively curved Rie-
mannian metric. So if M is purely hyperbolic, then Theorem 0.4 follows from the
result of Farrell and Jones mentioned above (and holds even in dimension 5).

Our Theorem 0.4 is actually a special case of our more general Theorem 3.1, where
we establish the Borel Conjecture for a broader class of manifolds. Along the way,
we also show that our (extended) graph manifolds are always aspherical (Section
3.1), and have vanishing lower algebraic K-theory (Section 3.2). We also point out
that the Baum-Connes conjecture holds (Section 3.5) and mention some well-known
consequences. It is worth noting that, by work of Ontaneda [On, Theorem 1], there
are examples of doubles of finite volume hyperbolic manifolds which support exotic
PL-structures. As such, the conclusion of our Theorem 0.4 is optimal, since there
are examples where no PL-homeomorphism (and hence, no diffeomorphism) exists
between M and M ′.

From the generalized Seifert-Van Kampen theorem, the fundamental group Γ of one
of our (extended) graph manifolds M can be expressed as the fundamental group of
a graph of groups, with vertex groups given by the fundamental groups of the pieces,
and edge groups isomorphic to Zn−1, where n is the dimension of M . To further
develop our analysis of (extended) graph manifolds, we would like to ensure that
reasonable maps between (extended) graph manifolds have to (essentially) preserve
the pieces. The following result, which is the main goal of Chapter 4, is crucial:

Theorem 0.5 (Isomorphisms preserve pieces). — Let M1, M2 be a pair of (ex-
tended) graph manifolds and let Γi = π1(Mi) be their respective fundamental groups.
Let Λ1 ≤ Γ1 be a subgroup conjugate to the fundamental group of a piece in M1, and
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ϕ : Γ1 → Γ2 be an isomorphism. Then ϕ(Λ1) is conjugate to the fundamental group
Λ2 ≤ Γ2 of a piece in M2.

A fairly straightforward consequence of this result is a necessary condition for
two (extended) graph manifolds to have isomorphic fundamental groups (see also
Theorem 4.14):

Corollary 0.6. — Let M,M ′ be a pair of (extended) graph manifolds. If
ϕ : π1(M) → π1(M ′) is an isomorphism, then it induces a graph isomorphism
between the associated graph of groups. Moreover, vertices identified via this graph
isomorphism must have associated vertex groups which are isomorphic.

It should not be difficult to prove that the description of π1(M) as the fundamental
group of the graph of groups corresponding to the decomposition of M into pieces
provides a JSJ-decomposition of π1(M), in the sense of Fujiwara and Papasoglu [FP]
(see also Dunwoody and Sageev [DS]). As such, Theorem 0.5 and Corollary 0.6 could
probably be deduced from the uniqueness results proved in [FP] (see also Forester
[Fo], and Guirardel and Levitt [GL]). However, the case of (extended) graph mani-
folds is considerably easier than the general case treated in these other papers, so we
preferred to give complete and self-contained proofs of Theorem 0.5 and Corollary 0.6.

In Chapter 5, we return to studying the topology of (extended) graph manifolds.
Building on Theorem 0.5, we prove the following:

Theorem 0.7 (Smooth rigidity). — Let M,M ′ be (extended) graph manifolds,
and let ϕ : π1(M)→ π1(M ′) be a group isomorphism. Also assume that no boundary
component of M,M ′ lies in a surface piece (of course, this condition is automati-
cally satisfied if M and M ′ are genuine graph manifolds). Then ϕ is induced by a
diffeomorphism ψ : M →M ′.

In Theorem 0.7, the additional hypothesis preventing surface pieces to be adjacent
to the boundary is necessary: if M = Σ × S1 and M ′ = Σ′ × S1, where Σ1 is a
once-punctured torus and Σ′ is a thrice-punctured sphere, then π1(M) ∼= π1(M ′), but
M and M ′ are not diffeomorphic (in fact, they are not even homeomorphic).

Ontaneda [On] had previously shown smooth rigidity within the class of doubles
of finite volume hyperbolic manifolds. The proof of Theorem 0.7 is easier if M,M ′

are purely hyperbolic (as in Ontaneda’s examples). In fact, in that case Theorem 0.5,
together with Mostow Rigidity Theorem, ensures that the restriction of ϕ to the
fundamental groups of the pieces of M is induced by suitable diffeomorphisms between
the pieces of M and the pieces of M ′. In presence of non-trivial fibers, the proof of this
fact needs some more work (see the proof of Lemma 5.5). Once this is established, one
has to carefully check that the diffeomorphisms between the pieces can be extended
to a global diffeomorphism between M and M ′, which indeed induces the fixed group
isomorphism between the fundamental groups.

Next, for M a closed smooth manifold, we denote by MCG(M) the mapping class
group of M , i.e. the group of homotopy classes of diffeomorphisms of M into itself.
Theorem 0.7 easily implies the following corollary (see Section 5.4):
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Corollary 0.8. — Let M be a closed graph manifold. Then, the group MCG(M) is
isomorphic to the group Out(π1(M)) of the outer automorphisms of π1(M).

Using Corollary 0.8, it is easy to see that MCG(M) is often infinite. For example,
this is always the case when considering doubles or twisted doubles (obtained via
affine gluings) of one-cusped hyperbolic manifolds with toric cusp (see Remarks 5.6
and 5.10).

In Chapter 6 we describe some group theoretic properties of fundamental groups
of (extended) graph manifolds. In order to properly state our results, we need to
introduce some definitions.

Definition 0.9. — Let M be an (extended) graph manifold, and V +, V − a pair of
adjacent (not necessarily distinct) pieces of M . We say that the two pieces have
transverse fibers along the common internal wall T provided that, under the gluing
diffeomorphism ψ : T+ → T− of the paired boundary tori corresponding to T , the
image of the fiber subgroup of π1(T+) under ψ∗ intersects the fiber subgroup of
π1(T−) only in {0} (in this case, we equivalently say that the gluing ψ is transverse
along T ). This is equivalent to asking that the sum of the dimensions of the fibers
of T+ and T− is strictly less than the dimension of M , and that the image of every
fiber of T+ under ψ is transverse to every fiber of T−.

Definition 0.10. — An (extended) graph manifold is irreducible if every pair of
adjacent pieces has transverse fibers along every common internal wall.

In the case of 1-dimensional fibers, an (extended) graph manifold is irreducible if
and only if the S1-bundle structure on each piece cannot be extended to the union of
adjacent pieces.

Simple examples of irreducible graph manifolds include the doubles of truncated
finite volume hyperbolic manifolds with toric cusps, as well as the twisted doubles of
such manifolds obtained via affine gluings. More generally, every purely hyperbolic
graph manifold is irreducible. Irreducible graph manifolds play an important role in
our analysis. On the one hand, they provide a much wider class than purely hyperbolic
graph manifolds (for example, in contrast with Theorem 0.3, some of them can fail to
support nonpositively curved metrics - see Theorem 0.20). On the other hand their
geometry can still be understood quite well in terms of the geometry of the pieces
(see e.g. Theorem 0.16).

At the other extreme of irreducibility, it may happen that an (extended) graph
manifold M admits a toric bundle structure obtained by gluing the product structures
defined on the pieces. In this case, M is the total space of a fiber bundle with base a
graph manifold of lower dimension. This observation motivates the following:

Definition 0.11. — An (extended) graph manifold M is fibered if it is the total
space of a smooth fiber bundle F ↪→ M → M ′, where the fiber F is a d-dimensional
torus, d ≥ 1, and M ′ is an (extended) graph manifold.
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A natural question is whether the fundamental groups of (extended) graph man-
ifolds are relatively hyperbolic. The notion of (strong) relative hyperbolicity first
appeared in Gromov [Gr2]. The motivating example of a relatively hyperbolic group
is the fundamental group of a non-compact, finite volume, Riemannian manifold with
sectional curvature bounded above by some negative constant. Such a group is rel-
atively hyperbolic with respect to the collection of cusp subgroups (see e.g. Farb
[Fa2]). Therefore, a graph manifold consisting of a single piece with trivial toric
fiber is relatively hyperbolic. Building on Dahmani’s Combination Theorem [Da], in
Section 6.3 we extend this result as follows:

Theorem 0.12. — Assume the (extended) graph manifold M has at least one piece
with trivial toric fiber. Then π1(M) is relatively hyperbolic with respect to a finite
family of proper subgroups.

For example, the fundamental group of any purely hyperbolic graph manifold M
is relatively hyperbolic (in fact, it is not difficult to show that in this case one may
choose the fundamental groups of the walls of M as a family of peripheral subgroups,
so π1(M) is toral relatively hyperbolic). However, at least in the case of irreducible
graph manifolds, this is the only case in which π1(M) is relatively hyperbolic. In fact,
in Section 8.8 we prove:

Theorem 0.13. — Let M be an irreducible graph manifold. Then π1(M) is relatively
hyperbolic with respect to a finite family of proper subgroups if and only if M contains
at least one purely hyperbolic piece.

Our proof of Theorem 0.13 is based on the study of the coarse geometric properties
of the fundamental group of irreducible graph manifolds, which is carried out in
Chapters 7 and 8.

The notion of a hyperbolically embedded collection of subgroups has been recently
introduced by Dahmani, Guirardel, and Osin [DGO], and can be thought of as a
generalization of peripheral structures of relatively hyperbolic groups. One may won-
der whether the fundamental group of an (extended) graph manifold always contains
a non-degenerate hyperbolically embedded subgroup. A very useful feature of irre-
ducible (extended) graph manifolds is that the action of the fundamental group on
the associated Bass-Serre tree is acylindrical (see Proposition 6.4). In Chapter 6 we
exploit (a refinement of) this result to prove the following:

Theorem 0.14. — Let M be an (extended) graph manifold, and suppose that M con-
tains an internal wall with transverse fibers. Then π1(M) contains a non-degenerate
hyperbolically embedded subgroup.

Observe that the conclusion of Theorem 0.14 cannot hold in general: for example,
if M is the double of a non-purely hyperbolic piece, then π1(M) has an infinite center,
so it cannot contain any non-degenerate hyperbolically embedded subgroup [DGO,
Corollary 4.34].
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The following theorem describes other interesting algebraic properties of funda-
mental groups of (extended) graph manifolds. It summarizes the results proved in
Propositions 6.16, 6.22, 6.28, 6.30 and Corollaries 6.14, 6.19, 6.32.

Theorem 0.15. — Let M be an (extended) graph manifold.

1. If an arbitrary subgroup H < π1(M) has Kazhdan’s property (T), then H is the
trivial subgroup.

2. π1(M) has uniformly exponential growth.
3. (Tits Alternative): If H < π1(M) is an arbitrary subgroup, then either H is

solvable, or H contains a non-abelian free group. Moreover, if M is irreducible,
then every solvable subgroup of M is abelian.

4. Suppose that ∂M = ∅, and that M contains a pair of adjacent pieces with
transverse fibers. Then π1(M) is co-Hopfian.

5. π1(M) is C∗-simple if and only if M is not fibered.
6. Suppose that at least one of the following conditions holds:

– M consists of a single piece without internal walls, or
– M contains at least one separating internal wall, or
– M contains at least one internal wall with transverse fibers.

Then π1(M) is SQ-universal.

Our proof of Theorem 0.15 is based on the study of the action of π1(M) on the
Bass-Serre tree corresponding to the decomposition of M into pieces. Some of the
statements of Theorem 0.15 are deduced from more general results concerning fun-
damental groups of graph of groups. For example, in Propositions 6.18 and 6.31 we
establish the Tits Alternative and the solvability of the word problem for wide classes
of fundamental groups of graphs of groups. Moreover, building on the results estab-
lished in [DGO], in Propositions 6.26 and 6.29 we characterize acylindrical graphs of
groups having respectively C∗-simple and SQ-universal fundamental groups.

If M is purely hyperbolic, several points of Theorem 0.15 immediately follow from
known results. In that case, π1(M) is toral relatively hyperbolic, so point (2) follows
from Xie [Xie], point (5) from Arzhantseva and Minasyan [AM] and point (6) from
Arzhantseva, Minasyan, and Osin [AMO]. Moreover, [Gr2, Theorem 8.2.F] ensures
that every finitely generated subgroup of π1(M) that does not contain a non-abelian
free subgroup is either virtually cyclic, or contained in a parabolic subgroup (whence
abelian, in our case). Also observe that Mostow rigidity implies that fundamental
groups of finite-volume hyperbolic manifolds are co-Hopfian, while the fundamental
groups of tori are obviously non-co-Hopfian. As a consequence, in the case of purely
hyperbolic manifolds our proof of point (4) may be simplified notably (see Proposi-
tion 6.22).

Now recall that, by Corollary 0.6, to have any chance of having isomorphic funda-
mental groups, two graph manifolds would have to be built up using the exact same
pieces, and the gluings would have to identify the same collection of boundary tori
together. So the only possible variation lies in the choice of gluing maps used to
identify the boundary tori together. In Section 6.11, we show how, in some cases,
fixing the collection of pieces, we can still produce infinitely many non-isomorphic
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fundamental groups simply by varying the gluings between the common tori. The
construction is flexible enough that we can even ensure that all the resulting graph
manifolds are irreducible.

Starting from Chapter 7, we shift our focus to coarse geometric properties of our
graph manifolds. Let us first observe that the coarse geometry of (the universal cover-
ing of) surface pieces is very different from the coarse geometry of non-surface pieces:
namely, surface pieces contain many more quasi-flats of maximal dimension, and this
implies for example that there cannot exist a coarse-geometric characterization of the
boundary components of a surface piece. In order to avoid the resulting complications,
we restrict our attention to genuine graph manifolds.

As we mentioned earlier, there exist examples of n-dimensional graph manifolds
M with the property that certain walls T ⊂ M have fundamental groups π1(T ) ∼=
Zn−1 ↪→ π1(M) which are not quasi-isometrically embedded. As one might expect,
the presence of such walls causes serious difficulties when trying to study the coarse
geometry of M .

If M is purely hyperbolic, then π1(M) is hyperbolic relative to the fundamen-
tal groups of walls, and so these walls cannot be distorted (this also follows from
Theorem 0.3 and the Flat Torus Theorem). It follows easily that, in the purely hy-
perbolic case, the fundamental group of every fiber and of every piece of M is quasi-
isometrically embedded. However, restricting our attention to the class of purely
hyperbolic manifolds would be much too limiting. As we hinted above, irreducible
manifolds provide the right class of manifolds to work with, as they satisfy the im-
portant:

Theorem 0.16. — Let M be an irreducible graph manifold. Then the fundamental
group of every fiber, wall, and piece, is quasi-isometrically embedded in π1(M).

The proof of this result occupies the bulk of Chapter 7 (see in particular Theo-
rem 7.11 and Corollary 7.13).

In Chapter 8, we start analyzing quasi-isometries between fundamental groups of
irreducible graph manifolds. By studying the asymptotic cone of the universal cover
of M , we are able to show:

Theorem 0.17 (QI’s preserve pieces of irreducible graph manifolds)
Let M1, M2 be a pair of irreducible graph manifolds, and Γi = π1(Mi) their re-

spective fundamental groups. Let Λ1 ≤ Γ1 be a subgroup conjugate to the fundamental
group of a piece in M1, and ϕ : Γ1 → Γ2 be a quasi-isometry. Then, the set ϕ(Λ1)
is within finite Hausdorff distance from a conjugate of Λ2 ≤ Γ2, where Λ2 is the
fundamental group of a piece in M2.

The key step in the proof of Theorem 0.17 consists in showing that fundamental
groups of walls of irreducible graph manifolds are quasi-preserved by quasi-isometries.
In the case of purely hyperbolic graph manifolds, this readily follows from the results
on quasi-isometries between relatively hyperbolic groups established in [DrSa, Theo-
rem 1.7]. Namely, Drutu and Sapir proved that, if G is relatively hyperbolic, then G
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is asymptotically tree-graded with respect to the family of its peripheral subgroups,
and they used this result to show that a quasi-isometric copy in G of any uncon-
stricted group (e.g. any free abelian of rank ≥ 2) is close to a peripheral subgroup.
In the case of a (not necessarily purely hyperbolic) irreducible graph manifold M , we
are still able to give an asymptotic characterization of wall subgroups of π1(M), but
the presence of non-trivial fibers makes the geometry of the asymtotic cone of π1(M)
quite complicated, so more care is needed.

Since pieces are essentially mapped to pieces under quasi-isometries, our next goal
is to understand the behavior of groups quasi-isometric to the fundamental group of
a piece. This is the subject of Chapter 9, where we establish:

Theorem 0.18 (QI-rigidity of pieces). — Let N be a complete finite-volume hy-
perbolic m-manifold, m ≥ 3, and let Γ be a finitely generated group quasi-isometric to
π1(N)× Zd, d ≥ 0. Then there exists a finite-index subgroup Γ′ of Γ, a finite-sheeted
covering N ′ of N , a group ∆ and a finite group F such that the following short exact
sequences hold:

1 // Zd
j
// Γ′ // ∆ // 1,

1 // F // ∆ // π1(N ′) // 1.

Moreover, j(Zd) is contained in the center of Γ′. In other words, Γ′ is a central
extension by Zd of a finite extension of π1(N ′).

In the case of purely hyperbolic pieces, i.e. when d = 0, Theorem 0.18 is proved by
Schwartz [Sc]. Note that the analogous result in the setting where N is compact has
been established by Kleiner and Leeb [KlLe]. A consequence of this result is that we
can determine when two pieces have quasi-isometric fundamental group: their fibers
must be of the same dimension, while their bases must be commensurable.

In Chapter 10, we study groups quasi-isometric to an irreducible graph manifold,
and show that they must exhibit a graph of groups structure which closely resembles
that of a graph manifold (compare with the work of Mosher, Sageev, and Whyte
[MSW1], [MSW2], and Papasoglu [Pa]). Once Theorems 0.17 and 0.18 are es-
tablished, to deduce Theorem 0.19 it is sufficient to ensure that a quasi-action on
the universal cover of an irreducible graph manifold yields a genuine action on the
Bass-Serre tree, and this follows quite easily from the fact that walls and pieces are
quasi-preserved.

Theorem 0.19. — Let M be an irreducible graph n-manifold obtained by gluing the
pieces Vi = N i × T di , i = 1, . . . , k. Let Γ be a group quasi-isometric to π1(M). Then
either Γ itself or a subgroup of Γ of index two is isomorphic to the fundamental group
of a graph of groups satisfying the following conditions:

– every edge group contains Zn−1 as a subgroup of finite index;
– for every vertex group Γv there exist i ∈ {1, . . . , k}, a finite-sheeted covering N ′

of Ni and a finite-index subgroup Γ′v of Γv that fits into the exact sequences

1 // Zdi
j
// Γ′v // ∆ // 1,
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1 // F // ∆ // π1(N ′) // 1,

where F is a finite group, and j(Zdi) is contained in the center of Γ′v.

As we mentioned at the beginning of this introduction, many of our rigidity results
are inspired by corresponding results in the theory of non-positively curved spaces and
groups. We have already mentioned the fact that fundamental groups of irreducible
graph manifolds are not relatively hyperbolic in general. We say that a group is
CAT(0) if it acts properly via semisimple isometries on a complete CAT(0) space (see
Section 11.2). In Chapter 11 we show that fundamental groups of irreducible graph
manifolds are not CAT(0) in general:

Theorem 0.20. — In each dimension n ≥ 4, there are infinitely many examples of
n-dimensional irreducible graph manifolds having a non-CAT(0) fundamental group.
In particular, there exist infinitely many irreducible graph n-manifolds which do not
support any locally CAT(0) metric.

Finally, in Chapter 12, we provide some concluding remarks, and propose various
open problems suggested by our work.
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AND ALGEBRAIC PROPERTIES





CHAPTER 1

QUASI-ISOMETRIES AND QUASI-ACTIONS

In this chapter we fix some notations we will extensively use in the rest of this mono-

graph. We also list some well-known results about quasi-isometries and quasi-actions,

providing a proof for the strengthened version of Milnor-Sv̌arc’s Lemma described in

Lemma 1.4. Such a result is probably well-known to experts, but we did not find an

appropriate reference for it in the literature.

Let (X, d), (Y, d′) be metric spaces and k ≥ 1, c ≥ 0 be real numbers. A (not

necessarily continuous) map f : X → Y is a (k, c)-quasi-isometric embedding if for

every p, q ∈ X the following inequalities hold:

d(p, q)

k
− c ≤ d′(f(p), f(q)) ≤ k · d(p, q) + c.

Moreover, a (k, c)-quasi-isometric embedding f is a (k, c)-quasi-isometry if there

exists a (k, c)-quasi-isometric embedding g : Y → X such that d′(f(g(y)), y) ≤ c,

d(g(f(x)), x) ≤ c for every x ∈ X, y ∈ Y . Such a map g is called a quasi-inverse of f .

It is easily seen that a (k, c)-quasi-isometric embedding f : X → Y is a (k′, c′)-quasi-

isometry for some k′ ≥ 1, c′ ≥ 0 if and only if its image is r-dense for some r ≥ 0,

i.e. if every point in Y is at distance at most r from some point in f(X) (and in this

case k′, c′ only depend on k, c, r).

1.1. The quasi-isometry type of a group

If Γ is a group endowed with a finite system of generators S such that S = S−1,

the Cayley graph CS(Γ) of Γ is the geodesic graph defined as follows: CS(Γ) has Γ as

set of vertices, two vertices g, g′ ∈ CS(Γ) are joined by an edge if and only if g−1g′

lies in S, and every edge has unitary length. It is very easy to show that different

finite sets of generators for the same group define quasi-isometric Cayley graphs, so

every finitely generated group is endowed with a metric which is well-defined up to

quasi-isometry.
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Remark 1.1. — Suppose i : Γ1 → Γ2, j : Γ2 → Γ3 are injective group homomor-

phisms between finitely generated groups, and let Si be a finite system of generators

for Γi, i = 1, 2, 3. We may enlarge S2 and S3 in such a way that i(S1) ⊆ S2,

j(S2) ⊆ S3. Under this assumption, both i and j are 1-Lipschitz embeddings with

respect to the word metrics defined via the Si’s. Using this fact, it is not hard to

show that the composition j ◦ i is a quasi-isometric embedding if and only if both i

and j are quasi-isometric embeddings.

1.2. The Milnor-Sv̌arc Lemma

The following fundamental result shows how the quasi-isometry type of a group is

related to the quasi-isometry type of a metric space on which the group acts geomet-

rically. A geodesic metric space X is proper if every closed ball in X is compact. An

isometric action Γ×X → X of a group Γ on a metric space X is proper if for every

compact subset K ⊆ X the set {g ∈ Γ | g ·K ∩K 6= ∅} is finite, and cocompact if X/Γ

is compact.

Theorem 1.2 (Milnor-Sv̌arc Lemma). — Suppose Γ acts by isometries, properly

and cocompactly on a proper geodesic space X. Then Γ is finitely generated and quasi-

isometric to X, a quasi-isometry being given by the map

ψ : Γ→ X, ψ(γ) = γ(x0),

where x0 ∈ X is any basepoint.

As a corollary, if M is a compact Riemannian manifold with Riemannian universal

covering M̃ , then the fundamental group of M is quasi-isometric to M̃ . A proof of

this result can be found in [BrHa, Chapter I.8.19], and we will prove a slightly more

general version of the Lemma in the next section.

1.3. From quasi-isometries to quasi-actions

Suppose (X, d) is a geodesic metric space, let QI(X) be the set of quasi-isometries

of X into itself, and let Γ be a group. For k ≥ 1, a k-quasi-action of Γ on X is a map

h : Γ→ QI(X) such that the following conditions hold:

1. h(γ) is a (k, k)-quasi-isometry with k-dense image for every γ ∈ Γ;

2. d(h(1)(x), x) ≤ k for every x ∈ X;

3. the composition h(γ1)◦h(γ2) is at distance bounded by k from the quasi-isometry

h(γ1γ2), i.e.

d
(
h(γ1γ2)(x), h(γ1)(h(γ2)(x))

)
≤ k for every x ∈ X, γ1, γ2 ∈ Γ.
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A k-quasi-action h as above is k′-cobounded if every orbit of Γ in X is k′-dense.

A (cobounded) quasi-action is a map which is a (k′-cobounded) k-quasi-action for

some k, k′ ≥ 1. Throughout the whole paper, by an abuse of notation, when h is a

quasi-action as above we do not distinguish between γ and h(γ).

Remark 1.3. — If h is a k-quasi-action as above, then for every γ ∈ Γ, x0, x1, p ∈ X
we have

d(γ(x1), p) ≤ d(γ(x1), γ(x0)) + d(γ(x0), p) ≤ kd(x0, x1) + k + d(γ(x0), p).

Using this inequality, it is not difficult to show that if there exists a k′-dense orbit of

Γ in X, then h is k′′-cobounded for some k′′ (possibly larger than k′).

Suppose M is a geodesic metric space with metric universal covering M̃ , let Γ be

a finitely generated group and suppose we are given a quasi-isometry ϕ̃ : Γ→ π1(M).

We now briefly recall the well-known fact that ϕ̃ naturally induces a cobounded quasi-

action of Γ on M̃ .

Let ϕ : Γ→ M̃ be a fixed quasi-isometry provided by Milnor-Sv̌arc’s Lemma, and

let ψ : M̃ → Γ be a quasi-inverse of ϕ. For each γ ∈ Γ we define a map h(γ) : M̃ → M̃

by setting

h(γ)(x) = ϕ(γ · ψ(x)) for every x ∈ M̃.

Since h(1) = ϕ ◦ ψ, the map h(1) is at finite distance from the identity of M̃ . The

left multiplication by a fixed element of Γ defines an isometry of any Cayley graph of

Γ, so each h(γ) is the composition of three quasi-isometries with fixed constants. In

particular, it is a quasi-isometry and its quasi-isometry constants can be bounded by

a universal constant which only depends on ϕ and ψ, and is therefore independent

of γ. As such, we have that for every γ ∈ Γ the map h(γ) is a (k, k)-quasi-isometry

with k-dense image, where k is some fixed uniform constant. Moreover, it is easily

seen that for each γ1, γ2, h(γ1γ2) is at a finite distance (bounded independently of

γ1, γ2) from h(γ1) ◦ h(γ2), that is, h defines a quasi-action. Since every Γ-orbit in Γ

is 1-dense, the quasi-action h is clearly cobounded.

In Chapters 9 and 10 we need the following strengthened version of Milnor-Sv̌arc’s

Lemma.

Lemma 1.4. — Let X be a geodesic space with basepoint x0, and let Γ be a group.

Let h : Γ→ QI(X) be a cobounded quasi-action of Γ on X, and suppose that for each

r > 0, the set {γ ∈ Γ | γ(B(x0, r))∩B(x0, r) 6= ∅} is finite. Then Γ is finitely generated

and the map ϕ : Γ→ X defined by ϕ(γ) = γ(x0) is a quasi-isometry.

Proof. — The usual proof of Milnor-Sv̌arc’s Lemma works in this case too, up to

minor changes. We will closely follow [BrHa, Chapter I.8.19]. Suppose that h is a

k-cobounded k-quasi-action, and let us first prove that the finite set

A = {γ ∈ Γ | γ(B(x0, 2k
2 + 5k) ∩B(x0, 2k

2 + 5k) 6= ∅}
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generates Γ. Fix γ ∈ Γ and consider a geodesic α : [0, 1] → X joining x0 with

γ(x0). If n ∈ N is such that d(x0, γ(x0)) ≤ n ≤ d(x0, γ(x0)) + 1, we can choose

0 = t0 < · · · < tn = 1 in such a way d(α(ti), α(ti+1)) ≤ 1 for each i. For each

ti pick γi so that d(α(ti), γi(x0)) ≤ k, with γ0 = 1 and γn = γ, and observe that

d(γi(x0), γi+1(x0)) ≤ 2k + 1 for i = 0, . . . , n− 1. Since

d(x0, (γ
−1
i γi+1)(x0)) ≤ d(γ−1

i (γi(x0)), γ−1
i (γi+1(x0))) + 3k

≤ kd(γi(x0), γi+1(x0)) + 4k

≤ k(2k + 1) + 4k

we see that γ−1
i γi+1 ∈ A. This tells us that

γ = γ0(γ−1
0 γ1) . . . (γ−1

n−1γn)

is a product of at most d(x0, γ(x0)) + 1 elements of A. But γ was chosen arbitrarily,

so A is indeed a generating set for Γ.

Moreover, if dA is the word metric with respect to A, we have dA(1, γ) ≤
d(x0, γ(x0)) + 1, and for every γ, γ′ ∈ Γ we have

dA(γ, γ′) = dA(1, γ−1γ′) ≤ d(x0, (γ
−1γ′)(x0)) + 1

≤ d(γ−1(γ(x0)), γ−1(γ′(x0))) + 3k + 1

≤ kd(γ(x0), γ′(x0)) + 4k + 1

which is one of the two inequalities needed to prove that ϕ is a quasi-isometric embed-

ding. For the reverse inequality, we first establish a useful inequality. For an arbitrary

pair of elements γ1, γ2 in Γ, we have the estimate:

d(γ1(x0), γ2(x0)) = d
(
γ1(x0), (γ1γ

−1
1 )(γ2(x0))

)
+ k

≤ d
(
γ1(x0), γ1

(
γ−1

1 (γ2(x0))
))

+ 2k

≤ kd
(
x0, γ

−1
1 (γ2(x0))

)
+ 3k

≤ kd
(
x0, (γ

−1
1 γ2)(x0)

)
+ k2 + 3k

Choose µ so that d(x0, a(x0)) ≤ µ for each a ∈ A. Given any two elements γ, γ′ ∈ Γ,

let n = dA(γ, γ′) and write γ−1γ′ = a1 . . . an, where ai ∈ A. Set g0 = 1, gi =

a1 . . . ai, i = 1, . . . , n, so that gn = γ−1γ′. From the above inequality, we see that

d(gi(x0), gi+1(x0)) ≤ kµ+k2 + 3k for every i = 0, . . . , n− 1. Combining this estimate

with the above inequality, we finally obtain

d(γ(x0), γ′(x0)) ≤ kd(x0, gn(x0)) + k2 + 3k

≤ k
( n∑
i=1

d
(
gi−1(x0), gi(x0)

))
+ k2 + 3k

≤ k(kµ+ k2 + 3k)dA(γ, γ′) + k2 + 3k.
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We have thus proved that ϕ is a quasi-isometric embedding, and the fact that h is

cobounded now implies that it is in fact a quasi-isometry.





CHAPTER 2

GENERALIZED GRAPH MANIFOLDS

Let us introduce the precise definition of high dimensional graph manifold. Fix

n ≥ 3, k ∈ N and ni ∈ N with 3 ≤ ni ≤ n, and for every i = 1, . . . , k let Ni be

a complete finite-volume non-compact hyperbolic ni-manifold with toric cusps. It

is well-known that each cusp of Ni supports a canonical smooth foliation by closed

tori, which defines in turn a diffeomorphism between the cusp and Tni−1 × [0,∞),

where Tni−1 = Rni−1/Zni−1 is the standard torus. Moreover, the restriction of the

hyperbolic metric to each leaf of the foliation induces a flat metric on each torus, and

there is a canonical affine diffeomorphism between any such two leaves.

We now “truncate” the cusps of Ni by setting N i = Ni\∪aij=1T
ni−1
j ×(4,∞), where

Tni−1
j × [0,∞), j = 1, . . . , ai are the cusps of Vi. If Vi = N i × Tn−ni , then Vi is a

well-defined smooth manifold with boundary, and as mentioned above the boundary

of Vi is endowed with a well-defined affine structure. Moreover, the boundary of Vi
admits a collar which is canonically foliated by affine tori.

Let now B be a subset of the set of boundary components of the Vi’s, and suppose

that a pairing of the boundary components in B is fixed. We can construct a smooth

manifold M by gluing the Vi’s along affine diffeomorphisms between the paired tori in

B: the smooth manifold M obtained in this way is what we call a graph n-manifold.

The manifolds V1, . . . , Vk (which will be often considered as subsets of M itself) are

called the pieces of M . For every i, we say that Ni (or N i) is the base of Vi, while

if p ∈ N i, then the set {p} × Tn−ni ⊆ Vi is a fiber of Vi. Abusing terminology,

we will sometimes also refer to Tn−ni as the fiber of Vi. The toric hypersurfaces

of M corresponding to the tori in B will be called the internal walls of M (so any

two distinct pieces in M will be separated by a collection of internal walls), while

the components of ∂M will be called the boundary walls of M . We say that M is

purely hyperbolic if the fiber of every piece of M is trivial, i.e. if pieces of M are just

truncated complete finite-volume hyperbolic n-manifolds with toric cusps.
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Observe that M is closed (i.e. ∂M = ∅) if and only if B coincides with the whole

set of boundary components of the Vi’s.

Remark 2.1. — The product of an affine torus with a truncated hyperbolic manifold

with toric cusps provides the simplest example of graph manifold with non-empty

boundary. The quasi-isometry type of the fundamental group of such a manifold will

be studied in detail in Chapter 9.

Remark 2.2. — The simplest examples of closed graph manifolds are closed purely

hyperbolic graph manifolds. Therefore, it makes sense to compare our rigidity results

with the analogous results described in [On] (for doubles of cusped hyperbolic man-

ifolds), in [ArFa] (for twisted doubles of cusped hyperbolic manifolds), and in [Ng]

(for manifolds obtained by gluing locally symmetric negatively curved manifolds with

deleted cusps).

A restriction that we have imposed on our graph manifolds is that all pieces have a

base which is hyperbolic of dimension ≥ 3. The reason for this restriction is obvious:

hyperbolic manifolds of dimension ≥ 3 exhibit a lot more rigidity than surface groups.

In fact, some of our results extend to a more general case, namely when surfaces with

boundary are allowed as bases of pieces.

Definition 2.3. — For n ≥ 3, an extended graph n−manifold is a manifold built

up from pieces as in the definition of graph manifold as well as surface pieces, that

is manifolds of the form Σ × Tn−2 with Σ non-compact, finite volume, hyperbolic

surface. Also, we require that each gluing does not identify the fibers in adjacent

surface pieces.

Let us briefly comment about the last requirement described in the above Def-

inition. If we allowed gluings which identify the fibers of adjacent surface pieces,

then the resulting decomposition into pieces of our extended graph manifold would

no longer be canonical. Indeed, within a surface piece Σ × Tn−2, we can take any

non-peripheral simple closed curve γ ↪→ Σ in the base surface, and cut the piece open

along γ × Tn−2. This allows us to break up the original piece Σ × Tn−2 into pieces

(Σ \ γ)×Tn−2 (which will either be two pieces, or a single “simpler” piece, according

to whether γ separates or not). Our additional requirement avoids this possibility.

Note however that if one has adjacent surface pieces with the property that the glu-

ing map matches up their fibers exactly, then it is not possible to conclude that the

two surface pieces can be combined into a single surface piece (the resulting manifold

could be a non-trivial S1-fiber bundle over a surface rather than just a product).

Remark 2.4. — Let N be the base of a piece of an (extended) graph manifold, and

suppose that N and N
′

are obtained as above by deleting from N horospherical cusp

neighbourhoods of possibly different “heights”. Then, there exists a diffeomorphism

between N and N
′

which is coherent with the identification of ∂N and ∂N
′

induced
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by the canonical foliations of the cusps of N . In particular, the diffeomorphism type

of an (extended) graph manifold M does not depend on the choice of the height of the

cusps removed from the hyperbolic factors of the pieces into which M decomposes.

Remark 2.5. — It is proved in [HsWa] that, if n ≥ 5, then any diffeomorphism

between affine n-dimensional tori is C0-isotopic to an affine diffeomorphism. As a

consequence, for n ≥ 6, if we allow also non-affine gluings, then we do not obtain

new homeomorphism types of (extended) graph manifolds. On the other hand, as

showed in [ArFa], requiring the gluings to be affine is necessary for getting smooth

rigidity results as in our Theorem 0.7 (i.e. non-affine gluings can give rise to new

diffeomorphism types of manifolds).

2.1. Putting a metric on (extended) graph manifolds

By construction, each hypersurface in M corresponding to a boundary torus of

some Vi is either a boundary component of M , or admits a canonical smooth bicollar

in M diffeomorphic to Tn−1 × [−3, 3], which is obtained by gluing, according to the

pairing of the boundary components in B, some subsets of the form ∂Vi× [1, 4], where

∂Vi is canonically identified with ∂Vi × {4}.
In what follows, we will say that a point p ∈ Tn−1×{−3} is tied to q ∈ Tn−1×{3} if

p = (x,−3), q = (x, 3) for some x ∈ Tn−1, i.e. if p, q have the same “toric” component

in the product space Tn−1 × [−3, 3] ⊆M .

The following lemma shows how one can put on M a Riemannian metric which

somewhat extends the product metrics defined on the Vi’s.

Lemma 2.6. — Consider A1 = T k× [−3, 0] and A2 = T k× [0, 3], each equipped with

a Riemmanian metric gi, and let B1 = T k × [−3,−2], B2 = T k × [2, 3]. Then there

exists a Riemmanian metric on A = T k × [−3, 3] such that g|Bi = gi|Bi , i = 1, 2.

Proof. — Let ρ : [−3, 3]→ [−3, 3] be an odd C∞ function such that:

1. ρ|[2,3] = id,

2. ρ([1, 2]) = [0, 2],

3. ρ|[0,1] = 0.

Also, let δ : [−1/2, 1/2]→ [0, 1] be an increasing C∞ function which is constantly

0 (resp. 1) in a neighborhood of -1/2 (resp. 1/2) and is strictly positive in [0, 1/2].

We can define g as follows:

g(p, x) =


g1(p, ρ(x)) for x ∈ [−3,−1/2]

δ(−x)g1(p, 0) + δ(x)g2(p, 0) for x ∈ [−1/2, 1/2]

g2(p, ρ(x)) for x ∈ [1/2, 3]

for all p ∈ T k, x ∈ [−3, 3].

From Lemma 2.6 we get the following:
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Corollary 2.7. — Suppose M is an (extended) graph manifold, and let U ⊆ M be

the union of the bicollars of the internal walls of M . Then M admits a Riemannian

metric g which extends the restriction to M \ U of the product metrics originally

defined on the pieces of M .

2.2. Purely hyperbolic graph manifolds are nonpositively curved

In the case of purely hyperbolic manifolds, much more can be proved. In that case,

the negatively curved Riemannian metrics defined on the pieces of M can be glued

together into a non-positively curved Riemannian metric on the whole of M :

Theorem 2.8. — Let M be a purely hyperbolic graph manifold. Then M supports a

nonpositively curved Riemannian metric for which each component of ∂M is totally

geodesic and flat.

Proof. — Our proof is based on the Claim below, which deals with the extension of

flat metrics on the boundary of a piece V of M to nonpositively curved metrics on V .

The Claim provides the n-dimensional analogue of [Le, Proposition 2.3] (indeed, if M

is 3-dimensional, then the theorem readily follows from [Le, Theorem 3.3]). Actually,

the proof of [Le, Proposition 2.3] already works in any dimension. However, we prefer

to recall it here with full details, both for the sake of completeness, and because in

higher dimensions a more precise statement is needed, which takes into account the

fact that distinct affine structures on the boundary of V may be non-equivalent via

diffeomorphisms of V . In fact, the main result of [ArFa] implies that the theorem

would be false if we allowed non-affine gluings between the pieces of M .

Claim: Let V be a piece of M , let h be a flat metric on ∂V , and assume that

the affine structure induced by h on ∂V coincides with the affine structure induced

on ∂V by the hyperbolic structure of V . Then h extends to a nonpositively curved

Riemannian metric on V , which is flat in a collar of ∂V .

Let g be the original hyperbolic metric on the hyperbolic manifold N = V ∪ (∂V ×
[0,∞)). The cusps of N are identified with the product ∂V × [0,∞). On this set, the

metric g is isometric to a warped product metric

e−2tg∂ + dt2 ,

where g∂ is the flat metric induced by g on ∂V . It is now sufficient to modify g into a

smooth metric on V ∪ (∂V × [0, T1]) which coincides with h on ∂V × {T1} (up to the

obvious identification between ∂V and ∂V × {T1}), and is a product in ∂V × [T1, T2]

for some 0 < T1 < T2. In fact, after identifying V with V ∪ (∂V × [0, T2]) via a

diffeomorphism which is affine on every boundary component, such a metric satisfies

the properties described in the Claim.

Since the affine structures induced by g∂ and by h on ∂V coincide, the Spectral

Theorem ensures that the tangent bundle of ∂V (endowed with the flat structure
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induced by these coincident affine structures) admits a parallel frame which is or-

thonormal for g∂ and orthogonal for h. In other words, on every component of ∂V

we may choose local coordinates x1, . . . , xn−1 such that

g∂ = dx2
1 + . . .+ dx2

n−1 , h = a2
1dx

2
1 + . . .+ a2

n−1dx
2
n−1 ,

where ai > 0 for every i. To interpolate between the conformal types of g∂ and h, we

put on ∂V × [0,∞) the metric

e−2t

(
n−1∑
i=1

(φ+ (1− φ)ai)
2dx2

i

)
,

where φ : [0,∞)→ [0, 1] is smooth, equal to 1 in a neighborhood of 0 and equal to 0

in a neighborhood of ∞.

If the first and the second derivative of φ are small with respect to the ai’s, then

each e−t(φ + (1 − φ)ai) is strictly monotonically descreasing and convex, and this

implies in turn that the above metric is negatively curved. Hence we can find a

complete negatively curved metric on V ∪ (∂V × [0,∞)) which is negatively curved,

and isometric to the warped product metric

e−2th+ dt2

on ∂V × [T0,∞) for a suitably chosen T0 > 0. We now replace the factor e−2t by

a convex and monotonically decreasing function ψ : [T0,∞) → R+ which coincides

with e−2t in a neighborhood of T0 and is constant in [T1,∞). The curvature of the

resulting complete metric is nonpositive because ψ is convex. After rescaling, this

metric is negatively curved, and isometric to the product h+ dt2 on ∂V × [T1, T2] for

every T2 > T1. This concludes the proof of the Claim.

Recall now that, by definition of graph manifold, the gluings defining M are affine.

Therefore, every internal wall T of M can be endowed with a flat Riemannian metric

hT whose induced affine structure coincides with the affine structures induced on

T by the hyperbolic structures on the two pieces adjacent to T . Let now V be a

piece of M . The Claim allows us to replace the metric on V with a nonpositively

curved smooth metric which coincides with a product metric in a neighborhhod of T

in V . By construction, such metrics on the pieces of M glue into a globally defined

smooth nonpositively curved metric on M , which is totally geodesic and flat on each

component of ∂M .

In dimension 3, Leeb proved that an (extended) graph manifold supports a non-

positively curved Riemannian metric provided that it contains at least one purely

hyperbolic piece [Le, Theorem 3.3]. However, Leeb’s result does not extend to higher

dimensions (see Remark 2.23).
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2.3. π1(M) as the fundamental group of a graph of groups

The decomposition of an (extended) graph n-manifold M into pieces V1, . . . , Vk
induces on π1(M) the structure of the fundamental group of a graph of groups GM
(see [Se] for the definition and some basic results on the fundamental group of a

graph of groups). More precisely, let GM be the graph of groups that describes

the decomposition of M into the Vi’s, in such a way that every vertex group is the

fundamental group of the corresponding piece, every edge group is isomorphic to Zn−1,

and the homomorphism of every edge group into the group of an adjacent vertex is

induced by the inclusion of the corresponding boundary component of Vi into Vi.

Then we have an isomorphism π1(M) ∼= π1(GM ) (see e.g. [SW] for full details).

Recall that cusps of hyperbolic manifolds are π1-injective, so every boundary com-

ponent of Vi is π1-injective in Vi. This implies that every piece (hence every boundary

component of a piece) is π1-injective in M .

For later reference, we point out the following lemma, which can be easily deduced

from [BePe, Lemma D.2.3]:

Lemma 2.9. — Let N be a complete finite-volume hyperbolic n-manifold, n ≥ 3.

1. Suppose that the cusps of N are toric, and that γ is a non-trivial element of

π1(N). Then, the centralizer of γ in π1(N) is free abelian.

2. The center of π1(N) is trivial.

The following remark is an immediate consequence of Lemma 2.9-(2).

Remark 2.10. — If N is a complete finite-volume hyperbolic n-manifold and d is

a natural number, then the center of π1(N)× Zd is given by {1} × Zd. Therefore, if

Vi ∼= N i × T d is a piece of M and pi : Vi → Ni is the natural projection, then the

center of π1(Vi) coincides with ker(pi)∗.

Definition 2.11. — Let Vi be a piece of M . Then the center of π1(Vi) is called the

fiber subgroup of π1(Vi). If T is a component of ∂Vi, we call fiber subgroup of π1(T )

the intersection of π1(T ) with the fiber subgroup of π1(Vi).

2.4. The universal cover of M as a tree of spaces

In this subsection we begin our analysis of the metric structure of the universal

covering M̃ of M . We will be mainly interested in the study of the quasi-isometric

properties of M̃ .

Definition 2.12. — A tree of spaces (X, p, T ) is a topological space X equipped

with a map p on a (simplicial, but possibly not locally finite) tree T with the following

property: for any edge e in T and t in the internal part e◦ of e, if Xe = p−1(t) then

p−1(e◦) is homeomorphic to Xe × (0, 1).
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Definition 2.13. — Suppose (X, p, T ) is a tree of spaces where X is a Riemannian

manifold. An internal wall of X is the closure of the preimage under p of the interior

of an edge of T ; a boundary wall of X is simply a connected component of ∂X. If

W is a (boundary or internal) wall of X, we will denote by dW the path metric

induced on W by the restriction to W of the Riemannian structure of X. A chamber

C ⊆ X is the preimage under p of a vertex of T ; we will denote by dC the path metric

induced on C by the restriction to C of the Riemannian structure of X. Two distinct

chambers of X are adjacent if the corresponding vertices of T are joined by an edge,

while a wall W is adjacent to the chamber C if W ∩ C 6= ∅ (if W is internal, then

W is adjacent to C if and only if the vertex corresponding to C is an endpoint of the

edge corresponding to W , while if W is a boundary wall, then W is adjacent to C if

and only if W ⊆ C).

Let us now come back to our (extended) graph n-manifold M . If dimNi = ni, the

universal covering of N i is isometric (as a Riemannian manifold) to the complement

Bi in Hni of an equivariant family of open disjoint horoballs. Following Schwartz, we

say that Bi is a neutered space. In the rest of this monograph, we will extensively use

several features of neutered spaces (see for example Proposition 7.4 or Section 8.3,

where we will deduce asymptotic properties of such spaces from the well-know fact

that they are relatively hyperbolic in the metric sense).

Since the fundamental group of each N i and each Vi injects in the fundamental

group of π1(M), the universal coverings Ṽi = Bi × Rn−ni embed into M̃ . Putting

together this observation and Corollary 2.7 we get the following:

Corollary 2.14. — M admits a Riemmanian metric such that M̃ can be turned into

a tree of spaces such that:

1. If C is a chamber of M̃ , then (C, dC) is isometric (as a Riemannian manifold)

to B × Rk, where B is a neutered space in Hn−k.

2. If W is an internal wall of M̃ , then W is diffeomorphic to Rn−1 × [−1, 1].

3. If W is a boundary wall of M̃ , then W is isometric (as a Riemannian manifold)

to Rn−1.

We will call B the base of C, and F = Rk the fiber of C. If πB : C → B, πF : C →
Rk are the natural projections, we will abuse the terminology, and also refer to a

subset F ⊆ C of the form F = π−1
B (x0), where x0 is a point in B, as a fiber of C. A

fiber of M̃ is a fiber of some chamber of M̃ .

If x, y ∈ C, we denote by dB(x, y) the distance (with respect to the path metric of

B) between πB(x) and πB(y), and by dF (x, y) the distance between πF (x) and πF (y)

(so by construction d2
C = d2

B + d2
F ).

If (M̃, p, T ) is the tree of spaces described in Corollary 2.14, we refer to T as to

the Bass-Serre tree of π1(M) (with respect to the isomorphism π1(M) ∼= π1(GM ),

or to the decomposition of M into the Vi’s). The action of π1(M) on M̃ induces an
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action of π1(M) on T . By the very definitions, (every conjugate of) the fundamental

group of a piece (resp. of a paired boundary component of a piece) coincides with

the stabilizer of a vertex (resp. of an edge) of T , and vice versa. Also recall that the

fiber subgroup is normal (even central) in the fundamental group of a piece, so it is

well-defined as a subgroup of a vertex stabilizer.

Lemma 2.15. — Let M be an (extended) graph manifold and let T be the Bass-

Serre tree corresponding to the decomposition of M into pieces. Also set G = π1(M),

and for every vertex v (resp. edge e) of T denote by Gv (resp. Ge) the stabilizer of v

(resp. e) in G.

1. If v is a vertex of T , then v is the unique vertex fixed by Gv.

2. Let W1,W2 be distinct walls of M̃ , and let v be a vertex of T such that any path

joining W1 with W2 must intersect the chamber corresponding to v. If g ∈ G is

such that g(Wi) = Wi for i = 1, 2, then g belongs to the fiber subgroup of Gv.

3. Let W be a wall of M̃ , and denote by H the (set-wise) stabilizer of W in G.

Then W is the unique wall which is stabilized by H.

Proof. — (1): If Gv fixes another vertex v′ 6= v, then it fixes an edge e exiting from

v. This implies that Gv is contained in the stabilizer of an edge, which is clearly

impossible since edge stabilizers are abelian.

(2): Let Ṽ ⊆ M̃ be the chamber corresponding to v, and denote by V the piece

of M corresponding to Ṽ . Our hypothesis implies that there exist two connected

components Z1, Z2 of ∂Ṽ such that g(Ṽ ) = Ṽ , g(Z1) = Z1 and g(Z2) = Z2. In

particular we have g ∈ Gv.
Let us fix an identification of Gv with π1(V ) = π1(N)×Zk, where N is the base of

V . Also denote by ρ : G→ π1(N) the projection map, and recall that π1(N) acts on

the universal covering Ĥn−k of N , which is a copy of hyperbolic space with a suitable

π1(N)-equivariant family of (open) horoballs removed. The boundary components of

Ṽ are in natural bijection with the boundary components of Ĥn−k, and the action of

g ∈ G on the components of ∂Ṽ can be detected by looking at the action of ρ(g) on

the set of connected components of ∂(Ĥn−k). Therefore, ρ(g) leaves two boundary

components of Ĥn−k invariant. This implies that g pointwise fixes the unique minimal

geodesic joining these boundary components. But the action of π1(N) on Ĥn−k is free,

so ρ(g) = e. This means that g belongs to the fiber subgroup of Gv, and concludes

the proof of point (2).

(3): Notice that H is free abelian of rank n − 1, where n is the dimension of M .

Suppose that H stabilizes a wall W ′ 6= W . By point (2), H is contained in the fiber

subgroup of Gv for some vertex v of T . But the rank of H is strictly bigger than the

rank of the fiber subgroup of Gv, a contradiction.
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Lemma 2.16. — Set G = π1(M). Let V1, V2 be pieces of M and Ti a component

of ∂Vi, i = 1, 2. Let Gi < π1(M) (resp. Hi < π1(M)) be (any conjugate of) the

fundamental group of Vi (resp. of Ti). Then:

1. The normalizer of G1 in G is equal to G1.

2. If G1 is conjugate to G2 in G, then V1 = V2.

3. The normalizer of H1 in G is equal to H1.

4. If H2 is conjugate to H1 in G, then T1 = T2 in M .

5. If g ∈ G is such that G1 ∩ gG1g
−1 ⊇ H1, then either g ∈ G1 or V1 is glued to

itself along T1 in M .

Proof. — Let us consider the action of G on the Bass-Serre tree T corresponding to

the decomposition of M into pieces.

(1): By Lemma 2.15, there exists a unique vertex v1 such that G1 = Gv1 . If g

normalizes G1, then G1 fixes g(v1), so g(v1) = v1 and g ∈ G1.

(2): Let v1, v2 be the vertices of T fixed respectively by G1, G2, and suppose that

there exists g ∈ G such that gG1g
−1 = G2. Then G1 fixes both v2 and g(v1), so

v2 = g(v1). Therefore, the covering automorphism g : M̃ → M̃ sends a chamber

covering V1 onto a chamber covering V2, and V1 = V2.

(3): By Lemma 2.15, there exists a unique wall W such that G1 is the stabilizer of

W in G. If g normalizes G1, then G1 stabilizes g(W ), so g(W ) = W and g ∈ G1.

(4): Let W1,W2 be the walls of T stabilized respectively by G1, G2 (see

Lemma 2.15), and suppose that there exists g ∈ G such that gG1g
−1 = G2.

Then G1 fixes both W2 and g(W1), so W2 = g(W1). Therefore, the covering auto-

morphism g : M̃ → M̃ sends a wall covering T1 onto a wall covering T2, and T1 = T2

in M .

(5): Let us suppose that g /∈ G1, and prove that V1 is glued to itself along T1. Let

v1, v
′
1 be the vertices of T associated to G1, gG1g

−1 respectively. Since g /∈ G1 we

have v′1 6= v1. The assumption G1 ∩ gG1g
−1 ⊇ H1 implies that every element of H1

fixes every edge of the injective path joining v1 with v′1. Equivalently, if C,C ′ are the

chambers corresponding to v1, v
′
1, then g stabilizes every wall which separates C from

C ′. By Lemma 2.15, this implies that C is adjacent to C ′ along a wall stabilized by

H1, whence the conclusion.

2.5. Basic metric properties of M̃

In this subsection we collect several metric properties of M̃ that we will exten-

sively use in the following chapters in order to study the quasi-isometry type of the

fundamental group of an (extended) graph manifold.

Recall from Corollary 2.14 that, if C is a chamber of M̃ , then (C, dC) is isometric

to the product of a neutered space with a Euclidean space. An elementary application

of Milnor-Svarc Lemma (see Theorem 1.2) implies the following:
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Lemma 2.17. — If W is a wall of M̃ , then (W,dW ) is quasi-isometric to Rn−1.

Also recall that d denotes the distance associated to the Riemannian structure of

M̃ . For every r ≥ 0 and X ⊆ M̃ , we denote by Nr(X) ⊆ M̃ the r-neighbourhood of

X in M̃ , with respect to the metric d.

Lemma 2.18. — If C is a chamber of M̃ , then there exists a function g : R+ → R+

such that g(t) tends to +∞ as t tends to +∞ and d(x, y) ≥ g(dC(x, y)) for each

x, y ∈ C.

Proof. — By quasi-homogeneity of C it is enough to prove the statement for a fixed

x. Let us observe that d and dC induce the same topology on C. Take any sequence

{yi} of points such that dC(x, yi) tends to +∞. Since M̃ is proper, if the d(x, yi)’s

are bounded, then up to passing to a subsequence we can suppose limi→∞ yi = y for

some y ∈ M̃ . But C is closed in M̃ , so we have y ∈ C. It is easily seen that this

contradicts dC(x, yi)→ +∞.

Lemma 2.19. — Let W1,W2 be walls of M̃ , and suppose that there exists r ∈ R+

such that W1 ⊆ Nr(W2). Then W1 = W2. In particular, distinct walls of M̃ lie at

infinite Hausdorff distance from each other.

Proof. — Considering the realization of M̃ as a tree of spaces, one can easily reduce

to the case that W1 and W2 are adjacent to the same chamber C. By Lemma 2.18,

up to increasing r we may assume that W1 is contained in the r-neighbourhood of

W2 with respect to the path distance dC of C.

Let C = B × Rk be the decomposition of C into the product of a neutered space

and a Euclidean space. Then, W1 and W2 project onto two horospheres O1, O2

of B ⊆ Hn−k, and O1 is contained in the r-neighbourhood of O2 with respect to

the distance dB . Now, the distance dB is bounded below by the restriction of the

hyperbolic distance dH of Hn−k, so O1 is contained in the r-neighbourhood of O2

with respect to the distance dH. This forces O1 = O2, whence W1 = W2.

Corollary 2.20. — Let W (resp. C1, C2) be a wall (resp. two chambers) of M̃ .

Then:

1. if W ⊆ Nr(C1) for some r ≥ 0, then W is adjacent to C1;

2. if C1 ⊆ Nr(C2) for some r ≥ 0, then C1 = C2; in particular, the Hausdorff

distance between distinct chambers of M̃ is infinite.

Proof. — (1) By considering the realization of M̃ as a tree of spaces, it is immediate

to realize that W is contained in the r-neighbourhood of a wall adjacent to C1, so W

is adjacent to C1 by Lemma 2.19.

(2) Suppose W,W ′ are distinct walls both adjacent to C1. Then, by point (1) they

are adjacent also to C2, and this forces C1 = C2.



2.6. EXAMPLES NOT SUPPORTING ANY LOCALLY CAT(0) METRIC 19

In order to study the quasi-isometry type of M̃ , it would be very useful to know

that the inclusions of walls and chambers are quasi-isometric embeddings. However,

this is not true in general, as it is shown in the proof of Proposition 2.21 below, where

we exploit this fact for constructing (extended) graph manifolds which do not support

any CAT(0) metric.

In Chapter 7 we will define the class of irreducible graph manifolds, and we will

prove that walls and chambers are quasi-isometrically embedded in the universal

covering of an irreducible graph manifold.

2.6. Examples not supporting any locally CAT(0) metric

In this section we construct (extended) graph manifolds which do not support any

locally CAT(0) metric. The construction described here is easy, and it is based on a

straightforward application of the Flat Torus Theorem (see e.g. [BrHa, Chapter II.7]).

As mentioned in the Introduction, however, there are reasons for being interested in

irreducible graph manifolds (see Chapter 7). It turns out that providing examples of

irreducible graph manifolds which do not support any locally CAT(0) metric is much

harder. We will discuss this issue in detail in Chapter 11.

Proposition 2.21. — Let n ≥ 2, and take a hyperbolic n-manifold N with at least

two cusps. We suppose as usual that every cusp of N is toric. For i = 1, 2, let Ni = N

and Vi = N i × T 2. Then, we can glue the pieces V1 and V2 in such a way that the

resulting (extended) graph manifold M does not support any CAT(0) metric.

Proof. — Let A,A′ be two distinct boundary tori of N , and let Ai × T 2, A′i × T 2 be

the corresponding boundary tori of Vi. We now glue V1 to V2 as follows: A1 × T 2 is

glued to A2 × T 2 with the identity, where A1, A2 are indentified with A; A′1 × T 2 is

glued to A′2 × T 2 by an affine map ϕ such that ϕ∗ : π1(A′1 × T 2) → π1(A′2 × T 2) is

given by ϕ∗(a, c, d) = (a, c, c+ d), where a ∈ Zn−1 and we are identifying A′i with A′,

and π1(A′i × T 2) = π1(A′)× π1(T 2) with Zn−1 ⊕ Z2 = Zn+1.

Let M be the (extended) graph manifold obtained by the gluings just described. It

is readily seen that the natural projections Vi → N i define a projection q : M → DN ,

where DN is the double of the natural compactification of N . The map q is a locally

trivial fiber-bundle with fibers homeomorphic to T 2. If γ is the support of any simple

curve joining the two boundary components of N , then the double α of γ defines a

simple loop in DN . Let L = q−1(α). It is easily seen that

π1(L) ∼= 〈x, y, z | yz = zy, xy = yzx, xz = zx〉 ∼= Z2 oψ Z,

where if x generates Z we have ψ(x)(y, z) = (y, y + z). Moreover, if L′ is the inter-

section of L with one component Y of ∂V1 = ∂V2 ⊆M , then L′ ∼= T 2, and i : L′ → L

induces an injective homomorphism i∗ : π1(L′) → π1(L) with i∗(π1(L′)) = 〈y, z〉. It
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is well-known (see e.g. [BrHa, III.Γ.4.17]) that i∗ is not a quasi-isometric embed-

ding, so the inclusion of π1(L′) into π1(M) is not a quasi-isometric embedding (see

Remark 1.1).

On the other hand, since the inclusion π1(L′) ↪→ π1(Y ) is a quasi-isometric em-

bedding, if the inclusion π1(Y ) ↪→ π1(M) were a quasi-isometric embedding, then by

Remark 1.1 the inclusion π1(L′) ↪→ π1(M) would also be quasi-isometric, while we

have just proved that this is not the case. Therefore, the inclusion π1(Y ) ↪→ π1(M) is

also not a quasi-isometric embedding, and by the Milnor-Svarc Lemma, this implies

that there exist walls of M̃ which are not quasi-isometrically embedded in M̃ .

As a consequence, M cannot support any locally CAT(0) metric: in fact, due to

Milnor-Svarc Lemma and the Flat Torus Theorem (see e.g. [BrHa, pg. 475]), if a

compact manifold M supports a locally CAT(0) metric and H < π1(M) is isomorphic

to Zr for some r ≥ 1, then H is necessarily quasi-isometrically embedded in π1(M).

We can exploit Proposition 2.21 to prove a portion of Theorem 0.20 in any dimen-

sion n ≥ 4. Indeed, for every n ≥ 3, there exists a cusped hyperbolic n-manifold

with at least two cusps, and whose cusps are all toric (in fact, such manifolds fall into

infinitely many distinct commensurability classes, see [MRS]). Applying Proposi-

tion 2.21 and the rigidity results proved in Chapters 4 and 5, we immediately deduce:

Corollary 2.22. — For every n ≥ 4, there exist infinitely many n-dimensional (ex-

tended) graph manifolds which do not support any locally CAT(0) metric.

Remark 2.23. — Let n ≥ 2, and let us take two hyperbolic n-manifolds N1, N2 with

more than two cusps, and whose cusps are all toric. Also take an (n+ 2)-hyperbolic

manifold N3 with at least one cusp, and whose cusps are all toric. (Such manifolds

exist by [MRS].) If Vi = N i × T 2, i = 1, 2, then we can glue V1 to V2 as described

in Proposition 2.21, thus getting an (extended) graph manifold M such that π1(M)

contains a subgroup isomorphic to Z2 which is not quasi-isometrically embedded. We

can now glue N3 to M , thus getting an (extended) graph manifold M ′ such that

π1(M ′) again contains a subgroup isomorphic to Z2 which is not quasi-isometrically

embedded. As a consequence M ′, while containing a purely hyperbolic piece, does

not support any locally CAT(0) metric. This shows that [Le, Theorem 3.3] may not

be extended to higher dimensions.



CHAPTER 3

TOPOLOGICAL RIGIDITY

In this chapter, we will establish various topological results for (extended) graph

manifolds. The main goal will be to establish Theorem 0.4, which we restate here for

the reader’s convenience.

Theorem (Topological Rigidity). — Let M be an (extended) graph manifold

(possibly with boundary), of dimension n ≥ 6. Assume M ′ is an arbitrary topological

manifold and ρ : M ′ → M is a homotopy equivalence which restricts to a homeo-

morphism ρ|∂M ′ : ∂M ′ → ∂M between the boundaries of the manifolds. Then ρ is

homotopic, rel ∂, to a homeomorphism ρ̄ : M ′ →M .

This result will be deduced as a special case of a more general result. For a compact

topological manifold M , we will call a finite family {Ni} of embedded codimension

one submanifolds in the interior of M a topological decomposition if each Ni has

a product neighborhood Ei ∼= Ni × (−1, 1), and the submanifolds are all pairwise

disjoint. The complexity of the decomposition will be the size of the family {Ni}.
Given a topologically embedded codimension one submanifoldN ↪→M with a product

neighborhood, the open manifold M \N has two ends, which can each be compactified

by adding a copy of N . We will say that the resulting manifold with boundary is

obtained from M by cutting along N . Note that if we have a topological decomposition

{Ni} of M , then cutting along one of the Ni yields a new topological manifold M ′,

with a topological decomposition of complexity one less. As the process of cutting

decreases the complexity, this allows us to use inductive arguments in our proofs.

If {Ni} is a topological decomposition of the manifold M , we can repeatedly cut

along the Ni until we obtain a manifold M ′ with an empty topological decomposition

(i.e. complexity zero). Each connected component Mj of M ′ will be called a piece,

and each Ni will be called a wall. Note that M can be reconstructed from its pieces, by

performing repeated gluings along the walls. Observe also that our high dimensional
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(extended) graph manifolds obviously come equipped with a topological decompo-

sition, given by letting {Ni} consist of all its internal walls (in the graph manifold

sense). The Borel conjecture for (extended) graph manifolds is then a consequence of

the following more general result.

Theorem 3.1 (Topological Rigidity - general case). — Let M be a compact

manifold of dimension n ≥ 6, with a topological decomposition {Ni}. Assume the

following conditions hold:

(i) each of the pieces {Mj} and each of the walls {Ni} are aspherical,

(ii) each of the pieces {Mj} and each of the walls {Ni} satisfy the Borel Conjecture,

(iii) each of the inclusions Ni ↪→Mj is π1-injective,

(iv) each of the inclusions π1(Ni) ↪→ π1(Mj) is square-root-closed,

(v) the rings Zπ1(Ni) are all regular coherent, and

(vi) Whk
(
Zπ1(Mj)

)
= 0 for k ≤ 1, and likewise for π1(Ni).

Then the manifold M also satisfies the Borel Conjecture.

In Section 3.1, we start by discussing asphericity of our (extended) graph manifolds.

In Section 3.2, we establish vanishing results for the lower algebraic K-theory. In

Section 3.3, we will prove Theorem 3.1, and in Section 3.4, we will use it to deduce

Theorem 0.4. Finally, in Section 3.5, we point out that the Baum-Connes Conjecture

also holds for the (extended) graph manifolds, and mention some consequences.

3.1. Contractible universal cover

A basic result in metric geometry implies that the universal cover of a closed

CAT(0) manifold is contractible, and hence that any such manifold is aspherical. We

establish the analogue:

Lemma 3.2. — Let M be a compact topological manifold, with a topological decom-

position {Ni}. Assume that each of the pieces Mj and each of the walls Ni are

aspherical, and that each inclusion Ni ↪→Mj is π1-injective. Then M is aspherical.

Proof. — We argue by induction on the complexity k of the topological decomposition

of M . If k = 0, then M is formed from a single piece. By hypothesis, the piece is

aspherical, which establishes the base case for our induction.

Now assume M has topological decomposition of complexity k > 0, and that

the result holds whenever we have such a topological decomposition of complexity

< k. Let Ni be an arbitrary wall in M , and cut M open along Ni. There are

two cases to consider, according to whether Ni separates M into two components or

not. We deal with the case where W separates M into M ′ and M ′′ (the other case

uses a similar reasoning). The manifolds M ′, M ′′ come equipped with a topological

decomposition of complexity < k. The inductive hypothesis now ensures that they

are both aspherical.
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So M is obtained by gluing together the two aspherical spaces M ′ and M ′′ along

a common aspherical subspace Ni. A result of Whitehead [Wh] now asserts that

M is also aspherical, provided that each of the inclusions Ni ↪→ M ′, Ni ↪→ M ′′ is

π1-injective. But this follows from the fact that all the walls lie π1-injectively in the

adjacent pieces. This completes the inductive step, and establishes the Lemma.

Let us now specialize to the case of (extended) graph manifolds. We have that

each piece Mj is homeomorphic to the product N × T k where N is a finite volume

hyperbolic manifolds with cusps cut off, and T k is a torus. Since both factors are

aspherical, and a product of aspherical manifolds is aspherical, we see that the pieces

are aspherical. Each wall is homeomorphic to a torus Tn−1, hence is also aspherical.

Moreover, we know (see Section 2.3) that the embedding of a wall into a piece is

always π1-injective. So an immediate consequence of the Lemma is:

Corollary 3.3. — If M is an (extended) graph manifold (possibly with boundary),

then M is aspherical.

3.2. Lower algebraic K-theory

In the field of high-dimensional topology, some of the most important invariants

of a manifold M are the (lower) algebraic K-groups of the integral group ring of

the fundamental group. Obstructions to various natural problems often reside in

these groups, and in some cases, all elements in the group can be realized as such

obstructions. As a result, it is of some interest to obtain vanishing results for the

lower K-groups. We will focus on the following covariant functors:

– the Whitehead group of M , Wh
(
π1(M)

)
, which is a quotient of the group

K1

(
Z[π1(M)]

)
,

– the reduced K0-group, K̃0

(
Z[π1(M)]

)
, and

– the lower K-groups, Ki

(
Z[π1(M)]

)
with i ≤ −1.

To simplify notation, we define the functors Whi (for i ≤ 1) from the category of

groups to the category of abelian groups as follows:

Whi(Γ) :=


Wh(Γ) i = 1

K̃0

(
Z[Γ]

)
i = 0

Ki

(
Z[Γ]

)
i ≤ −1

Recall that a ring R is said to be regular coherent provided every finitely generated

R-module has a finite-length resolution by finitely generated projective R-modules.

The following Lemma is an immediate consequence of work of Waldhausen.

Lemma 3.4. — Let G be a graph of groups, with vertex groups Gj and edge groups

Hk, and let Γ denote the fundamental group π1(G). Assume that we have Whi(Gj) =
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0 and Whi(Hk) = 0 for all i ≤ 1 and all j, k. If the rings Z[Hk] are all regular

coherent, then Whi(Γ) = 0 for all i ≤ 1.

Proof. — We proceed by induction on the number k of edges in the graph of groups

G. If k = 0, then Γ ∼= G, where G is the (single) vertex group in G. By hypothesis, we

have Whi(Γ) = Whi(G) = 0 for all i ≤ 1. So we may now assume that k > 0. Pick

an arbitrary edge e in G, and consider the induced splitting of the group Γ. There

are two cases to consider:

1. if the edge separates the graph G into two components, then Γ = Γ1 ∗H Γ2 is an

amalgamation of two groups Γ1, Γ2 over a subgroup H.

2. if the edge does not separate, then Γ = Γ′∗H is isomorphic to an HNN extension

of Γ′ over a subgroup H.

Moreover, H is the group associated to the edge e, and Γ′,Γ1,Γ2 are fundamental

groups of graphs of groups with < k edges (and which satisfy the hypotheses of this

Lemma). By induction, the Whi functors (i ≤ 1) vanish on the groups Γ′,Γ1,Γ2. We

explain Case (1) in detail, as the argument for Case (2) is completely analogous.

Waldhausen has established [Wa3], [Wa4] (see also Bartels and Lück [BaLu] and

Connolly and Prassidis [CoPr]) a Mayer-Vietoris type sequence for the functors Whi
of an amalgamation Γ = Γ1 ∗H Γ2 (or of an amalgamation Γ = Γ′∗H). Waldhausen’s

sequence requires an “adjustment term” to Whi(Γ), and takes the form:

(3.1) . . .→Whi(H)→Whi(Γ1)⊕Whi(Γ2)→Whi(Γ)/Nili

→Whi−1(H)→Whi−1(Γ1)⊕Whi−1(Γ2)→ . . .

In the above sequence, the adjustment terms Nili are called the Waldhausen Nil-

groups associated to the amalgamation Γ1 ∗H Γ2.

For our specific amalgamation, the inductive hypothesis ensures that the terms

involving the Γi and the H all vanish. Hence the Waldhausen long exact sequence

gives us an isomorphism Whi(Γ) ∼= Nili for i ≤ 1. Now the Waldhausen Nil-groups

for a general amalgamation are extremely difficult to compute. However, when the

amalgamating subgroupH has the property that its integral group ring Z[H] is regular

coherent, Waldhausen has shown that the Nil-groups all vanish (see [Wa3, Theorem

4]). This gives us Whi(Γ) ∼= Nili = 0 for i ≤ 1, concluding the inductive step in Case

(1). In Case (2), we can apply an identical argument to the analogous long exact

sequence for Γ = Γ′∗H :

(3.2)

. . .→Whi(H)→Whi(Γ
′)→Whi(Γ)/Nili →Whi−1(H)→Whi−1(Γ′)→ . . .

This completes the proof of the proposition.
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Next let us specialize to the case of (extended) graph manifolds. As discussed in

Section 2.3, the fundamental group of M coincides with the fundamental group of a

graph of groups. The vertex groups are the fundamental groups of manifolds with

boundary, whose interiors are homeomorphic to the product of a finite volume hyper-

bolic manifold with a torus. For such manifolds, Farrell and Jones [FaJo2] established

the vanishing of the Whi functors (i ≤ 1). The edge groups are fundamental groups

of codimension one tori. When M is a closed manifold of non-positive sectional cur-

vature of dimension n ≥ 5, it follows from work of Farrell and Jones [FaJo1] that

Whi
(
π1(M)

)
= 0 for all i ≤ 1. As a special case, Whi(Zk) vanishes for i ≤ 1, k ≥ 5

(in fact, using work of Bass, Heller, and Swan [BHS] one can establish this for all

k). Moreover, it is an old result of Hall [Ha] that the integral group ring of finitely

generated free abelian groups are regular coherent. Applying the previous Lemma,

we can immediately conclude:

Corollary 3.5 (Lower K-groups vanish). — Let M be a (extended) graph man-

ifold (possibly with boundary) and Γ = π1(M). Then we have that Whi(Γ) = 0 for

all i ≤ 1.

3.3. Topological rigidity - the general case

Having established our preliminary results, we now turn to showing Theorem 3.1.

We start with a compact topological manifold M , of dimension ≥ 6, equipped with a

topological decomposition {Ni}, and satisfying the following conditions:

(i) each of the pieces {Mj} and each of the walls {Ni} are aspherical,

(ii) each of the pieces {Mj} and each of the walls {Ni} satisfy the Borel Conjecture,

(iii) each of the inclusions Ni ↪→Mj is π1-injective,

(iv) each of the inclusions π1(Ni) ↪→ π1(Mj) is square-root-closed,

(v) the rings Zπ1(Ni) are all regular coherent, and

(vi) Whk
(
Zπ1(Mj)

)
= 0 for k ≤ 1, and likewise for π1(Ni).

Moreover, we have a homotopy equivalence ρ : M ′ → M where M ′ is an arbitrary

topological manifold, and ρ restricts to a homeomorphism from ∂M ′ to ∂M . Our

goal is to find a homeomorphism ρ̄ : M ′ →M homotopic to ρ (rel ∂).

The proof of the theorem will proceed by induction on k, the number of walls in the

topological decomposition of the manifold M . The base case for our induction, k = 0,

corresponds to the case where M consists of a single piece Mj , and the theorem follows

immediately from condition (ii). So we may now assume that k > 0, and choose an

arbitrary wall N from the topological decomposition of M . Recall that this wall N

is a topologically embedded codimension one submanifold, and that the embeddings

N ↪→M extends to an embedding N × (−1, 1) ↪→M , with the wall corresponding to

the subset N ×{0}. We may also assume that this neighborhood is disjoint from any

of the other walls in the topological decomposition of M . As a first step, we want to
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homotope the homotopy equivalence ρ to a continuous map f : M ′ → M having the

property that f is topologically transverse to N .

Since transversality in the topological category might not be familiar to most read-

ers, we briefly recall some aspects of the theory. Milnor developed in [Mi] a bundle

theory for the topological category. A microbundle over a space B consists of a triple

X := (E, i, j), where E is a space, i : B → E and j : E → B are a pair of maps with

j ◦ i ≡ IdB (i is called the injection, j is called the projection). Additionally, this

triple must satisfy a local triviality condition: around each point p ∈ B, there should

exist open neighborhoods p ∈ U , i(p) ∈ V satisfying i(U) ⊂ V and j(V ) ⊂ U , and a

homeomorphism φ : V → U × Rn so that the following diagram commutes:

U × Rn
p1 // U

U

Id×{0}

OO

i|U
// V

φ
cc

j|V

OO

Two bundles X1,X2 over B are considered isomorphic if, after passing to smaller

neighborhoods of the sets i1(B) ⊂ V ′1 and i2(B) ⊂ V ′2 , one has a homeomorphism

ψ : V ′1 → V ′2 with the property that i′2 = ψ ◦ i′1 and j′1 = j′2 ◦ ψ. In other words, one

only cares about the local behavior near the subset i(B) in E.

If one has a topological submanifold N inside an ambient manifold M , we say the

submanifold has a normal microbundle n = (E, i, j) if the space E is a neighborhood

of N inside M , and i is the obvious inclusion of N into E. A map f : M ′ → M is

said to be topologically transverse to the bundle n if it satisfies:

– N ′ := f−1(N) is a topological submanifold inside M ′,

– the submanifold N ′ has a normal microbundle n′ = (E′, i′, j′), and

– f restricts to a topological microbundle map f |E′ : E′ → E (i.e. restricts to an

open topological embedding of each fiber of n′ into a corresponding fiber of n).

A fundamental result of Kirby and Siebenmann is that one can always homotope a

map to be transverse to a given normal microbundle for a submanifold in the target

(see [KS, Essay III, Theorem 1.1, pg. 85], along with Quinn [Q, Theorem 2.4.1] for

the remaining cases). Moreover, the homotopy can be chosen to have support in an

arbitrarily small neighborhood of the preimage of N (assuming all manifolds involved

are compact).

Now returning to the proof of the Borel Conjecture, we observe that, by hypothesis,

the wall N comes equipped with a canonical normal microbundle n, whose total space

is given by the product neighborhood homeomorphic to N×(−1, 1). Applying Kirby-

Seibenmann, we know that one can homotope ρ to a map f which is a topologically

transverse to n. We would like to further ensure that the resulting topologically

transverse continuous map f : M ′ → M have the additional property that (a) f
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restricts to a homotopy equivalence f |f−1(N) : f−1(N) → N , and (b) f restricts to

a homotopy equivalence from M ′ \ f−1(N) to M \N . This question was studied by

Cappell [Ca], who showed that there are two further obstructions to being able to do

this:

– an element in a suitable quotient group of Wh
(
π1(M)

)
, and

– an element in a group UNil defined by Cappell, which depends on the decompo-

sition of π1(M) as an amalgamation over π1(N) (or on the expression of π1(M)

as an HNN-extension over π1(N)).

In view of our hypotheses, conditions (v) and (vi) allows us to appeal to Lemma

3.4, which ensures that the first obstruction must vanish. To deal with the second

obstruction, we use a result of Cappell [Ca] showing that the UNil group vanishes

provided the subgroup π1(N) is square-root closed in the group π1(M). Recall that a

subgroup H ≤ G is n-root closed provided that for g ∈ G, gn ∈ H forces g ∈ H. But

it is a general result that, for a graph of groups, root closure of the edge groups in the

adjacent vertex groups implies that the edge group is root closed in the fundamental

group of the graph of groups (see the proof of Lemma 6.10). Using our topological

decomposition, we can realize π1(M) as the fundamental group of a graph of groups,

with edge groups the π1(Ni) and vertex groups the π1(Mj). Our hypothesis (iv)

then ensures that π1(N) is square-root closed in π1(M), and hence forces Cappell’s

secondary obstruction in the UNIl group to also vanish (as the later group is trivial).

So from Cappell’s work, we have now succeeded in homotoping the homotopy

equivalence ρ to a map f with the property that f is topologically transverse to the

normal microbundle n of N . Moreover, the homotopy can be chosen to have support in

a small neighborhood of ρ−1(N), and in particular, we have that f coincides with ρ on

∂M ′. Let N ′ = f−1
(
N
)
, an (n−1)-dimensional submanifold of M ′. By transversality,

N ′ has a neighborhood E′ which forms the total space of a normal microbundle

n′ over N ′, and the map f induces a topological microbundle map from E′ into

the product neighborhood E ∼= N × (−1, 1) of N . Since N separates the product

neighborhood E into two components, N ′ must likewise separate its neighborhood E′

into two components. This forces the microbundle n′ to be isomorphic to the trivial 1-

dimensional microbundle N ′×R over N ′, so after possibly shrinking the neighborhood

E′, we can assume that E′ is also a product neighborhood homeomorphic to N ′ ×
(−1, 1). By further restricting the total spaces of the microbundles n′ and n, we can

assume that the restriction f : E′ → E to the product neighborhood E′ ∼= N ′×(−1, 1)

takes the form f(x, t) = (fN (x), t), where fN : N ′ → N denotes the restriction of f

to N ′.

We know from Cappell’s property (a) that the map fN : N ′ → N is a homotopy

equivalence. By assumption (ii), the manifold N satisfies the Borel Conjecture, so

there exists a homotopy F : N ′× [0, 1/2]→ N where F |N ′×{1/2} ≡ fN and F |N ′×{0} :
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N ′ → N is a homeomorphism. Inserting this homotopy into the map f , we obtain a

new map f̂ : M ′ →M defined via:

f̂(x) :=

{
f(x) x ∈M ′ \

(
N ′ × [−1/2, 1/2]

)
F (x, |t|) x ∈ N ′, t ∈ [−1/2, 1/2]

Now consider cutting M open along the submanifold N . There are two possi-

bilities, according to whether the complement of the wall has one or two connected

components. We focus on the first case, since the second case is completely analogous.

We now have a new manifold M0 := M \N with two open ends, and we denote by M̄

the obvious compactification of M0 obtained by closing off each end by attaching a

copy of N . The compact manifold M̄ inherits a topological decomposition, with one

fewer wall than the topological decomposition of M , but with two additional bound-

ary components. Likewise, we can cut M ′ open along the submanifold N ′, resulting

in a manifold M ′0 = M ′ \ N ′ with two open ends, and corresponding manifold with

boundary M̄ ′ obtained from M ′0 by compactifying both ends with a copy of N ′. Now

the map f̂ induces a map, which we denote go, from M ′0 to M0. From the specific form

of f in the vicinity of the submanifold N ′ ⊂M ′, we see that g0 obviously extends to

a map g : M̄ ′ → M̄ between the compactifications, which induces a homeomorphism

between the compactifying set M̄ ′ \M ′0 (two copies of Nn−1) and the compactifying

set M̄ \M0 (two copies of N). By Cappell’s property (b), g0 is a homotopy equiva-

lence, and since we have obvious homotopy equivalences M̄ ′ 'M ′0 and M̄ 'M0, we

conclude that g is also a homotopy equivalence.

We now have that M̄ is a manifold with a topological decomposition having < k

walls, and a homotopy equivalence g : M̄ ′ → M̄ which restricts to a homeomorphism

from ∂M̄ ′ to ∂M̄ . From the inductive hypothesis, we see that the map g is homotopic,

rel ∂, to a homeomorphism. Since the homotopy leaves the boundaries unchanged,

we can lift the homotopy, via the obvious “re-gluing” of boundary components, to a

homotopy from f̂ : M ′ → M to a new map ρ̄ : M ′ → M . Moreover, it is immediate

that the map ρ̄ is a homeomorphism, completing the inductive step, and concluding

the proof of our Theorem 3.1.

3.4. Topological rigidity - (extended) graph manifolds

In the last section, we proved Theorem 3.1, establishing the Borel Conjecture for

a broad class of manifolds. We now proceed to prove Theorem 0.4, by checking that

our (extended) graph manifolds satisfy all the hypotheses of Theorem 3.1. We need

to verify the following six conditions:

(i) each of the chambers {Cj} and each of the walls {Wi} are aspherical,

(ii) each of the chambers and walls satisfy the Borel Conjecture,

(iii) each of the inclusions Wi ↪→ Cj are π1-injective,
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(iv) each of the inclusions π1(Wi) ↪→ π1(Cj) are square-root-closed,

(v) the rings Zπ1(Wi) are all regular coherent, and

(vi) Whk
(
Zπ1(Cj)

)
= 0 for k ≤ 1, and likewise for π1(Wi).

Conditions (i) and (iii) have already been verified (see the paragraph preceding Corol-

lary 3.3), as have conditions (v) and (vi) (see the paragraph preceding Corollary 3.5).

The fact that the chambers and walls satisfy the Borel Conjecture is due to Farrell

and Jones (see [FaJo1], [FaJo2]), so condition (ii) holds. We verify condition (iv).

Lemma 3.6. — If C is a chamber in an (extended) graph manifold, and W is any

adjacent wall, then π1(W ) is square-root closed inside π1(C).

Proof. — From the product structure C = N × T k on the chambers, we have that

π1(C) splits as a product π1(N)×Zk, where N is a suitable finite volume hyperbolic

manifold with cusps cut off, and the Zk comes from the torus factor. W is a boundary

component of C, hence splits as π1(Y )×Zk, where Y ⊂ N is a boundary component

of N . It is immediate from the definition that π1(W ) is square-root closed in π1(C)

if and only if π1(Y ) is square-root closed in π1(N).

Using the induced action of π1(N) on the neutered space B (see Section 2.4), we

can identify π1(Y ) with the stabilizer of a boundary horosphere component Ỹ in B.

Now assume that g ∈ π1(N) satisfies g2 ∈ π1(Y ), but g 6∈ π1(Y ). Then g2 maps Ỹ to

itself, but g maps Ỹ to some other boundary component Ỹ ′ 6= Ỹ , i.e. g interchanges

the two horospheres Ỹ ′ and Ỹ . Since these two horospheres are centered at different

points at infinity, there is a unique minimal length geodesic segment η joining Ỹ ′ to

Ỹ . But g acts isometrically, and interchanges the two horospheres, hence must leave

η invariant. This forces g to fix the midpoint of η, contradicting the fact that the

π1(N) action on B is free. We conclude that every π1(W ) is square-root closed in

each adjacent π1(C).

This completes the proof of Theorem 0.4, establishing the Borel Conjecture for

(extended) graph manifolds.

Remark 3.7. — Nguyen Phan [Ng] introduced the class of cusp decomposable man-

ifolds. These manifolds are defined in a manner similar to our graph manifolds, but

have pieces which are homeomorphic to finite volume negatively curved locally sym-

metric spaces with the cusps truncated. The walls are homeomorphic to infra-nil

manifolds. It is straightforward to check that these pieces and walls satisfy conditions

(i)-(vi) in our generalized Theorem. As such, the Borel Conjecture also holds for the

class of cusp decomposable manifolds.
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3.5. Baum-Connes Conjecture and consequences

We conclude this chapter by discussing the Baum-Connes conjecture for funda-

mental groups of (extended) graph manifolds. Recall that to any group G, one can

associate it’s reduced group C∗-algebra C∗r (G) (see Section 6.8 for the definition).

For a torsion-free group, the Baum-Connes Conjecture predicts that the complex

K-homology of the classifying space BG coincides with the topological K-theory of

C∗r (G). For a thorough discussion of this subject, we refer the reader to the book

[MV] or the survey article [LuR]. We will actually establish a somewhat stronger

result known as the Baum-Connes conjecture with coefficients (the latter has better

inheritance properties).

A group G is a-T-menable (or Haagerup) if one can find an affine isometric action

of G on some Hilbert space H with the property that for any point x ∈ H and

bounded set B ⊂ H, only finitely many group elements map x into B. This notion is

extensively discussed in the book [CCJJV].

Lemma 3.8. — Let G be a graph of groups, with vertex groups Gi, and let Γ denote

the fundamental group π1(G). If all vertex groups Gi are a-T-menable, then Γ satisfies

the Baum-Connes Conjecture with coefficients.

Proof. — Groups which are a-T-menable satisfy the Baum-Connes Conjecture with

coefficients (see Higson and Kasparov [HK, Thm. 1.1]), and if a graph of groups has

vertex groups satisfying the Baum-Connes Conjecture with coefficients, so does the

fundamental group of the graph of groups (by work of Oyono-Oyono, see [O-O, Thm.

1.1]).

Fundamental groups of finite volume hyperbolic manifolds are examples of a-T-

menable groups. Extensions of a-T-menable groups by amenable groups are still

a-T-menable (see [CCJJV, Ex. 6.1.6]). This tells us that the fundamental groups of

pieces in our graph manifolds are always a-T-menable. So we obtain the immediate:

Corollary 3.9 (Baum-Connes conjecture). — For M an (extended) graph man-

ifold (possibly with boundary), π1(M) satisfies the Baum-Connes conjecture (with co-

efficients).

A nice feature of the Baum-Connes conjecture is that it is known to imply several

other well-known conjectures. We explicitly mention three of these consequences

which may be of general interest. Throughout the rest of this section, we let G

denote the fundamental group of an arbitrary (extended) graph manifold.

Corollary 3.10 (Idempotent conjectures). — The Kadison Conjecture holds:

the reduced C∗-algebra C∗r (G) has no non-zero idempotents. As a consequence, the

Kaplansky Conjecture also holds: the group algebra QG has no non-zero idempotents.
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Corollary 3.11 (Gromov-Lawson-Rosenberg conjecture)

Let W be a closed, connected, smooth, spin manifold with π1(W ) ∼= G. If W

supports a Riemannian metric of positive scalar curvature, then the higher Â-genera

of W all vanish.

Corollary 3.12 (Zero-in-the-Spectrum conjecture). — Let M be an (ex-

tended) graph manifold, equipped with an arbitrary Riemannian metric. Then there

exists some p ≥ 0 so that zero lies in the spectrum of the Laplace-Beltrami operator

∆p acting on square-integrable complex valued p-forms on M̃ (the universal cover of

M).





CHAPTER 4

ISOMORPHISMS PRESERVE PIECES

This chapter is devoted to the proof of Theorem 0.5. We recall the statement here

for convenience.

Theorem. — Let M1, M2 be a pair of (extended) graph manifolds and let Γi =

π1(Mi) be their respective fundamental groups. Let Λ1 ≤ Γ1 be a subgroup conjugate

to the fundamental group of a piece in M1, and ϕ : Γ1 → Γ2 be an isomorphism. Then

ϕ(Λ1) is conjugate to the fundamental group Λ2 ≤ Γ2 of a piece in M2.

Let us briefly describe the strategy of our proof. It is sufficient to provide a group-

theoretic characterization of fundamental groups of pieces for a generic (extended)

n-dimensional graph manifold M . We study the action of the fundamental group

of M on the Bass-Serre tree associated to the decomposition of M into pieces. We

first describe the maximal subgroups of π1(M) which are isomorphic to Zn−1. In

the case when M is a graph manifold, these subgroups are just (conjugates of) the

fundamental groups of the boundary components of the pieces of M . From the point

of view of the geometry of M̃ , this implies that, if M is a graph manifold, then the

stabilizers of walls of M̃ admit an easy algebraic characterization.

In the general case things get more complicated, because the fundamental groups

of surface pieces contain many maximal abelian subgroups of rank n − 1. However,

this fact allows us to provide a group-theoretic characterization of (conjugates of)

fundamental groups of surface pieces. The algebraic description of the fundamental

groups of non-surface pieces requires more work, and it is based on the study of the

coarse geometry of non-surface chambers in M̃ . We first provide a coarse-geometric

characterization of the fundamental groups of the boundary components of such pieces

(as mentioned above, a much easier algebraic description of these subgroups is avail-

able in the case of graph manifolds). Since any chamber is coarsely approximated

by the adjacent walls and every group isomorphism is a quasi-isometry, via Milnor-

Svarc Lemma this implies that every group isomorphism between the fundamental
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groups of (extended) graph manifolds quasi-preserves the fundamental groups of non-

surface pieces. Finally, a standard trick allows us to show that fundamental groups

of non-surface pieces are indeed preserved (rather than only quasi-preserved) by any

isomorphism, and this concludes the proof.

As already mentioned, in the case of graph manifolds the proof of Theorem 0.5 may

be significantly simplified. We refer the reader to Remark 4.4 for a brief description

of the shortcuts that are available in that case.

4.1. Some properties of wall stabilizers

Let M be an (extended) n-dimensional graph manifold. We set Γ = π1(M), and

we denote by T the Bass-Serre tree associated to the decomposition of M into pieces.

Edge (resp. vertex) stabilizers correspond to stabilizers of internal walls (resp. cham-

bers) of M̃ . If e is an edge (resp. v a vertex) of T , then we denote by Γe (resp. Γv)

the stabilizer of e (resp. v) in Γ. In order to prove Theorem 0.5 we need to provide a

group-theoretic characterization of vertex stabilizers of T .

We denote by F (Γ) the collection of maximal subgroups of Γ which are isomorphic

to Zn−1 (the symbol F (Γ) is meant to suggest that elements in F (Γ) behave somewhat

like (n−1)-dimensional flats – note however that subgroups in F (Γ) may be distorted

in Γ). We will see in Corollary 4.3 that, in the case when M is a graph manifold,

wall stabilizers are exactly the elements of F (Γ). Unfortunately, this is not true when

surface pieces are allowed.

Lemma 4.1. — A subgroup H of Γ belongs to F (Γ) if and only if it is a maximal

subgroup isomorphic to Zn−1 of the stabilizer Γv of a vertex v of T .

Proof. — Let H ∈ F (Γ). As H is a finitely generated nilpotent group, a standard

result about groups acting on a tree (see [Se, Proposition 6.5.27]) guarantees that if

H does not stabilize a vertex, then there exists a geodesic γ in T that is invariant

under the action of H. So we only need to prove that there is no such geodesic.

The stabilizer Stab(γ) of any geodesic has a subgroup Fix(γ), with quotient

isomorphic to either 1, Z/2, Z, or D∞. So if H = Stab(γ), then the subgroup

Fix(γ) ≤ H ∼= Zn−1 is abstractly isomorphic to either (i) Zn−1 or (ii) Zn−2. From

the properties of the action on the Bass-Serre tree, we know that the subgroup which

fixes a pair of adjacent edges, when thought of as a subgroup of the common vertex

group, is contained in the corresponding fiber subgroup (see Lemma 6.3). Since these

fiber subgroups have rank ≤ n− 2, we see that (i) cannot occur.

To see that (ii) cannot occur, we note that this would force all vertices on the

geodesic γ to correspond to surface pieces. But we assumed that surface pieces have

fiber subgroups whose intersection has rank ≤ n − 3. Since H would have to be

contained in this intersection, we again obtain a contradiction. This rules out case

(ii), thus showing that H is contained in the stabilizer Γv of a vertex v of T . Being
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maximal among the subgroups of Γ that are isomorphic to Zn−1, the subgroup H is

maximal among the subgroups of Γv that are isomorphic to Zn−1.

Let now v be a vertex of T , and suppose that H is maximal among the subgroups

of Γv that are isomorphic to Zn−1. Take a subgroup H ′ < Γ isomorphic to Zn−1 and

containing H. We distinguish two cases.

If H fixes a vertex w 6= v, then it fixes an edge e of T exiting from v. Using that H

is maximal among the subgroups of Γv that are isomorphic to Zn−1, it is readily seen

that H coincides with the stabilizer of e. Moreover, H ′ is contained in the normalizer

of H, so Lemma 2.16 implies that H ′ = H.

If v is the unique vertex fixed by H, then H ′ also fixes v, so H ′ is contained in Γv,

and H ′ = H by maximality of H among the subgroups of Γv isomorphic to Zn−1.

In any case, we have shown that H ∈ F (Γ), and this concludes the proof.

Lemma 4.2. — If H < Γ is a wall stabilizer, then H ∈ F (Γ). On the other hand,

if H ∈ F (Γ), then:

1. either H is a wall stabilizer, or

2. there exists a unique vertex v of T which is fixed by H, and this vertex corre-

sponds to a surface piece of M .

Proof. — It is immediate to check that a wall stabilizer is a maximal subgroup iso-

morphic to Zn−1 of the stabilizer of a vertex of T , so the first statement follows from

Lemma 4.1.

Assume now that H ∈ F (Γ) is not a wall stabilizer. In order to conclude we need

to show that H satisfies condition (2) of the statement.

By Lemma 4.1 we know that H is contained in the stabilizer of a vertex v of T .

Moreover, v is the unique vertex fixed by H, because otherwise H would fix an edge

of T , and by maximality it would coincide with a wall stabilizer.

Suppose by contradiction that the piece V of M corresponding to v is not a surface

piece. We denote by N and T k respectively the hyperbolic and the toric factor of V ,

so that H is contained in a conjugate of π1(N × T k) < π1(M). For our purposes, we

can safely assume H < π1(N ×T k). Since V is not a surface piece, we have k ≤ n−3.

The projection of H on π1(N) is an abelian group of rank at least n− k− 1 ≥ 2, and

it is therefore contained in a cusp subgroup. By maximality, this implies that H is a

wall stabilizer, a contradiction.

The previous Lemma shows that, in the case when M is a graph manifold, wall

stabilizers admit an easy group-theoretic characterization:

Corollary 4.3. — Suppose that M is a graph manifold and let H be a subgroup of

Γ. Then H ∈ F (Γ) if and only if H is a wall stabilizer.

Remark 4.4. — As mentioned in the introduction of the Chapter, Corollary 4.3

allows us to simplify the proof of Theorem 0.5 in the case of graph manifolds. In fact,
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the reader who is not interersted in the extended case can safely skip all the material

preceding Section 4.4, with the exception of Lemma 4.8 (where Fl(H), for H ∈ F (Γ),

may be replaced by the wall stabilized by H – see Corollary 4.3).

It will be useful to deepen our understanding of groups in F (Γ) in the general

case of extended graph manifolds. To this aim we point out the following geometric

description of elements in F (Γ).

Lemma 4.5. — Each H ∈ F (Γ) is contained is the stabilizer of a flat Fl(H) in

some chamber C (with respect to the CAT(0) metric of C). Such flat is unique up to

bounded Hausdorff distance. Moreover we may choose Fl(H) in such a way that:

– either Fl(H) is a boundary component of C,

– or C is a surface chamber, and Fl(H) = γ × Rn−2, where γ is a geodesic

contained in the base of C.

Proof. — If H is a wall stabilizer, then the conclusion is clear, so by Lemma 4.2

we may suppose that H is contained in the stabilizer of a surface chamber C. Let

V = Σ×Tn−2 be the piece of M which is covered by C, and let us fix an identification

of π1(V ) = π1(Σ)×Zn−2 with the stabilizer of C. It is immediate to check that, being

a maximal abelian subgroup of π1(V ) of rank n − 1, the group H decomposes as a

product H = 〈α〉 × Zn−2, where α is an indivisible element of π1(Σ). We can now

apply the Flat Torus Theorem, and notice that the flat associated to H splits as

claimed because of the product structure of H.

4.2. Characterizing surface pieces

Lemma 4.6. — Let H1, H2 ∈ F (Γ) and suppose that H1 ∩ H2 = K is an abelian

group of rank n− 2. Then:

1. There exists a unique vertex v of T which is fixed by H1 ∪H2.

2. The vertex v corresponds to a surface piece V of M , and K coincides with the

fiber subgroup of (a conjugate of) π1(V ).

3. Let Γv be the stabilizer of v in Γ. Then

Γv =
⋃

H∈F (Γ), H⊇K

H .

Proof. — (1): We know from Lemma 4.2 that there exist vertices vi, i = 1, 2 such

that vi is fixed by Hi. Let us denote by TK ⊆ T the subset of T fixed by K. It is

well-known that TK is a subtree of T . Moreover, we have {v1, v2} ⊆ TK . We claim

that the diameter of TK is at most 2. In fact, if this is not the case, then there exist

3 consecutive edges e1, e2, e3 of T which are fixed by K. By Lemma 6.3, this implies

that K is contained in the fiber subgroups of the stabilizers of two adjacent vertices

of T . But this contradicts the fact that adjacent surface pieces have fiber subgroups
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whose intersection has rank ≤ n− 3. We have thus shown that the diameter of TK is

at most 2. Observe now that the group 〈H1, H2〉 generated by H1∪H2 centralizes K,

so 〈H1, H2〉 leaves TK invariant. Since TK is bounded, this implies that 〈H1, H2〉 fixes

a point v ∈ TK (see e.g. [BrHa, Corollary 2.8]). But Γ acts on T without inversions,

so we may assume that v is a vertex of T .

In order to conclude the proof of (1) we are left to show that, if v′ is a vertex

fixed by H1 ∪ H2, then v′ = v. However, if v′ 6= v, then 〈H1 ∪ H2〉 fixes an edge

e of T , so 〈H1 ∪ H2〉 is abelian of rank at most n − 1. By maximality, this forces

H1 = 〈H1 ∪ H2〉 = H2, against the fact that the rank of K = H1 ∩ H2 is equal to

n− 2.

(2): Let V = N × T k be the piece of M corresponding to v, where N and T k

denote respectively the hyperbolic base and the toric factor of V . The stabilizer Γv of

v in Γ is isomorphic to π1(V ) = π1(N)×π1(T k), and the maximal abelian subgroups

of rank n − 1 of π1(N) × π1(T k) are given by the products J × Zk, where J varies

among the maximal abelian subgroups of π1(N) of rank n−1−k. Two such products

intersect in the fiber subgroup {1} × Zk, which has rank equal to n− 2 if and only if

k = 1, i.e. if and only if V is a surface piece.

(3): We first prove the inclusion ⊆. Let V = Σ × Tn−2 be the piece of M corre-

sponding to v, where Σ and Tn−2 denote respectively the hyperbolic base and the toric

factor of V , and let us fix an identification between Γv and π1(V ) = π1(Σ) × Zn−2.

Every element of π1(V ) lies in a subgroup J of the form 〈α〉 × Zn−2, where α is an

indivisible element of π1(Σ), and it is immediate to check that J is a maximal abelian

subgroup of rank n− 1 in π1(V ). Then the conclusion follows from Lemma 4.1.

Let now H ∈ F (Γ) be such that K ⊆ H. Then H leaves invariant the subtree TK
introduced in the proof of point (1). As a consequence, H fixes v, i.e. H ⊆ Γv, and

this concludes the proof of the Lemma.

Corollary 4.7. — Let Λ be a subgroup of Γ. Then H is (conjugate to) the funda-

mental group of a surface piece of M if and only if the following condition holds: there

exist elements H1, H2 ∈ F (Γ) such that K = H1 ∩H2 has rank n− 2, and

Λ =
⋃

H∈F (Γ), H⊇K

H .

The previous corollary implies that any isomorphism between the fundamental

groups of extended graph manifolds must preserve (up to conjugacy) the fundamental

groups of surface pieces. In order to prove the same result for the fundamental groups

of non-surface pieces we need to develop the study of the coarse geometry of chambers.

4.3. Further properties of wall stabilizers

Lemma 4.8. — Let C be a non-surface chamber in M̃ . Let W,W ′ be distinct walls

adjacent to C, let H,H ′ be the stabilizers of W,W ′, and take H ∈ F (Γ) \ {H,H ′}.
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Then for every D ≥ 0 there exist points w ∈ W ∩ C, w′ ∈ W ′ ∩ C which are joined

by a path γ : [0, l]→ C which avoids ND(Fl(H)).

Proof. — Let us set F = Fl(H). Since H /∈ {H,H ′} we may suppose that F is

disjoint from C ∪W ∪W ′.
We first assume that F lies in the connected component of M̃ \(W ∪W ′) containing

C. Then there exists a wall W 6= W,W ′ adjacent to C such that every path joining

F to W ∪ W ′ must pass through W . Then any path which joins W to W ′ and

avoids ND(W ) also avoids ND(F ). Therefore, by Lemma 2.18, if D′ is any given

constant, then it is sufficient to construct a path γ joining W to W ′ and such that

dC(γ(t),W ) ≥ D′ for every t ∈ [0, l], where dC is the path metric of C.

If π : C → B is the projection of the chamber C on its base, then π(W ∩ C) = O,

π(W ′ ∩C) = O′ and π(W ∩C) = O for distinct horospheres O,O′, O of the neutered

space B ⊆ Hk. Let us fix an identification of Hk with the half-space model, in such a

way that O corresponds to a horosphere centered at the point at infinity. Since k ≥ 3,

it is now easy to show that for every sufficiently small ε > 0 it is possible to join

a point in O with a point in O′ by a rectifiable path supported on the intersection

of B with the Euclidean horizontal hyperplane at height ε. In fact, this intersection

is (homeomorphic to) Rk−1 with a countable family of open disjoint balls removed

(recall that k − 1 ≥ 2). Let γ : [0, l] → C be a lift to C of such a path. It is clear

that dC(γ(t),W ) ≥ D′(ε) for every t ∈ [0, l], where D′(ε) tends to +∞ as ε tends to

0. This concludes the proof in the case when F lies in the connected component of

M̃ \ (W ∪W ′) containing C.

Let us now suppose that F and C lie in distinct connected components of M̃ \
(W ∪W ′). Then either every path joining W with F must pass through W ′, or every

path joining W ′ with F must pass through W . We assume that the second case

holds, the first case being symmetric. Under our assumptions, there exists a chamber

C 6= C which is adjacent to W . We choose a fiber of C ∩W , and denote by P the

corresponding affine subspace of W ∩ C. It is not difficult to show that there exists

D′ ≥ 0 such that any path in C avoiding ND′(P ) also avoids ND(F ). Therefore, by

Lemma 2.18, if D′′ is any given constant, then it is sufficient to construct a path γ

joining W to W ′ and such that dC(γ(t), P ) ≥ D′′ for every t ∈ [0, l], where dC is the

path metric of C.

If P is the fiber of C, we can choose v ∈ P so B × {v} ⊆ C intersects P in a

proper subset of W ∩ (B×{v}). If D′′ is large enough, then any path in B×{v} that

connects W to W ′ avoiding ND′′(P ∩ (B × {v})) also avoids ND′′(P ), so we want to

find such a path. Let us fix an identification of B×{v} with a neutered space Ĥk in the

half-space model of Hk (where k ≥ 3) in such a way that W ∩ (B × {v}) corresponds

to the horosphere O centered at infinity. Let O′ be the horosphere corresponding to

W ′ ∩ (B × {v}). For any neighborhood of finite radius N of P ∩ (B × {v}) there is ε

so that N does not intersect the Euclidean horizontal hyperplane H ⊆ Hk at height
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ε, and also there is a path γ in Ĥk connecting O to H and not intersecting N . As

H ∩ Ĥk is connected (see above) and H intersects O′, we can then concatenate γ and

a path in H ∩ Ĥk whose final point is in O′, as required.

For H ∈ F (Γ) we set

I(H) = {H ′ ∈ F (Γ) | rk(H ∩H ′) ≥ n− 2} .

Proposition 4.9. — Let H ∈ F (Γ). Then H is the stabilizer of a wall which is

adjacent to at least one non-surface chamber if and only if the following condition

holds:

(*) There exists H ′ ∈ F (Γ) \ I(H) such that, for every H ′′ ∈ F (Γ) \ {H,H ′} and

D ≥ 0, there exists a path joining H to H ′ which avoids ND(H ′′).

Proof. — Suppose that H is the stabilizer of a wall W which is adjacent to the non-

surface chamber C. Let W ′ be any other wall of C, and denote by H ′ the stabilizer of

W ′. Since C is not a surface chamber we have H ′ /∈ I(H). We now take an arbitrary

element H ′′ ∈ F (Γ) \ {H,H ′}, and we denote by Fl(H ′′) the flat associated to H ′′

by Lemma 4.5. By Lemma 4.8, for every D′ ≥ 0 we may join W to W ′ by a path in

C which avoids ND′(Fl(H ′′)). By Milnor-Svarc Lemma, up to suitably choosing the

constant D′, this path translates into a path in the Cayley graph of Γ which joins H

to H ′ and avoids ND(H ′′).

We have thus shown that, if H is the stabilizer of a wall which is adjacent to at

least one non-surface chamber, then condition (*) holds.

We now suppose that H ∈ F (Γ) is not the stabilizer of a wall which is adjacent

to at least one non-surface chamber, and show that condition (*) does not hold. Let

Fl(H) be the flat associated to H by Lemma 4.5. Our assumption on H implies that

one of the following possibilities holds:

(a) either Fl(H) is contained in a wall W which is not adjacent to any non-surface

chamber,

(b) or Fl(H) is contained in a surface chamber C, and it is not at finite Hausdorff

distance from any boundary component of C.

In case (a) we denote by Ĉ the union of the chambers which are adjacent to W (so Ĉ

is a surface chamber if W = Fl(H) is a boundary wall, and the union of two surface

chambers otherwise). In case (b) we simply set Ĉ = C.

Let us now take H ′ ∈ F (Γ) \ I(H), and let Fl(H ′) be the flat associated to H ′.

Since H ′ /∈ I(H) the flat Fl(H ′) is disjoint from Ĉ. Therefore, there exists a bound-

ary component W ′′ of Ĉ such that every path joining Fl(H ′) with Fl(H) must pass

through W ′′. Let H ′′ be the stabilizer of W ′′. By construction H ′′ ∈ I(H), so

H ′′ 6= H ′. Moreover, Fl(H) is not at finite Hausdorff distance from W ′′, so H ′′ 6= H.

Via Milnor-Svarc Lemma, the fact that every path joining Fl(H ′) with Fl(H) must
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pass through W ′′ implies that there exists D ≥ 0 such that every path joining H ′

with H must intersect ND(H ′′), so condition (*) is violated.

Proposition 4.10. — Let H ∈ F (Γ). Then H is the stabilizer of a wall which is

adjacent to two surface chambers if and only if there exist elements H1, H2 of I(H)

such that the rank of H1 ∩H2 is strictly less than n− 2.

Proof. — Suppose that there exist elements H1, H2 of I(H) such that the rank of

H1 ∩ H2 is strictly less than n − 2. Of course H,H1, H2 are pairwise distinct, so

by Lemma 4.6 there exists a unique vertex vi of T which is stabilized by H ∪ Hi.

Moreover, vi corresponds to a surface piece of M . If v1 = v2 = v, then Lemma 4.6

implies that H ∩Hi coincides with the fiber subgroup of Γv, so H1 ∩H2 contains an

abelian subgroup of rank n−2, a contradiction. Observe now that H fixes the geodesic

path γ in T joining v1 to v2. If the length of γ is at least two, then Lemma 6.3 implies

that H is contained in the fiber subgroup of a vertex stabilizer, which is impossible

since rkH = n− 1. We have thus shown that v1 and v2 are joined by an edge e of T .

Moreover, H stabilizes e, so by maximality H = Γe. Therefore, H is the stabilizer of

a wall which is adjacent to two surface chambers.

Suppose now that H is the stabilizer of a wall W which is adjacent to the surface

chambers C1, C2. By Lemma 4.6 there exist subgroups H1, H2 ∈ I(H) such that

Hi stabilizes Ci, and Hi ∩ H coincides with the fiber subgroup of the stabilizer of

Ci. But the stabilizers of adjacent surface chambers have fiber subgroups whose

intersection has rank ≤ n− 3, so rkH1 ∩H2 ≤ n− 3, and this concludes the proof of

the Proposition.

4.4. Isomorphisms quasi-preserve non-surface pieces

In this section we show that fundamental groups of pieces are coarsely preserved

by isomorphisms, and actually certain quasi-isometries as well.

Let us come back to the notation of the statement of Theorem 0.5, i.e. let

ϕ : π1(Γ1) → π1(Γ2) be an isomorphism between the fundamental groups of the

(extended) graph manifolds M1,M2.

Definition 4.11. — Let M̃1, M̃2 be the universal coverings of M1, M2. We say that

a wall of M̃i is proper if it is not a boundary wall adjacent to a surface chamber.

The group-theoretic characterizations of stabilizers of proper walls provided by

Propositions 4.9 and 4.10 implies the following:

Corollary 4.12. — Let H be a subgroup of Γ1. Then H is the stabilizer of a proper

wall W of M̃1 if and only if ϕ(H) is the stabilizer of a proper wall of M̃2.

We observe that the stabilizers of non-proper walls may not be preserved by iso-

morphism: this phenomenon occurs, for example, for any group isomorphism between
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π1(M1) and π1(M2), where M1 = Σ1×S1 M2 = Σ2×S1, and Σ1 is a once-punctured

torus, while Σ2 is a thrice-punctured sphere.

Let us now come back to the setting of Theorem 0.5. By Milnor-Svarc’s Lemma,

the isomorphism ϕ : π1(M1)→ π1(M2) induces a (k, c)-quasi-isometry f : M̃1 → M̃2.

Corollary 4.12, together with the fact that the π1(Mi)-orbits of the walls of M̃i are in

finite number, implies that there exists a constant λ > 0 such that for every proper

wall W1 ⊆ M̃1 the set f(W1) is at Hausdorff distance bounded by λ from a proper

wall W2 ⊆ M̃2 (the wall W2 is unique in view of Lemma 2.19).

The following result plays an important role in the proof both of Theorem 0.5 and

of Theorem 0.17.

Proposition 4.13. — Let f : M̃1 → M̃2 be a (k, c)−quasi-isometry and let g be a

quasi-inverse of f . Suppose that one of the following conditions hold:

1. either M1,M2 do not have surface pieces (i.e. they are graph manifolds), and

there exists λ with the property that, for each wall W1 of M̃1, there exists a wall

W2 of M̃2 with the Hausdorff distance between f(W1) and W2 bounded by λ;

also assume that, up to switching the roles of W1 and W2, the same property

also holds for g;

2. or at least one Mi contains at least one surface piece, and the quasi-isometry f

is induced by an isomorphism between Γ1 and Γ2.

Then there exists a universal constant H with the property that, for every non-surface

chamber C1 ⊆ M̃1, there exists a unique non-surface chamber C2 ⊆ M̃2 with the

Hausdorff distance between f(C1) and C2 bounded by H. Moreover, if W1 is a wall

adjacent to C1 then f(W1) lies at finite Hausdorff distance from a wall W2 adjacent

to C2.

Proof. — Let us fix a non-surface chamber C1 of M̃1, and let W1,W
′
1 be walls adjacent

to C1. Condition (1) in the statement (in the case when M1,M2 are graph manifolds)

or condition (2) and Proposition 4.9 imply that there exist proper walls W2,W
′
2 of

M̃2 such that f(W1) and f(W ′1) lie within finite Hausdorff distance respectively from

W2 and W ′2 (such walls are uniquely determined – see Lemma 2.19). We first prove

that a non-surface chamber C2 exists such that W2 and W ′2 are both adjacent to C2.

Suppose by contradiction that there exists a wall P2 ⊆ M̃2 such that P2 6= W2,W
′
2,

and every continuous path connecting W2,W
′
2 intersects P2. Then P2 is proper, so

there exists a wall P1 ⊆ M̃1 such that f(P1) is at Hausdorff distance at most λ from

P2 (just take P1 to be the wall at bounded distance from g(P2)). Now it is not difficult

to show that, since f and g are quasi-isometries, the fact that P2 separates W2 from

W ′2 implies that P1 coarsely separates W1 from W ′1: in other words, there exists

D > 0 such that every path joining W1 with W ′1 must intersect ND(P1). However,

this contradicts Lemma 4.8. We have thus shown that W2 and W ′2 are adjacent to a

chamber C2 of M̃2.
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Suppose by contradiction that C2 is not a surface chamber. Then there exists a

subgroup H2 ∈ F (Γ2) such that Fl(H2) separates W2 from W ′2, and it is not at finite

Hausdorff distance from W2 nor from W ′2. Since we are supposing that f is induced

by an isomorphism Γ1
∼= Γ2, this means that there exists a subgroup H1 ∈ F (Γ1)

such that Fl(H1) coarsely separates W1 from W ′1. But this contradicts Lemma 4.8,

so C2 cannot be a surface chamber.

Let us now prove that C2 lies at a universally bounded Hausdorff distance from

f(C1). Since walls are h-dense in M̃ for some h > 0, for every p1 ∈ C1 there exists

p′1 ∈W1 with d(p1, p
′
1) ≤ h, where W1 is a wall adjacent to C1. Then

d(f(p1), C2) ≤ d(f(p1), f(p′1)) + d(f(p′1), C2) ≤ kh+ c+ λ.

This tells us that f(C1) is contained in the (kh+ c+ λ)-neighbourhood of C2. Let g

be the quasi-inverse of f . The same argument shows that g(C2) is contained in the

(kh+c+λ)-neighbourhood of some non-surface chamber C ′1, and Lemma 2.20 implies

that C ′1 = C1. Now, if q2 ∈ C2 we have d(q2, f(g(q2))) ≤ c, and there exists q1 ∈ C1

with d(g(q2), q1) ≤ kh+ c+ λ. We now can estimate the distance

d(q2, f(q1)) ≤ d(q2, f(g(q2))) + d(f(g(q2)), f(q1))

≤ c+ kd(g(q2), q1) + c

≤ 2c+ k(kh+ c+ λ).

So we can set H = k2h+ (k + 2)c+ kλ, and we are done. Finally, the uniqueness of

C2 is a consequence of Lemma 2.20.

4.5. Isomorphisms preserve pieces

We are ready to establish Theorem 0.5.

Proof. — Let Λ1 < Γ1 be the fundamental group of a piece V1 of M1. If V1 is a surface

piece, then Corollary 4.7 ensures that ϕ(Λ1) is (conjugated to) the fundamental group

of a non-surface piece of M2.

Otherwise, by Proposition 4.13 and the Milnor-Svarc Lemma, the Hausdorff dis-

tance between ϕ(Λ1) and gΛ2g
−1 is bounded by H for some fundamental group of a

non-surface piece Λ2 < Γ2 and some g ∈ Γ2. Up to conjugation, and increasing H by

d(g, id), we may assume g = id.

A standard argument now allows us to prove that ϕ(Λ1) = Λ2. In fact, if h ∈ Λ1

we have that

ϕ(h) · ϕ(Λ1) = ϕ(h · Λ1) = ϕ(Λ1).

Since ϕ(Λ1) is at bounded Hausdorff distance from Λ2, this implies that ϕ(h) ·Λ2 is at

bounded Hausdorff distance from Λ2. By Milnor-Svarc’s Lemma, if C2 is the chamber

of M̃2 that is fixed by Λ2, then the chamber ϕ(h)(C2) is at finite Hausdorff distance

from C2. By Lemma 2.20 this implies in turn that ϕ(h)(C2) = C2, so ϕ(h) ∈ Λ2, and
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ϕ(Λ1) ⊆ Λ2. Finally, since ϕ−1 is a quasi-inverse of ϕ, we have that ϕ−1(Λ2) stays

at finite distance from Λ1. The above argument again shows that ϕ−1(Λ2) ⊆ Λ1. We

conclude that ϕ(Λ1) = Λ2, completing the proof of Theorem 0.5.

Putting together Theorem 0.5 and Lemma 2.16 one can easily refine the statement

of Theorem 0.5 as follows:

Theorem 4.14. — Let M , M ′ be a pair of graph manifolds which decompose into

pieces V1, . . . , Vh, and V ′1 , . . . , V
′
k respectively. Suppose that ϕ : π1(M) → π1(M ′) is

an isomorphism. Then h = k and, up to reordering the indices, for every i = 1, . . . , h

the image of π1(Vi) under ϕ coincides with a conjugate of π1(V ′i ). Moreover, with

this choice of indices Vi is adjacent to Vj if and only if V ′i is adjacent to V ′j .





CHAPTER 5

SMOOTH RIGIDITY

This chapter is devoted to the proof of Theorem 0.7, which we recall here for the

convenience of the reader:

Theorem. — Let M,M ′ be (extended) graph manifolds, and let ϕ : π1(M)→ π1(M ′)

be a group isomorphism. Suppose that the boundaries of M,M ′ do not intersect any

surface piece. Then ϕ is induced by a diffeomorphism ψ : M →M ′.

It will be clear from our construction that the diffeomorphism ψ of the above

theorem can be chosen in such a way that ψ|∂M : ∂M → ∂M ′ is an affine diffeo-

morphism. As a corollary, we obtain that every group isomorphism between the

fundamental groups of two graph manifolds is realized by a diffeomorphism. Notice

that, when dealing with extended graph manifolds, the additional hypothesis pre-

venting surface pieces to be adjacent to the boundary is necessary: if M = Σ × S1

and M ′ = Σ′ × S1, where Σ1 is a once-punctured torus and Σ′ is a thrice-punctured

sphere, then π1(M) ∼= π1(M ′), but M and M ′ are not diffeomorphic (in fact, they

are not even homeomorphic).

5.1. Rigidly decomposable pairs

In this section we single out the hypotheses on M,M ′ that we need in the proof of

Theorem 0.7.

Definition 5.1. — Let M,M ′ be smooth manifolds and let ϕ : π1(M) → π1(M ′)

be a group isomorphism. We say that (M,M ′, ϕ) is rigidly decomposable if

1. M,M ′ are obtained by gluing submanifolds with toric π1-injective boundary,

called pieces, using affine diffeomorphisms of pairs of boundary components,

2. ϕ preserves conjugacy classes of fundamental groups of the pieces,
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3. the restriction of ϕ to the fundamental group of any piece P of M is induced

by a diffeomorphism from P to the corresponding piece of M ′ which restricts

to affine diffeomorphisms between corresponding boundary components,

4. the normalizer in M and M ′ of (a conjugate of) the fundamental group of any

piece coincides the fundamental group of the piece,

5. fundamental groups of distinct boundary components of pieces are not conjugate

to each other.

Remark 5.2. — Notice that pieces are automatically π1-injective because of the

π1-injectivity of their boundary components.

Theorem 5.3. — If (M,M ′, φ) is rigidly decomposable then there exists a diffeomor-

phism ψ : M →M ′ inducing φ at the level of fundamental groups.

The proof of Theorem 5.3 is deferred to Section 5.3. We first check that the theorem

applies to (extended) graph manifolds.

Since we will need to be careful about some well-known, but somewhat subtle,

details of the theory of fundamental groups, we recall here some basic facts. If

f : M → N is a continuous map between path connected spaces, then f induces a ho-

momorphism f∗ : π1(M) → π1(N) which is well-defined up to conjugacy (in π1(N)).

This is due to the fact that, for x0, x1 ∈ M , x0 6= x1, the identification of π1(M,x0)

with π1(M,x1) is canonical up to conjugacy, and the same holds when choosing dif-

ferent basepoints in N . If ϕ : π1(M) → π1(N) is a homomorphism, we will say that

ϕ is induced by f if for some (and hence every) choice of basepoints x0 ∈M , y0 ∈ N
the homomorphism f∗ : π1(M,x0) → π1(N, y0) is equal to ϕ, up to conjugacy by an

element of π1(N) (by the discussion above, this notion is indeed well-defined). Also

observe that if V is a path connected subset of M and i : V ↪→ M is the inclusion,

then we can define i∗(π1(V )) as a subgroup of π1(M), well-defined up to conjugacy.

When saying that π1(V ) is a subgroup of π1(M), we will be implicitly choosing a

preferred representative among the conjugate subgroups representing the conjugacy

class of π1(V ): this amounts to choosing a basepoint in V , a basepoint in M and a

path joining these basepoints.

In order to deduce Theorem 0.7 from Theorem 5.3 we need to show that if ϕ :

π1(M)→ π1(M ′) is an isomorphism between fundamental groups of (extended) graph

manifolds then (M,M ′, ϕ) is rigidly decomposable, provided that no component of

∂M and ∂M ′ is contained in a surface piece of M and M ′.

Proposition 5.4. — Let M,M ′ be extended graph manifolds so that their boundaries

do not intersect any surface piece and let ϕ : π1(M) → π1(M ′) be an isomorphism.

Then (M,M ′, ϕ) is rigidly decomposable.
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This Section is devoted to the proof of Proposition 5.4. Item 1 in the definition

of rigidly decomposable follows from the definition of graph manifold. Item 2 is the

content of Theorem Theorem 0.5. Lemma 2.16-(2)-(3) implies items 4 and 5.

Item 3, as we are about to explain, is ultimately a consequence of Mostow rigidity

(and, in the extended case, of the fact that outer automorphisms of fundamental

groups of surfaces which preserve the conjugacy classes of the fundamental groups of

the boundary components are induced by diffeomorphisms, see e.g. [FaMa, Theorem

8.8]).

The isomorphism ϕ establishes a bijection between the (conjugacy classes of the)

fundamental groups of the pieces of M and M ′. Let N1, . . . , Nh (resp. N ′1, . . . , N
′
h)

be the (truncated) cusped hyperbolic manifolds such that Vi = Ni × T ai (resp. V ′i =

N ′i × T bi) are the pieces of M (resp. of M ′), i = 1, . . . , h. From now on, for every

i = 1, . . . , h, we fix an identification of π1(Vi) (resp. of π1(V ′j )) with a distinguished

subgroup of π1(M) (resp. of π1(M ′)). As mentioned above, such an identification

depends on the choice of one basepoint for M,M ′ and for each piece, and suitable

paths connecting the basepoint of the ambient manifolds with the basepoints of their

pieces. We also fix gi ∈ π1(M ′) such that ϕ(π1(Vi)) = giπ1(V ′i )g−1
i for every i =

1, . . . , h.

We now formulate item 3 as a Lemma for future reference.

Lemma 5.5. — For i = 1, . . . , h there exists a diffeomorphism ψi : Vi → V ′i which

induces the isomorphism g 7→ g−1
i ϕ(g)gi between π1(Vi) and π1(V ′i ), and restricts to

an affine diffeomorphism of ∂Vi onto ∂V ′i .

Proof. — Set V = Vi, V
′ = V ′i , N = Ni, N

′ = N ′i . The center of π1(V ) is equal

to the fundamental group of its toric factor (see Remark 2.10), so π1(N) is just the

quotient of π1(V ) by its center, and the same holds true for π1(N ′). We have in

particular V = N × T a, V ′ = N ′ × T a for the same a ∈ N, so π1(V ) (resp. π1(V ′))

is canonically isomorphic to π1(N) × Za (resp. π1(N ′) × Za), and the isomorphism

ϕi : π1(V ) → π1(V ′) defined by ϕi(g) = g−1
i ϕ(g)gi for every g ∈ π1(V ) induces an

isomorphism θ : π1(N) → π1(N ′). Henceforth, we identify T a with the quotient of

Ra by the standard action of Za, i.e. we fix an identification of π1(T a) with Za ⊆ Ra

(since π1(T a) is abelian, we do not need to worry about choice of basepoints). Then

the isomorphism ϕi : π1(N)×Za → π1(N ′)×Za has the form ϕi(g, v) = (θ(g), f(g, v)),

where f : π1(N)× Za → Za is a homomorphism. If β : Za → Za, α : π1(N)→ Za are

defined by β(v) = f(1, v) and α(g) = f(g, 0), we have that

ϕi(g, v) = (θ(g), α(g) + β(v)) for every g ∈ π1(N), v ∈ Za.

Moreover, since ϕi is an isomorphism, we have that α is a homomorphism and β is an

automorphism. Any automorphism of π1(T a) is induced by an affine diffeomorphism

of T a onto itself, so in order to construct the required diffeomorphism ψ : V → V ′

inducing ϕi it is not restrictive to assume that β(v) = v for every v ∈ Za.
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Let us now fix identifications π1(N) ∼= Γ < Isom(Hl), π1(N ′) ∼= Γ′ < Isom(Hl),
N = B/Γ, N ′ = B′/Γ′, where B,B′ ⊆ Hl are the neutered spaces providing the

universal coverings of N,N ′. For later purposes, we will denote by p1 : B → N the

covering map just introduced. In the case of non-surface pieces, Mostow rigidity

provides an isometry (whence in particular a diffeomorphism) κ̃ : Hl → Hl such that

κ̃(g · x) = θ(g) · κ̃(x) for every g ∈ Γ, x ∈ Hl. Up to changing the choice of the

horospherical sections defining N as the truncation of a cusped hyperbolic manifold,

we may also suppose that κ̃(B) = B′ (see Remark 2.4).

Let us now consider surface pieces instead. Not every isomorphism between funda-

mental groups of surfaces with boundary is induced by a diffeomorphism. However,

we claim that our isomorphism, θ, preserves the conjugacy classes of the fundamen-

tal groups of the boundary components. Assuming this for the moment, we can

use the fact that outer automorphisms of fundamental groups of surfaces which pre-

serve the conjugacy classes of the fundamental groups of the boundary components

are induced by diffeomorphisms, as we recalled at the beginning of the proof of the

Proposition. So, there exists a diffeomorphism from N to N ′ inducing θ at the level

of fundamental groups. We now regard both N and N ′ as punctured surfaces with

chopped-off cusps, and notice that the said diffeomorphism extends to a diffeomor-

phism κ of the punctured surfaces. By construction, lifting κ to the universal covers

we get a diffeomorphism κ̃ : H2 → H2 which by construction satisfies κ̃(B) = B′ and

κ̃(g · x) = θ(g) · κ̃(x) for every g ∈ Γ, x ∈ H2. The set-ups both in the case of surface

and non-surface pieces are thus identical.

We are only left to show that θ preserves the conjugacy classes of the fundamental

groups of the boundary components. But this just follows from the fact that the

isomorphism ϕ preserves wall stabilizers by Corollary 4.12 (notice that the assumption

that the boundaries of M,M ′ do not intersect any surface piece implies that the walls

of M̃ and M̃ ′ are all proper, according to Definition 4.11). In particular, we have

that wall stabilizers are also preserved by ϕi : π1(N) × Za → π1(N ′) × Za, and θ is

obtained just projecting ϕi on the first factors.

We now establish the following:

Claim: There exists a smooth function η̃ : B → Ra such that η̃(g · x) = η̃(x) + α(g)

for every x ∈ B, g ∈ Γ.

In fact, let Γ act on B × Ra by setting g · (x, v) = (g · x, v + α(g)), denote by Y

the quotient space and let p2 : B × Ra → Y be the natural projection. Since N is

canonically identified with the quotient of B by the action of Γ, we have a canonical

projection p3 : Y → N , which defines a natural structure of flat affine fiber bundle.

More precisely, Y is the total space of a flat fiber bundle with fiber Ra and structural

group given by the group of integer translations of Ra. In particular, every fiber of p3

inherits a well-defined affine structure, so it is possible to define affine combinations

of points in a fiber. Exploiting this fact, we can use a suitable partition of unity to
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glue local sections of p3 into a global smooth section s : N → Y .

B × Ra
p2 // Y

p3

��

B
p1 // N

s

VV

We now define η as follows. Let us take x ∈ B. For every v ∈ Ra we have

p3(p2(x, v)) = p1(x). Moreover, by construction p2(x, v) = p2(x,w) if and only if

v = w. As a consequence, there exists a unique η̃(x) ∈ Ra such that p2(x, η̃(x)) =

s(p1(x)). Since p1, p2, s are smooth, η̃ is also smooth. Moreover, for x ∈ B and g ∈ Γ

we have:

p2(g · x, η̃(x) + α(g)) = p2(g · (x, η̃(x))) = p2(x, η̃(x))

= s(p1(x)) = s(p1(g · x)).

The first equality is due to the definition of the Γ-action on B × Ra. The second

and fourth equality are immediate from the definition of the quotient maps p2 and p1

respectively. The third equality follows from the choice of η̃ (see previous paragraph).

Finally, comparing the first and last term, we see that η̃(x)+α(g) satisfies the defining

property for the point η̃(g ·x), so by uniqueness we obtain η̃(g ·x) = η̃(x) +α(g), and

the Claim is proved.

We now return to the proof of the Lemma. Define the map ψ̃ : B ×Ra → B′ ×Ra

via ψ̃(x, v) = (κ̃(x), v + η̃(x)). Of course ψ̃ is a diffeomorphism. Moreover, for every

(x, v) ∈ B × Ra and (g, w) ∈ Γ× Za ∼= π1(V ), we have

ψ̃((g, w) · (x, v)) = ψ̃(g · x, v + w)

= (κ̃(g · x), v + w + η̃(g · x))

= (θ(g) · κ̃(x), v + w + η̃(x) + α(g))

= (θ(g), w + α(g)) · (κ̃(x), v + η̃(x))

= (θ(g), w + α(g)) · ψ̃(x, v)

so ψ̃ defines a diffeomorphism ψ : V → V ′ inducing the isomorphism ϕ at the level of

fundamental groups. Now let κ : N → N ′ be the diffeomorphism induced by κ̃, H be

a component of ∂N , and set H ′ = κ(H) ⊆ ∂N ′. By construction, the restriction of ψ

to the component H × T a of ∂V has the form

H × T a → H ′ × T a, (x, v) 7→ (κ(x), v + η(x))

for some smooth η : H → T a. Recall that H is affinely diffeomorphic to a torus

T b, and that every map between affine tori is homotopic to an affine map, so η is
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homotopic to an affine map η : H → T a. Using this homotopy, we modify ψ in a

collar of H × T a in order to get a diffeomorphism ψ : V → V ′ whose restriction to

H × T a has the form (x, v) 7→ (κ(x), v + η(x)). After repeating this procedure for

every component of ∂V we are left with the desired diffeomorphism ψ.

We have thus shown that (M,M ′, ϕ) is rigidly decomposable, thus concluding the

proof of Proposition 5.4.

5.2. Dehn twists

In this section we define Dehn twists. Only the definition of Dehn twist is strictly

needed for the proof of Theorem 5.3, but we will also provide some motivation and

make some side remarks.

Let us first of all point out the issue we have to deal with. In order to estab-

lish smooth rigidity for graph manifolds, one would like to glue the diffeomorphisms

ψi : Vi → V ′i provided by Lemma 5.5 into a diffeomorphism ψ : M → M ′. In order

to make this strategy work, we have to take care of two issues. First, to define ψ

we have to check that if Vi and Vj share a boundary component H, then ψi and ψj
coincide on H. Once this has been established, we have to ensure that the obtained

ψ induces the isomorphism ϕ : π1(M)→ π1(M ′) fixed at the beginning of the section.

The following remark, which is essentially due - in a different context - to Nguyen

Phan [Ng], shows that the issues just discussed may really hide some subtleties.

Remark 5.6. — Suppose M = M ′ is a graph manifold obtained by gluing two pieces

V1, V2 along their unique boundary component H = V1 ∩ V2 ⊆ M . Fix a basepoint

x0 ∈ H, and set G1 = π1(V1, x0), G2 = π1(V2, x0), K = π1(H,x0). The group

π1(M,x0) is canonically identified with the amalgamated product G = G1 ∗K G2,

where we are considering K as a subgroup of G1 and G2 via the natural (injective)

maps induced by the inclusions H ↪→ V1, H ↪→ V2. Let us take g0 ∈ K \ {1}. Since

K is abelian, there exists a unique isomorphism ϕ : G→ G such that

ϕ(g) =

{
g if g ∈ G1

g0gg
−1
0 if g ∈ G2

.

It is easy to see that, in this special case, the construction described in Lemma 5.5

leads to diffeomorphisms ψ1 : V1 → V1, ψ2 : V2 → V2 which can be chosen to equal the

identity on V1, V2 respectively. In particular, since M and M ′ are obtained by gluing

V1 and V2 exactly in the same way, no issue about the possibility of defining ψ arises.

However, if we chose naively to glue ψ1 and ψ2 simply by requiring that ψ|Vi
= ψi,

we would obtain ψ = IdM . But this contradicts the fact that, when the element g0 is

chosen appropriately, ϕ may define a non-trivial outer automorphism of G (of infinite

order), see Lemma 5.8 below.

The previous remark motivates the following:
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Definition 5.7. — Suppose M is a manifold as in the definition of rigid decompos-

ability (e.g. a graph manifold), and let V1, V2 be pieces of M glued to each other

along a common toric component H of ∂V1 and ∂V2. Let h be a fixed element of

π1(H) (since π1(H) is abelian, this is independent of basepoints). The Dehn twist th
along h is the diffeomorphism th : M →M which is defined as follows.

By construction, H admits a collar U in M which is canonically foliated by tori

(see Chapter 2). In particular, U is affinely diffeomorphic to Tn−1 × [−1, 1], where

Tn−1 = Rn−1/Zn−1 is the standard affine (n − 1)-torus, and π1(H) is canonically

identified with the group Zn−1 of the automorphisms of the covering π : Rn−1 → Tn−1.

Let now l : [−1, 1]→ [0, 1] be a smooth function such that l|[−1,−1+ε) = 0, l|(1−ε,1] = 1

and set

t̃h : Rn−1 × [−1, 1]→ Rn−1 × [−1, 1], t̃h(v, s) = (v + l(s) · h, s).

The map t̃h is Zn−1-equivariant, so defines a diffeomorphism t̂h : Tn−1 × [−1, 1] →
Tn−1 × [−1, 1] which is the identity in a neighbourhood of Tn−1 × {−1, 1}. We now

define th : M →M as the diffeomorphism of M such that th|U = t̂h, th|M\U = IdM\U .

Next we show how Dehn twists can be used to give elements of infinite order in

the outer automorphism group of graph manifolds.

Lemma 5.8. — Let M be a graph manifold, with G = π1(M). Assume V1, V2 are

adjacent pieces of M glued together along a common toric component H, with Gi :=

π1(Vi) and K := π1(H). Let Fi ≤ Gi be the subgroups corresponding to the fibers in

Vi, and set F = F1 · F2 ≤ K to be the subgroup generated by the two fiber subgroups.

If h ∈ K is chosen so that 〈h〉∩F = {e}, then we have that the associated Dehn twist

ϕ := th has infinite order in Out(G).

Proof. — Suppose by way of contradiction that for some k ≥ 1 the automorphism

ϕk is equal to an internal automorphism of G, i.e. that there exists g ∈ G such that

ϕk(g) = ggg−1 for every g ∈ G. We have in particular ggg−1 = g for every g ∈ G1.

By Lemma 2.16-(3), this implies that g belongs to G1, whence to the center of G1,

which coincides with the fiber subgroup F1 of G1 (see Remark 2.10). We conclude

the conjugating element g satisfies g ∈ F1.

Similarly, for every g ∈ G2 we have ggg−1 = hkgh−k. Rewriting, we obtain

(h−kg)g(h−kg)−1 = g, forcing h−kg to lie in the fiber subgroup F2 of G2, and hence

h−k ∈ g−1 · F2 ⊂ F1 · F2 = F.

But this contradicts the fact that 〈h〉 ∩F = {e}. We conclude that ϕk is not internal

for every k ≥ 1, as desired.

It is clear that the group automorphism described in Remark 5.6 is induced by a

Dehn twist. As a result, Dehn twists arise naturally as basic ingredients when trying
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to “patch together” diffeomorphisms ψi : Vi → V ′i between individual pieces into a

globally defined diffeomorphism ψ : M →M ′.

5.3. Proof of Theorem 5.3

Let (M,M ′, ϕ) be rigidly decomposable. Let Vi (resp. V ′i ) be the pieces of M

(resp. of M ′), for i = 1, . . . , h. We fix an identification of π1(Vi) (resp. of π1(V ′j ))

with a subgroup of π1(M) (resp. of π1(M ′)). As we already remarked, such an

identification depends on the choice of one basepoint for M,M ′ and for each piece,

as well as suitable paths connecting the basepoint of the M,M ′ with the basepoints

of their pieces. We also choose gi ∈ π1(M ′) such that ϕ(π1(Vi)) = giπ1(V ′i )g−1
i for

every i = 1, . . . , h.

By hypothesis, for i = 1, . . . , h there exists a diffeomorphism ψi : Vi → V ′i which

induces the isomorphism g 7→ g−1
i ϕ(g)gi between π1(Vi) and π1(V ′i ), and restricts to

an affine diffeomorphism of ∂Vi onto ∂V ′i .

In order to construct ψ : M →M ′ that induces φ, let us consider a piece Vi of M ,

a component Hi of ∂Vi, and let Vj be the piece of M adjacent to Vi along Hi (we

allow the case i = j). Denote by Hj the component of Vj which is identified to Hi in

M , and by H ⊆ M the image of Hi and Hj in M . We fix identifications of π1(Hi)

with a subgroup Ki of π1(Vi) and of π1(Hj) with a subgroup Kj of π1(Vj) (as usual,

this amounts to choosing a basepoint in H and paths joining this basepoint with the

fixed basepoints of Vi and Vj). Via the fixed identifications of π1(Vi) and π1(Vj) with

subgroups of π1(M), the groups Ki and Kj are identified with conjugated subgroups

of π1(M), and this implies that the subgroups ϕ(Ki), ϕ(Kj) are conjugated in π1(M ′).

By item 5 in the definition of rigid decomposability, this implies that ψi(Hi) = H ′i is

glued in M ′ to ψj(Hj) = H ′j .

Denote by α : Hi → Hj and α′ : H ′i → H ′j the gluing maps which enter into the

definition of M and M ′. We now show that the diagram

(5.1) Hi
ψi //

α

��

H ′i

α′

��

Hj

ψj
// H ′j

commutes, up to homotopy. In fact, recall that there exist gi, gj ∈ π1(M ′) such that

(ψi)∗(g) = g−1
i ϕ(g)gi for every g ∈ Hi, (ψj)∗(g) = g−1

j ϕ(g)gj for every g ∈ Hj .

Moreover, we can choose identifications π1(H ′i)
∼= K ′i < giπ1(V ′i )g−1

i , π1(H ′j)
∼= K ′j <

gjπ1(V ′j )g−1
j in such a way that the isomorphisms α∗ : Ki → Kj , α

′
∗ : K ′i → K ′j are

induced by conjugations by an element of π1(M), π1(M ′) respectively.

It follows that there exists h ∈ π1(M ′) such that α′∗((ψi)∗(g)) = h(ψj)∗(α∗(g))h−1

for every g ∈ Ki. By item 4 in the definition of rigid decomposability, this implies that
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h ∈ K ′j , and this implies in turn that the diagram above commutes, up to homotopy.

In order to properly define ψ, we now need to modify ψi and ψj in a neighbourhood

of Hi and Hj , also taking care of the fact that ψ has eventually to induce the fixed

isomorphism ϕ : π1(M)→ π1(M ′).

Being homotopic affine diffeomorphisms of Tn−1, the diffeomorphisms α′ ◦ ψi and

ψj ◦α are in fact isotopic, and this implies that ψi can be modified in a collar of Hi in

order to make diagram (5.1) commute. This ensures that the maps ψi, ψj can be glued

into a diffeomorphism ψ̂ : Vi ∪α Vj → V ′i ∪α′ V ′j . As pointed out above, we are now

granted that an element h ∈ K ′j exists such that α′∗((ψi)∗(g)) = h(ψj)∗(α∗(g))h−1

for every g ∈ Ki. Observe that h uniquely identifies an element of π1(H ′). It is now

easily seen that if ψ0 : Vi ∪α Vj → V ′i ∪α′ V ′j is obtained by composing ψ̂ with a Dehn

twist along H ′ relative to h (or to −h), then ψ0 induces on π1(Vi∪αVj) the restriction

of ϕ.

We can apply the procedure just described along any boundary component of any

piece of M , eventually obtaining the desired diffeomorphism ψ : M → M ′ inducing

ϕ.

5.4. Mapping class group

Let M be a closed graph manifold. We recall that MCG(M) is the mapping class

group of M , i.e. the group of homotopy classes of diffeomorphisms of M onto itself.

We also denote by Out(π1(M)) the group of outer automorphisms of π1(M). Every

diffeomorphism of M induces an isomorphism of π1(M), which is well-defined up to

conjugacy. Since homotopic diffeomorphisms induce conjugate isomorphisms, there

exists a well-defined map

η : MCG(M)→ Out(π1(M)),

which is clearly a group homomorphism.

Theorem 5.9. — Let M be a closed graph manifold. Then the map η : MCG(M)→
Out(π1(M)) is a group isomorphism.

Proof. — The fact that M is aspherical (see Lemma 3.3) easily implies that η is

injective, while surjectivity of η is just a restatement of Theorem 0.7.

Remark 5.10. — Remark 5.6 provides some evidence that the mapping class group

of M should always be infinite: in fact, Dehn twists generate an abelian subgroup

of MCG(M), and with some effort one could probably show that such a subgroup is

never finite.

Remark 5.11. — A celebrated result due to Waldhausen [Wa1] shows that The-

orem 5.9 also holds in the case of classical closed 3-dimensional graph manifolds
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which either decompose into the union of at least two Seifert pieces, or do not con-

sist of a single “small” Seifert manifold (for example, if M = S3 then of course

Out(π1(M)) = {1}, while MCG(M) has two elements). Observe however that Seifert

pieces that are homeomorphic to the product Σ× S1, where Σ is a hyperbolic punc-

tured surface, are never small.

In the case of classical graph manifolds with boundary, Theorem 5.9 still holds,

provided that we replace the group Out(π1(M)) with the group of the conjugacy

classes of isomorphisms which preserve the peripheral structure of π1(M) (one says

that an isomorphism of π1(M) preserves its peripheral structure if it sends the sub-

group corresponding to a boundary component of M into the subgroup corresponding

to a maybe different boundary component of M , up to conjugacy).

It is not difficult to show that Lemma 5.8 may be adapted to construct big abelian

subgroups of Out(π1(M)) also in the case of classical graph manifolds, so one expects

that MCG(M) should be infinite for generic 3-dimensional graph manifolds.



CHAPTER 6

ALGEBRAIC PROPERTIES

The aim of this chapter is the study of fundamental groups of (extended) graph

manifolds (and of their subgroups) with respect to some classical properties of abstract

groups. The decomposition of an (extended) graph manifold M into pieces induces

a description of π1(M) as the fundamental group of a graph of groups G, and our

arguments will often exploit the study of the action of π1(M) on the Bass-Serre tree

associated to G. Therefore, at the beginning of the Chapter we recall some useful

results from Bass-Serre theory (we refer the reader e.g. to [Se] for more background).

Whenever possible, we state our results in the context of fundamental groups of graph

of groups whose vertex groups satisfy suitable conditions, and deduce as corollaries

the corresponding properties of fundamental groups of (extended) graph manifolds.

We first study the action of the fundamental group of an (extended) graph manifold

on its Bass-Serre tree. We show that one can detect whether the (extended) graph

manifold M is irreducible or fibered by looking at the action of π1(M) on its Bass-

Serre tree: namely, in Propositions 6.4 and 6.7 we prove that the action is acylindrical

(resp. faithful) if and only if M is irreducible (resp. non-fibered). We refer the reader

to the Introduction for the definition of transverse gluings, and of irreducible and

fibered (extended) graph manifolds.

In Section 6.3 we show that the fundamental group of an (extended) graph manifold

M is relatively hyperbolic with respect to a finite family of proper subgroups, provided

that at least one piece of M is purely hyperbolic (Proposition 6.11). This condition

is probably also necessary, and indeed it is in the case of irreducible (extended) graph

manifolds, which is discussed in Chapter 8. On the contrary, in Proposition 6.12 we

show that the fundamental group of an (extended) graph manifold contains hyper-

bolically embedded subgroups, provided that the manifold has an internal wall with

transverse fibers.
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Then, we show that the fundamental groups of (extended) graph manifolds contain

no non-trivial Kazhdan groups (Corollary 6.14), have universal exponential growth

(Proposition 6.16), and we establish the Tits alternative (Corollary 6.19).

In Proposition 6.22 we prove that, if M contains a pair of adjacent pieces with

transverse fibers, then the fundamental group of M is co-Hopfian. Then we prove that

π1(M) is C∗-simple if and only ifM is not fibered (Proposition 6.28) and that π1(M) is

SQ-universal provided that M contains an internal wall which either is disconnecting,

or has transverse fibers (Proposition 6.30). Our proofs of Propositions 6.28 and 6.30

exploit results from [dlH-Pr] and from the recent preprint [DGO], and also provide

a characterization of C∗-simple and SQ-universal fundamental groups of acylindrical

graphs of groups (see Propositions 6.26 and 6.29).

Building on results from the subsequent Chapter 7, in Section 6.10 we show that the

word problem for π1(M) is always solvable for irreducible graph manifolds. Finally,

in the last section, we study how the choice of the gluing between pieces can affect

the fundamental group of graph manifolds.

6.1. Graphs of groups and groups acting on trees

Let G be a finite graph of groups based on the the graph Γ. Following [dlH-Pr], we

say that an edge e of G is trivial if it has distinct endpoints and at least one of the two

monomorphisms associated to e is an isomorphism. The graph of groups G is reduced

if no edge of G is trivial. If G is not reduced, then one can define a graph Γ obtained

from Γ by collapsing a trivial edge to a point, and a new graph of groups G′ based on

Γ, in such a way that the fundamental group of G′ is canonically isomorphic to the

fundamental group of G. Therefore, every finite graph of groups may be simplified

into a reduced one without altering its fundamental group (see e.g. [Ba1, Proposition

2.4]).

We say that G is non-trivial if it is reduced and based on a graph with at least one

edge. The graph of groups G is degenerate if one of the following possibilities holds:

1. either Γ is a segment with two vertices, and the indices of the unique edge group

in the two vertex groups are both equal to 2 (in this case the fundamental group

of G is an amalgamated product of its vertex groups), or

2. Γ is a loop with one vertex, and both the monomorphisms associated to the

edge are isomorphisms (in this case the fundamental group of G is a semidirect

product of the vertex group with Z).

Finally, we say that G is exceptional if it is degenerate and the edge group of G is

trivial. If G is exceptional, then π1(G) is isomorphic either to Z2 ∗ Z2
∼= Z o Z2 (in

the case of the amalgamated product) or to Z (in the case of the semidirect product).

Any graph of groups G with fundamental group G determines a tree T , called the

Bass-Serre tree of G, on which G acts by isometries. It is well-known that G acts on
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T without inversions: if an element g ∈ G and and edge e of T are such that g(e) = e,

then g does not interchange the vertices of e.

Let now G be a group acting without inversions on a tree T . It is well-known that

the subset of fixed points of T under the action of G is a subtree, that will be denoted

by TG. Conversely, if T ′ is a subtree of T (for example, a vertex or an edge), then

GT ′ is the subgroup of those elements of G that pointwise fix T ′. An old result by

Tits implies that every g ∈ G is either elliptic, if it fixes a vertex of T , or hyperbolic,

if there exists a g-invariant subtree T ′ of T which is isomorphic to the real line, and

is such that g acts on T ′ as a non-trivial translation. The action of G on T is faithful

if GT = {1}, and it is minimal if T does not contain any G-invariant proper subtree.

Following Delzant [De], we say that the action of G is K-acylindrical if there exists a

constant K, such that any element which pointwise fixes any path in T of length ≥ K
is automatically trivial. The action of G is acylindrical if it is K-acylindrical for some

K ≥ 0. When we say that a graph of groups G is faithful, minimal or acylindrical,

we understand that the action of π1(G) on the Bass-Serre tree of G is respectively

faithful, minimal or acylindrical.

The following Lemma collects some elementary results about the Bass-Serre tree

of a finite graph of groups.

Lemma 6.1. — Let G be a non-trivial finite graph of groups, let G be the fundamen-

tal group of G, and let T be the Bass-Serre tree of G. Then:

1. G contains at least one hyperbolic element (in particular, T has infinite diame-

ter).

2. The action of G on T is minimal.

3. The tree T is isomorphic to the real line if and only if G is degenerate.

4. If G is non-degenerate, then G contains a free non-abelian subgroup.

5. G is exceptional if and only if it is degenerate and acylidrical.

6. If G is faithful, then G does not contain any non-trivial finite normal subgroup.

Proof. — In order to prove point (1) it is sufficient to show that there exists an

element of G which does not fix any vertex of G. But G is non-trivial, so it is not a

filtering tree of groups, according to the terminology used in [Ba1]. Therefore, point

(1) is a consequence of [Ba1, Proposition 3.7].

Points (2), (3) and (4) are proved respectively in [Ba2, Proposition 7.12], [dlH-Pr,

Proposition 18] and [Ba1, Theorem 6.1].

Let us prove (5). By definition, if G is exceptional then it is degenerate, and it

is easy to check that the two exceptional graphs of groups are acylindrical. Let us

now suppose that G is degenerate. Then T is the real line, so an automorphism of T

fixing an edge acts as the identity of T . Therefore, if G is also acylindrical, then the

stabilizer of any edge of T is trivial. This means that the edge group of G is trivial,

so G is exceptional, and point (5) is proved.
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Suppose now that G contains a non-trivial finite normal subgroup N . Being finite,

N fixes a vertex of T , so the fixed subtree TN ⊆ T is non-empty. Since N is normal in

G, the subtree TN is G-invariant, so by minimality TN = T , and N lies in the kernel

of the action of G on T . This proves point (6).

It is shown in [DGO] that (with very few exceptions) a group acting acylindrically

on a Gromov hyperbolic space contains hyperbolically embedded subgroups. There-

fore, we have the following result (we refer the reader to [DGO] for the definition of

non-degenerate hyperbolically embedded subgroup):

Proposition 6.2 (Hyperbolically embedded subgroups)

Let G be a non-trivial non-exceptional acylindrical graph of groups with fundamental

group G. Then G contains a non-degenerate hyperbolically embedded subgroup.

Proof. — Let T be the Bass-Serre tree of G. The notion of acylindrical action used

in [DGO] is taken from [Bow], and makes sense in the context of group actions on

Gromov hyperbolic spaces. However, as observed in [Bow], in the particular case of

trees our acylindrical actions are acylindrical also in the sense of [DGO].

Let us consider the action of G on T . By Lemma 6.1 G contains a hyperbolic

element h. As observed in [DGO, Remark 6.2], the acylindricity of the action of

G on T implies that h satisfies the weak proper discontinuity condition defined by

Bestvina and Fujiwara in [BF]. Therefore, if E(h) is the unique maximal elementary

subgroup of G containing h, then E(h) is hyperbolically embedded in G (see [DGO,

Lemma 6.5 and Theorem 6.8]). In order to conclude we need to show that E(h) does

not coincide with the whole of G. However, the infinite cyclic subgroup generated by

h is of finite index in E(h). Moreover, since G is non-degenerate, Lemma 6.1 implies

that G contains a free non-abelian subgroup. In particular, G is not virtually cyclic,

so E(h) 6= G, and we are done.

An alternative proof of the Proposition follows from the results contained in the

recent preprint [Os2], where it is shown that the class of groups containing a proper

infinite hyperbolically embedded subgroup coincides with the class of groups admit-

ting a non-elementary acylindrical action on a Gromov hyperbolic space.

6.2. The graph of groups associated to an (extended) graph manifold

Let M be an (extended) graph manifold. The decomposition of M into pieces

determines a description of π1(M) as the fundamental group of a graph of groups

G, where vertex groups of G correspond to fundamental groups of the pieces of M ,

and edge groups correspond to fundamental groups of the internal walls of M . Edge

groups have infinite index in the adjacent vertex groups, so G is always reduced.
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Therefore, if M contains at least one internal wall, then G is non-trivial and non-

degenerate. In this Section we establish some useful properties of the action of π1(M)

on the Bass-Serre tree associated to G.

Before stating our first lemma, recall that the stabilizer of any vertex of the Bass-

Serre tree T of G is identified with the fundamental group Gi of a piece of M , and

that the fiber subgroup of Gi coincides with the center of Gi (see Remark 2.10). As

a consequence, we may speak without ambiguities about the fiber subgroup of the

stabilizer of any vertex of T .

Lemma 6.3. — Let M be an (extended) graph manifold and let T be the Bass-Serre

tree corresponding to the decomposition of M into pieces.

1. Let e1, e2 be distinct edges of T sharing the common vertex v, and suppose that

the element g ∈ π1(M) is such that g(ei) = ei for i = 1, 2. Then g belongs to

the fiber subgroup of Gv.

2. Let P be a path in T of length three, let e1, e2, e3 be the three consecutive edges in

P, and suppose that there exists a non-trivial element g ∈ G such that g(ei) = ei
for i = 1, 2, 3. Then the gluing corresponding to the edge e2 is not transverse.

Proof. — Point (1) is an immediate consequence of Lemma 2.15–(2).

(2): Let v1, v2 the two intermediate vertices of the path P, and let Gi be the

stabilizer of vi in G. By point (1) the element g belongs both to the fiber subgroup

of G1 and to the fiber subgroup of G2. Since g is non-trivial, this implies that the

gluing corresponding to the edge e2 joining v1 with v2 is not transverse.

We are now ready to provide a characterization of irreducibility in terms of the

action of π1(M) on its Bass-Serre tree. The “if” part of the following result was

suggested by the anonymous referee.

Proposition 6.4 (Irreducible ⇐⇒ Acylindrical). — Let M be an (extended)

graph manifold containing at least one internal wall. We denote by G the fundamental

group of M , and by T the Bass-Serre tree associated to the decomposition of M into

pieces. Then M is irreducible if and only if the action of G on T is acylindrical.

Proof. — If M is irreducible, then Lemma 6.3 implies that the graph of groups cor-

responding to the decomposition of M into pieces is 3-acylindrical.

On the other hand, let us suppose that M is not irreducible. Then there exists a

non-transverse gluing ψ between two (possibly non-distinct) adjacent pieces Vi1 , Vi2 of

M . This gluing determines an infinite abelian subgroup H of G that acts trivially on

the Bass-Serre tree associated to the amalgamation (or HNN-extension) of π1(Vi1) and

π1(Vi2) corresponding to ψ. This tree contains a bi-infinite geodesic, and equivariantly

embeds into the Bass-Serre tree T of the ambient graph of groups. In particular, T

contains a bi-infinite geodesic admitting an infinite pointwise stabilizer, so the action

of π1(M) on T is not acylindrical.
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We can construct an acylindrical action of π1(M) on a tree under the weaker

hypothesis that M contains at least one internal wall with transverse fibers. To this

aim we introduce the following construction.

The decomposition of M into pieces determines a description of π1(M) as the

fundamental group of a graph of groups G based on the finite graph Γ. Let us choose

an internal wallH ofM , which corresponds to the edge E of Γ, and letM ′ = M\N(H),

whereN(H) is an open regular neighborhood ofH inM . SoM ′ is either an (extended)

graph manifold (if Γ \ E is connected) or the disjoint union of two (extended) graph

manifolds (if Γ \ E is disconnected). We consider the graph of groups G′ associated to

the realization of M as a gluing of M ′ along the boundary components arising from

the cut along H. Then G′ is based on the graph Γ′ obtained by collapsing to points

all the edges in Γ \ E . By definition, the fundamental group of G′ is still isomorphic

to π1(M). Of course, G′ is non-degenerate, and it represents a realization of G as

an amalgamated product (if M ′ is disconnected) or as an HNN-extension (if M ′ is

connected). We say that G′ is obtained by collapsing G outside E .

Lemma 6.5. — Let M be an (extended) graph manifold containing at least one in-

ternal wall, let G be the graph of groups corresponding to the decomposition of M into

pieces, and let G′ be the graph of groups obtained by collapsing G outside the edge E.

Then:

1. If E corresponds to an internal wall of M with transverse fibers, then G′ is

3-acylindrical.

2. G is faithful if and only if G′ is faithful.

Proof. — Let M ′ = M \ N(H), where H is the internal wall corresponding to the

edge E , and N(H) is an open regular neighborhood of H in M . We call big chamber

a connected component of the preimage of M ′ in M̃ . Of course, a big chamber is

just the union of a (usually infinite) number of chambers of M̃ . Moreover, the Bass-

Serre T ′ associated to G′ is dual to the decomposition of M̃ into big chambers, and

the inclusion of chambers into big chambers induces a surjective G-equivariant map

ρ : T → T ′.

We say that en edge e of T is special if it corresponds to a preimage of H in M̃ , or,

equivalently, if ρ(e) is an edge of T ′, i.e. ρ does not collapse e to a vertex. The union

of the special edges of T is G-invariant, and ρ establishes a bijection between the set

of special edges of T and the set of edges of T ′. Therefore, if e is a special edge of T

and g ∈ G is such that g(ρ(e)) = ρ(e), then g(e) = e.

(1): We take a path P ′ of length three in T ′ with endpoints v′0 and v′3, we denote by

e′1, e
′
2, e
′
3 be the three consecutive edges in P ′, and we take g ∈ G such that g(e′i) = e′i

for i = 1, 2, 3. Let ei be the special edge of T such that ρ(ei) = e′i, let v0 (resp. v3)

be the vertex of e1 (resp. of e3) such that ρ(vi) = v′i, i = 0, 3, and let γ ⊆ T be the

geodesic joining v0 with v3. The discussion above shows that g(ei) = ei for i = 1, 2, 3,



6.2. THE GRAPH OF GROUPS ASSOCIATED TO AN (EXTENDED) GRAPH MANIFOLD 61

so g(v0) = v0 and g(v3) = v3, hence g(γ) = γ. Moreover, if v0, v3 were in the same

connected component of T \ e2, then ρ(v0) = v′0 and ρ(v3) = v′3 would be in the

same connected component of T ′ \ e′2, a contradiction. This implies that γ contains

a path of length three which is fixed by g and has e2 as intermediate edge. But e2 is

special, so the gluing corresponding to e2 is transverse, and g must be the identity by

Lemma 6.3. We have thus shown that the action of G on T ′ is 3-acylindrical.

(2): Let K,K ′ be the kernels of the action of G on T, T ′ respectively. We will

show that K = K ′. Recall that ρ establishes a G-equivariant bijection between the

set of special edges of T and the set of edges of T ′. Therefore, K ′ is just the group of

those elements of G that fix every special edge of T . This already proves the inclusion

K ⊆ K ′. Let us now show that K ′ ⊆ K. Let TK′ ⊆ T be the fixed subtree of K ′.

Every special edge is contained in TK′ , so TK′ is non-empty. But K ′ is normal in

G, so TK′ is G-invariant. The minimality of the action of G on T now implies that

TK′ = T , i.e. that K ′ ⊆ K.

The following result is an immediate consequence of point (1) of Lemma 6.5.

Proposition 6.6. — Let M be an (extended) graph manifold, and suppose that M

contains an internal wall with transverse fibers. Then G admits a realization either

as a non-degenerate acylindrical amalgamated product or as a non-degenerate acylin-

drical HNN-extension.

By looking at the action of π1(M) on its Bass-Serre tree, one can also establish

whether M is fibered or not.

Proposition 6.7 (Fibered ⇐⇒ Non-faithful). — Let M be an (extended) graph

manifold containing at least one internal wall, let G be the graph of groups associated

to the decomposition of M into pieces, and set G = π1(G) = π1(M). Then the

following conditions are equivalent:

1. M is fibered.

2. G contains a non-trivial normal abelian subgroup.

3. The action of G on the Bass-Serre tree of G is not faithful.

4. If G′ is obtained by collapsing G outside an edge, then the action of G on the

Bass-Serre tree of G′ is not faithful.

5. Let V1, . . . , Vs be the pieces of M , let Gi = π1(Vi) = π1(Bi) × Zki , and let

{1} × Zki be the fiber subgroup of Gi. Then one can choose a distinguished

subgroup Fi of the fiber subgroup of Gi for every i = 1, . . . , s, in such a way

that each gluing involved in the construction of M identifies the distinguished

subgroups of the fundamental groups of the corresponding adjacent pieces.

Proof. — Point (2) of Lemma 6.5 implies that points (3) and (4) are equivalent, so

it is sufficient to prove the chain of implications (1) =⇒ (2) =⇒ (3) =⇒ (5) =⇒ (1).



62 CHAPTER 6. ALGEBRAIC PROPERTIES

(1) ⇒ (2): Suppose that M is the total space of a fiber bundle F ↪→ M → M ′,

where the fiber F is a d-dimensional torus, d ≥ 1, and M ′ is an (extended) graph

manifold. We consider the following portion of the exact sequence for fibrations in

homotopy:

π2(M ′)→ π1(F )→ π1(M)→ π1(M ′) .

Since M ′ is aspherical, we have π2(M ′) = 0. Therefore, π1(F ) injects onto a non-

trivial abelian normal subgroup of π1(M).

(2) ⇒ (3): It is sufficient to show that every normal abelian subgroup of G is

contained in the kernel of the action of G on T . Since N is abelian, by [Se, page

65, Proposition 27] either N fixes a vertex of T , or there exists a unique line L in T

which is left invariant by the action of N . In the first case, the fixed subtree TN is

non-empty. But N is normal in G, so TN is G-invariant, and TN = T by minimality

of the action of G. Therefore, N is contained in the kernel of the action of G on T .

In the second case, take g ∈ G and consider the line g(L). Using that N is normal

in G it is easily checked that g(L) is also N -invariant, so g(L) = L. We have thus

shown that L is G-invariant, so L = T by minimality of the action of G on T . But

this implies that G is degenerate, a contradiction.

(3) ⇒ (5): Let T be the Bass-Serre tree of G and let N be the kernel of the action

of G on T . Let v be a vertex of T , let Gv be the stabilizer of v in T and take g ∈ N .

Of course N < Gv, so g ∈ Gv. Since g fixes all the edges exiting from v, Lemma 6.3

implies that g belongs to the fiber subgroup of Gv. We have thus shown that N is

contained in the fiber subgroup of every vertex stabilizer. If V is a piece of M , then

π1(V ) is identified with a vertex stabilizer Gv, so we may consider N as a subgroup

of π1(V ) (since N is normal, no ambiguities arise from the choice of v and of the

identification π1(V ) ∼= Gv). So we may choose N as a distinguished subgroup of

the fiber subgroup of π1(V ). It is now obvious from the definition of N that each

gluing involved in the construction of M identifies the distinguished subgroups of the

corresponding adjacent pieces.

(5)⇒ (1): First observe that Fi is contained in a unique subgroup F ′i < {1}×Zki <
Gi such that the index [F ′i : Fi] is finite and the quotient ({1}×Zki)/F ′i is torsion-free.

The gluing maps between the pieces preserve the Fi, and this readily implies that they

also preserve the F ′i , so we may assume that Fi = F ′i for every i. Also observe that

the Fi share all the same rank, say d ≥ 1. Let us now consider the piece Vi of M .

Since ({1}×Zki)/Fi is torsion-free, the fiber subgroup Zki of π1(V ) decomposes as a

direct sum Zki = Zki−d ⊕ Fi. We consider the corresponding decomposition

Vi = Ni × T ki ∼= (Ni × T ki−d)× T d = Wi × T d ,

where Ni is the base of Vi. We call small fiber of Vi a subset of the form {∗} ×
T d ⊆ Wi × T d = Vi. Recall now that the gluing maps are affine, and preserve the

distinguished subgroups of the fundamental groups of the pieces. This readily implies
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that the gluing maps identify the small fibers of adjacent pieces. Therefore, the

product structures Vi = Wi×T d may be glued into a global structure of fiber bundle

on M with fiber T d. If M → M ′ is the associated projection, then M ′ is obtained

by gluing the Wi via affine gluings, so M ′ is an (extended) graph manifold, and M is

fibered.

From condition (5) of the previous Proposition we obtain:

Corollary 6.8. — Suppose that M contains an internal wall with transverse fibers.

Then M is not fibered.

For later reference we point out also the following:

Lemma 6.9. — Suppose that M consists of a single piece V without internal walls.

Then, M is fibered if and only if V is not purely hyperbolic.

Proof. — Of course, if V is not purely hyperbolic, then M is fibered. On the other

hand, just as in the proof of the implication (1) ⇒ (2) of Proposition 6.7, one can

see that, if M is fibered, then π1(M) = π1(V ) contains a non-trivial abelian normal

subgroup. But this implies that π1(V ) cannot be isomorphic to the fundamental group

of a complete finite-volume hyperbolic manifold, so V cannot be purely hyperbolic.

We conclude the section with a technical lemma that will prove useful later. If G is

a group acting on a tree T , then we say that the action is without reflections if there

do no exist an element g ∈ G and distinct edges e1, e2 of T sharing a common vertex

such that g(e1) = e2 and g(e2) = e1.

Lemma 6.10. — Let M be an (extended) graph manifold with at least one internal

wall. Let π1(M) = G, let G be the graph of groups corresponding to the decomposition

of M into pieces, and let T be the Bass-Serre tree of G. Let also G′ be a graph of

groups obtained by collapsing G outside an edge, and let T ′ be the Bass-Serre tree of

G′. Then:

1. If e is an edge of T , and g ∈ G is such that gn ∈ Ge for some n ≥ 1, then

g ∈ Ge.
2. If e′ is an edge of T ′, and g ∈ G is such that gn ∈ Ge′ for some n ≥ 1, then

g ∈ Ge′ .
3. G acts on T without reflections.

Proof. — (1): Suppose by contradiction that there exists g ∈ G such that gn(e) = e

for some n ≥ 1 but g(e) 6= e. Then the subgroup generated by g admits a finite

orbit in T , so it fixes a vertex v of T . Consider the geodesics γ, γ′ connecting v with

e, g(e) respectively, and let v′ be the last vertex in γ ∩ γ′. Then g(v′) = v′, and

there exist distinct edges e1, e2 exiting from v′ such that gn(e1) = e1, gn(e2) = e2,
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and g(e1) = e2. Let us now look at the stabilizer Gv′ of v′ in G. The element gn

fixes v′ and two distinct edges exiting from v′, so it belongs to the fiber subgroup

of Gv′ (see Lemma 6.3). Since g ∈ Gv′ , this easily implies that also g belongs to

the fiber subgroup of Gv′ . As a consequence, g fixes all the edges exiting from v′, a

contradiction since g(e1) = e2 6= e1.

Point (2) is an immediate consequence of point (1), since the stabilizer of an edge

of T ′ coincides with the stabilizer of an edge of T .

(3): Let e1, e2 be distinct edges of T sharing the vertex v, and suppose that g ∈ G
is such that g(e1) = e2, g(e2) = e1. Then g2(ei) = ei for i = 1, 2, so g(ei) = ei by

point (1), a contradiction.

6.3. Relative hyperbolicity and hyperbolically embedded subgroups

The fundamental group of a purely hyperbolic piece of a graph manifold provides

the typical example of relatively hyperbolic group. The following result shows that

there exist more complicated (extended) graph manifolds with relatively hyperbolic

fundamental group:

Proposition 6.11. — Assume the (extended) graph manifold M has at least one

purely hyperbolic piece. Then π1(M) is relatively hyperbolic with respect to a finite

family of proper subgroups.

Proof. — Let M be an (extended) graph manifold containing the purely hyperbolic

piece M0. We define a finite family P(M) of subgroups of π1(M) as follows. Let

M1 ∪ . . . ∪Mk be the (obvious compactifications of the) connected components of

M \ M0, and for every i = 1, . . . , k let Gi be the image of π1(Mi) into π1(M).

Moreover, let T1, . . . , Th be the connected components of ∂M ∩ ∂M0 and let Pj be

the image of π1(Tj) in π1(M) for j = 1, . . . , h. Note that Gi and Pj are well-defined

only up to conjugation, but this won’t be relevant to our purposes. We set

P(M) = {G1, . . . , Gk, P1, . . . , Ph} ,

and we claim that π1(M) is relatively hyperbolic with respect to the family of sub-

groups P(M).

We proceed by induction on the number c(M) of boundary components of M0 that

are not boundary components of M . If c(M) = 0, then M = M0, and the conclu-

sion follows from the fact that the fundamental group of a complete finite-volume

hyperbolic manifold is relatively hyperbolic with respect to its cusp subgroups [Fa2].

Let now H be an internal wall of M corresponding to a boundary component of

M0, and consider the manifold M ′ obtained by removing from M a regular open

neighborhood of H. Then M ′ is an (extended) graph manifold containing at least

one purely hyperbolic piece, and c(M ′) < c(M). Therefore, we may assume that

π1(M ′) is relatively hyperbolic with respect to the family of subgroups P(M ′). Then,
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Dahmani’s combination Theorem implies that π1(M) is relatively hyperbolic with

respect to P(M) (see [Da, Theorem 0.1 – (2)] ifM ′ is disconnected, and [Da, Theorem

0.1 – (3’)] if M ′ is connected).

It seems likely that the condition described in Proposition 6.11 is not only sufficient,

but also necessary for an (extended) graph manifold to have a relatively hyperbolic

fundamental group. This is the case in the context of irreducible graph manifolds,

that will be discussed in Chapter 8 (see Proposition 8.39). On the contrary, the

fundamental group of an (extended) graph manifold often contains hyperbolically

embedded subgroups. In fact, putting together Proposition 6.6 with Proposition 6.2

we get the following:

Proposition 6.12. — Let M be an (extended) graph manifold containing an internal

wall with transverse fibers. Then π1(M) contains a non-degenerate hyperbolically

embedded subgroup.

6.4. Kazhdan subgroups

In this Section we show how we can completely classify the subgroups of π1(M)

which are Kazhdan (we refer the reader to [BdlHV] for a comprehensive introduction

to Kazhdan groups). At the other extreme, one has amenable subgroups, which will

be analyzed in the next section.

Proposition 6.13. — Let G be a graph of groups with fundamental group G, and

suppose that no vertex group of G contains a non-trivial subgroup which satisfies Kazh-

dan’s property (T). Then no non-trivial subgroup of G satisfies Kazhdan’s property

(T).

Proof. — Let T be the Bass-Serre tree associated to G. Being a subgroup of G, the

group H acts on T . Kazhdan groups are known to have Serre’s property (FA), i.e. any

action on a tree has a globally fixed point (see [BdlHV, Section 2.3]). We conclude

that H must fix a vertex in T , and hence is isomorphic to a subgroup of a vertex group

of G. Our assumptions now imply that H = {1}, and this concludes the proof.

Corollary 6.14 (Kazhdan subgroups of (extended) graph manifold groups)

Let M be an (extended) graph manifold, and H ≤ π1(M) an arbitrary subgroup. If

H has Kazhdan’s property (T), then H has to be the trivial group.

Proof. — By Proposition 6.13, it is sufficient to show that, if H is an arbitrary sub-

group of π1(V ) ∼= π1(N) × Zk, where N is a non-compact, finite volume hyperbolic

manifold, and H has Kazhdan’s property (T), then H = {1}.
Looking at the image of H inside the factor π1(N), we get an induced action of H

on hyperbolic space. But any action of a Kazhdan group on hyperbolic space must

have a global fixed point (see [BdlHV, Section 2.6]). Since π1(N) acts freely on
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hyperbolic space, we conclude that H must lie in the kernel of the natural projection

π1(V ) → π1(N), i.e. must be entirely contained in the Zk factor. Finally, the only

subgroup of Zk that has Kazhdan’s property (T) is the trivial group, concluding the

proof.

By [BDS], there are finitely many conjugacy classes of homomorphisms from a

Kazhdan group into a mapping class group. With respect to this issue, the behaviour

of π1(M) is similar. In fact, as the homomorphic image of a Kazhdan group is

Kazhdan, an immediate consequence of the previous Lemma is the following:

Corollary 6.15. — Let M be an (extended) graph manifold. Then, there are no

non-trivial homomorphisms from a Kazhdan group to π1(M).

6.5. Uniformly exponential growth

We now consider the notion of growth of a group G. Fixing a finite, symmetric

generating set S, one considers the Cayley graph CS(G) of G with respect to the

generating set S. Recall that the graph CS(G) is viewed as a metric space by setting

every edge to have length one. For any positive real number r, we can look at the

ball of radius r in CS(G) centered at the identity element, and let NS(r) count the

number of vertices lying within that ball. The group has exponential growth provided

there exists a real number λS > 1 with the property NS(r) ≥ λrS . The property of

having exponential growth is a quasi-isometry invariant, hence does not depend on the

choice of generating set S, though the specific constant λS does depend on the choice

of generating set. It is easy to see that any group which contains a free subgroup

(such as the fundamental groups of our (extended) graph manifolds) automatically

has exponential growth. The more sophisticated notion of uniform exponential growth

has been the subject of recent work. A group G has uniform exponential growth if

there exists a λ > 1 with the property that, for every finite symmetric generating

set S, we have NS(r) ≥ λr. The point here is that the constant λ is independent of

the generating set S. Non-elementary Gromov hyperbolic groups are known to have

uniform exponential growth (see Koubi [Ko]), while CAT(0) groups might not even

have exponential growth (as the example of Zn shows). In our situation, an easy

argument shows:

Proposition 6.16. — If M is an (extended) graph manifold, then π1(M) has uni-

form exponential growth.

Proof. — Bucher and de la Harpe [Bu-dlH] have analyzed uniform exponential

growth for groups which split as an amalgam (or as an HNN extension). It fol-

lows immediately from their work that if the graph of groups description of π1(M)

does not reduce to a single vertex, then π1(M) has uniform exponential growth. So
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we merely need to consider the remaining case, where M has a single piece. In this

case, π1(M) splits as a product π1(V ) × Zk, where V is a non-compact, finite vol-

ume hyperbolic manifold. But projecting onto the first factor, we see that π1(M)

surjects onto a group of uniform exponential growth (by work of Eskin, Mozes, and

Oh [EMO]). It follows that π1(M) also has uniform exponential growth, concluding

the proof of the Proposition.

Recall that given a Riemannian metric g on a compact manifold M , the volume

growth entropy of the metric is defined to be the limit

hvol(M, g) := lim
r→∞

1

r
log
(
V olg̃(B(r))

)
where B(r) is the ball of radius r centered at a fixed point in the universal cover

(M̃, g̃) with the pull-back metric from (M, g). Work of Manning [Ma] shows that

the topological entropy htop(M, g) of the geodesic flow on the unit tangent bundle

of M satisfies the inequality htop(M, g) ≥ hvol(M, g). An immediate consequence of

uniform exponential growth is the:

Corollary 6.17. — For M an (extended) graph manifold, there exists a real number

δM > 0 with the property that for any Riemannian metric g on M , normalized to have

diameter equal to one, we have the inequality htop(M, g) ≥ hvol(M, g) ≥ δM > 0.

6.6. The Tits Alternative

We now show that the fundamental group of an (extended) graph manifold sat-

isfies a strong version of the Tits Alternative. If G is a group, we denote by G(1)

the subgroup of commutators, and we inductively define G(n) by setting G(n+1) =

[G(n), G(n)]. Recall that a group G is solvable if G(n) = {1} for some n ∈ N. The

least n such that G(n) = {1} is the derived length of G. If

0→ H → G→ G/H → 0

is an exact sequence of groups, and H,G/H are both solvable, then also G is solvable,

and the derived length of G is at most the sum of the derived lengths of H and G/H.

We refer the reader to Section 6.2 for the definition of action without reflections.

Proposition 6.18. — Let G be a finite graph of groups with fundamental group G

and Bass-Serre tree T , and suppose that any arbitrary subgroup of any vertex group

either contains a non-abelian free group, or is abelian. Let H be an arbitrary subgroup

of G. Then either:

– H is sovable, or

– H contains a non-abelian free group.

Moreover, if H is solvable, then:
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1. the derived length of H is at most 3;

2. if the action of G on T is acylindrical or without reflections, then the derived

length of H is at most 2.

3. if the action of G on T is acylindrical and without reflections, then H is abelian.

Proof. — Let T be the Bass-Serre tree associated to G. We first prove that, if K

is a subgroup of G that consists solely of elliptic elements and does not contain any

non-abelian free group, then K is abelian. If K fixes a vertex of T , then this is just

our hypothesis. Otherwise, it is proved in [Ba1, Proposition 3.7] that there exists an

infinite path in T , say with vertices v0, . . . , vn, . . ., such that Kvi ⊆ Kvi+1
for every i,

and K = ∪i≥0Kvi . In particular, for every i the group Kvi does not contain a non-

abelian free group, so our hypothesis implies that Kvi is abelian. But any ascending

union of abelian groups is abelian, so K is itself abelian.

Let us now come back to our arbitrary subgroup H of G, and let us suppose that

H does not contain a non-abelian free group. By the discussion above, we may also

assume that H contains an element acting hyperbolically on T . By [PaVa, Section

2], these conditions imply that there are two possibilities for H:

1. H is a subgroup of Stab(γ), where γ ⊂ T is a geodesic, or

2. H is a subgroup of Stab(E), where E is an end of T .

In each of these cases, we need to show that H is solvable, and estimate the derived

length of H.

Let us consider case (1). Since H leaves γ invariant, we can define IsomH(γ) as

the image of H in the group of isometries of γ (which we can identify with R). If we

denote by Hγ is the subgroup of H which pointwise fixes γ, then we get the exact

sequence:

0→ Hγ → H → IsomH(γ)→ 0 .

The group Hγ fixes any given vertex of γ, hence can be identified with a subgroup

of a vertex group of G. Since Hγ does not contain any non-abelian free group, this

implies that Hγ is abelian. Also observe that, if the action of G on T is acylindrical,

then Hγ reduces to the identity.

On the other hand, the group IsomH(γ) is a subgroup of the group of simplicial

automorphisms of R (with the standard simplicial structure), hence is either 1,Z2,Z,

or the infinite dihedral group D∞. In all cases, we see that IsomH(γ) is solvable of

derived length not bigger than 2. Also observe that, if G acts on T without reflections,

then IsomH(γ) is necessarily abelian.

From the short exact sequence, we deduce that H is solvable. Moreover, its derived

length is at most 3 in general. If G acts on T acylindrically or without inversions,

then the derived length of H is at most 2, while if G acts on T acylindrically and

without inversions, then H is abelian. This concludes the proof in case (1).

Let us now consider case (2). To analyze this case, we consider the relative transla-

tion length map. Given an end E of a tree T , and any pair of vertices v, w ∈ T , there
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are unique unit speed geodesic rays γv, γw ⊂ T originating at v, w, and exiting into

the end E . One then defines the distance of the points relative to E to be the inte-

ger dE(v, w) := limt→∞ d
(
γv(t), γw(t)

)
. The relative translation length of an element

g ∈ Stab(E) is defined to be the integer τ(g) := infv dE
(
v, g(v)

)
. A basic property

of the relative translation length is that it defines a homomorphism τ : Stab(E)→ Z
(see e.g. [PaVa, Lemme 4]). So our group H fits into a short exact sequence

0→ H0 → H → Z→ 0

where H0 = H ∩ ker(τ). But every element in H0 has to be elliptic, so the discussion

at the beginning of the proof implies that H0 is abelian. This implies that H is

solvable of derived length at most 2. Also observe that every element of H0 fixes a

geodesic ray exiting into the end E . Therefore, if the action of G is acylindrical, then

H0 = {1}, which implies that H is abelian.

Corollary 6.19. — Let M be an (extended) graph manifold, and H be an arbitrary

subgroup of π1(M). Then either:

– H is solvable of derived length at most 2, or

– H contains a non-abelian free group.

If M is irreducible, then either:

– H is abelian, or

– H contains a non-abelian free group.

Proof. — Let T be the Bass-Serre tree associated to the decomposition of M into

pieces. Recall that the action of G on T is acylindrical if and only if M is irreducible

(Proposition 6.4). Moreover, Lemma 6.10 implies that G acts on T without reflections.

Therefore, by Proposition 6.18 it is sufficient to prove that, if H is a subgroup of the

fundamental group π1(N) × Zd of a piece of M , and H does not contain any non-

abelian free group, then H is abelian. Let H be the projection of H onto π1(N),

and recall that π1(N) acts by isometries on the hyperbolic space Hn−k. Every non-

elementary discrete group of isometries of Hn−k contains a non-abelian free group (see

e.g. [Rat, page 616, Exercise 15]), so H must be elementary. Moreover, H does not

contain any elliptic element, so H is contained either in an infinite cyclic hyperbolic

subgroup of π1(N) or in a parabolic subgroup of π1(N). But the cusps of N are toric,

so the parabolic subgroups of π1(N) are abelian. We have thus proved that H is

abelian, so H is itself abelian, and we are done.

Remark 6.20. — As a consequence of the Flat Torus Theorem, if a solvable group G

acts properly via semisimple isometries on a CAT(0) space, then G is virtually abelian.

This fact provides a useful obstruction for a group to be the fundamental group of a

compact locally CAT(0) space. Corollary 6.19 implies that this obstruction is never

effective for irreducible graph manifolds. In fact, the construction of irreducible graph
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manifolds that do not support any locally CAT(0) metric described in Chapter 11 is

based on a more sophisticated use of the Flat Torus Theorem.

Since a group which contains a non-abelian free subgroup is automatically non-

amenable, Corollary 6.19 implies the following:

Corollary 6.21. — Let M be an (extended) graph manifold and let H ≤ π1(M) be

an amenable subgroup. Then H is solvable. If, in addition, M is irreducible, then H

is abelian.

6.7. Co-Hopf property

Proposition 6.22. — Let M be an (extended) graph manifold, with ∂M = ∅, and as-

sume that M contains a pair of adjacent pieces with transverse fibers. Then the funda-

mental group π1(M) is co-Hopfian, i.e. every injective homomorphism φ : π1(M) ↪→
π1(M) is automatically an isomorphism.

Proof. — Let G := π1(M). Using φ, we can identify φ(G) with a subgroup of G,

and our goal is to show the index [G : φ(G)] must be equal to one. A standard

argument shows that [G : φ(G)] must be finite, for if it wasn’t, then we would have

two manifold models for a K(G, 1): the compact manifold M , and its non-compact

cover M̂ corresponding to the infinite index subgroup φ(G) ≤ G. Using these models

to compute the top dimensional group cohomology of G with Z/2-coefficients gives:

Z/2 = Hn(Mn;Z/2) ∼= Hn(G;Z/2) ∼= Hn(M̂ ;Z/2) = 0,

a contradiction.

Now assume the index is some finite number [G : φ(G)] = k, which we would like to

show is equal to 1. We consider again the covering map π : M̂ →M associated to the

subgroup φ(G). Observe that M̂ is itself an (extended) graph manifold, whose pieces

are just the connected components of the preimages under π of the pieces of M . By

smooth rigidity, the isomorphism φ : π1(M)→ π1(M̂) is realized by a diffeomorphism

f : M → M̂ which induces a bijection between the set of pieces of M and the set of

pieces of M̂ (see Theorem 4.14). This can only happen if, under our covering map π,

each piece of M lifts to a single piece in M̂ . Let now g := π ◦ f : M →M . The map g

permutes the pieces of M , so there exists s ∈ N such that gs(V ) = V for every piece V

of M . By construction, the map gs : M →M is a ks degree covering, and restricts to a

degree ks covering gs|V : V → V for every piece V of M . Therefore, if we set ψ := φs,

then, up to conjugation, we have ψ
(
π1(V )

)
⊂ π1(V ) and

[
π1(V ) : ψ

(
π1(V )

)]
= ks

for each piece V of M .

Let us now fix an arbitrary piece V in M , and let V be homeomorphic to N × T d,
where as usual N is a non-compact finite volume hyperbolic manifold and T d is a
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d-dimensional torus. The group Λ := π1(V ) is isomorphic to π1(N) × Zd, and ψ

restricts to give us an injective map from this group to itself.

We now analyze the possible injective maps from Λ = π1(N)× Zd into itself (this

is similar to the analysis in Lemma 5.5). Let ρ : Λ→ π1(N) be the natural projection

onto the π1(N) factor. As a first step, we consider the effect of ψ on the Zd factor in

Λ, and show that its image must be contained in the Zd factor. Look at the image

of ψ(Zd) ≤ Λ under the ρ map. The group ρ
(
ψ(Zd)

)
is a free abelian subgroup of

π1(N), and our goal is to show it is trivial. Since the Zd factor is the center of the

group Λ (see Remark 2.10), we see that all of ρ
(
ψ(Λ)

)
is contained in the centralizer of

ρ
(
ψ(Zd)

)
. But inside the group π1(N), the centralizer of any non-trivial free abelian

subgroup is itself free abelian (see Lemma 2.9). This implies that ρ
(
ψ(Zd)

)
is indeed

trivial, because otherwise the preimage of its centralizer under ρ should also be free

abelian, but should contain an embedded copy ψ(Λ) of the non-abelian group Λ. Since

ρ
(
ψ(Zd)

)
is indeed trivial, we conclude that ψ(Zd) ≤ ker(ρ) ∼= Zd. In other words,

we have just established that the map ψ embeds the Zd factor into itself.

Next, let us see how the map ψ behaves on the π1(N) factor, by again considering

the composition with ρ. From the discussion in the previous paragraph, we have

that ρ
(
ψ(Λ)

)
= ρ

(
ψ(π1(N))

)
. Since ψ(Λ) has finite index in Λ, the same holds for

any homomorphic image, giving us that ρ
(
ψ(π1(N))

)
has finite index in π1(N). But

the group π1(N) is known to be cofinitely Hopfian (see [BGHM, Prop. 4.2]), i.e.

any homomorphism π1(N) → π1(N) whose image has finite index is automatically

an isomorphism. We conclude that the composite ρ ◦ ψ maps π1(N) isomorphically

onto π1(N). Summarizing our discussion so far, in terms of the two factors in the

group Λ, we can decompose the morphism ψ as ψ(g, v) =
(
φ(g), ν(g) + Lv

)
, where

φ ∈ Aut
(
π1(N)

)
, ν ∈ Hom

(
π1(N),Zd

)
, and L is a d× d matrix with integral entries

and non-vanishing determinant.

To calculate the index of ψ(Λ) in Λ, consider the automorphism ψ̂ ∈ Aut(Λ) defined

via ψ̂(g, v) =
(
g,−ν(φ−1(g)) + v

)
. An easy computation shows that

(
ψ̂ ◦ ψ

)
(g, v) =(

φ(g), Lv
)
, allowing us to see that the index is

ks =
[
Λ : ψ(Λ)

]
=
[
Λ : ψ̂

(
ψ(Λ)

)]
=
[
Zd : L(Zd)

]
= |det(L)|.

This formalizes the statement that the degree ks cover gs : M → M comes from

unfolding the torus factors in each piece of M (along with sliding the base over the

fiber, which has no affect on the degree).

Finally, let us return to our manifold M , and exploit the hypothesis on transverse

fibers. Let V1, V2 be the pair of adjacent pieces with transverse fibers along the com-

mon torus T . The torus T corresponds to a Zn−1 subgroup of G, and the two pieces

give splittings of this group into direct sums F s1 ⊕ Bn−1−s
1 = Zn−1 = F t2 ⊕ Bn−1−t

2 ,

where Fi are the fiber subgroups and Bi are the base subgroups. The homomorphism

ψ takes Zn−1 into itself, and by the analysis above, we can compute the index in two
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possible ways:

|det(L1)| =
[
F1 : ψ(F1)

]
=
[
Zn−1 : ψ(Zn−1)

]
=
[
F2 : ψ(F2)

]
= |det(L2)|

where Li is a matrix representing the ψ action on Fi. Therefore, we get ks =

|det(L1)| = |det(L2)| = |det(L̂)|, where L̂ is a matrix representing the ψ action

on Zn−1. We will now show that this forces ks = 1, whence the conclusion.

Since we have transverse fibers, we have F1 ∩ F2 = {0}. Let us denote by K the

subgroup F1 ⊕ F2 ⊆ Zn−1, and let us set J = {v ∈ Zn−1 |mv ∈ K for some m ∈ Z}.
Of course, K is a finite index subgroup of J , and the ψ-invariance of K implies that

also J is ψ-invariant. Our choices also ensure that the quotient group Zn−1/J is free

abelian. Since ψ is injective, the following equalities hold:[
J : K

] [
K : ψ(K)

]
=
[
J : ψ(K)

]
=
[
J : ψ(J)

] [
ψ(J) : ψ(K)

]
=
[
J : ψ(J)

] [
J : K

]
.

This tells us that[
J : ψ(J)

]
=
[
K : ψ(K)

]
=
∣∣det(L1) · det(L2)

∣∣ = k2s.

Moreover, ψ induces a homomorphism ψ : Zn−1/J → Zn−1/J , and we have of course

det(L̂) = det(LJ) · det(L), where LJ and L are matrices representing ψ|J and ψ

respectively. Since det(L) ≥ 1, we finally get

k2s =
[
J : ψ(J)

]
= |det(LJ)| ≤ |det(L̂)| =

[
Zn−1 : ψ(Zn−1)

]
= ks .

We conclude from this inequality that k = 1, giving us that [G : φ(G)] = k = 1, as

desired.

Remark 6.23. — In Proposition 6.22, one cannot remove the assumption that M

contains a pair of adjacent pieces with transverse fibers. In fact, if N is any hyperbolic

manifold with toric cusps and d ≥ 1, then the fundamental groups of the graph

manifolds N × T d and DN × T d, where DN is the double of N , are not co-Hopfian.

It would be interesting to understand whether Proposition 6.22 still holds under the

weaker hypothesis that M be non-fibered.

Remark 6.24. — Most arguments proving that the fundamental group of a closed

manifold is co-Hopfian usually involve invariants which are multiplicative under cov-

erings. Two such invariants which are commonly used are the Euler characteristic χ,

and the simplicial volume. But in the case where every piece in our (extended) graph

manifold has non-trivial fiber, both these invariants vanish. In fact, if V = N × T d,
d > 0, is a piece with non-trivial fiber, then χ(V ) = χ(N)×χ(T d) = 0. Moreover, the

pair (V, ∂V ) admits a self-map of degree greater than one, and this easily implies that

the (relative) simplicial volume of V vanishes. Suppose now that a compact manifold

M is obtained by gluing a (maybe disconnected) M ′ along pairs of π1-injective toric

boundary components. Since the Euler characteristic of the torus is zero we have

χ(M) = χ(M ′), while the amenability of Zd and Gromov additivity Theorem [Gr4]

(see also [Ku] and [BBFIPP]) imply that the (relative) simplicial volumes of M
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and M ′ coincide. Together with an obvious inductive argument, this implies that

χ(M) = ‖M‖ = 0 for an (extended) graph manifold, provided all its pieces have

non-trivial fibers.

Conversely, the (relative) simplicial volume is additive with respect to gluings along

π1-injective tori, and it never vanishes on a cusped hyperbolic manifold. So if there is

a single piece in M which is purely hyperbolic (i.e. has trivial fiber), then ||M || > 0.

Similarly, the Euler characteristic of an even dimensional cusped hyperbolic manifold

is never zero, so a similar conclusion holds. We summarize this discussion in the

following:

Proposition 6.25. — Let M be an (extended) graph manifold. Then

1. ||M || = 0 if and only if every piece in M has non-trivial fibers, and

2. if M is even dimensional, then χ(M) = 0 if and only if every piece of M has

non-trivial fibers.

6.8. C∗-simplicity of acylindrical graphs of groups

Recall that to any countable discrete group G, one can associate C∗r (G), its reduced

C∗-algebra. This algebra is obtained by looking at the action g 7→ λg of G on the

Hilbert space l2(G) of square summable complex-valued functions on G, given by the

left regular representation:

λg · f(h) = f
(
g−1h

)
g, h ∈ G, f ∈ l2(G) .

The algebra C∗r (G) is defined to be the operator norm closure of the linear span of

the operators λg inside the space B
(
l2(G)

)
of bounded linear operators on l2(G).

The algebra C∗r (G) encodes various analytic properties of the group G, and features

prominently in the Baum-Connes conjecture. A group G is said to be C∗-simple if

the algebra C∗r (G) is a simple algebra, i.e. has no proper two-sided ideals. We refer

the interested reader to the survey paper by de la Harpe [dlH2] for an extensive

discussion of this notion. The following result may be deduced from [DGO], and

characterizes acylindrical graphs of groups having a C∗-simple fundamental group.

Proposition 6.26. — Let G be the fundamental group of a non-trivial acylindrical

graph of groups G. Then G is C∗-simple if and only if G is not exceptional.

Proof. — If G is exceptional, then G is virtually abelian, whence amenable. As a

consequence, G is not C∗-simple (see e.g. [dlH2]). Therefore, we are left to show that

G is C∗-simple provided that G is not exceptional.

However, if G is not exceptional, then Proposition 6.2 implies that G contains a

non-degenerate hyperbolically embedded subgroup. Moreover, since T has infinite

diameter, any acylindrical action on T is faithful, so Lemma 6.1 guarantees that G
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does not contain any non-trivial finite normal subgroup. These conditions allow us

to apply [DGO, Theorem 2.32], which concludes the proof of the Proposition.

Remark 6.27. — Proposition 6.26 could be probably deduced also from the results

proved in [dlH-Pr], which in fact imply C∗-simplicity of amalgamated products and

HNN-extensions under a weaker hypothesis than acylindricity (see the proof of Propo-

sition 6.28 below). However, some work would be required to reduce the case of generic

graphs of groups to the case of one-edged graphs of groups.

Propositions 6.6 and 6.26 already imply that π1(M) is C∗-simple, provided that

M is an (extended) graph manifold with at least one internal wall with transverse

fibers. In the following proposition we improve this result and give a complete char-

acterization of (extended) graph manifolds with C∗-simple fundamental group.

Proposition 6.28 (Non-fibered ⇐⇒ C∗-simple). — Let M be an (extended)

graph manifold. Then π1(M) is C∗-simple if and only if M is not fibered.

Proof. — Let us first suppose that π1(M) is C∗-simple. It is well-known that a C∗-

simple group cannot contain non-trivial amenable normal subgroups (see e.g. [dlH2]).

If M consists of a single piece, this implies that M is purely hyperbolic, whence non-

fibered (see Lemma 6.9). Otherwise, we may apply Proposition 6.7, and conclude

again that M is not fibered.

Let us now turn to the converse implication. A criterion for C∗-simplicity was

discovered by Powers [Po], who showed that the free group on two generators is C∗-

simple. In fact, as observed e.g. in [dlH1], Powers’ argument applies to every group

belonging to the class of Powers group, as defined in [dlH1]. Our argument exploits

some criteria for a countable group to be Powers that are described in [dlH-Pr].

Suppose first that M contains at least one internal wall, let G be the graph of

groups corresponding to the decomposition of M into pieces, and let G′ be a graph

of groups obtained by collapsing G outside an edge of G. Let us denote by G the

fundamental group of M , and by T ′ the Bass-Serre tree associated to G′. Of course

we have G = π1(G′), and the graph of groups G′ describes G as an amalgamated

product or an HNN-extension. The edge groups of G′ have infinite index in the

adjacent vertex groups, so the main result of [dlH-Pr] ensures that G is C∗-simple,

provided that the following condition holds:

(*) There exists k ∈ N such that, if e is an edge of T ′ and g ∈ G pointwise fixes the

k-neighborhood Nk(e) of e in T ′, then g = 1 in G.

So we are left to show that, if condition (*) does not hold, then M is fibered.

Suppose that for every k ∈ N there exist a non-trivial element gk ∈ G and an edge ek
of T ′ such that gk pointwise fixes Nk(ek). Recall that G′ has only one edge, so, up to

conjugating gk, we may choose an edge e of T ′ such that ek = e for every k. Let us

denote by Gk the subgroup of G fixing pointwise Nk(e). Then G0 is isomorphic to a
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subgroup of the edge group of G′, so it is finitely generated free abelian. Moreover, for

every k we have Gk+1 ⊆ Gk. We are now going to show that the sequence of groups

{Gk, k ∈ N} stabilizes after a finite number of steps. Being a finitely generated

abelian group, every Gk has a well-defined rank. Of course, the sequence of the ranks

of the groups Gk is eventually constant, so it is sufficient to show that, if Gk+1 is a

finite index subgroup of Gk, then Gk+1 = Gk. Let g ∈ Gk. Since Gk+1 has finite

index in Gk, there exists n ≥ 1 such that gn ∈ Gk+1. Therefore, if e is an edge in

Nk+1(e), then gn(e) = e. By Lemma 6.10, this implies that g(e) = e. We have thus

shown that every element of Gk fixes every edge of Nk+1(e), so Gk = Gk+1.

Let now k0 be such that Gk = Gk0 for every k ≥ k0. Then the element gk0 fixes

the whole of T , so gk0 is a non-trivial element of the kernel of the action of G on T .

By Proposition 6.7, this implies that M is fibered.

Let us now consider the case when M consists of a single piece. Being non-fibered,

M consists of a purely hyperbolic piece. Therefore, π1(M) is a non-elementary, rel-

atively hyperbolic group. For these groups, Arzhantseva and Minasyan [AM] have

shown that being C∗-simple is equivalent to having no non-trivial finite normal sub-

group. Since π1(M) is torsion-free, this latter condition is automatically satisfied,

and hence π1(M) is indeed C∗-simple.

6.9. SQ-universality

Recall that a group G is SQ-universal if every countable group can be embed-

ded into a quotient of G. It is proved in [DGO] that a group G containing a

non-degenerate hyperbolically embedded subgroup is SQ-universal. Together with

Proposition 6.2, this readily implies the following:

Proposition 6.29. — Let G be a non-trivial acylindrical graph of groups, and let

G be the fundamental group of G. Then G is SQ-universal if and only if G is not

exceptional.

Proof. — If G is not exceptional, then G is SQ-universal by Proposition 6.2

and [DGO, Theorem 2.30]. If G is exceptional, then G is virtually abelian, so it

cannot be SQ-universal.

Our next result provides sufficient conditions under which the fundamental group

of an (extended) graph manifold is SQ-universal.

Proposition 6.30. — Let M be an (extended) graph manifold, and assume that at

least one of the following conditions holds:

1. M consists of a single piece without internal walls, or

2. M contains at least one separating internal wall, or

3. M contains at least one internal wall with transverse fibers.

Then π1(M) is SQ-universal.
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Proof. — (1): If M consists of a single piece, then π1(M) ∼= π1(V ) × Zk, where

V is a finite volume hyperbolic manifold of dimension ≥ 3. Since π1(V ) is a non-

elementary (properly) relatively hyperbolic group, work of Arzhantseva, Minasyan

and Osin [AMO] implies that π1(V ) is SQ-universal. Since π1(M) surjects onto a

SQ-universal group, it is itself SQ-universal.

(2): We first recall that Lyndon & Schupp [LySc] provide some criterions under

which an amalgamation or HNN-extension is SQ-universal. For a group A, define a

blocking set for a subgroup C ≤ A to be a pair of distinct elements {x, y} ⊂ A \ C
with the property that all the intersections x±1Cy±1 ∩ C = {1}. Then [LySc, pg.

289, Theorem V.11.3] establishes that, if the subgroup C is blocked inside A, the

amalgamation G = A ∗C B is SQ-universal.

We now verify that the conditions for SQ-universality are fulfilled for the amalga-

mations that arise in case (2) of our statement. In this case, the group π1(M) splits

as an amalgamation over C := Zn−1, with the two vertex groups A,B themselves

fundamental groups of (extended) graph manifolds (with fewer pieces than M). Since

the amalgamating subgroup Zn−1 is contained in a piece, it is sufficient to show that

a blocking set exists within the fundamental group of that piece. By projecting onto

the first factor, the group π1(V )× Zk acts on Ĥn−k, a copy of hyperbolic space with

a suitable π1(V )-equivariant collection of (open) horoballs removed. The subgroup

C = Zn−1 can then be identified with the subgroup that leaves invariant a fixed

boundary horosphere H ⊂ ∂(Ĥn−k). In this context, the blocking condition requires

us to find two elements x, y ∈ π1(V ) \C with the property that x±1Cy±1 ∩C = {1},
which is equivalent to (x±1Cy±1) · H 6= H. The π1(V ) action on Ĥn−k is via isome-

tries, so it is sufficient to show that we can find elements x, y having the property

that the following sets of distances satisfy:{
d(x±1 · H,H)

}
∩
{
d(y±1 · H,H)

}
= ∅.

Now pick x ∈ π1(V ) stabilizing some horosphere H′ (distinct from H). Then we

know that x does not leave any other horosphere invariant, so d(x±1 · H,H) > 0.

Moreover, taking large powers of x, we can find an n for which the two real numbers

d(x±n · H,H) are as large as we want. In particular, there exists a sufficiently large

n ∈ N such that, for y := xn, the distance d(y±1 · H,H) exceeds the distances

d(x±1 · H,H).

By the discussion in the previous paragraph, this implies that {x, y} form a blocking

set for the Zn−k−1 subgroup in π1(V ) corresponding to the stabilizer of the horosphere

H. Taking the product with any element in the Zk factor gives a blocking set for the

subgroup Zn−1 inside π1(V )× Zk. This completes the verification of SQ-universality

in case (2).

(3): Suppose now that M contains at least one internal wall with transverse

fibers. Then Proposition 6.6 implies that π1(M) is the fundamental group of a
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non-exceptional acylindrical graph of groups, so the conclusion follows from Proposi-

tion 6.29.

6.10. Solvable word problem

We now shift our attention to an algorithmic question. Given a finite presentation

of a group G, the word problem asks whether there exists an algorithm for deciding

whether or not two words w1, w2 in the generators represent the same element in the

group G. Building on work of Dehn, who resolved the case where G is a surface group,

we know that this question is equivalent to the presentation having a recursive Dehn

function (see Gersten [Ge2]). It is possible to formulate this condition in terms of the

coarse geometry of G, and this approach would be probably quite convenient to study

the solvability of the word problem for fundamental groups of graph of groups (see also

Remark 6.33 below). However, in this Section we prefer to develop more geometric

arguments, that may be applied to the study of fundamental groups of Riemannian

manifolds. In fact, in the case where the group G is the fundamental group of a

compact connected Riemannian manifold (possibly with boundary), a consequence

of the well known Filling Theorem (see e.g. Burillo and Taback [BuTa]) is that the

word problem for G is solvable if and only if the 2-dimensional filling function for

the universal cover M̃ has a recursive upper bound. As we will require this in our

arguments, we remind the reader of the definition of the 2-dimensional filling function:

AreaM (L) := sup
c

inf
D

{
Area(D) | D : D2 → M̃, D|∂D2 = c, L(c) ≤ L

}
.

In other words, we find a minimal area spanning disk for each curve, and try to

maximize this area over all curves of length ≤ L. We are now ready to show:

Proposition 6.31. — Let M be a compact manifold, and assume that M contains

an embedded finite family of pairwise disjoint 2-sided smooth submanifolds Ni, cutting

M into a finite collection of connected open submanifolds Mj (denote by M̄j their

closure). Moreover, assume this decomposition has the following properties:

(a) each inclusion Ni ↪→ M̄j, and M̄j ↪→M is π1-injective,

(b) each π1(Ni) is a quasi-isometrically embedded subgroup of π1(M), and

(c) each π1(Mj) has solvable word problem.

Then the group π1(M) also has solvable word problem.

Proof. — To show that π1(M) has solvable word problem, we need to find a recursive

function F : N → N having the property that, if γ : S1 → M̃ is any closed curve of

length ≤ n, one can find a bounding disk H : D2 → M̃ with area ≤ F (n). This will

be achieved by giving a construction for finding a bounding disk, and verifying that

the resulting areas are bounded above by a recursive function.
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From hypothesis (a), π1(M) is the fundamental group of a graph of groups G,

with vertex groups isomorphic to the various π1(Mj), and edge groups isomorphic

to the various π1(Ni). Let T denote the associated Bass-Serre tree. Take closed

tubular neighborhoods N̂i ⊃ Ni be of the various Ni, chosen small enough so as to be

pairwise disjoint. Let M̂j ⊃ Mj be the manifold with boundary obtained by taking

the union of M̂j with all of the various N̂i (ranging over all Ni that occur as boundary

components of M̂j). The inclusion M̄j ⊂ M̂j is clearly a π1-isomorphism.

Next, let us construct a map from M to the graph G. This is achieved by mapping

each N̂i ∼= Ni × [−1, 1] to the edge labelled by the corresponding π1(Ni), by first

collapsing N̂i onto the interval factor [−1, 1], and then identifying the interval with

the edge. Finally, each connected component of the complement M \
⋃
N̂i is entirely

contained inside one of the submanifolds Mj ; we map the component to the vertex

vj ∈ G whose label is π1(Mj). This map lifts to an equivariant map Φ : M̃ → T ,

which we will use to analyze the behavior of a closed loop γ : S1 → M̃ . Note that Φ

is essentially the map defining the “tree of spaces” structure on M̃ , see Section 2.4

(particularly the discussion around Definition 2.12).

Our analysis of the loop γ will start by associating a type to each point in S1, i.e. by

defining a map from S1 to the vertex set of T . Using the map Φ ◦ γ, we first assign

the type of any point lying in the pre-image of a vertex v ∈ T to be that same vertex.

We now need to discuss how to extend this map to points in the preimage of an open

edge e◦ ⊂ T (i.e. e◦ excludes the two endpoints of e). Each connected component

of the pre-image of e◦ is either the whole S1, or an open interval U = (a, b) in the

circle, which inherits an orientation from the ambient S1. In the first case, we choose

an endpoint v of e, and we simply establish that every point of S1 has type equal to

v. Otherwise, the two endpoints of the interval U = (a, b) either (i) map to the same

vertex v in T , or (ii) map to distinct vertices v, w in T . In case (i), we define the type

of that interval to be the vertex v. In case (ii), taking into account the orientation on

the interval, we can talk of an “initial vertex” Φ
(
γ(a)

)
= v, and a “terminal vertex”

Φ
(
γ(b)

)
= w. The restriction of γ to U = (a, b) maps into a subset N̂i. Let t ∈ (a, b)

be the largest t so that γ(t) ∈ Ni. Then we define the type of the points in (a, t] to

be v, and the type of the points in (t, b) to be w. By construction, we have that the

type function ρ : S1 → V ert(T ) takes on values contained in the image of Φ ◦ γ(S1),

and hence only assumes finitely many values (as the latter set is compact).

Let us now fix a vertex v of T . Having defined the type function ρ : S1 → V ert(T )

associated to the closed loop γ, we now have that either ρ−1(v) is equal to the whole

S1, or the preimage ρ−1(v) satisfies the following properties:

1. each connected component of ρ−1(v) is a half-open interval (ak, bk] ⊂ S1, and

there are finitely many such components,
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2. there exists a fixed connected lift
˜̂
Mj of some M̂j with the property that the

restriction of γ to each connected component (ak, bk] has image αk contained

entirely inside
˜̂
Mj ,

3. the point γ(ak) lies on the lift Wk of some Nj , and the point γ(bk) lies on the

lift W ′k of some (possibly distinct) Nj′ , and

4. if one considers the cyclically ordered collection of intervals (ak, bk] along the

circle S1, then we have that W ′k = Wk+1.

Except for the fact that there are finitely many components in ρ−1(v) (which will be

justified later), the four properties stated above follow immediately from the definition

of the type function ρ. Let us concentrate on the case when ρ−1(v) is not the whole S1,

the case when ρ is constant being much easier. We proceed to construct a bounding

disk for γ, where γ has length ≤ L ∈ N, and to estimate the resulting area. This will

be achieved by first expressing γ as a concatenation of loops γv, where v ranges over

all the (finitely many) types associated to the loop γ. The bounding disk for γ will

be obtained by concatenating the bounding disks for the γv.

So let v ∈ V ert(T ) lie in the range of the type function, and consider the connected

lift
˜̂
Mj given by property (2). Each Wk appearing in property (3) is a connected lift

of one of the Ni. From hypothesis (a), Wk is a copy of the universal cover of Ni, and

from hypothesis (b), the inclusion Wk ↪→ M̃ is a quasi-isometric embedding. As there

are only finitely many such Ni in M , we can choose constants C,K ∈ N so that all the

inclusions Wk ↪→ M̃ are (C,K)-quasi-isometries. The two points γ(bk−1) ∈W ′k−1 and

γ(ak) ∈Wk are contained in the same Wk by property (4); let βk be a minimal length

curve in Wk joining them together. The distance between these two points is clearly

≤ L in M̃ , so as measured inside the submanifold Wk, their distance is ≤ CL + K.

Define the loop γv by cyclically concatenating α1∗β1∗α2∗β2∗· · ·∗αr∗βr. Since each of

the βi has length ≤ CL+K, while the union of the αi has length ≤ L (being a subpath

of the loop γ), we can estimate the total length of γv to be ≤ r · (CL+K) + L ∈ N.

So to complete our estimate on the length of γv, we need to estimate the integer

r (this will also justify the “finitely many” in property (1) above). For any of the

intervals U = (ak, bk] ⊂ S1 in ρ−1(v), the type of the point ak is a vertex w which

is adjacent to v. Correspondingly, there is another subinterval V ⊂ S1, consisting

of points of type w, which satisfies V ∩ Ū = {ak}. Moreover, there exists a small

neighborhood [ak−ε, ak+δ] ⊂ V ∪U whose image under γ lies entirely in a connected

lift
˜̂
Ni of some N̂i, and whose endpoints map to opposite boundary components of˜̂

Ni ∼= Ñi × [−1, 1]. For each of the N̂i ⊂ M , we let λi > 0 denote the minimal

distance between the two boundary components of N̂i ∼= Ni× [−1, 1]. Since there are

only finitely many such N̂i, we can find a λ ∈ N so that 1/λ ≤ min{λi}. We have

seen above that to each connected component inside each of the sets ρ−1(v) (where

v ∈ V ert(T )), we can associate a subpath of γ contained inside a connected lift of
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one of the N̂i, which moreover connects opposite boundary components of the lift.

These paths are pairwise disjoint, and from the discussion above, have length ≥ 1/λ.

We conclude that the total number of such paths is bounded above by λ · L ∈ N. In

particular, this gives us the upper bound λ · L for:

– the number r of connected components in ρ−1(v), for any v ∈ V ert(T ), and

– the total number of vertices v ∈ V ert(T ) for which ρ−1(v) is non-empty.

Combining this with our estimate above, we see that the total length of γv is bounded

above by the natural number λCL2 + λKL+ L.

From hypothesis (a), the space
˜̂
Mj can be identified with the universal cover of M̂j .

From hypothesis (c), π1(Mj) has solvable word problem, and hence the 2-dimensional

filling function Area
M̂j

on
˜̂
Mj has a recursive upper bound Fj : N → N. Observe

that there are only finitely many M̂j inside the manifold M , hence we can choose

a single recursive F : N → N which serves as a common upper bound for all the

2-dimensional filling functions for the
˜̂
Mj (for instance, take F =

∑
Fj). Then we

can find a bounding disk for γv whose area is ≤ F (λCL2 + λKL+ L). Finding such

a bounding disk for each of the vertices v in the range of the type map ρ, we obtain

a bounding disk for the original curve γ. As we know that there are ≤ λ · L vertices

in the range of ρ, we conclude that the original curve γ has a bounding disk of total

area

≤ λ · L · F
(
λCL2 + λKL+ L

)
Finally, we recall that the class of recursive functions is closed under composition

as well as elementary arithmetic operations, and hence the function

G(L) := λ · L · F
(
λCL2 + λKL+ L

)
provides the desired recursive upper bound for the function AreaM . From the Filling

Theorem [BuTa], we conclude that π1(M) has a recursive Dehn function, and hence

that the word problem is solvable for π1(M).

Note that the obvious decomposition of a graph manifold into pieces satisfies prop-

erty (a) in the statement of the previous Proposition. Moreover, since all the pieces

support a locally CAT(0) metric, their fundamental groups have solvable word prob-

lem (see for instance Bridson and Haefliger [BrHa, Section 3.Γ, Theorem 1.4]), so

property (c) always holds. Finally, the main result of Chapter 7 guarantees that, if

the graph manifold is assumed to be irreducible, then properties (b) also holds (see

Theorem 7.11). This gives us the immediate:

Corollary 6.32 (Irreducible ⇒ solvable word problem)
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For M an irreducible graph manifold, the fundamental group π1(M) has solvable

word problem.

Remark 6.33. — (1) The above proposition doesn’t seem to appear in the literature,

though it is no doubt well-known to experts. Indeed, estimates for the Dehn function

of a free product with amalgam (or HNN-extension) in terms of the Dehn functions

of the vertex groups along with estimates of the relative distortion of the edge group

inside the vertex groups first seems to have been studied in the (unpublished) thesis of

A. Bernasconi [Be]. See also the stronger estimates recently obtained by Arzhantseva

and Osin [AO].

(2) The argument given in the proposition shows that, assuming all vertex groups

have solvable word problem, the complexity of the word problem for the fundamental

group of a graph of groups is closely related to the distortion of the edge/vertex

groups in the ambient group (see also the discussion in Farb [Fa1]). In fact, one can

weaken hypothesis (c) in the statement of the proposition by instead requiring the

distortion of each π1(Ni) inside π1(M) to be bounded above by a recursive function

(generalizing the linear bound one has in the special case of a QI-embedding). The

same argument works to show that π1(M) still has solvable word problem.

6.11. Gluings and isomorphism type

In this final section, we consider the question of when the fundamental groups of

a pair of graph manifolds are isomorphic. Let us first recall that, by Theorem 4.14, a

pair M1,M2 of graph manifolds can have isomorphic fundamental groups only if there

is a bijection between the pieces of M1 and the pieces of M2, having the property

that the bijection respects the fundamental groups of the pieces. This implies that

the only possible freedom occurs in the gluing maps, telling us how the various pieces

are glued to each other.

For the sake of simplicity, we will only treat the case when the pieces involved are

constructed starting from cusped hyperbolic manifolds of a fixed dimension n ≥ 3 and

toric fibers of a fixed dimension k ≤ n− 2. Let us fix a finite directed graph G, that

is a finite connected CW-complex of dimension one with an orientation attached to

every edge, and let V, E be the sets of vertices and edges of G. As usual, the valency

of a vertex v of G is the total number of germs of edges starting or ending at v. For

each v ∈ V with valency h let Nv be a (truncated) cusped hyperbolic n-manifold with

at least h cusps, and set Vv = Nv × T k. We define Gv = π1(Vv) = π1(Nv)× Zk, and

we associate to every germ of edge starting or ending at v a subgroup He,v of Gv, in

such a way that the following conditions hold:

– each He,v is (a fixed representative in the conjugacy class of) the fundamental

group of a boundary component of Vv;
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– He,v is not conjugated to He′,v whenever e 6= e′, i.e. subgroups corresponding

to different edges with an endpoint in v are associated to different boundary

components of Vv.

As a consequence, every He,v is isomorphic to Zn+k−1. The graph G and the groups

Gv, He,v determine what we call a pregraph of groups.

For every e ∈ E let now v−(e), v+(e) ∈ V be respectively the starting point and

the ending point of e. A gluing pattern for G is a collection of group isomorphisms

Φ = {ϕe : He,v−(e) → He,v+(e), e ∈ E}. We say that Φ is irreducible if for every e ∈ E
the fiber subgroup of He,v+(e) intersects trivially the image of the fiber subgroup of

He,v−(e) via ϕe. Of course, every gluing pattern for G defines a graph of groups

(G,Φ), which has in turn a well-defined fundamental group π1(G,Φ), according to the

Bass-Serre theory. We say that (G,Φ) is supported by G, and is irreducible if Φ is.

Let M(G) be the set of diffeomorphism classes of graph manifolds obtained by

gluing the pieces Vv, v ∈ V according to the pairing of the boundary components

encoded by the edges of G. It follows by Theorem 0.7 that the isomorphism classes

of fundamental groups of (irreducible) graph of groups supported by G coincide with

the isomorphism classes of fundamental groups of (irreducible) manifolds in M(G).

Remark 6.34. — The assumption k ≤ n− 2 on the dimensions of toric and hyper-

bolic factors of the pieces will play a crucial role in the proof of Theorem 6.35 below.

Note however that there could not exist irreducible gluing patterns for G if the dimen-

sion of the toric factors of the pieces exceeded the dimension of the hyperbolic factors.

Moreover, it seems reasonable (and the proof of Theorem 6.35 strongly suggests) that

an analogue of Theorem 6.35 could also hold when different pieces have toric factors

of variable dimensions, provided that such dimensions are sufficiently small.

The main result of this section is the following:

Theorem 6.35. — Suppose that G has at least two vertices. Then, there exist

infinitely many irreducible graphs of groups supported by G with mutually non-

isomorphic fundamental groups. Equivalently, there exist infinitely many diffeomor-

phism classes of irreducible manifolds in M(G).

Proof. — An automorphism of a pregraph of groups is a combinatorial automorphism

ϕ of G (as an undirected graph) such that Gϕ(v) is isomorphic to Gv for every v ∈ V (as

discussed at the beginning of the proof of Lemma 5.5, this is equivalent to requiring

that Vϕ(v) is diffeomorphic to Vv for every v ∈ V). We say that a pregraph of groups is

without symmetries if it does not admit non-trivial automorphisms. We first consider

the case when G is without symmetries.

Since G has at least two vertices, there exists an edge e ∈ E with distinct endpoints

v1 = v−(e), v2 = v+(e). We fix this edge for use in the rest of the proof.

Let Φ, Φ′ be irreducible gluing patterns for G. Consider ϕ : He,v1 → He,v2

(resp. ϕ′ : He,v1 → He,v2) the isomorphism of Φ (resp. of Φ′) associated to the edge
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e. We say that Φ′ is equivalent to Φ if there exist an automorphism ψ1 of Gv1 and

an automorphism ψ2 of Gv2 such that ψ1(He,v1) = He,v1 , ψ2(He,v2) = He,v2 and

ϕ′ ◦ ψ1|He,v1
= ψ2|He,v2

◦ ϕ. Note that this notion of equivalence is only sensitive

to the behavior of the gluing along the single edge e, and completely ignores what

happens along the remaining edges in G.

Now, the proof of Theorem 6.35 (in the case of pregraphs of groups without sym-

metries) will follow immediately from the following two facts:

Fact 1: If π1(G,Φ) ∼= π1(G,Φ′), then Φ is equivalent to Φ′.

Fact 2: There exist infinitely many pairwise non-equivalent irreducible gluing pat-

terns for G.

Let us begin by establishing Fact 1. Let ψ : π1(G,Φ) → π1(G,Φ′) be a group

isomorphism. By Theorem 4.14, the isomorphism ψ induces an automorphism of G.

But by hypothesis, we are in the case where G has no symmetries, so the automorphism

of G must be the identity. In particular, we have ψ(G1) = g1G
′
1g
−1
1 , ψ(G2) = g2G

′
2g
−1
2 ,

where Gi (resp. G′i) is the image of Gvi in π1(G,Φ) (resp. in π1(G,Φ′)), and g1, g2 are

elements in π1(G,Φ′). If H (resp. H ′) is the image in π1(G,Φ) (resp. in π1(G,Φ′)) of

He,v1 and He,v2 (which are identified by the very definition of fundamental group of

a graph of groups), since ψ induces the identity of G we also have ψ(H) = g3H
′g−1

3

for some g3 ∈ π1(G,Φ′).
Up to conjugating ψ, we can assume g1 = 1, so that ψ(G1) = G′1. Next note that

we have g3H
′g−1

3 = ψ(H) ⊆ ψ(G1) = G′1, so H ′ ⊆ g−1
3 G′1g3 ∩ G′1. By Lemma 2.16-

(5), this implies that either g3 ∈ G′1, or H ′ corresponds to an edge of G having both

endpoints on the vertex representing G′1. But recall that the edge e was chosen to

have distinct endpoints, ruling out this last possibility. So at the cost of conjugating ψ

with g−1
3 , we may further assume that g3 = 1, and both ψ(G1) = G′1 and ψ(H) = H ′.

As a consequence we have H ′ = ψ(H) ⊆ ψ(G2) = g2G
′
2g
−1
2 , so H ′ ⊆ g2G

′
2g
−1
2 ∩ G2,

whence g2 ∈ G′2 as above and ψ(G2) = G′2.

We have thus proved that ψ induces isomorphisms G1
∼= G′1, G2

∼= G′2 which

“agree” on H = G1 ∩ G2. More precisely, for i = 1, 2 there exists an isomorphism

ψi : Gvi → Gvi such that the following conditions hold: ψi(He,vi) = He,vi for i = 1, 2,

and ϕ′ ◦ ψ1|He,v1
= ψ2|He,v2

◦ ϕ. By definition, this means that Φ is equivalent to Φ′,

and Fact 1 is proved.

Let us now prove Fact 2. Recall that for i = 1, 2 we have an identification

Gvi
∼= Γi × Zk, where Γi = π1(Nvi). We also denote by Li the subgroup of Γi

such that Li × Zk < Γi × Zk corresponds to He,vi under the above identification. As

showed in the proof of Lemma 5.5, every automorphism of Gvi = Γi×Zk is of the form

(g, v) 7→ (θi(g), αi(g) +βi(v)), where θi : Γi → Γi and βi : Zk → Zk are isomorphisms,

and αi : Γi → Zk is a homomorphism. We now claim that, in a sense to be made
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precise below, if we restrict to automorphisms leaving Li invariant, then there exist

at most a finite number of possibilities for the isomorphism θi.

Let Θ̃i be the group of automorphisms of Γi leaving Li invariant, and let Θi be

the group of automorphisms of Li given by restrictions of elements of Θ̃i. For g ∈ Γi,

we denote by cg ∈ Aut(Γi) the conjugation by g. If θ, θ̂ ∈ Θ̃i are such that θ = cg ◦ θ̂
for some g ∈ Γi, then gLig

−1 = Li, whence g ∈ Li (see the proof of Lemma 2.16-(1)).

Since Li is abelian, this implies that θ and θ̂ restrict to the same element of Θi. As

a consequence, Θi has at most the cardinality of the group of outer automorphisms

of Γi, which is finite by Mostow rigidity (together with the well-known fact that the

group of isometries of a complete finite-volume hyperbolic manifolds is finite). We

have thus proved the fact claimed above that Θi is finite.

For i = 1, 2, let us now fix a free basis of Li×Zk ∼= Zn+k−1 whose first n−1 elements

give a basis of Li and whose last k elements give a basis of Zk. Under the induced

identification of Li with Zn−1, the group Θi is identified with a finite subgroup of

SL(n− 1,Z) , which will still be denoted by Θi. Moreover, we may identify the group

of automorphisms of He,vi
∼= Li × Zk with the group of matrices SL(n + k − 1,Z).

The discussion above shows that under these identifications every automorphism of

Li × Zk which extends to an automorphism of Gvi has the form(
θi 0

vi wi

)
∈ SL(n+ k − 1,Z), θi ∈ Θi < SL(n− 1,Z),

and any isomorphism between ϕ : He,v1 → He,v2 may be represented by a matrix(
A B

C D

)
∈ SL(n+ k − 1,Z),

where A,D have order (n−1)× (n−1) and k×k respectively. Moreover, it is readily

seen that ϕ can be extended to an irreducible gluing pattern if and only if rk(B) = k.

Now, since k < n−1 and Θ2 is finite, it is possible to construct an infinite sequence

{Bj}j∈N of matrices of order (n− 1)× k such that the following conditions hold:

– rkBj = k for every j ∈ N;

– if Λj is the subgroup of Zn−1 generated by the columns of Bj , j ∈ N, and

Λj = θ(Λh) for some θ ∈ Θ2, then necessarily j = h.

Let ϕj : He,v1 → He,v2 , j ∈ N, be the isomorphism represented by the matrix

Pj =

(
Idn−1 Bj

0 Idk

)
,

and extend ϕj to an irreducible gluing pattern Φj . We now claim that Φj is not

equivalent to Φh if j 6= h, thus concluding the proof of (2). In fact, if Φj is equivalent
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to Φh, then there exist matrices

N1 =

(
θ1 0

v1 w1

)
, N2 =

(
θ2 0

v2 w2

)

such that θi ∈ Θi, wi ∈ SL(k,Z) for i = 1, 2, and PjN1 = N2Ph. It is readily seen that

this condition implies the equality Bjw1 = θ2Bh. Since w1 ∈ SL(k,Z), this implies in

turn Λj = θ2(Λh), whence j = h by the properties of the Bj ’s listed above. We have

thus proved the theorem under the assumption that G is without symmetries.

In the general case, the arguments just described ensure that an infinite family

{Φi}i∈N of irreducible gluing patterns exists such that, if i 6= j, then π1(G,Φi) is not

isomorphic to π1(G,Φj) via an isomorphism inducing the identity of G. Suppose now

by contradiction that the groups π1(G,Φi) fall into finitely many isomorphism classes.

Then, up to passing to an infinite subfamily, we may suppose that for every i, j ∈ N
there exists an isomorphism ψij : π1(G,Φi) → π1(G,Φj) inducing the automorphism

δij of G. Since the group of automorphisms of G is finite, there exist h, k ∈ N\{0} such

that h 6= k and δ0h = δ0k. Therefore, the map ψ0k ◦ ψ−1
0h establishes an isomorphism

between π1(G,Φh) and π1(G,Φk) inducing the identity of G, a contradiction.

Remark 6.36. — The assumption that G has at least two vertices is not really

necessary. In the case that G has only one vertex, we could provide a different proof

of Theorem 6.35 just by replacing our analysis of isomorphisms between amalgamated

products with an analogous analysis of isomorphisms between HNN-extensions.

Remark 6.37. — The strategy described in the proof of Theorem 6.35 can also be

applied to the examples discussed in Remark 11.12, where an infinite family {Mi}i≥1

of irreducible manifolds not supporting any CAT(0) metric is constructed by gluing

two fixed 4-dimensional pieces V1, V2 along their unique boundary component. With

notation as in Corollary 11.11 and Remark 11.12, we now show that if V1 is not

diffeomorphic to V2, then Mi is not diffeomorphic to Mj for every i, j ∈ N, i 6= j.

Let us choose bases for the fundamental groups of the boundary components of

V1, V2 (such components are 3-dimensional tori) in such a way that the first vector is

null-homologous in Vi, i = 1, 2, and the last one belongs to the fiber subgroup (which

is isomorphic to Z). Then the gluing map defining Mn is encoded by the matrix

An =

 1 ∗ 1

0 ∗ 0

0 ∗ n

 .

Moreover, every homomorphism of the fundamental group of a piece into the fiber

subgroup (which is abelian) vanishes on null-homologous elements, whence on hor-

izontal slopes. So any automorphism of the fundamental group of each of the two
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pieces, when restricted to the boundary, gives an automorphism of the form ∗ ∗ 0

∗ ∗ 0

0 ∗ ±1


(see the proof of Theorem 6.35). It is now readily seen that if N1, N2 are matrices of

this form, then we have

N1An =

 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ±n

 6=
 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ±m

 = AmN2.

Now, since V1 is not diffeomorphic to V2, the Mi’s are associated to a graph without

symmetries. As explained in the proof Theorem 6.35, this is now sufficient to conclude

that the Mi’s are pairwise non-diffeomorphic.

Also, observe that by the proof of Theorem 6.35, if V1 is diffeomorphic to V2

we can still conclude that among the Mi’s there exist infinitely many pairwise non-

diffeomorphic manifolds.
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CHAPTER 7

IRREDUCIBLE GRAPH MANIFOLDS

In Section 2.6 we proved that there exist examples of graph manifolds M with

the property that certain walls of M̃ are not quasi-isometrically embedded in M . In

order to study in detail the quasi-isometric properties of the fundamental groups of

graph manifolds, we would like to find conditions that prevent this phenomenon to

occur. The main result of this Chapter shows that, if M is irreducible, then walls and

chambers of M̃ are quasi-isometrically embedded in M̃ .

By Milnor-Svarc Lemma and Proposition 6.4, this fact may be restated as fol-

lows. Let us fix the description of π1(M) as the fundamental group of the graph of

groups corresponding to the decomposition of M into pieces; if this graph of groups

is acylindrical, then edge groups and vertex groups are quasi-isometrically embedded

in π1(M).

Acylindricity plays a fundamental role in analogous results for hyperbolic or rela-

tively hyperbolic groups. For example, in [Ka] it is shown that edge groups and vertex

groups of an acylindrical graph of hyperbolic groups are quasi-isometrically embed-

ded in the fundamental group of the graph of groups, provided that edge groups are

quasi-isometrically embedded in the “adjacent” vertex groups (this is always the case

in our case of interest). A similar result in the context of relatively hyperbolic groups

may be deduced from [Da, Theorem 0.1–(1)].

It would be interesting to find less restrictive conditions under which the walls of

M̃ are ensured to be quasi-isometrically embedded. In our situation, the fundamental

groups of the pieces are semihyperbolic in the sense of [AlBr]. Since every free abelian

subgroup of a semihyperbolic group is quasi-isometrically embedded, an (apparently

difficult) strategy could be to find conditions on a graph of semihyperbolic groups in

order to ensure that the fundamental group of the graph is itself semihyperbolic.

Some further discussion of related issues can be found in Section 12.2.
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7.1. The geometry of chambers and walls

Let M be a graph n-manifold. The boundary of each internal wall W of M̃ decom-

poses into the union of two connected components W+, W−, while if W is a boundary

wall, we simply set W+ = W− = W . We call W+,W− the thin walls associated to W ,

and we denote by dW± the path metric on W± induced by the restriction of the Rie-

mannian structure of M̃ . If W is an internal wall, then the canonical product structure

on the image of W in M induces a canonical product structure W = Rn−1 × [−3, 3]

with W± = Rn−1 × {±3}. If p = (x, 3) ∈ W+, q = (y,−3) ∈ W−, we say that p, q

are tied to each other if and only if x = y. If W is a boundary wall, we say that

p ∈ W+ = W is tied to q ∈ W− = W if and only if p = q. Finally, for every wall

W we denote by sW : W+ → W− the map that associates to each p ∈ W+ the point

sW (p) ∈W− tied to p. Note that, by the restriction on our gluing maps, the map sW
is an affine diffeomorphism.

In order to study the quasi-isometry type of M̃ we first need to understand the

geometry of its chambers. Recall that if C ⊆ M̃ is a chamber, then there exists an

isometry ϕ : C → B × Rk, where B ⊆ Hn−k is a neutered space (such an isometry

is unique up to postcomposition with the product of isometries of B and Rk). Also

recall that B is the base of C, and F = Rk the fiber of C. If πB : C → B, πF : C → F

are the natural projections, for every x, y ∈ C, we denote by dB(x, y) the distance

(with respect to the path metric of B) between πB(x) and πB(y), and by dF (x, y) the

distance between πF (x) and πF (y) (so by construction d2
C = d2

B + d2
F ).

Definition 7.1. — We recall that a metric space X is geodesic if for every x, y ∈ X
there exists a rectifiable curve γ : [0, 1] → X joining x to y whose length is equal

to d(x, y) (the constant speed parameterization of such a curve is called geodesic).

Suppose S is a submanifold of the (possibly bounded) simply connected Riemannian

manifold X, and let d be the Riemannian metric of X. We say that S is totally

geodesic in (X, d) (in the metric sense) if for every p, q ∈ S there exists a geodesic

of X which joins p to q and whose support is contained in S. In this case, the path

metric associated to the restriction of d to S coincides with the restriction of d to S.

Let B be a neutered space, endowed with its path metric. Then, it is well-known

(see e.g. [BrHa, pgs. 362-366]) that every component of ∂B is totally geodesic in B,

even if its extrinsic curvature in B does not vanish.

Lemma 7.2. — For W an arbitrary wall, we have:

1. if C is the chamber containing W±, then the inclusion (W±, dW±) ↪→ (C, dC) is

isometric;

2. the inclusion (W±, dW±) → (W,dW ) is a bi-Lipschitz embedding and a quasi-

isometry;

3. the map sW : (W+, dW+
)→ (W−, dW−) is a bi-Lipschitz homeomorphism.
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(Of course, points (2) and (3) are trivial if W is a boundary wall).

Proof. — We have just recalled that the boundary components of a neutered space are

totally geodesic (in the metric sense). Therefore, if W± is a thin wall contained in the

chamber C, we have that W± is a totally geodesic (in the metric sense) hypersurface

of C. In particular, the path metric induced on W± by the Riemannian structure on

M̃ is isometric to the restriction of dC , whence (1).

Concerning (2), first observe that, by definition of induced path metric, the in-

clusion i : W± ↪→ W is 1-Lipschitz. The map i is the lift of an embedding which

induces an isomorphism on fundamental groups, so by the Milnor-Svarc Lemma, i is

a quasi-isometry. This guarantees that i is bi-Lipschitz at large scales, i.e. that there

exist constants C ′ ≥ 1, R > 0 such that

dW±(x, y) ≤ C ′dW (x, y) whenever dW±(x, y) ≥ R.

We need to control distances within the range 0 ≤ dW±(x, y) ≤ R. Observe that

this inequality describes a region K ⊆ W± ×W± which is invariant under the obvi-

ous diagonal Zn−1-action. Moreover, the quotient space K/Zn−1 is easily seen to be

compact. If K ′ = K \ {(x, x), x ∈ W±}, then the ratio dW±/dW defines a positive

continuous function on K ′. It is not difficult to see that such a function extends to a

continuous f : K → R such that f(x, x) = 1 for every x ∈ W±. Moreover, f is obvi-

ously Zn−1-equivariant, so compactness of K/Zn−1 implies that f is bounded above

by some constant C ′′. This implies that i is max{C ′, C ′′}-bi-Lipschitz, giving (2).

Similarly, sW is obtained by lifting to the universal coverings a diffeomorphism

between compact manifolds, and is therefore bi-Lipschitz.

7.2. An important consequence of irreducibility

The following lemma shows how irreducibility is related to the behaviour of the

metric of M̃ near the internal walls. Informally, it shows that points which almost

lie on the same fiber of a thin wall are tied to points that are forced to lie on distant

fibers of the adjacent chamber.

Lemma 7.3. — Suppose ψl : T
+
l → T−l is transverse. Let W ⊆ M̃ be a (nec-

essarily internal) wall projecting to a regular neighbourhood of T+
l = T−l in M ,

and let C+, C− ⊆ M̃ be the chambers adjacent to W with bases B+, B−. Then

there exists k ≥ 1 such that the following holds: let x+, y+ ∈ W ∩ C+ = W+

(resp. x−, y− ∈ W ∩ C− = W−) be such that x+ is tied to x− and y+ is tied to

y−; then

dC+
(x+, y+) ≥ kdB+

(x+, y+) =⇒ dC−(x−, y−) ≤ kdB−(x−, y−).
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Proof. — Suppose by contradiction that there exist sequences {xn+}, {yn+} of points

in W+ such that

(7.1) dC+
(xn+, y

n
+) > ndB+

(xn+, y
n
+), dC−(xn−, y

n
−) > ndB−(xn−, y

n
−).

Recall that W+ and W− are endowed with a canonical affine structure, and the map

sW : W+ →W− defined before Lemma 7.2 is an affine diffeomorphism. Let Z+, Z− be

the vector spaces underlying the affine spaces W+, W−, and denote by ŝW : Z+ → Z−
the linear map associated to sW .

The product decompositions of C+ = B+ × F+ and C− = B− × F− induce direct

sum decompositions

Z+ = B̂+ ⊕ F̂+, Z− = B̂− ⊕ F̂−,

and transversality of ψl implies that ŝW (F̂+) ∩ F̂− = {0}.
For every n ∈ N, we denote by vn+ ∈ F̂+, wn+ ∈ B̂+ (resp. vn− ∈ F̂− ,wn− ∈ B̂−) the

vectors uniquely determined by the conditions yn+−xn+ = vn++wn+, yn−−xn− = vn−+wn−.

By Lemma 7.2-(1), the restrictions of the distances dC+
and dC− to W+ and W−

are induced by Euclidean norms ‖ · ‖+, ‖ · ‖− on Z+, Z−. The inequalities (7.1) may

now be rewritten in the following way:

(7.2)
‖vn+ + wn+‖+

n
> ‖wn+‖−,

‖vn− + wn−‖−
n

> ‖wn−‖−.

Up to rescaling, we may suppose that ‖vn+ + wn+‖+ = 1 for every n. Since sW is

bi-Lipschitz, there exists α ≥ 1 such that α−1 ≤ ‖vn− + wn−‖− ≤ α for every n. In

particular, up to passing to subsequences, we may suppose that the sequences {vn+},
{wn+}, {vn−}, {wn−} converge to v+ ∈ F̂+, w+ ∈ B̂+, v− ∈ F̂−, w− ∈ B̂−. Moreover,

we have ŝW (v+ + w+) = v− + w−. As n tends to infinity, inequalities (7.2) imply

w+ = 0, w− = 0, so ŝW (v+) = v−. Since ‖v+‖+ = ‖v+ + w+‖+ = 1, we have that

ŝW (v+) = v− is a non-trivial element in ŝW (F̂+) ∩ F̂− = {0}, and this provides the

desired contradiction.

7.3. The geometry of neutered spaces

The following Proposition provides a useful tool in the study of neutered spaces,

whence of chambers. It is inspired by [Os, Lemma 3.2]:

Proposition 7.4. — Let B be a neutered space. Then there exists a constant Q only

depending on B such that the following result holds. Let γ ⊆ B be a loop obtained by

concatenating a finite number of paths α1, γ1, . . . , αn, γn, where

– each αi is a geodesic on a horosphere Oi ⊆ ∂B,

– each γi is any path in B connecting the endpoint of αi with the starting point

of αi+1, and

– the endpoints of each γi lie on distinct walls.
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Figure 1. Proposition 7.4 provides a bound on the lengths of the αi’s in

terms of the lengths of the γi’s.

Let D ⊆ {1, . . . , n} be a distinguished subset of indices such that Oh 6= Oi for every

h ∈ D, i ∈ {1, . . . , n}, i 6= h. Then∑
h∈D

L(αh) ≤ Q
n∑
i=1

L(γi).

Proof. — Let B be a neutered space, and recall that by the very definitions, the

group of isometries of B contains a discrete torsion-free cocompact subgroup Γ. The

quotient N = B/Γ is obtained by removing horospherical neighbourhoods of the cusps

from a finite-volume hyperbolic manifold. As a consequence, there exists R > 0 such

that the distance between every pair of distinct connected components of ∂B is at

least R, so that

(7.3) n ≤
∑
j L(γj)

R
.

Let {H1, . . . ,Hl} be the collection of subgroups of Γ obtained by choosing a repre-

sentative in each conjugacy class of cusp subgroups of Γ, and recall that Γ is relatively

hyperbolic with respect to the Hi’s. Choose X to be a symmetric set of generators

for Γ satisfying the assumptions of [Os, Lemma 3.2], and let us denote by CΓ the

corresponding Cayley graph of Γ with distance dΓ.

We denote by CΓ the Cayley graph of Γ with respect to the (infinite) set of gener-

ators (X ∪ (H1 ∪ . . . ∪Hl)) \ {1}, and by dΓ the path distance on CΓ (see [Os]).

More precisely, if X̃ is a copy of X, H̃λ is a copy of Hλ and H =
⊔l
λ=1

(
H̃λ \ {1}

)
,

then CΓ is the graph having Γ as set of vertices and Γ × (X̃ ∪ H) as set of edges,

where if y ∈ Γ is the element corresponding to y ∈ X̃ ∪H, then the edge (g, y) has g

and g · y as endpoints. We label the edge (g, y) by the symbol y. Note that different

labels may represent the same right multiplication in Γ: for instance, this is the case
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if there exist letters x ∈ X̃ and y ∈ H̃ representing the same element x = y in Γ,

i.e. if X ∩
(⋃l

λ=1Hλ

)
6= ∅.

Notice that by the very definitions we have a natural inclusion CΓ ↪→ CΓ. Let q

be a (non-based) loop in CΓ labelled by the (cyclic) word w with letters in X̃ ∪ H.

Recall from [Os] that a subpath of a loop q in CΓ is a Hλ-subpath if it is labelled by a

subword of w with letters in H̃λ. An Hλ-component of q is a maximal Hλ-subpath of

q. An Hλ-component q′ of q is not isolated if there exists an Hλ-component q′′ 6= q′

of q such that a vertex in q′ and a vertex of q′′ are joined by an edge labelled by a

letter in H̃λ (in algebraic terms this means that such vertices belong to the same left

coset of Hλ in Γ).

Starting from γ, we wish to construct a loop γ in CΓ. Milnor-Svarc’s Lemma

provides a (µ, ε)-quasi-isometry ϕ : B → CΓ. Up to increasing ε, we can require that

ϕ maps every point of B onto a vertex of CΓ, i.e. onto an element of Γ, and that

every horosphere O ⊆ ∂B is taken by ϕ onto a lateral class of some Hλ. It is easy

to see that if ϕ maps the horospheres O,O′ ⊆ ∂B onto the same lateral class of

the same Hλ, then O = O′. Fix i ∈ {1, ..., n}, suppose that γi is parametrized by

arc length, denote by mi the least integer number such that L(γi) ≤ mi, and set

pji = ϕ(γi(jL(γi)/mi)) ∈ Γ for j = 0, . . . ,mi. Due to our choices we have p0
i ∈ ϕ(Oi)

and pmi
i ∈ ϕ(Oi+1). Now let γ̃i be the path in CΓ obtained by concatenating the

geodesics joining pji and pj+1
i , j = 0, . . . ,mi−1, and let γi be the path in CΓ obtained

by taking the image of γ̃i under the inclusion CΓ ↪→ CΓ. Observe that by construction

every edge of γi is labelled by a symbol in X̃, so no γi contains any Hλ-subpath.

As mi ≤ L(γi) + 1 by our choice of mi, we have the estimate:

L(γi) = L(γ̃i) =

mi−1∑
j=0

dΓ(pji , p
j+1
i ) ≤ µL(γi) +miε ≤ (µ+ ε)L(γi) + ε.

Next, observe that p
mi−1

i−1 and p0
i both lie on ϕ(Oi), and hence belong to the same

left coset of some Hψ(i), ψ(i) ∈ {1, . . . , l}. Thus we can connect p
mi−1

i−1 and p0
i in CΓ

by a path αi which is either constant (if p
mi−1

i−1 = p0
i ), or consists of a single edge

labelled by a symbol in H̃ψ(i). Now define the loop γ = α1 ∗ γ1 ∗ . . . ∗ αn ∗ γn in CΓ.

Using (7.3), we obtain

L(γ) ≤

(
n∑
i=1

L(γi)

)
+ n

≤ (µ+ ε)

n∑
i=1

L(γi) + nε+ n

≤
(
µ+ ε+

ε+ 1

R

) n∑
i=1

L(γi).
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Moreover, due to our assumption on D, for every h ∈ D the subpath αh is (either

constant or) an isolated component of γ, so by [Os, Lemma 3.2] there exists Q′ only

depending on (the Cayley graphs CΓ and CΓ of) Γ such that for every λ = 1, . . . , l∑
h∈D∩ψ−1(λ)

dΓ(p
mh−1

h−1 , p0
mh

) ≤ Q′L(γ),

whence

(7.4)
∑
h∈D

dΓ(p
mh−1

h−1 , p0
mh

) ≤ lQ′L(γ) ≤ lQ′
(
µ+ ε+

ε+ 1

R

) n∑
i=1

L(γi).

On the other hand we have∑
h∈D

dΓ(p
mh−1

h−1 , p0
mh

) ≥ 1

µ

∑
h∈D

L(αh)− εn(7.5)

≥ 1

µ

∑
h∈D

L(αh)− ε

R

n∑
i=1

L(γi).

Putting together inequalities (7.4) and (7.5) we finally get that the inequality of the

statement holds for some Q only depending on µ, ε,Q′, R.

7.4. Walls and chambers are quasi-isometrically embedded in the universal

covering of irreducible graph manifolds

Let us fix the graph manifold M which we are studying. We will now introduce

various constants, which will be extensively used in the rest of the arguments for this

section. Fix the following quantities:

– the constant Q: chosen so that Proposition 7.4 holds for all the bases of the

chambers of M̃ .

– the constant R: the minimal distance between pairs of thin walls not associated

to the same internal wall (note that R is also the minimal distance between

pairs of removed horoballs in the bases of the chambers of M̃).

– the constant D: the maximal distance between pairs of tied points on adjacent

thin walls (here we refer to the path distance of the corresponding wall).

– the constant k: chosen so that Lemma 7.3 holds for all the internal walls in M̃ .

– the constant k′: chosen so that sW : W+ → W− is k′-bi-Lipschitz for every

internal wall W of M̃ .

– the constant c: chosen so that all the inclusions W± ↪→ W are c-bi-Lipschitz

(see Lemma 7.2).

These constants only depend on the geometry of M . In what follows, we will also

assume without loss of generality that Q ≥ 2 and k ≥
√

2.

In order to prove that walls and chambers are quasi-isometrically embedded in

M̃ , we need to show that the distance between points in the same chamber can be
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bounded from below by the distance of the projections of the points on the base of

the chamber. We begin with the following:

Definition 7.5. — Let W± be a thin wall, take x, y ∈W± and let γ be a continuous

path in M̃ joining x and y. We say that γ does not backtrack on W± if γ intersects

the wall containing W± only in its endpoints.

Lemma 7.6. — Let x, y be points on the same thin wall W± and let γ be a path in

M̃ which joins x to y and does not backtrack on W±. If C is the chamber containing

W± and B is the base of C, then L(γ) ≥ dB(x, y)/Q.

Proof. — An easy transversality argument shows that it is not restrictive to assume

that the intersection of γ with C consists of a finite number of subpaths of γ. Now

the sum of the lengths of such subpaths is greater than the sum of the lengths of their

projections on B, which is in turn greater than dB(x, y)/Q by Proposition 7.4.

If the distance of two points on a thin wall is not suitably bounded by the distance

of their projections on the base of the chamber they belong to, then Lemma 7.6 does

not give an effective estimate. The following result can be combined with Lemma 7.3

to show that, in this case, irreducibility allows us to “pass to the adjacent chamber”

in order to obtain a better estimate.

Lemma 7.7. — Let x+, y+ ∈ W+ be points on a thin wall, let C+ be the chamber

containing W+, and suppose that γ is a rectifiable path joining x+ and y+ and inter-

secting C+ only in its endpoints. Let also x−, y− ∈ W− be the points tied to x+, y+,

and C− be the chamber containing x−, y−. Then

L(γ) ≥
dB−(x−, y−)

cQ
− 2D

Q
,

where B− is the base of C−.

Proof. — An easy transversality argument shows that it is not restrictive to assume

that γ intersects the thin walls of M̃ only in a finite number of points. Then our

assumptions imply that γ decomposes as a concatenation of curves

γ = γ′1 ∗ γ′′1 ∗ γ′2 ∗ . . . ∗ γ′′n ∗ γ′n+1

such that γ′i is supported in W and γ′′i has endpoints ai, bi ∈ W− and does not

backtrack on W− for every i (see Figure 2). Let us suppose n ≥ 1 (the case n = 0

being easier). Since dW (x−, x+) ≤ D we have

dB−(x−, a1) ≤ dW−(x−, a1) ≤ cdW (x−, a1) ≤ c(D + L(γ′1)),

and analogously we get dB−(y−, bn) ≤ c(D+L(γ′n+1)). Moreover Lemma 7.6 implies

dB−(ai, bi) ≤ Q · L(γ′′i ) for every i = 1, . . . n, and we also have dB−(bi, ai+1) ≤
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Figure 2. Decomposing γ in the proof of Lemma 7.7.

dW−(bi, ai+1) ≤ cdW (bi, ai+1) ≤ cL(γ′i+1) for every i = 1, . . . , n− 1. Putting together

all these inequalities we finally get

dB−(x−, y−) ≤ dB−(x−, a1) +

n∑
i=1

dB−(ai, bi) +

n−1∑
i=1

dB−(bi, ai+1) + dB−(bn, y−)

≤ 2cD + c

n+1∑
i=1

L(γ′i) +Q

n∑
i=1

L(γ′′i )

≤ 2cD + cQL(γ)

whence the conclusion.

In order to proceed to the main argument we finally need the following lemma,

which describes how to get rid of the backtracking of a geodesic.

If γ is a path and r = γ(t0), s = γ(t1), with an abuse we will denote by [r, s] the

subpath γ|[t0,t1] of γ. We say that γ is minimal if for every chamber C, the set γ ∩ C̊
is a finite collection of paths each of which connects distinct walls of C. Moreover, γ

is good if it is minimal and for every thin wall X contained in a chamber C there are

at most 2 endpoints of paths in γ ∩ C̊ belonging to X. Notice that, since chambers

are uniquely geodesic and every thin wall is totally geodesic in the chamber in which

it is contained, every geodesic of M̃ is minimal.

Lemma 7.8. — There exists a constant β ≥ 1 depending only on the geometry of M̃

such that the following result holds. Let x, y be points belonging to the same wall of M̃ .

Then there exists a good path γ in M̃ connecting x and y such that L(γ) ≤ βd(x, y).

Proof. — We first introduce some terminology. If X is a thin wall contained in the

wallW , we say that a path θ : [t0, t1]→ M̃ is external toX if θ(t0) ∈ X, θ(t1) ∈ X and

θ|(t0,t1) is supported in M̃ \W (this is equivalent to asking that θ does not backtrack
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on X, but this new terminology will prove more appropriate here). Moreover, if γ is

a minimal path and n is the number of subpaths of γ external to X, we say that the

exceeding number of γ on X is equal to max{0, n− 1}. The exceeding number e(γ) of

γ is the sum of the exceeding numbers of γ on all the thin walls. Finally, we denote by

j(γ) the sum over all the chambers C of M̃ of the number of connected components

of γ ∩ C̊. It is readily seen that a path γ is good if and only if it is minimal and

e(γ) = 0.

Let ∆ > 0 be a constant, chosen in such a way that every torus in M obtained as a

projection of a thin wall of M̃ has diameter (with respect to its intrinsic path metric)

at most ∆/2. We denote by γ0 a geodesic in M̃ connecting x and y. As observed

above, γ0 is minimal, and if γi is a minimal path with e(γi) > 0 we will now describe

how to modify it in order to get a new minimal path γi+1 joining x to y. The path γi+1

will be constructed so as to have j(γi+1) < j(γi) and L(γi+1) ≤ L(γi) + 4∆ + 1. By

the very definitions we have j(γ0) ≤ L(γ0)/R = d(x, y)/R, so after at most d(x, y)/R

steps we will end up with a minimal path γ which verifies either e(γ) = 0 or j(γ) ≤ 1,

whence again e(γ) = 0. After setting β = 1 + (4∆ + 1)/R, such a path satisfies all

the conditions required.

So let us suppose that we have some external subpaths [p1, p
′
1], [p2, p

′
2] of γi,

with p1, p
′
1, p2, p

′
2 ∈ X for some thin wall X contained in the chamber C. Con-

sider deck transformations g, h which leave X (and therefore C) invariant such that

dX(g(p2), p′1) ≤ ∆, dX(h(p′1), g(p′2)) ≤ ∆, and let q1, q2 ∈ γ ∩ C̊ be chosen in such

a way that q1 (resp. q2) slightly precedes (resp. follows) p′1 (resp. p2) on γi: more

precisely, we assume that L([q1, p
′
1]) < 1/2, L([p2, q2]) < 1/2. We define a path γ′i+1

as the concatenation of the following paths (see Figure 3):

1. the subpath [x, q1] of γi,

2. a path [q1, g(q2)] in C̊ obtained by slightly pushing inside C̊ a geodesic in X

between p′1 and g(p2), in such a way that L([q1, g(q2)]) < ∆+1/2+1/2 = ∆+1,

3. g([q2, p
′
2]),

4. a geodesic in X between g(p′2) and h(p′1),

5. h([p′1, p2]),

6. a geodesic in X between h(p2) and p′2,

7. [p′2, y],

where geodesics in X are to be considered with respect to its path metric.

Since X is isometric to Rn−1 and the deck transformations g, h act on X as transla-

tions, it follows that the distance between h(p2) and p′2 is at most 2∆, and this readily

yields L(γ′i+1) ≤ L(γi)+4∆+1. Moreover, it is easily checked that j(γ′i+1) = j(γi)−1.

Now, if γ′i+1 is minimal we set γi+1 = γ′i+1, and we are done. On the other hand,

the only possible obstruction to γ′i+1 being minimal is that its (open) subpath with

endpoints p1 and g(p′2) may be entirely contained in C̊. In this case, since X is totally
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Figure 3. Replacing γi with γ′
i+1 in the proof of Lemma 7.8.

geodesic in C we can replace the subpath [p1, g(p′2)] with a geodesic on X, thus obtain-

ing a minimal path γi+1 with L(γi+1) ≤ L(γ′i+1) and j(γi+1) = j(γ′i+1) − 1 < j(γi),

whence the conclusion again.

Remark 7.9. — The strategy described in this Chapter could probably be adapted

in order to study the coarse geometry of the universal coverings of other classes of

manifolds. For example, let N be a cusp-decomposable manifold [Ng], i.e. a mani-

fold obtained by taking complete, finite volume, negatively curved, locally symmet-

ric manifolds with deleted cusps, and gluing them along affine diffeomorphisms of

their cuspidal boundary. Then the universal covering Ñ admits a natural decom-

position into walls and chambers, and it would be interesting to show that walls are

quasi-isometrically embedded also in this context (since cusp-decomposable manifolds

consist only of “pure pieces”, we don’t need to impose any irreducibility condition

here).

By [Fa2], the fundamental groups of the pieces of N are relatively hyperbolic

with respect to their cusp subgroups, so many results proved in this Chapter readily

extend to the study of Ñ . However, the needed generalization of Lemma 7.8 could be

a challenging task. In fact, the proof of Lemma 7.8 heavily relies on the fact that thin

walls of M̃ support a flat metric, a fact which is no longer true in the case of cusp-

decomposable manifolds. By Bieberbach Theorem, the flatness of thin walls ensures

that a finite index subgroup of the covering transformations of M̃ preserving a thin

wall acts on it as a group of translations, and this fact was exploited in the proof of

Lemma 7.8.
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Lemma 7.10. — Fix a wall W ⊆ M̃ and suppose that α ≥ 1 exists such that the

following holds: if x, y ∈W± are points joined by a good path γ in M̃ which does not

backtrack on W±, then

dC(x, y) ≤ α · L(γ),

where C is the chamber containing x, y. Then W is bi-Lipschitz embedded in M̃ .

Proof. — The inclusion (W,dW ) ↪→ M̃ is clearly 1-Lipschitz, so we have to check

that dW is linearly bounded below by the distance d on M̃ . More precisely, we have

to show that there exists λ ≥ 1 such that

(7.6) dW (p, q) ≤ λd(p, q) for all p, q ∈W.

Let γ be the path provided by Lemma 7.8 such that L(γ) ≤ βd(p, q), and let m be the

number of the chambers adjacent to W whose internal parts intersect γ (so m = 0, 1

or 2). It is readily seen that γ splits as a concatenation

γ1 ∗ γ′1 ∗ · · · ∗ γm ∗ γ′m ∗ γm+1,

where the γi’s are contained in W and each γ′i is a good path with endpoints on

W± which does not backtrack on W±. Due to our assumptions and to the fact that

W± are totally geodesic in the chambers in which they are contained, the γ′i’s can be

replaced by curves contained in W in such a way that the total length of the curve

so obtained does not exceed α · L(γ). So

dW (p, q) ≤ αL(γ),

and hence inequality (7.6) holds with λ = α · β.

Theorem 7.11. — If M is irreducible and W ⊆ M̃ is a wall, then the inclusion

(W,dW ) ↪→ M̃ is a bi-Lipschitz embedding. In particular, it is a quasi-isometric

embedding. Moreover, the bi-Lipschitz constant of the embedding only depends on the

geometry of M̃ (i.e. it does not depend on the fixed wall W ).

Proof. — Take x, y ∈W+, let C be the chamber containing W+ and let γ be a good

path in M̃ which joins x to y and does not backtrack on W+. By Lemma 7.10, in

order to conclude it is sufficient to show that the inequality

(7.7) dC(x, y) ≤ α · L(γ).

holds for some α ≥ 1 only depending on M̃ (via the constants D,R,Q, k, k′, c). We

will have to analyze several different cases, and we will take α to be the maximum

among the constants we will find in each case.

Let B, F be the base and the fiber of C. We first distinguish the case when the

distance between x and y is controlled (up to a suitable constant factor) by dB(x, y)

from the case when dC(x, y) is controlled by dF (x, y).
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So let us suppose dC(x, y) ≤ kdB(x, y). In this case by Lemma 7.6 we have L(γ) ≥
dB(x, y)/Q ≥ dC(x, y)/(kQ), so

dC(x, y) ≤ kQL(γ),

and we are done.

Let us now consider the other case and assume that dC(x, y) > kdB(x, y). Since

d2
C = d2

B + d2
F and k >

√
2 an easy computation shows that

dF (x, y) >
dC(x, y)√

2
, dF (x, y) > dB(x, y).

Write γ ∩ C̊ = γ1 ∪ ... ∪ γm where each γi = (xi, yi) is a path in the (open) chamber

C̊, let Wi be the wall containing yi and xi+1, and let li be the length of the projection

of γi on the fiber F . Observe that since γ is minimal we have m ≤ L(γ)/R. Of

course, we have
∑
li +

∑
dF (yi, xi+1) ≥ dF (x, y), so either

∑
li ≥ dF (x, y)/2 or∑

dF (yi, xi+1) ≥ dF (x, y)/2. In the first case we have

L(γ) ≥
∑

L(γi) ≥
∑

li ≥
dF (x, y)

2
>
dC(x, y)

2
√

2
,

and we are done. Otherwise let us define

I1 = {i ∈ {1, . . . ,m− 1} | kdB(yi, xi+1) ≤ dC(yi, xi+1)}, I2 = {1, . . . ,m− 1} \ I1.

Since
∑
dC(yi, xi+1) ≥

∑
dF (yi, xi+1) ≥ dF (x, y)/2, we have two possibilities: either∑

i∈I1 dC(yi, xi+1) ≥ dF (x, y)/4, or
∑
i∈I2 dC(yi, xi+1) ≥ dF (x, y)/4.

We begin by dealing with the first case. Let W i
+ be the thin wall containing xi+1, yi,

denote by x−i+1 ∈ W i
− (resp. y−i ∈ W i

−) the point tied to xi+1 (resp. to yi), let Ci be

the chamber containing x−i+1, y
−
i , and Bi the base of Ci.

Recall that we have the estimate:

dCi(y
−
i , x

−
i+1) = dW i

−
(y−i , x

−
i+1) ≥ dW i

+
(yi, xi+1)/k′ = dC(yi, xi+1)/k′.
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So applying Lemma 7.7 and Lemma 7.3 (which gives the inequality dBi
(y−i , x

−
i+1) ≥

dCi
(y−i , x

−
i+1)/k) we obtain the estimates:

L(γ) ≥ 1

cQ

∑
i∈I1

dBi
(y−i , x

−
i+1)− 2(m− 1)D

Q

≥ 1

kcQ

∑
i∈I1

dCi
(y−i , x

−
i+1)− 2(m− 1)D

Q

≥ 1

kcQk′

∑
i∈I1

dC(yi, xi+1)− 2D

RQ
L(γ)

≥ 1

4kcQk′
dF (x, y)− 2D

RQ
L(γ)

≥ 1

4
√

2kcQk′
dC(x, y)− 2D

RQ
L(γ)

Isolating the dC(x, y) term, this gives us

dC(x, y) ≤ 4
√

2kck′(RQ+ 2D)

R
· L(γ).

which gives us the requisite estimate in the first case.

We are now left to deal with the second case,
∑
i∈I2 dC(yi, xi+1) ≥ dF (x, y)/4. In

this case we have that:∑
i∈I2

dB(yi, xi+1) ≥ dF (x, y)/(4k) ≥ dC(x, y)/(4
√

2k).

Let γ′ be the loop in C obtained by concatenating the geodesic in W+ joining y with

x, the paths of the form γ ∩ C̊ and the geodesics in the W i
+’s joining yi with xi+1,

and set γ = πB ◦ γ′. If η is the sum of the lengths of the subpaths of γ obtained by

projecting the paths in γ ∩ C̊ we obviously have L(γ) ≥ η. Moreover, the properties

of γ described in Lemma 7.8 ensure that the Wi’s are pairwise distinct, and distinct

from W . As such, we can apply Proposition 7.4 to γ thus getting

L(γ) ≥ η ≥ 1

Q

∑
i∈I2

dB(yi, xi+1),

whence

dC(x, y) ≤ 4
√

2k
∑
i∈I2

dB(yi, xi+1) ≤ 4
√

2kQL(γ).

This completes the last case, establishing that inequality (7.7) holds with constant

α = max

{
kQ, 2

√
2,

4
√

2kck′(RQ+ 2D)

R
, 4
√

2kQ

}
=

4
√

2kck′(RQ+ 2D)

R
,

thus proving the proposition.
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Corollary 7.12. — If M is irreducible, then the inclusion of a chamber in M̃ is a

bi-Lipschitz embedding.

Proof. — Let p, q be points in a chamber C and let δ be a geodesic of M̃ joining p

to q. Then δ splits as a concatenation

δ = δ1 ∗ η1 ∗ . . . ∗ ηn ∗ δn+1,

where δi is a geodesic segment (with respect to the metric d on M̃) supported in C and

the endpoints pi, qi of ηi belong to a thin wall W+
i adjacent to C. By Theorem 7.11

there exists α ≥ 1 such that dWi
(pi, qi) ≤ αd(pi, qi), and this implies in turn that

dW+
i

(pi, qi) ≤ cαd(pi, qi), so we may replace every ηi with a path η′i ⊆ W+
i having

the same endpoints as ηi and length that does not exceed cαd(pi, qi). The path

δ′ = δ1 ∗ η′1 ∗ . . . ∗ η′n ∗ δn+1

is supported in C and has length at most cαd(p, q), so dC(p, q) ≤ cαd(p, q), and we

are done.

Corollary 7.13. — Suppose that M is irreducible. Then, the inclusion of chambers,

walls and fibers (with their path metrics) in M̃ are quasi-isometric embeddings. In

particular:

– If C ⊆ M̃ is a chamber, then C is quasi-isometric (with the metric induced by

M̃) to a product B × Rk, where B is a neutered space.

– If W ⊆ M̃ is a wall, then W is quasi-isometric (with the metric induced by M̃)

to Rn−1.

– If F ⊆ M̃ is a fiber, then F is quasi-isometric (with the metric induced by M̃)

to Rh, h ≤ n− 3.





CHAPTER 8

PIECES OF IRREDUCIBLE GRAPH MANIFOLDS

ARE QUASI-PRESERVED

In this chapter, we prove Theorem 0.17, which we recall here for the convenience

of the reader:

Theorem (Pieces of irreducible manifolds are preserved)

Let M1, M2 be a pair of irreducible graph manifolds, and Γi = π1(Mi) their re-

spective fundamental groups. Let Λ1 ≤ Γ1 be a subgroup conjugate to the fundamental

group of a piece in M1, and ϕ : Γ1 → Γ2 be a quasi-isometry. Then, the set ϕ(Λ1)

is within finite Hausdorff distance from a conjugate of Λ2 ≤ Γ2, where Λ2 is the

fundamental group of a piece in M2.

So, let us fix graph manifolds M1,M2 with fundamental groups Γi = π1(M1)

and suppose ψ : Γ1 → Γ2 is a quasi-isometry. Due to Milnor-Svarc Lemma (see

Theorem 1.2), ψ induces a quasi-isometry between M̃1 and M̃2, which we will still

denote by ψ. The statement of Theorem 0.17 is equivalent to the fact that ψ sends,

up to a finite distance, chambers of M̃1 into chambers of M̃2. In order to prove this

fact, we will use the technology of asymptotic cones, which we now briefly describe.

8.1. The asymptotic cone of a geodesic metric space

Roughly speaking, the asymptotic cone of a metric space gives a picture of the

metric space as “seen from infinitely far away”. It was introduced by Gromov in [Gr1],

and formally defined in [vdDWi].

A filter on N is a set ω ⊆ P(N) satisfying the following conditions:

1. ∅ /∈ ω;

2. A,B ∈ ω =⇒ A ∩B ∈ ω;

3. A ∈ ω, B ⊇ A =⇒ B ∈ ω.

For example, the set of complements of finite subsets of N is a filter on N, known as

the Fréchet filter on N.
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A filter ω is a ultrafilter if for every A ⊆ N we have either A ∈ ω or Ac ∈ ω,

where Ac := N \A. For example, fixing an element a ⊂ N, we can take the associated

principal ultrafilter to consist of all subsets of N which contain a. An ultrafilter is

non-principal if it does not contain any finite subset of N.

It is readily seen that a filter is an ultrafilter if and only if it is maximal with

respect to inclusion. Moreover, an easy application of Zorn’s Lemma shows that any

filter is contained in a maximal one. Thus, non-principal ultrafilters exist (just take

any maximal filter containing the Fréchet filter).

From this point on, let us fix a non-principal ultrafilter ω on N. As usual, we say

that a statement Pi depending on i ∈ N holds ω-a.e. if the set of indices such that Pi
holds belongs to ω. If X is a topological space, and (xi) ⊆ X is a sequence in X, we

say that ω-limxi = x∞ if xi ∈ U ω-a.e. for every neighbourhood U of x∞. When X

is Hausdorff, an ω-limit of a sequence, if it exists, is unique. Moreover, any sequence

in any compact space admits an ω-limit. For example, any sequence (ai) in [0,+∞]

admits a unique ω-limit.

Now let (Xi, xi, di), i ∈ N, be a sequence of pointed metric spaces. Let C be the set

of sequences (yi), yi ∈ Xi, such that ω-lim di(xi, yi) < +∞, and consider the following

equivalence relation on C:

(yi) ∼ (zi) ⇐⇒ ω- lim di(yi, zi) = 0.

We set ω-lim(Xi, xi, di) = C/∼, and we endow ω-lim(Xi, xi, di) with the well-defined

distance given by dω
(
[(yi)], [(zi)]

)
= ω-lim di(yi, zi). The pointed metric space (ω-

lim(Xi, xi, di), dω) is called the ω-limit of the pointed metric spaces Xi.

Let (X, d) be a metric space, (xi) ⊆ X a sequence of base-points, and (ri) ⊂
R+ a sequence of rescaling factors diverging to infinity. We introduce the notation

(Xω((xi), (ri)), dω) := ω-lim(Xi, xi, d/ri).

Definition 8.1. — The metric space
(
Xω

(
(xi), (ri)

)
, dω
)

is the asymptotic cone of

X with respect to the ultrafilter ω, the basepoints (xi) and the rescaling factors (ri).

For conciseness, we will occasionally just write Xω

(
(xi), (ri)

)
for the asymptotic cone,

the distance being implicitly understood to be dω.

If ω is fixed and (ai) ⊆ R is any sequence, we say that (ai) is o(ri) (resp. O(ri)) if

ω-lim ai/ri = 0 (resp. ω-lim |ai|/ri <∞).

Let (xi) ⊆ X, (ri) ⊆ R be fixed sequences of basepoints and rescaling factors, and

set Xω = (Xω((xi), (ri)), dω). Sequences of subsets in X give rise to subsets of Xω:

if for every i ∈ N we are given a subset ∅ 6= Ai ⊆ X, we set

ω- limAi = {[(pi)] ∈ Xω | pi ∈ Ai for every i ∈ N}.

It is easily seen that for any choice of the Ai’s, the set ω-limAi is closed in Xω.

Moreover, ω-limAi 6= ∅ if and only if the sequence (d(xi, Ai)) is O(ri).
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8.2. Quasi-isometries and asymptotic cones

We are interested in describing how quasi-isometries asymptotically define bi-

Lipschitz homeomorphisms. In order to do this, and to fix some notations, we recall

some basic results about ω-limits of quasi-isometries and quasi-geodesics.

Suppose that (Yi, yi, di), i ∈ N are pointed metric spaces, and that (X, d) is a

metric space. Let (xi) ⊆ X be a sequence of basepoints and (ri) ⊂ R a sequence

of rescaling factors. Until the end of the section, to simplify the notation, we set

Xω := (Xω, (xi), (ri)). The following result is well-known (and very easy):

Lemma 8.2. — Suppose (ki) ⊆ R+, (ci) ⊆ R+ are sequences satisfying k = ω-

lim ki < ∞, and ci = o(ri). For each i ∈ N, let fi : Yi → X be a map with the

property that for every y, y′ ∈ Yi, the inequality

d(fi(y), fi(y
′)) ≤ kidi(y, y′) + ci

holds. If d(fi(yi), xi) = O(ri), then the formula [(pi)] 7→ [fi(pi)] provides a well-

defined map fω : ω-lim(Yi, yi, di/ri)→ Xω. Moreover, fω is k-Lipschitz, whence con-

tinuous. If k > 0 and

d(fi(y), fi(y
′)) ≥ di(y, y

′)

ki
− ci

is also satisfied (i.e. if fi is a (ki, ci)-quasi-isometric embedding), then fω is a k-bi-

Lipschitz embedding.

As a corollary, quasi-isometric metric spaces have bi-Lipschitz homeomorphic

asymptotic cones. We recall that a (k, c)-quasi-geodesic in X is a (k, c)-quasi-

isometric embedding of a (possibly unbounded) interval in X.

Lemma 8.3. — Suppose (ki) ⊆ R+, (ci) ⊆ R+ are sequences satisfying k = ω-

lim ki < ∞, and ci = o(ri). For each i ∈ N, let γi : [ai, bi] → X be a (ki, ci)-quasi-

geodesic with image Hi = Im γi, and assume that d(xi, Hi) = O(ri). Then up to

precomposing γi with a translation of R, we may suppose that 0 is the basepoint of

[ai, bi], and that the sequence (γi) induces a k-bi-Lipschitz path

γω : [ω- lim(ai/ri), ω- lim(bi/ri)]→ Xω.

Moreover, we have Im γω = ω-limHi.

Proof. — The only non-trivial (but easy) assertion is the last one, which we leave to

the reader.

The following result extends the previous lemma to the case of Lipschitz loops. For

every r > 0 we denote by r · S1 the circle of length 2πr. Using that S1 is compact, it

is immediate to check that ω- lim 1
ri

(ri · S1) may be identified with S1 independently

of the choice of the basepoints involved in the definition of the ω-limit.
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Lemma 8.4. — Suppose that the sequence (ki) ⊆ R+ satisfies k = ω-lim ki < ∞.

For each i ∈ N, let γi : ri · S1 → X be a ki-Lipschitz loop with image Hi = Im γi, and

assume that d(xi, Hi) = O(ri). Then the sequence (γi) induces a k-Lipschitz loop

γω : S1 → Xω.

such that Im γω = ω-limHi.

Proof. — The proof is left to the reader.

The previous results assert that coarsely Lipschitz paths and Lipschitz loops give

rise to Lipschitz paths and loops in the asymptotic cone (in fact, in the case of loops

the Lipschitz condition could be replaced by the analogous coarse Lipschitz condition,

but this is not relevant to our purposes). The next lemma shows a type of converse

to this result.

Lemma 8.5. — Assume X is a geodesic space, let Y = [0, 1] or Y = S1, and let

γω : Y → Xω be a k-Lipschitz path. Let also Yi = [0, ri] (if Y = [0, 1]) or Yi = ri · S1

(if Y = S1). Then, for every ε > 0 there exists a sequence of (k + ε)-Lipschitz paths

γi : Yi → X with the following properties:

– d(xi, γi(0)) = O(ri), so if Y = ω-lim 1
ri
Yi then (γi) defines a (k + ε)-Lipschitz

path ω-lim γi : Y → Xω;

– ω-lim γi = γω.

Proof. — We prove the statement under the assumption that Y = [0, 1], the case

when Y = S1 being analogous.

For every t ∈ [0, 1] set pt = γω(t) = [(pti)], and for every j ∈ N let Aj ⊆ N be the

set of indices i ∈ N such that

d(pti, p
t′

i ) ≤
(

1 +
ε

k

)
ridω(pt, pt

′
)

for every t = h · 2−j , t′ = h′ · 2−j , h, h′ ∈ Z, 0 ≤ h, h′ ≤ 2j . By construction we have

Aj+1 ⊆ Aj and Aj ∈ ω for every j ∈ N. For every i ∈ N, let

j(i) = sup{j ∈ N | i ∈ Aj} ∈ N ∪ {∞},

and set j′(i) = i if j(i) = ∞ and j′(i) = j(i) otherwise. By the nature of the

construction, we have i ∈ Aj′(i). For every i ∈ N, we define the curve γi : [0, ri] →
X as follows: if h ∈ {0, 1, . . . , 2j′(i) − 1}, then the restriction of γi to the interval

[hri2
−j′(i), (h+ 1)ri2

−j′(i)] is a linear parameterization of a geodesic joining ph2−j′(i)

i

with p
(h+1)2−j′(i)

i . Since i ∈ Aj′(i) each such restriction is (k + ε)-Lipschitz, so γi is

(k+ε)-Lipschitz. It readily follows that ω-lim γi is (k+ε)-Lipschitz, and in particular

continuous. Thus, in order to show that ω-lim γi = γω it is sufficient to show that
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(ω-lim γi)(t) = γω(t) = pt for every t of the form h2−j , h, j ∈ N. However, if t = h2−j

by construction we have

{i ∈ N | γi(t) = pti} ⊇ {i | j ≤ j(i) <∞} ∪
(
{i | j(i) =∞} ∩ {i | i ≥ j}

)
⊇ {i | j ≤ j(i)} ∩ {i | i ≥ j}
⊇ Aj ∩ {i | i ≥ j} ∈ ω .

As a result, for each t = h2−j , we have that ω-lim γi(t) = [(γi(t))] = [(pti)] = γω(t),

whence the conclusion.

8.3. Tree-graded spaces

We are going to need some results about the asymptotic cones of complete hyper-

bolic manifolds of finite volume. The following definitions are taken from [DrSa]. If

X is a set, then we denote by |X| the cardinality of X.

Definition 8.6. — A geodesic metric space X is said to be tree-graded with respect

to a collection of closed subsets {Pi}i∈I , called pieces, if

1.
⋃
Pi = X,

2. |Pi ∩ Pj | ≤ 1 if i 6= j,

3. any simple geodesic triangle in X is contained in a single piece.

Definition 8.7. — A geodesic metric space X is asymptotically tree-graded with

respect to a collection of subsets A = {Hi}i∈I if the following conditions hold:

1. for each choice of basepoints (xi) ⊆ X and rescaling factors (ri), the associated

asymptotic cone Xω = Xω((xi), (ri)) is tree-graded with respect to the collection

of subsets P = {ω-limHi(n) |Hi(n) ∈ A}, and

2. if ω-limHi(n) = ω-limHj(n), where i(n), j(n) ∈ I, then i(n) = j(n) ω-a.e.

We summarize in the following lemmas some properties of tree-graded spaces which

are proved in [DrSa] and will be useful later.

Lemma 8.8. — Let P, P ′ be distinct pieces of a tree-graded space Y . Then there

exist p ∈ P , p′ ∈ P ′ such that, for any continuous path γ : [0, 1] → Y with γ(0) ∈ P
and γ(1) ∈ P ′, we have p, p′ ∈ Im γ.

Proof. — If Q is a piece of Y , then a projection Y → Q is defined in [DrSa, Definition

2.7]. By [DrSa, Lemma 2.6] the piece P ′ is connected. Since |P ′ ∩P | ≤ 1, by [DrSa,

Corollary 2.11] the projection of P ′ onto P consists of a single point p. In the same

way, the projection of P onto P ′ consists of a single point p′. Now the conclusion

follows from [DrSa, Corollary 2.11].

Lemma 8.9 (Lemma 2.15 in [DrSa]). — Let A be a path-connected subset of Y

without a cut-point. Then A is contained in a piece.
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The following theorem establishes an important bridge between the study of tree-

graded spaces and the analysis of the asympotic cones of universal coverings of ir-

reducible graph manifolds. It is a consequence of the fundamental work of Farb on

relatively hyperbolic groups [Fa2], and of the characterization of relative hyperbolicity

provided in [DrSa].

Theorem 8.10. — Let B be a neutered space obtained as the complement in Hn of an

equivariant family of pairwise disjoint open horoballs, and let H be the collection of the

boundary components of B. Then B, endowed with its path metric, is asymptotically

tree-graded with respect to H. Moreover, each piece of any asympotic cone of B is

isometric to Rn−1.

Proof. — The main result of [Fa2] ensures that the fundamental group of a complete

Riemannian manifold of finite volume with pinched negative curvature is relatively

hyperbolic with respect to cusp subgroups. Moreover, by [DrSa, Theorem 1.11], a

finitely generated group is relatively hyperbolic (with respect to a family of subgroups)

if and only if it is asymptotically tree-graded (with respect to the corresponding family

of left cosets of subgroups). The first statement now follows from the fact that, if

B is the universal covering of N , then Milnor-Svarc Lemma implies that B is quasi-

isometric to the fundamental group of N via a quasi-isometry inducing a bijection

between the components of ∂B and the cosets of the cusp subgroups of π1(N). The

second statement follows from the fact that each component of ∂B is isometric to

Rn−1.

8.4. The asymptotic cone of M̃

Let M be an irreducible graph manifold with universal covering M̃ . Let ω be any

non-principal ultrafilter on N, let (xi) ⊆ M̃ , (ri) ⊆ R be fixed sequences of basepoints

and rescaling factors, and set M̃ω = (M̃ω, (xi), (ri)).

Definition 8.11. — An ω-chamber (resp. ω-wall, ω-fiber) in M̃ω is a subset Xω ⊆
M̃ω of the form Xω = ω- limXi, where each Xi ⊆ M̃ is a chamber (resp. a wall, a

fiber).

We say that an ω-wall Wω = ω- limWi is a boundary (resp. internal) ω-wall if Wi

is a boundary (resp. internal) wall ω-a.e. The following lemma ensures that these

notions are indeed well-defined:

Lemma 8.12. — Let Cω (resp. Wω) be an ω-chamber (resp. an ω-wall) of M̃ω, and

suppose that Cω = ω- limCi = ω- limC ′i (resp. Wω = ω- limWi = ω- limW ′i ). Then

Ci = C ′i ω-a.e. (resp Wi = W ′i ω-a.e.).
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Proof. — The conclusion follows from the fact that distinct chambers (resp. walls)

of M̃ lie at infinite Hausdorff distance one from the other (see Lemma 2.19 and

Corollary 2.20).

In the next sections we will describe some analogies between the decomposition of

a tree-graded space into its pieces and the decomposition of M̃ω into its ω-walls. We

first observe that a constant k exists such that each point of M̃ has distance at most

k from some wall, so every point of M̃ω lies in some ω-wall. Lemma 8.9 implies that,

in a tree-graded space, subspaces homeomorphic to Euclidean spaces of dimension

bigger than one are contained in pieces. The main result of this section shows that

a similar phenomenon occurs in our context: in fact, in Proposition 8.31 we prove

that ω-walls can be characterized as the only subspaces of M̃ω which are bi-Lipschitz

homeomorphic to Rn−1. As a consequence, every bi-Lipschitz homeomorphism of M̃ω

preserves the decomposition of M̃ω into ω-walls. Together with an argument which

allows us to recover quasi-isometries of the original spaces from homeomorphisms of

asymptotic cones, this will allow us to prove Theorem 0.17. We will prove Proposi-

tion 8.31 by contradiction: with some effort we will show that any bi-Lipschitz copy of

Rn−1 in M̃ω which is not contained in an ω-wall is disconnected by a suitably chosen

ω-fiber. This will provide the required contradiction, since ω-fibers are too small to

disconnect bi-Lipschitz copies of Rn−1 (see Lemma 8.27).

The following lemma is a direct consequence of the description of the quasi-isometry

type of walls and fibers given in Corollary 7.13.

Lemma 8.13. — There exists k ≥ 1 such that every ω-wall of M̃ is k-bi-Lipschitz

homeomorphic to Rn−1, and every ω-fiber of M̃ is k-bi-Lipschitz homeomorphic to

Rh, h ≤ n− 3.

Theorem 8.10 and Corollary 7.13 imply that every chamber is quasi-isometric to

the product of an asymptotically tree-graded space with a Euclidean fiber, and this

implies that every ω-chamber is bi-Lipschitz homeomorphic to the product of a tree-

graded space with a Euclidean factor:

Lemma 8.14. — There exists k ≥ 1 such that for any ω-chamber Cω there exists a

k-bi-Lipschitz homeomorphism ϕ : Cω → Y ×Rl, where Y is a tree-graded space whose

pieces are k-bi-Lipschitz homeomorphic to Rn−l−1, such that the following conditions

hold:

1. For every p ∈ Y , the subset ϕ−1({p} × Rl) is an ω-fiber of M̃ω.

2. For every piece P of Y , the set ϕ−1(P × Rl) is an ω-wall of M̃ω.

Proof. — Suppose that Cω = ω-limCi ⊆ M̃ω. For every i we denote by dCi the

intrinsic distance on Ci, i.e. the path distance induced on Ci by the global distance d

of M̃ . Since M is irreducible, there exist constants k ≥ 1, ε ≥ 0 such that the identity

of Ci induces a (k, ε)-quasi-isometry between (Ci, dCi
) and (Ci, d). Therefore, it is
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sufficient to prove the lemma in the case when Cω is replaced by the ω-limit C ′ω of

the rescaled spaces (Ci, dCi
/ri) (with respect to any choice of basepoints).

Recall that every (Ci, dCi
) is isometrically identified with the product Bi × Rli ,

where Bi is a neutered space. Since M is obtained by gluing finitely many pieces,

the pairs (Ci, dCi) fall into finitely many isometry classes of metric spaces. As a

consequence, C ′ω is isometric to an asympotic cone of a fixed (Ci, dCi
). Moreover,

since (Ci, dCi
) is the product of a neutered space with a Euclidean space, C ′ω is

isometric to a product Y × Rl, where Y is a tree-graded space whose pieces are

isometric to Rn−l−1 (see Theorem 8.10). This proves the first part of the lemma. In

order to prove points (1) and (2) it is now sufficient to observe that for every pi ∈ Bi
the set {pi}×Rli is a fiber of M̃ , and for every boundary component Pi of Bi the set

Pi × Rli is at finite Hausdorff distance (with respect to d) from a wall of M̃ .

Definition 8.15. — Let Cω be an ω-chamber. A fiber of Cω is an ω-fiber of M̃ω of

the form described in point (1) of Lemma 8.14. A wall of Cω is an ω-wall of M̃ω of

the form described in point (2) of Lemma 8.14. If Wω is a wall of Cω, then we also

say that Cω is adjacent to Wω.

It is not difficult to show that ω-walls of Cω are exactly the ω-walls of M̃ω which

are contained in Cω (however, this fact won’t be used later). On the contrary, an

internal ω-wall Wω is adjacent to two ω-chambers Cω, C
′
ω (see Lemma 8.16), and an

ω-fiber of C ′ω contained in Wω is not an ω-fiber of Cω in general (see Lemma 8.20

below). Therefore, not every ω-fiber contained in an ω-chamber Cω is an ω-fiber of

Cω in the sense of Definition 8.15.

Lemma 8.16. — Let Wω be an ω-wall.

1. If Wω is internal, then it is adjacent to exactly two ω-chambers.

2. If Wω is boundary, then it is adjacent exactly to one ω-chamber.

Proof. — Point (2) is obvious, so we may suppose that Wω is internal. Then Wω = ω-

limWi, where Wi is an internal wall of M̃ for every i. Let C+
i , C−i be the chambers

adjacent to Wi, and let us set C±ω = ω-limC±i . Of course each C±ω is adjacent to Wω,

and by Lemma 8.12 we have C+
ω 6= C−ω . Finally, if C ′ω = ω-limC ′i is any ω-chamber

adjacent to Wω, then we have C ′i = C+
i ω-a.e., or C ′i = C−i ω-a.e., so either C ′ω = C+

ω

or C ′ω = C−ω .

Definition 8.17. — Let Wω = ω- limWi be an ω-wall. A side S(Wω) of Wω is a

subset S(Wω) ⊆ M̃ω which is defined as follows. For every i, let Ωi be a connected

component of M̃ \Wi. Then

S(Wω) = (ω- lim Ωi) \Wω .

The proof of the following easy lemma is left to the reader (points (1) and (2) may

be proved by the very same argument exploited for Lemma 8.16).
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Lemma 8.18. — Let Wω be an ω-wall. Then:

1. If Wω is internal, then Wω has exactly two sides S(Wω), S′(Wω). Moreover,

S(Wω) ∩ S′(Wω) = ∅, S(Wω) ∪ S′(Wω) = M̃ω \Wω, and any Lipschitz path

joining points contained in distinct sides of Wω must pass through Wω.

2. If Wω is boundary, then Wω has only one side S(Wω), and S(Wω) = M̃ω \Wω.

3. If W ′ω 6= Wω is an ω-wall, then W ′ω \Wω is contained in one side of Wω.

4. If Cω is an ω-chamber, then Cω \Wω is contained in one side of Wω. Moreover,

every side of Wω intersects exactly one ω-chamber which is adjacent to Wω.

We have already mentioned the fact that an internal ω-wall admits two fibrations

by ω-fibers which are in general different one from the other.

Definition 8.19. — Let S(Wω) be a side of Wω, and let Cω be the unique ω-

chamber of M̃ω which intersects S(Wω) and is adjacent to Wω. A fiber of Wω asso-

ciated to S(Wω) is a fiber of Cω (in the sense of Definition 8.15) that is contained in

Wω.

Lemma 8.20. — Let S+(Wω) and S−(Wω) be the sides of the internal ω-wall Wω,

and let F+
ω , F−ω be fibers of Wω associated respectively to S+(Wω), S−(Wω). Then

|F+
ω ∩ F−ω | ≤ 1.

Proof. — Let Wω = ω- limWi, let C+
i and C−i be the chambers adjacent to Wi, and

set W±i = Wi ∩ C±i . If X is a subspace of M̃ , then we denote by dX the intrinsic

distance on X, i.e. the path distance induced on X by the global distance d of M̃ .

Recall that (C±i , dC±i
) is isometric to a product B±i × Rli , where B±i is a neutered

space, and denote by d±Bi
the pseudo-distance on C±i obtained by composing the

path-distance of B±i with the projection C±i → B±i .

Let k > 0 be a constant chosen so that Lemma 7.3 holds for all the internal

walls in M̃ . Let p = [(pi)], q = [(qi)] be distinct points in F+
ω . We may assume

that pi, qi ∈ W+
i for every i. We also denote by p−i and q−i the points of W−i tied

respectively to pi and qi. Since p, q ∈ F+
ω we have (dB+

i
(pi, qi)) = o(ri), while p 6= q

implies that (dC+
i

(pi, qi)) is not o(ri). Therefore, Lemma 7.3 implies that

(8.1) dC−i
(p−i , q

−
i ) ≤ k · dB−i (p−i , q

−
i ) ω-a.e.

But tied points lie at a universally bounded distance one from the other, so p = [(p−i )],

q = [(q−i )] and (dC−i
(p−i , q

−
i )) is not o(ri). Therefore, by Equation (8.1) also the

sequence (dB−i
(p−i , q

−
i )) is not o(ri), and the set {p, q} cannot be contained in F−ω .

Lemma 8.21. — Let Cω be an ω-chamber and let p ∈ M̃ω \ Cω. Then there exists

an ω-wall Wω of Cω such that every Lipschitz path in M̃ joining p with a point in Cω
intersects Wω. Moreover, Wω is internal and Cω \Wω and p lie on different sides of

Wω.
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Proof. — Let Cω = ω- limCi and p = [(pi)]. Since p /∈ Cω, we may suppose that

pi /∈ Ci for every i. Therefore, for every i there exists a wall Wi adjacent to Ci such

that every continuous path joining pi to Ci has to intersect Wi. We claim that the

ω-wall Wω = ω- limWi satisfies the properties stated in the lemma.

Let γω be a Lipschitz path in M̃ joining p with a point in Cω. By Lemma 8.5

we may choose a sequence γi : [0, ri] → M̃ of Lipschitz paths such that γi(0) = pi,

γi(ri) ∈ Ci and ω- lim γi = γ∞. Our choices imply that the image of γi intersects Wi

for every i, so by Lemma 8.3 the image of γω intersects Wω. This proves the first

statement. The second statement is an immediate consequence of the description of

Wω.

We have seen in Lemma 8.14 that ω-chambers are products of tree-graded spaces

with Euclidean factors, so the following results are immediate consequences of the

results about tree-graded spaces described in Lemma 8.8.

Lemma 8.22. — Let Wω and W ′ω be distinct ω-walls of the ω-chamber Cω. Then

there exists an ω-fiber Fω ⊆Wω of Cω such that every continuous path in Cω joining

a point in Wω with a point in W ′ω has to pass through Fω.

Corollary 8.23. — Let Wω and W ′ω be distinct ω-walls of the ω-chamber Cω, and let

γ : [0, 1]→ Cω be a continuous path such that γ(0) ∈Wω, γ(1) ∈W ′ω and Wω∩Im γ =

{γ(0)}. If Fω is the fiber of Cω containing γ(0), then every continuous path joining

a point in Wω with a point in W ′ω intersects Fω.

The following result extends Lemma 8.22 to pairs of ω-walls which are not contained

in the same ω-chamber.

Lemma 8.24. — Let Wω,W
′
ω be distinct ω-walls, and let S(Wω) be the side of Wω

containing W ′ω \Wω. Then there exists an ω-fiber Fω of Wω such that

1. Fω is associated to S(Wω), and

2. every Lipschitz path joining a point in W ′ω with a point in Wω passes through

Fω.

Proof. — Let γ : [0, 1] → M̃ω be a Lipschitz path with γ(0) ∈ Wω, γ(1) ∈ W ′ω, and

let Wi,W
′
i ⊆ M̃ , i ∈ N, be walls such that ω-limWi = Wω, ω-limW ′i = W ′ω. Since

Wω 6= W ′ω, we may suppose Wi 6= W ′i for every i ∈ N.

Let us take ε > 0. By Lemma 8.5, γ = ω-lim γi where γi : [0, ai]→ M̃ is a (k + ε)-

Lipschitz path and (ai) is O(ri). Of course (see the proof of Lemma 8.5) we may

suppose γi(0) ∈Wi, γi(ai) ∈W ′i ω-a.e.

For every i ∈ N, let us define a wall Li and a chamber Ci as follows: if both Wi and

W ′i are adjacent to the same chamber, then Li = W ′i and Ci is the chamber adjacent

both to Wi and to Li; if Wi,W
′
i do not intersect the same chamber, then Li 6= Wi

and Ci are such that Wi∩Ci 6= ∅, Li∩Ci 6= ∅, and every path connecting Wi and W ′i
intersects Li (the existence of such Li, Ci is an obvious consequence of the realization
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of M̃ as a tree of spaces). We would like to associate to γi a path αi joining Wi with

Li which does not intersect any chamber different from Ci. This can be done in the

following way. Let zi be the last point of γi which lies on Wi, let pi be the first point

of γi which follows zi and lies on Li and call γ′i the subpath of γi with endpoints zi, pi.

We have that γ′i ∩ Ci is a collection of paths in Ci, and, since γ′i is rectifiable and

the distance between walls is bounded from below, only finitely many of them, say

δi1, . . . , δ
i
m, have endpoints in different walls. By concatenating the δij ’s with suitable

geodesics ψij contained in the appropriate thin walls we obtain the desired αi. By

construction, αi intersects Wi only in its initial point. Also note that because thin

walls are quasi-isometrically embedded in M̃ the length of αi is uniformly linearly

bounded by the length of γ′i, whence of γi. Therefore, we can suppose that there

exists k′ > 0 such that αi is defined on the same interval as γi, and αi is k′-Lipschitz

ω-a.e.

Now consider Cω = ω-limCi and Lω = ω-limLi. We find ourselves in the context

of Lemma 8.22, which implies that there exists an ω-fiber Fω ⊆Wω with the property

that every path joining Wω and Lω passes through Fω. Observe that Fω satisfies

property (1) of the statement by construction. Now, by Lemma 8.2, α = ω-limαi is

a continuous path joining Wω and Lω, so α necessarily passes through Fω. Then, in

order to prove (2) it is sufficient to show that γ must also pass through Fω.

Choose the points qi ∈ Imαi so that the corresponding q = [(qi)] ∈ Imα is the

first point along α which belongs to Fω. By the definition of γi and ψij , at least one

of the following possibilities must hold:

(i) qi ∈ γi ω−a.e.

(ii) qi ∈ ψij(i) ω−a.e. and lBi
(ψij(i)|qi) = o(ri), where ψij(i)|qi denotes the initial

subpath of ψij(i) ending in qi and lBi
denotes the length of the projection of such

a path on the base of Ci,

(iii) qi ∈ ψij(i) ω−a.e. and ω-lim lBi(ψ
i
j(i)|qi)/ri > 0.

In cases (i) and (ii), it is clear that there is a point on γ∩Fω. So let us now prove that

case (iii) cannot occur. Indeed, the sequence of the starting points of the ψij(i)’s gives

a point q′ 6= q which comes before q along α. Since αi intersects Wi only in its initial

point, by Lemma 8.22 the initial subpath of α ending in q′ joins a point on Wω with a

point on an ω−wall Qω such that Qω 6= Wω, and, by our hypothesis on q, it does not

pass through the fiber Fω. But the portion of ω-limψij(i) between q′ and q provides

a path starting on Qω and intersecting Wω only in q ∈ Fω. By Corollary 8.23, this

implies that every continuous path joining a point on Qω to a point in Wω has to

intersect Fω, a contradiction. This completes the proof of the Lemma.

As every point in M̃ω is contained in an ω-wall, we get the following.
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Corollary 8.25. — Let Wω be an ω-wall, let p ∈ M̃ω \Wω, and let S(Wω) be the

side of Wω containing p. Then there exists an ω-fiber Fω of Wω associated to S(Wω)

such that every Lipschitz path joining p with Wω passes through Fω.

The fact that M̃ is a tree of spaces suggests that the ω-chambers of M̃ω should be

arranged in M̃ω following a sort of tree-like pattern. We can formalize this fact as

follows.

Lemma 8.26. — Let k > 0 and γω : S1 → M̃ω be a Lipschitz path. Then there exists

an ω-chamber Cω such that γω(p) ∈ Cω and γω(q) ∈ Cω, where p, q are distinct points

of S1.

Proof. — For every n we set Yi = ri · S1, and we denote by γi : Yi → M̃ the (k + ε)-

Lipschitz path approximating γω in the sense of Lemma 8.5. We now make the

following:

Assertion: There exists H > 0 such that, for every n, there exist points pi and qi in

Yi and a chamber Ci ⊆ M̃ such that d(pi, qi) ≥ (2πri)/3 and d(γi(pi), Ci) ≤ H.

Let Γ be the Bass-Serre tree corresponding to the decomposition of M̃ as a tree of

spaces, let π : M̃ → Γ be the canonical projection, and let γ′i : Yi → Γ be defined by

γ′i = π ◦ γi. Since the distance between a point in a wall and any chamber adjacent

to the wall is bounded from above by a universal constant H, it is sufficient to show

that there exist points pi, qi ∈ Yi such that d(pi, qi) ≥ (2πri)/3 and γ′i(pi) = γ′(qi).

Pick three points a1
i , a

2
i , a

3
i on Yi such that d(aji , a

l
i) = (2πri)/3 for j 6= l, and

let Y 1
i , Y

2
i , Y

3
i be the subarcs of Yi with endpoints a1

i , a
2
i , a

3
i . We may suppose that

γ′(aji ) 6= γ′(aki ) for j 6= k, otherwise we are done. Since Γ is a tree, there exists a point

vi ∈ Γ such that, if j 6= l, then any path joining γ′(aji ) with γ′(ali) passes through

vi. Therefore, every Y ji , j = 1, 2, 3, contains a point which is taken by γ′i onto vi.

As a consequence, the preimage (γ′i)
−1(vi) contains two points pi, qi with the desired

properties, and the assertion is proved.

Let now Cω = ω- limCi, and set p = [(pi)] ∈ S1, q = [(qi)] ∈ S1. By construction

we have d(p, q) ≥ (2π)/3, and γω(p) ∈ Cω, γω(q) ∈ Cω, whence the conclusion.

8.5. A characterization of bi-Lipschitz (n− 1)-flats in M̃ω

A bi-Lipschitz m-flat in M̃ω is the image of a bi-Lipschitz embedding f : Rm → M̃ω.

This section is aimed at proving that ω-walls are the only bi-Lipschitz (n− 1)-flats in

M̃ω.

We say that a metric space is L.-p.-connected if any two points in it may be joined

by a Lipschitz path.
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Lemma 8.27. — Let A ⊆ M̃ω be a bi-Lipschitz (n−1)-flat. Then for every fiber Fω
the set A \ Fω is L.-p.-connected.

Proof. — Let f : Rn−1 → Cω be a bi-Lipschitz embedding such that f(Rn−1) = A,

and let l ≤ n − 3 be such that Fω is bi-Lipschitz homeomorphic to Rl. The set

f−1(Fω) is a closed subset of Rn−1 which is bi-Lipschitz homeomorphic to a subset

of Rl. But it is known that the complements of two homeomorphic closed subsets of

Rn−1 have the same singular homology (see e.g. [Do]), so Rn−1 \ f−1(Fω) is path-

connected. It is immediate to check that any two points in a connected open subset of

Rn−1 are joined by a piecewise linear path, so Rn−1 \f−1(Fω) is L.-p.-connected. The

conclusion follows from the fact that f takes Lipschitz paths into Lipschitz paths.

We can already characterize bi-Lipschitz (n − 1)-flats which are contained in a

single ω-chamber.

Proposition 8.28. — Let A be a bi-Lipschitz (n−1)-flat contained in the ω-chamber

Cω. Then A is equal to a wall of Cω.

Proof. — Recall that Cω is homeomorphic to a product Y × Rl, where Y is a tree-

graded space and l ≤ n − 3. We denote by π : Cω ∼= Y × Rl → Y the projection on

the first factor, and we set A′ = π(A).

We show that A′ has no cut points. In fact, if p ∈ A′, then Lemma 8.27 implies

that the set B = A\π−1(p) is L.-p.-connected, whence connected, so A′ \{p} = π(B)

is also connected. Now Lemma 8.9 implies that A′ is contained in a piece of the

tree-graded space Y , so A is contained in an ω-wall Wω of Cω. Being the image of a

bi-Lipschitz embedding of a complete space, the set A is closed in Wω. Moreover, A

is open in Wω by invariance of domain, so we finally get A = Wω.

We are now left to show that any bi-Lipschitz (n − 1)-flat is contained in an ω-

chamber.

Lemma 8.29. — Let A be a bi-Lipschitz (n−1)-flat in M̃ω and let Wω be an ω-wall.

Then A \Wω is contained in one side of Wω.

Proof. — Suppose by contradiction that p, q ∈ A are points on opposite sides of Wω

(in particular, p /∈ Wω and q /∈ Wω), and let Fω be the fiber of Wω such that every

path joining p with Wω passes through Fω (see Corollary 8.25).

Let γ be a Lipschitz path in A joining p with q. By Lemma 8.18, γ must intersect

Wω, whence Fω. Since neither p nor q are contained in Fω, this implies that A \ Fω
is not L.-p.-connected, and contradicts Lemma 8.27.

Problem. — Let A be a subset of M̃ω such that A \Wω lies on a definite side of Wω

for every ω-wall Wω. Is it true that A is contained in an ω-chamber?
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By Lemma 8.29 and Proposition 8.28, an affirmative answer to the above question

would readily imply that every bi-Lipschitz (n− 1)-flat in M̃ω is equal to an ω-wall.

Lemma 8.30. — Let A ⊆ M̃ω be a bi-Lipschitz (n − 1)-flat. There there exists an

ω-wall Wω such that |A ∩Wω| ≥ 2.

Proof. — Since n ≥ 3, there exists an injective Lipschitz loop contained in A. By

Lemma 8.26, two distinct points of this loop are contained in the same ω-chamber.

Therefore, there exists an ω-chamber Cω containing two distinct points p, q of A.

If A ⊆ Cω, then we are done by Proposition 8.28. So we may suppose that A

contains a point r /∈ Cω. Since A is bi-Lipschitz homeomorphic to Rn−1, we may

choose two Lipschitz paths γp : [0, 1] → M̃ω, γq : [0, 1] → M̃ω such that the following

conditions hold:

1. the images of γp and of γq are contained in A;

2. γp(0) = γq(0) = r, γp(1) = p, γq(1) = q;

3. the image of γp intersects the image of γq only in r.

By Lemma 8.21, point (2) implies that there exists an ω-wall Wω of Cω intersecting

the image of γp in a point p′ and the image of γq in a point q′. Since r /∈ Cω, point

(3) ensures that p′ 6= q′, while point (1) implies that p′ and q′ are contained in A.

Proposition 8.31. — Let A be a bi-Lipschitz (n − 1)-flat in Cω. Then A is an

ω-wall.

Proof. — By Proposition 8.28, it is sufficient to show that A is contained in an ω-

chamber.

By Lemma 8.30 we may find an ω-wall W ′ω and distinct points p1, p2 in W ′ω such

that {p1, p2} ⊆ A∩W ′ω. If A ⊆W ′ω we are done, otherwise Lemma 8.29 ensures that

A \W ′ω lies on one side S(W ′ω) of W ′ω. Moreover, if r is any point in A \W ′ω, then

Corollary 8.25 implies that there exists a fiber F ′ω of W ′ω associated to S(W ′ω) such

that any Lipschitz path joining r with p1 or p2 passes through F ′ω. If pi /∈ F ′ω for some

i, there would not be any Lipschitz path in A \ F ′ω joining r to pi, and this would

contradict Lemma 8.27. Therefore we have

(8.2) {p1, p2} ⊆ F ′ω .

Let Cω be the unique ω-chamber which is adjacent to W ′ω and intersects S(W ′ω).

Since F ′ω is associated to S(W ′ω), the fiber F ′ω is a fiber of Cω. We will prove that A

is contained in Cω.

Suppose by contradiction that there exists q ∈ A\Cω, and let Wω be the wall of Cω
such that every Lipschitz path joining q with Cω passes through Wω (see Lemma 8.21).

By Lemma 8.21 the point q ∈ A and the subset Cω \Wω lie on opposite sides of Wω.

However, recall from Lemma 8.29 that we cannot have points of A on opposite sides

of Wω, so {p1, p2} ⊆ A ∩ Cω ⊆ Wω. Therefore, the the fiber F ′ω is not disjoint from

Wω, and this implies at once that F ′ω is contained not only in W ′ω, but also in Wω.
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More precisely, F ′ω is a fiber of Wω associated to the side of S(Wω) of Wω containing

Cω \Wω.

We have already observed that q belongs to the side S(Wω) of Wω opposite to

S(Wω). Moreover, by Corollary 8.25 there exists a fiber Fω of Wω associated to

S(Wω) such that every Lipschitz path joining q with pi, i = 1, 2, passes through Fω.

But {p1, p2} ⊆ F ′ω, and Fω, F ′ω are fibers of Wω associated to opposite sides of Wω.

By Lemma 8.20, this implies that pi /∈ Fω for at least one i ∈ {1, 2}. It follows

that q and pi cannot be joined by any Lipschitz path in A \ Fω, and this contradicts

Lemma 8.27.

Remark 8.32. — Let m ≥ n − 1 and let A be an m-bi-Lipschitz flat in M̃ω. The

arguments developed in this section show that A is contained in an ω-wall, som = n−1

and A is in fact an ω-wall. Therefore, ω-walls are exactly the bi-Lipschitz flats of M̃ω

of maximal dimension.

8.6. A characterization of quasi-flats of maximal dimension in M̃

Our characterization of bi-Lipschitz (n− 1)-flats in M̃ω yields the following result:

Corollary 8.33. — For each k, c, there exists β ≥ 0 (only depending on k, c and the

geometry of M̃) such that the image of Rn−1 under a (k, c)−quasi-isometric embedding

in M̃ is contained in the β−neighborhood of a wall.

Proof. — By contradiction, take a sequence of (k, c)-quasi-isometric embeddings fm :

Rn−1 → M̃ such that for each m ∈ N and wall W ⊆ M̃ we have fm(Rn) * Nm(W ),

where Nm(W ) is the m-neighbourhood of W . Fix a point p ∈ Rn−1. The fm’s induce

a bi-Lipschitz embedding f from the asymptotic cone Rn−1 = Rn−1
ω ((p), (m)) to the

asymptotic cone M̃ω(fm(p), (m)). (Recall that, if X is a metric space, we denote by

Xω((xm), (rm)) the asymptotic cone of X associated to the sequence of basepoints

(xm) and the sequence of rescaling factors (rm).) By the previous proposition, there

is an ω−wall Wω = ω-limWm such that f(Rn−1) = Wω. By hypothesis, for each

m there is a point pm ∈ Rn−1 with d(fm(pm),Wm) ≥ m. Set rm = d(pm, p). By

choosing pm as close to p as possible, we may assume that no point q such that

d(p, q) ≤ rm − 1 satisfies d(fm(q),Wm) ≥ m, so

(8.3) d(fm(q),Wm) ≤ m+ k + c for every q ∈ Rn−1 s.t. d(p, q) ≤ rm.

Notice that ω-lim rm/m = ∞, for otherwise [(pm)] should belong to Rn−1
ω ((p), (m)),

[fm(pm)] should belong to M̃ω((fm(p)), (m)), and, since f(Rn−1) = Wω, we would

have d(fm(pm),Wm) = o(m).

Let us now change basepoints, and consider instead the pair of asymptotic cones

Rn−1
ω ((pm), (m)) and M̃ω((fm(pm)), (m)). The sequence (fm) induces a bi-Lipschitz

embedding f ′ between these asymptotic cones (note that f 6= f ′, simply because

due to the change of basepoints, f and f ′ are defined on different spaces with values
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in different spaces!). Let Am = {q ∈ Rn−1 | d(q, p) ≤ rm} and Aω = ω-limAm ⊆
Rn−1
ω ((pm), (m)). Since ω-lim rm/m = ∞, it is easy to see that Aω is bi-Lipschitz

homeomorphic to a half-space in Rn−1. Moreover, by (8.3) each point in f ′(Aω) is

at a distance at most 1 from W ′ω = ω-limWi (as before, observe that the sets Wω

and W ′ω live in different spaces). Again by Proposition 8.31 we have that f ′(Aω) ⊆
f ′(Rn−1

ω ((pm), (m))) = W ′′ω for some ω−wall W ′′ω . Moreover, since [(fm(pm))] ∈
W ′′ω \W ′ω, we have W ′ω 6= W ′′ω .

By Lemma 8.24 there exists a fiber Fω ⊆ W ′ω ∩W ′′ω such that every path joining

a point in W ′′ω with a point in W ′ω has to pass through Fω. Now, if a ∈ f ′(Aω) we

have d(a,W ′ω) ≤ 1, so there exists a geodesic of length at most one joining a ∈ W ′′ω
with some point in W ′ω. Such a geodesic must pass through Fω, so every point of

f ′(Aω) must be at a distance at most 1 from Fω. If h : f ′(Aω) → Fω is such that

d(b, h(b)) ≤ 1 for every b ∈ f ′(Aω), then h is a (1, 2)-quasi-isometric embedding.

Therefore the map g = h ◦ f ′ : Aω → Fω is a quasi-isometric embedding. But this is

not possible, since if n − 1 > l there are no quasi-isometric embeddings from a half

space in Rn−1 to Rl (as, taking asymptotic cones, such an embedding would provide

an injective continuous function from an open set in Rn−1 to Rl). This completes the

proof of the corollary.

8.7. Walls and chambers are quasi-preserved by quasi-isometries

We are now ready to conclude the proof of Theorem 0.17. We come back to our

original situation, i.e. we take irreducible graph n-manifolds M1,M2 and we suppose

that f : M̃1 → M̃2 is a given (k, c)-quasi-isometry. We will say that a constant is

universal if it only depends on k, c and on the geometry of M1,M2. We begin by

recalling the following well-known result (see e.g. [KaLe3, Corollary 2.6]):

Lemma 8.34. — Let f : Rn−1 → Rn−1 be an (a, b)-quasi-isometric embedding.

Then f is an (a′, b′)-quasi-isometry, where a′, b′ only depend on a, b.

Proposition 8.35. — A universal constant λ exists such that for every wall W1 ⊆
M̃1, there exists a wall W2 ⊆ M̃2 with the property that the Hausdorff distance between

f(W1) and W2 is ≤ λ. Moreover, W2 is the unique wall in M̃2 at finite Hausdorff

distance from f(W1).

Proof. — Since M1 is irreducible, there exists a (k′, c′)-quasi-isometry i : Rn−1 →
W1 (where k′, c′ only depend on the geometry of M1), and Corollary 8.33 (applied

to the quasi-isometric embedding f ◦ i) ensures that f(W1) is contained in the β-

neighbourhood of W2 for some wall W2, where β is universal. For every y ∈ f(W1) let

p(y) ∈W2 be a point such that d(y, p(y)) ≤ β. It follows easily from Lemma 8.34 that

the map p ◦ f |W1
: W1 → W2 is a (k′′, c′′)-quasi-isometry, where k′′, c′′ are universal.

This in turn implies that W2 is contained in the β′-neighbourhood of f(W1), where
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β′ is universal. The first statement follows, with λ = max{β, β′}. The uniqueness of

W2 is an immediate consequence of Lemma 2.19.

Putting together Propositions 8.35 and 4.13 we now get the following result, which

concludes the proof of Theorem 0.17:

Proposition 8.36. — There exists a universal constant H such that for every cham-

ber C1 ⊆ M̃1 there exists a unique chamber C2 ⊆ M̃2 such that the Hausdorff distance

between f(C1) and C2 is bounded by H. Moreover, if W1 is a wall adjacent to C1

then f(W1) lies at finite Hausdorff distance from a wall W2 adjacent to C2.

8.8. Thickness and relative hyperbolicity

For an irreducible graph manifold M , we may exploit the study of the coarse

geometry of π1(M) to answer the question whether π1(M) is relatively hyperbolic with

respect to some finite family of proper subgroups. Recall from Proposition 6.11 that

(even when M is not necessarily irreducible) π1(M) is relatively hyperbolic provided

that at least one piece of M is purely hyperbolic. In this Section we show that this

sufficient condition is also necessary if M is irreducible.

As mentioned in the Introduction, there are several equivalent definitions of the

notion of relative hyperbolicity of G with respect to H1, . . . ,Hn. Since we are going to

describe obstructions to relative hyperbolicity coming from the study of asymptotic

cones, we recall the characterization of relative hyperbolicity provided by the following

result:

Theorem 8.37 ([DrSa]). — Let C(G) be any Cayley graph of G. Then, the group G

is relatively hyperbolic with respect to H1, . . . ,Hn if and only if C(G) is asymptotically

tree-graded (see Definition 8.7) with respect to the left cosets of H1, . . . ,Hn (considered

as subsets of C(G)).

The notion of thickness was introduced by Behrstock, Druţu and Mosher in [BDM]

as an obstruction for a metric space to be asymptotically tree-graded, and hence, for

a group to be relatively hyperbolic. The simplest such obstruction is being uncon-

stricted, i.e. having no cut-points in any asymptotic cone (by definition, a metric

space is thick of order 0 if it is unconstricted). It is readily seen that the product

of two unbounded geodesic metric spaces (e.g. a graph manifold consisting of a sin-

gle piece with non-trivial fiber and without internal walls) is unconstricted. Notable

thick metric spaces and groups which are not unconstricted include the mapping class

group and Teichmüller space (equipped with the Weil-Petersson metric) of most sur-

faces (see [BDM]), fundamental groups of classical 3-dimensional graph manifolds

(see again [BDM]), and the group Out(Fn) for n ≥ 3 (see Algom-Kfir [A-K]).

Let us briefly describe what it means for a metric space X to be thick of order at

most 1 with respect to a collection of subsets L. First of all, the family L is required
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to “fill” X, that is there must exist a positive constant τ such that the union of the

sets in L is τ−dense in X (property (N1)). Secondly, a certain coarse connectivity

property (denoted by (N2)) must be satisfied: for each L,L′ ∈ L we can find elements

L0 = L,L1 . . . , Ln = L′ of L such that Nτ (Li)∩Nτ (Li+1) has infinite diameter, where

the constant τ is independent of L,L′. The space X is said to be a τ -network with

respect to the family of subspaces L if conditions (N1) and (N2) hold (with respect to

the constant τ). For X to be thick of order at most 1, we need X to be a τ -network

with respect a family L, where each L ∈ L is unconstricted (actually the stricter

condition that the family L is uniformly unconstricted is required to hold).

Notice that property (N2) fails if X is asymptotically tree-graded with respect to

L as in that case there are uniform bounds on the diameter of Nk(L) ∩ Nk(L′) for

L,L′ ∈ L with L 6= L′.

Proposition 8.38. — Let M be an irreducible graph manifold, with at least one

internal wall, and with the property that all pieces have non-trivial fibers. Then M̃

and π1(M) are both thick of order 1.

Proof. — Let us first argue that M̃ is thick of order ≤ 1. We show that M̃ is a

τ−network with respect to the collection H of its chambers (for τ large enough).

In fact, every point in M̃ is clearly uniformly close to a chamber (property (N1)).

Furthermore, if τ is large enough, then the intersection of two adjacent chambers

contains a wall. As walls have infinite diameter, we easily obtain property (N2) as

well.

To complete the proof that M̃ is thick of order ≤ 1 we are only left with proving

thatH is uniformly unconstricted. This is true because there exists a uniform constant

k ≥ 1 such that any ω−chamber is k-biLipschitz homeomorphic to the product of a

geodesic metric space and some Rn, n > 0.

Finally, we note that, by a result of Drutu, Mozes, and Sapir [DMS, Theorem

4.1], any group which supports an acylindrical action on a tree has the property that

every asymptotic cone has a cut point. In view of Proposition 6.4, we conclude that

π1(M) has cut points in every asymptotic cones, hence cannot be thick of order 0.

This concludes the proof of the Proposition.

Therefore, if we assume that every piece of our irreducible graph manifold M has

non-trivial torus factor, then π1(M) is either thick of order 0 (when M consists of

a single piece without internal walls), or thick of order 1 (when M has at least one

internal wall). Therefore, from Proposition 6.11 and [BDM, Corollary 7.9] we deduce

the following:

Proposition 8.39. — Let M be an irreducible graph manifold. Then π1(M) is rel-

atively hyperbolic with respect to a finite family of proper subgroups if and only if M

contains at least one purely hyperbolic piece.



CHAPTER 9

QUASI ISOMETRY RIGIDITY, I

This chapter is devoted to the proof of Theorem 0.18. We recall the statement for

the convenience of the reader:

Theorem. — Let N be a complete finite-volume hyperbolic m-manifold, m ≥ 3, and

let Γ be a finitely generated group quasi-isometric to π1(N)× Zd, d ≥ 0. Then there

exist a finite-index subgroup Γ′ of Γ, a finite-sheeted covering N ′ of N , a group ∆ and

a finite group F such that the following short exact sequences hold:

1 // Zd
j
// Γ′ // ∆ // 1,

1 // F // ∆ // π1(N ′) // 1.

Moreover, j(Zd) is contained in the center of Γ′. In other words, Γ′ is a central

extension by Zd of a finite extension of π1(N ′).

In what follows we will give a proof of Theorem 0.18 under the additional assump-

tion that the cusps of N are toric. However, the attentive reader will observe that all

the results needed in the proofs below also hold in the case where N is not assumed to

have toric cusps, provided that the walls of the universal covering of N×T d are quasi-

isometrically embedded in the universal covering B × Rd, where B is the neutered

space covering N . But this last fact is obvious, since the boundary components of

B × Rd are totally geodesic (in the metric sense).

So, let us consider the graph manifold with boundary M = N × T d, and observe

that Γ is quasi-isometric to π1(M). Moreover, M is obviously irreducible, and the

universal covering M̃ of M is isometric to the Riemannian product B ×Rd, where B

is a neutered space. The walls of M̃ coincide with the boundary components of M̃ .
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9.1. The quasi-action of Γ on M̃

As discussed in Section 1.3, a quasi-isometry between Γ and π1(M) induces a k-

cobounded k-quasi-action h of Γ on M̃ for some k ≥ 1. From this point on, we will

fix such a quasi-action. Henceforth, for every γ ∈ Γ, we will abuse notation, and also

denote by γ the corresponding quasi-isometry h(γ) : M̃ → M̃ .

We want to prove that every quasi-isometry γ : M̃ → M̃ , γ ∈ Γ can be coarsely

projected on B to obtain a quasi-isometry of B. We say that a constant is universal

if it depends only on k,H and the geometry of B, where H is such that for every

γ ∈ Γ and every wall W ⊆ M̃ , the set γ(W ) is at Hausdorff distance at most H from

a wall of M̃ (see Proposition 8.35).

Lemma 9.1. — There exists a universal constant H ′ such that, for each fiber F =

{b} × Rd ⊆ M̃ and each γ ∈ Γ, the set γ(F ) is at Hausdorff distance bounded by H ′

from a fiber F = {b} × Rd ⊆ M̃ .

Proof. — Let K ⊆ N be the cut-locus of N relative to ∂N , i.e. the set of points

of N whose distance from ∂N is realized by at least two distinct geodesics, and let

R′ = 2 sup{dN (p, q) | p ∈ K, q ∈ ∂N}. Since N is compact, R′ is finite, and it is easily

seen that for each p ∈ N there exist (at least) two distinct components of ∂N whose

distance from p is at most R′. This implies that for each fiber F there exist two walls

W,W ′ such that F ⊆ AR′(W,W ′) = {x ∈ M̃ | d(x,W ) ≤ R′, d(x,W ′) ≤ R′}.
Moreover, if O,O′ are disjoint horospheres in ∂B, it is easy to see that the diameter

of the set {b ∈ B | d(b,O) ≤ R′, d(b,O′) ≤ R′} is bounded by a constant which

only depends on R′. As a consequence, if F is a fiber contained in AR′(W,W
′)

then there exists a universal constant D such that AR′(W,W
′) ⊆ ND(F ). As quasi-

isometries almost preserve walls, there exist a universal constant R′′ ≥ R′ and walls

W,W ′ such that γ(AR′(W,W
′)) ⊆ AR′′(W,W ′). It follows that γ restricts to a

(k′, k′)-quasi-isometric embedding of F into AR′′(W,W ′), where k′ is a universal

constant. But both F and AR′′(W,W ′) are quasi-isometric to Rd, so by Lemma 8.34

the restriction of γ to F defines a quasi-isometry (with universal constants) between

F and AR′′(W,W ′), and this forces the Hausdorff distance between γ(F ) and a fiber

in AR′′(W,W ′) to be bounded by a universal H ′.

The above Lemma can be used to define a quasi-action of Γ on B. Recall that M̃

is isometric to B × Rd, and fix γ ∈ Γ. We define a map ψ(γ) : B → B by setting

ψ(γ)(b) = πB(γ((b, 0))) for every b ∈ B, where πB : M̃ ∼= B × Rd → B is the natural

projection, and for (b, f), (b′, f ′) ∈ B × Rd ∼= M̃ we denote by dB((b, f), (b′, f ′)) the

distance in B between b and b′ (see Section 2). With a slight abuse of notation, we

also denote by dB the distance on B.

We now show that every ψ(γ) is a quasi-isometry (with universal constants). Let

b, b′ ∈ B and set F = {b} × Rd and F ′ = {b′} × Rd. The Hausdorff distance between

γ(F ) and γ(F ′) is bounded from below by dB(b, b′)/k − k, so if F , F ′ are fibers with
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Hausdorff distance bounded by H ′ from γ(F ), γ(F ′) respectively, then the Hausdorff

distance between F and F ′ is at least dB(b, b′)/k − k − 2H ′. We have therefore

dB
(
ψ(γ)(b),ψ(γ)(b′)

)
≥ dB

(
πB(F ), πB(F ′)

)
− dB

(
ψ(γ)(b), πB(F )

)
− dB

(
ψ(γ)(b′), πB(F ′)

)
≥
(
dB(b, b′)/k − k − 2H ′

)
− 2H ′

= dB(b, b′)/k − k − 4H ′.

On the other hand, we also have

dB
(
ψ(γ)(b), ψ(γ)(b′)

)
= dB

(
γ
(
(b, 0)

)
, γ
(
(b′, 0)

))
≤ kd

(
(b, 0), (b′, 0)

)
+ k

≤ kdB(b, b′) + k.

Having (k + 2H ′)-dense image, the map ψ(γ) : B → B is therefore a (k′, k′)-quasi-

isometry with k′-dense image, where k′ is a universal constant. It is now easy to show

that the map γ 7→ ψ(γ) defines a quasi-action of Γ on B. Moreover, up to increasing

k′ we may assume that such a quasi-action is k′-cobounded. From the way the action

of Γ on B was defined, we also have that, for every γ ∈ Γ and every component O

of ∂B, there exists a component O′ of ∂B such that the Hausdorff distance between

ψ(γ)(O) and O′ is bounded by H. In order to simplify notations, we will as usual

denote ψ(γ) simply by γ.

Recall that m = n− d is the dimension of the neutered space B, and let G be the

isometry group of (B, dB). Every element of G is the restriction to B of an isometry

of the whole hyperbolic space Hm containing B. We will denote by Comm(G) the

commensurator of G in Isom(Hm), i.e. the group of those elements h ∈ Isom(Hm)

such that the intersection G ∩ (hGh−1) has finite index both in G and in hGh−1.

We are now in a position to use a deep result due to Schwartz (see [Sc, Lemma

6.1]), which in our context can be stated as follows:

Theorem 9.2 ([Sc]). — There exists a universal constant β such that the following

condition holds: for every γ ∈ Γ a unique isometry θ(γ) ∈ Isom(Hm) exists such

that dH(γ(x), θ(γ)(x)) ≤ β for every x ∈ B, where dH denotes the hyperbolic distance

on Hm. Moreover, for every γ ∈ Γ the isometry θ(γ) belongs to Comm(G), and the

resulting map θ : Γ→ Comm(G) is a group homomorphism.

In the next few sections, we will analyze the kernel and image of the morphism θ,

in order to extract information about the structure of Γ.

9.2. The image of θ

From now on we denote by Λ < Isom(Hm) the image of the homomorphism θ. Our

next goal is to show that Λ is commensurable with π1(N). It is a result of Margulis
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that a non-uniform lattice in Isom(Hm) is arithmetic if and only if it has infinite index

in its commensurator (see [Zi]). As a result, things would be quite a bit easier if N

were assumed to be non-arithmetic. To deal with the general case, we will again use

results (and techniques) from [Sc]. Note that, at this stage, we don’t even know that

Λ is a discrete subgroup of Isom(Hm).

From now on, unless otherwise stated, we will consider the Hausdorff distance

of subsets of Hm with respect to the hyperbolic metric dH on Hm. We denote by

P ⊆ ∂Hm the set of all the basepoints of horospheres in ∂B. As an immediate

corollary of Theorem 9.2 we get the following:

Lemma 9.3. — For every α ∈ Λ and every horosphere O ⊆ ∂B there exists a unique

horosphere O′ ⊆ ∂B such that the Hausdorff distance between α(O) and O′ is at most

the universal constant H + β. In particular, the group Λ acts on P .

Lemma 9.4. — The action of Λ on the set P has a finite number of orbits, and

every element of Λ which fixes a point in P is parabolic.

Proof. — Fix a point b ∈ B. Let A be the set of boundary components of B whose

hyperbolic distance from b is ≤ k′(H + k′) + k′. The set A is finite, and define P0 to

be the (finite) set of basepoints corresponding to the horospheres in the set A. We

will prove that P0 contains a set of representatives for the action of Λ on P .

So taking an arbitrary p ∈ P , let O be the corresponding component of ∂B, and fix

a point y ∈ O. Since the quasi-action of Γ on B is k′-cobounded, there exists γ ∈ Γ

such that dH(γ(b), y) ≤ dB(γ(b), y) ≤ k′. We know that there exists a component O′

of ∂B based at p′ ∈ P such that γ(O′) is at Hausdorff distance bounded by H from O.

It follows that γ(O′) contains a point at distance at most H from y, and this in turn

implies that O′ belongs to A, so p′ belongs to P0. Moreover, the horosphere θ(γ)(O′)

is at bounded Hausdorff distance from O, giving us θ(γ)(p′) = p. So p belongs to the

Λ-orbit of a point in P0, completing the first part of the Lemma.

Now assume p ∈ P is fixed by an element α ∈ Λ, and let O be the connected

component of ∂B corresponding to p. Since α(p) = p, the horosphere α(O) is also

based at the point p. It easily follows that the Hausdorff distance between O and

αn(O) equals n times the Hausdorff distance between O and α(O). Since αn ∈ Λ for

every n ∈ N, if such a distance were positive, then for sufficiently large n the Hausdorff

distance from O to αn(O) would exceed the uniform constant H + β, contradicting

Lemma 9.3. We conclude α(O) = O, so α is parabolic.

Now let P0 = {p1, . . . , pj} ⊆ P as in Lemma 9.4 be a finite set of representatives

for the action of Λ on P . For every i = 1, . . . , j let Oi be the component of ∂B

based at pi, and let Ôi be the horosphere contained in the horoball bounded by Oi
and having Hausdorff distance H + β from Oi. We let Ô be the set of horospheres

obtained by translating Ô1, . . . , Ôj by all the elements of Λ, and we denote by B̂

the complement in Hm of the union of the horoballs bounded by elements in Ô. By
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construction the set B̂ is Λ-invariant, and since all the stabilizers of points in P are

parabolic, for every p ∈ P there exists exactly one horosphere in Ô based at p. Let

R > 0 be the minimal distance between distinct connected components of ∂B. Take

Ô ∈ Ô and let O be the corresponding boundary component of B. By definition there

exist i ∈ {1, . . . , j} and an element α ∈ Λ such that Ô = α(Ôi). Recall now that

the Hausdorff distance between α(Oi) and O is bounded by H + β. Together with

our choice for the construction of Ôi, this implies that Ô is contained in the horoball

bounded by O, and the Hausdorff distance between Ô and O is bounded by 2(H+β).

As a consequence we easily deduce the following:

Lemma 9.5. — The set B̂ is Λ-invariant and is such that

B ⊆ B̂ ⊆ N2(H+β)(B)

(where regular neighbourhoods are considered with respect to the hyperbolic metric dH).

Moreover, if Ô, Ô′ are distinct elements of Ô, then the distance between the horoballs

bounded by Ô and Ô′ is at least R (in particular, such horoballs are disjoint).

We are now ready to prove the following:

Proposition 9.6. — The group Λ is a non-uniform lattice in Isom(Hm), and admits

B̂ as associated neutered space.

Proof. — We begin by showing that Λ is discrete. Since N has finite volume, the set

P is dense in ∂Hm, so we may find horospheres Ô1, . . . , Ôm+1 in ∂B̂ with basepoints

p1, . . . , pm+1 such that {p1, . . . , pm+1} is not contained in the trace at infinity of any

hyperbolic hyperplane of Hm. In particular, if α ∈ Isom(Hm) is such that α(pi) = pi
for every i = 1, . . . ,m+ 1, then α = Id.

Recall that the minimal distance between distinct connected components of ∂B̂ is

bounded from below by the constant R > 0. Choose xi ∈ Oi for i = 1, . . . ,m+ 1 and

set

U = {α ∈ Isom(Hm) | dH(α(xi), xi) < R for every i = 1, . . . ,m+ 1} .
Then U is an open neighbourhood of the identity in Isom(Hm); let us compute the

intersection Λ ∩ U . If α ∈ Λ, we have that α permutes the component of ∂B̂. If

we also assume α ∈ U , then α moves each of the horospheres Oi at most R, which

forces α(Oi) = Oi, whence α(pi) = pi, for each i = 1, . . . ,m+ 1. As noted above, this

implies α = Id, and Λ ∩ U = {Id}. But this implies Λ is a discrete subgroup.

Next we verify that Λ has finite co-volume. Since B̂ is contained in the 2(H + β)-

neighbourhood of B, there exists a Γ-orbit which is (k′ + 2H + 2β)-dense in B̂, and

this immediately implies that there exists a Λ-orbit which is (k′ + 2H + 3β)-dense

in B̂. It follows that the quotient orbifold B̂/Λ is compact. By Lemma 9.4, such

an orbifold has a finite number V1, . . . , Vj of boundary components. Let Ôj be the

boundary component of B̂ projecting onto Vj . Since elements of Λ permute the

boundary components of B̂, if α ∈ Λ is such that α(Ôj) ∩ Ôj 6= ∅, then α(Ôj) = Ôj ,
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so α belongs to the stabilizer Λj of the basepoint of Ôj . Being a closed subset of

the compact quotient B̂/Λ, the set Vj = Ôj/Λj is also compact. If Wj ⊆ Hm is the

horoball bounded by Ôj , it follows that the quotient Wj/Λj has finite volume. Since(⋃j
i=1Wj

)
∪ B̂ projects surjectively onto Hm/Λ, we conclude that Hm/Λ has finite

volume, and we have verified that Λ is a non-uniform lattice.

Corollary 9.7. — The group Λ is commensurable with π1(N).

Proof. — Since B ⊆ B̂ ⊆ N2(H+β)(B), the spaces B and B̂, when endowed with their

path distances, are quasi-isometric. Since π1(N) acts properly and cocompactly on

B and Λ acts properly and cocompactly on B̂, by Milnor-Svarc’s Lemma this ensures

that Λ is quasi-isometric to π1(N). The conclusion now follows from [Sc, Corollary

1.3], since both π1(N) and Λ are non-uniform lattices in Isom(Hm).

9.3. The kernel of θ

Having obtained an understanding of the image of θ, we now turn to studying the

kernel.

Lemma 9.8. — The group ker θ is finitely generated and quasi-isometric to Zd.

Moreover, it is quasi-isometrically embedded in Γ.

Proof. — Let F = {b} × Rd ⊆ M̃ be a fixed fiber of M̃ , set x0 = (b, 0) ∈ F and

observe that there exists β′ > 0 such that if γ ∈ ker θ then γ(x0) ∈ Nβ′(F ) (we may

take as β′ the smallest number such that in the base B every dH-ball of radius β is

contained in a dB-ball of radius β′). For γ ∈ ker θ, x ∈ F , we denote by α(γ, x) ∈ F
a point such that d(α(γ, x), γ(x)) ≤ β′. It is not difficult to see that the resulting

map α : ker θ × F → F defines a quasi-action. Since the fiber F is isometric to Rd

(and hence quasi-isometric to Zd), Lemma 1.4 tells us the first statement would follow

provided we can show that α is cobounded, i.e. that the orbit of x0 is Q-dense in F

for some Q.

First observe that if γ ∈ Λ is such that γ(x0) ∈ Nβ′(F ), then θ(γ) moves b a

universally bounded distance from itself, so discreteness of Λ implies that θ(γ) belongs

to a fixed finite subset A ⊆ Λ. For every a ∈ A we choose an element γa ∈ Γ such

that θ(γa) = a and we set M = max{d(x0, γ
−1
a (x0)), a ∈ A}. Now, for each point

p ∈ F there exists γ ∈ Γ such that d(γ(x0), p) ≤ k. Then, if θ(γ) = a ∈ A we have

that γγ−1
a ∈ ker θ and

d((γγ−1
a )(x0), p) ≤ d(γ(γ−1

a (x0)), p) + k

≤ d(γ(γ−1
a (x0)), γ(x0)) + d(γ(x0), p) + k

≤ kd(γ−1
a (x0), x0) + 3k

≤M + 3k
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so d(α(γγ−1
a , x0), p) ≤ M + 3k + β′. We have thus proved that α is cobounded, and

from Lemma 1.4 we can now deduce that ker θ is finitely generated and quasi-isometric

to F (whence to Zd) via the map

jx0
: ker θ → F, jx0

(γ) = α(γ, x0) .

Let us now prove that ker θ is quasi-isometrically embedded in Γ. Let ϕ : Γ→ M̃ ,

ψ : M̃ → Γ be the quasi-isometries introduced in Section 1.3, and let i : F → M̃ be

the inclusion. Also choose k′′ large enough, so that ψ is a (k′′, k′′)-quasi-isometry and

d(ψ(ϕ(γ)), γ) ≤ k′′ for every γ ∈ Γ. Since F is totally geodesic in M̃ , the inclusion i

defines an isometric embedding of F into M , hence the composition of quasi-isometric

embeddings ψ ◦ i ◦ jx0 : ker θ → Γ is also a quasi-isometric embedding. In order to

conclude, it is now sufficient to show that the inclusion of ker θ into Γ stays at bounded

distance from ψ ◦ i ◦ jx0
.

Keeping the notation from Section 1.3 (and recalling that, in the proof above, we

denoted by γ(x0) the point ϕ(γ · ψ(x0))), for every γ ∈ ker θ we have the series of

inequalities:

d(ψ(i(jx0(γ))), γ) = d(ψ(α(γ, x0)), γ)

≤ d(ψ(α(γ, x0)), ψ(γ(x0))) + d(ψ(γ(x0)), γ)

≤ k′′β′ + k′′ + d(ψ(ϕ(γ · ψ(x0))), γ)

≤ k′′β′ + 2k′′ + d(γ · ψ(x0), γ)

= k′′β′ + 2k′′ + d(ψ(x0), 1Γ),

where the last equality is due to the Γ-invariance of any word metric on Γ, and this

concludes the proof.

We now need the following fundamental result by Gromov:

Theorem 9.9 ([Gr1]). — A finitely generated group quasi-isometric to Zd contains

a finite index subgroup isomorphic to Zd.

By Theorem 9.9, ker θ contains a finite index subgroup K isomorphic to Zd. Being

finitely generated, ker θ contains only a finite number of subgroups having the same

index as K. The intersection of all such subgroups has finite index in K and is

characteristic in ker θ. Therefore, up to replacing K with one of its finite index

subgroups, we can assume that K is characteristic in ker θ, hence normal in Γ. By

construction, the quotient Γ/K is a finite extension of Λ = Γ/ ker θ. By Corollary 9.7,

there exists a finite index subgroup Λ′ of Λ such that Λ′ ∼= π1(N ′) for some finite-

sheeted covering N ′ of N . Let us set Γ′ = θ−1(Λ′) and ∆ = Γ′/K. Then, we have

the following exact sequences:

(9.1) 1 // Zd
j
// Γ′

θ // Γ′/K = ∆ // 1,
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(9.2) 1 // F // ∆ // π1(N ′) // 1,

where K = j(Zd), and F is finite.

9.4. Abelian undistorted normal subgroups are virtually central

In order to conclude the proof of Theorem 0.18, it is sufficient to show that the

sequence (9.1) is virtually central, i.e. that K = j(Zd) is contained in the center of a

finite-index subgroup of Γ′. In fact, in this case we can replace Γ′ with this finite-index

subgroup, and, up to replacing ∆, F and π1(N ′) with suitable finite-index subgroups,

the exact sequences (9.1), (9.2) satisfy all the properties stated in Theorem 0.18.

Since K is a finite-index subgroup of ker θ and Γ′ is a finite-index subgroup of Γ,

by Lemma 9.8 the inclusion of K in Γ′ is a quasi-isometric embedding. Therefore,

in order to conclude the proof of Theorem 0.18 we just need to apply the following

result to the case Γ = Γ′, K = K.

Proposition 9.10. — Let Γ be a finitely generated group, and let K be a free abelian

normal subgroup of Γ. Also suppose that K is quasi-isometrically embedded in Γ. Then

K is contained in the center of a finite-index subgroup of Γ.

Proof. — In the proof of this Proposition we exploit the notion of translation number,

and follow a strategy already described in [Gr2, GeSh] (see also [AlBr, KlLe]).

Let G be a finitely generated group with finite set of generators A, and for every

g ∈ G let us denote by |g|A the distance between g and the identity of G in the

Cayley graph of G relative to A. The translation number of g is then given by the

non-negative number

τG,A(g) = lim
n→∞

|gn|A
n

(the fact that such a limit exists follows from the inequality |gm+n|A ≤ |gm|A+ |gn|A,

which holds for every g ∈ G, m,n ∈ N). We recall the following well-known properties

of the translation number:

1. τG,A(ghg−1) = τG,A(h) for every g, h ∈ G;

2. if G is free abelian and A is a basis of G, then τG,A(g) = |g|A for every g ∈ G;

3. let G be a subgroup of G′ and A,A′ be finite set of generators for G,G′; if the

inclusion i : G → G′ is a (λ, ε)-quasi-isometric embedding (with respect to the

metrics defined on G,G′ by A,A′), then for every g ∈ G we have

λ−1τG,A(g) ≤ τG′,A′(g) ≤ λτG,A(g).

For every x ∈ Γ we consider α(x) : K → K defined by α(x)(k) = x · k · x−1. Of

course, the map α : ∆→ Aut(K) is a well-defined homomorphism of groups.

Now let A ⊆ Γ be a finite set of generators and let A = {k1, . . . , kd} be a free basis

of K. For every x ∈ Γ, i = 1, . . . , d, the element α(x)(ki) is conjugate to ki in Γ, so
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by property (1) above we have

(9.3) τΓ,A(α(x)(ki)) = τΓ,A(ki).

Since K is quasi-isometrically embedded in Γ, by property (3) of the translation

number there exists λ > 0 such that

(9.4) τK,A(α(x)(ki)) ≤ λτΓ,A(α(x)(ki)), τΓ,A(ki) ≤ λτK,A(ki) = λ.

Putting together property (2) of the translation number with equations (9.3) and (9.4)

we finally obtain

|α(x)(ki)|A = τK,A(α(x)(ki)) ≤ λτΓ,A(α(x)(ki)) = λτΓ,A(ki) ≤ λ2

for every x ∈ Γ, i = 1, . . . , d. This implies that the orbit of each ki under the action of

α(Γ) is finite, so the homomorphism α : Γ→ Aut(K) has finite image, and kerα has

finite index in Γ. Moreover, K is contained in the center of kerα, so kerα provides

the required finite-index subgroup of Γ.

Remark 9.11. — Let us analyze further the short exact sequence

1 // K // Γ
π // ∆ = Γ/K // 1 ,

studied in Proposition 9.10. In our case of interest, i.e. when K = K, Γ = Γ′, and

∆ = ∆, we also know that the following condition holds:

(*) there exists a quasi-isometry q : Γ→ K ×∆ which makes the following diagram

commute:

Γ
π //

q

��

∆

Id
��

K ×∆ // ∆

where the horizontal arrow on the bottom represents the obvious projection.

Moreover, the group ∆ is a finite extension of the fundamental group of a cusped

hyperbolic manifold. One may wonder whether these extra assumptions could be

exploited to show that the sequence (9.1) above virtually splits. In this remark we

show that this is not true in general.

Condition (*) is equivalent to the existence of a Lipschitz section s : ∆ → Γ such

that π ◦ s = Id∆ (see e.g. [KlLe, Proposition 8.2]). Recall that a central extension

of ∆ by K is classified by its characteristic coclass in H2(∆,K). In the case when

K ∼= Z, Gersten proved that a sufficient condition for a central extension to satisfy

condition (*) is that its characteristic coclass admits a bounded representative (see

[Ge1, Theorem 3.1]). Therefore, in order to construct an exact sequence that satisfies

condition (*) but does not virtually split, it is sufficient to find an element of H2(∆,Z)

of infinite order that admits a bounded representative.

Let us set ∆ = π1(N), where N is a hyperbolic 3-manifold with k ≥ 1 cusps

and second Betti number b2 > k (it is not difficult to construct such a manifold, for
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example by considering suitable link complements in the connected sum of several

copies of S2 × S1). We denote by N̂ a closed hyperbolic 3-manifold obtained by

Dehn filling all the cusps of N . An easy argument using a Mayer-Vietoris sequence

shows that a 2-class cN ∈ H2(N ;Z) exists such that the element i∗(cN ) ∈ H2(N̂ ;Z)

has infinite order, where i : N → N̂ is the natural inclusion. Thanks to the Universal

Coefficient Theorem, a coclass ω ∈ H2(N̂ ;Z) exists such that ω(i∗(cN )) = 1 (here and

henceforth we denote by ω(i∗(cN )) the number 〈ω, i∗(cN )〉, where 〈· , ·〉 : H2(N̂ ;Z)×
H2(N̂ ;Z)→ Z is the Kronecker pairing).

Since N and N̂ have contractible universal coverings, we have natural isomorphisms

H2(N ;Z) ∼= H2(π1(N);Z), H2(N̂ ;Z) ∼= H2(π1(N̂);Z), H2(N ;Z) ∼= H2(π1(N);Z),

H2(N̂ ;Z) ∼= H2(π1(N̂);Z). Abusing notation, we will denote by cN ∈ H2(π1(N);Z),

i∗(cN ) ∈ H2(π1(N̂);Z), ω ∈ H2(π1(N̂);Z) the elements corresponding to the

(co)classes introduced above. The inclusion i : N ↪→ N̂ induces a morphism

i∗ : H2(π1(N̂);Z)→ H2(π1(N);Z).

Recall now that ∆ = π1(N), and consider the central extension

(9.5) 1→ Z→ Γ→ ∆→ 1

associated to the coclass i∗(ω) ∈ H2(∆;Z). On one hand, since π1(N̂) is Gromov-

hyperbolic, by [NeRe] the coclass ω ∈ H2(π1(N̂);Z) admits a bounded represen-

tative, so i∗(ω) is also bounded, and the sequence (9.5) satisfies condition (*). On

the other hand, we have i∗(ω)(cN ) = ω(i∗(cN )) = 1, so i∗(ω) has infinite order in

H2(N ;Z), and this proves that the sequence (9.5) does not virtually split.

9.5. Pieces with quasi-isometric fundamental groups

The following proposition provides a necessary and sufficient condition for two

pieces of graph manifolds to have quasi-isometric fundamental groups.

Proposition 9.12. — Let n ≥ 3 be fixed, and, for i = 1, 2, let Ni be a complete

finite-volume hyperbolic ni-manifold with toric cusps, ni ≥ 3. If π1(N1 × Tn−n1) =

π1(N1)×Zn−n1 is quasi-isometric to π1(N2×Tn−n2) = π1(N2)×Zn−n2 , then n1 = n2

and N1 is commensurable with N2.

Proof. — Let us set Gi = π1(Ni) × Zn−ni . By Theorem 0.18, since G1 is quasi-

isometric to π1(N2)×Zn−n2 , there exist a finite index subgroup G′1 of G1, a group ∆

and a finite group F which fit in the following short exact sequences:

1 // Zn−n2
j
// G′1 // ∆ // 1,

1 // F // ∆ // π1(N ′2) // 1,

where N ′2 is a finite-sheeted covering of N2. Moreover, j(Zn−n2) lies in the center of

G′1.
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Let Z(G1) (resp. Z(G′1)) be the center of G1 (resp. of G′1). We claim that Z(G′1) =

Z(G1) ∩ G′1. The inclusion ⊇ is obvious. Moreover, if p1 : G1 → π1(N1) is the

projection on the first factor, then p1(G′1) is a finite-index subgroup of π1(N1). Since

any finite-index subgroup of π1(N1) has trivial center, this implies that any element

(γ,w) ∈ G′1 ⊆ G1 = π1(N1) × Zn−n1 which commutes with all the elements of G′1
must satisfy γ = 1 in π1(N1). We conclude that (γ,w) ∈ Z(G1), as claimed.

This implies that j(Zn−n2) ⊆ Z(G′1) ⊆ Z(G1) ∼= Zn−n1 , so n1 ≤ n2 by injectivity

of j. Interchanging the roles of G1 and G2 we also get n2 ≤ n1, forcing n1 = n2.

Since Z(G′1) = Z(G1) ∩ G′1, the quotient G′1/Z(G′1) is isomorphic to a finite-

index subgroup of G1/Z(G1), which is in turn isomorphic to π1(N1). In particular,

G′1/Z(G′1) is quasi-isometric to π1(N1). Moreover, since n1 = n2 the groups j(Zn−n2)

and Z(G′1) share the same rank, and this implies that j(Zn−n2) is a finite-index

subgroup of Z(G′1), so that ∆ ∼= G′1/j(Zn−n2) is quasi-isometric to G′1/Z(G′1), whence

to π1(N1). On the other hand, since ∆ is a finite extension of π1(N ′2) and π1(N ′2) is

of finite index in π1(N2), the group ∆ is quasi-isometric to π1(N2) too, so π1(N1) and

π1(N2) are quasi-isometric to each other. The conclusion now follows from [Sc].





CHAPTER 10

QUASI ISOMETRY RIGIDITY, II

The aim of this chapter is the proof of Theorem 0.19, which we recall here:

Theorem. — Let M be an irreducible graph n-manifold obtained by gluing the pieces

Vi = N i × T di , i = 1, . . . , k. Let Γ be a group quasi-isometric to π1(M). Then either

Γ itself, or a subgroup of Γ of index two, is isomorphic to the fundamental group of a

graph of groups satisfying the following conditions:

– every edge group contains Zn−1 as a subgroup of finite index;

– for every vertex group Γv there exist i ∈ {1, . . . , k}, a finite-sheeted covering N ′

of Ni and a finite-index subgroup Γ′v of Γv that fits into the exact sequences

1 // Zdi
j
// Γ′v // ∆ // 1,

1 // F // ∆ // π1(N ′) // 1,

where F is a finite group, and j(Zdi) is contained in the center of Γ′v.

Throughout this chapter we denote by M an irreducible graph manifold with uni-

versal covering M̃ , and by Γ a finitely generated group quasi-isometric to π1(M).

As discussed in Section 1.3, a quasi-isometry between Γ and π1(M) induces a k-

cobounded k-quasi-action h of Γ on M̃ for some k ≥ 1, which will from now on be

fixed. Henceforth, for every γ ∈ Γ we will denote simply by γ the quasi-isometry

h(γ) : M̃ → M̃ .

10.1. From quasi-actions to actions on trees

Let (M̃, p, T ) be the triple which endows M̃ with the structure of a tree of spaces

(see Section 2.4). Building on the results proved in Chapter 8, we wish to define an

action of Γ on T . Fix γ ∈ Γ. By Propositions 8.35 and 8.36, if v1, e1 are a vertex and

an edge corresponding respectively to a chamber C1 and a wall W1, then there exist

a unique chamber C2 at finite Hausdorff distance from γ(C1) and a unique wall W2
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at finite Hausdorff distance from γ(W1). We will denote by γ(v1), γ(e1) the vertex

and the edge corresponding respectively to C2 and W2. Again, by Proposition 8.36,

if W1 is adjacent to C1 then W2 is adjacent to C2, which gives us the following:

Proposition 10.1. — The map γ : T → T just defined provides a simplicial auto-

morphism of T .

In what follows, when saying that a group G acts on a tree T ′ we will always mean

that G acts on T ′ by simplicial automorphisms. Recall that G acts on T ′ without

inversions if no element of G switches the endpoints of an edge of T ′. We wish to

apply the following fundamental result from Bass-Serre theory (see [Se]):

Theorem 10.2. — Suppose G acts on a tree T ′ without inversions. Then G is iso-

morphic to the fundamental group of a graph of groups supported by the graph G with

set of vertices V and set of edges E. If Gv, v ∈ V , and Ge, e ∈ E, are the vertex and

edge groups of the graph of groups, then:

1. G is the quotient of T ′ by the action of G.

2. For each v ∈ V , the group Gv is isomorphic to the stabilizer of a vertex of T ′

projecting to v.

3. For each e ∈ E, the group Ge is isomorphic to the stabilizer of an edge of T ′

projecting to e.

Now the action of Γ on T described in Proposition 10.1 might include some in-

versions. However, every tree is a bipartite graph in a canonical way. The group

Aut(T ) of all simplicial automorphisms of T contains a subgroup Aut0(T ), of index

at most two, which preserves both parts of that bi-partition. This subgroup consists

solely of elements that act without inversions. We may now set Γ0 = Γ ∩ Aut0(T ),

and conclude that Γ0 is a subgroup of Γ of index at most two that acts on T without

inversions.

10.2. The action of Γ0 on T

Recall that Γ0 quasi-acts via (k, k)-quasi-isometries with k-dense image on M̃ , and,

up to increasing the constant k, we may also assume that every Γ0-orbit is k-dense

in M̃ . We denote by E the set of edges of T , and we suppose that for every wall W

(resp. chamber C) and every γ ∈ Γ0 the set f(W ) (resp. f(C)) has Hausdorff distance

bounded by H from a wall (resp. a chamber) (see Propositions 8.35 and 8.36). We

first show that the quotient of T by the action of Γ0 is a finite graph.

Lemma 10.3. — The action of Γ0 on E has a finite number of orbits.

Proof. — Fix a point p ∈ M̃ . The set A of those walls whose distance from p is less

than k(H + k) + 3k is finite. Let W be any wall, and fix a point w ∈ W . There

exists γ ∈ Γ0 such that d(γ(p), w) ≤ k. We know that there exists a wall W ′ such
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that γ(W ′) is at Hausdorff distance bounded by H from W . This implies that γ(W ′)

contains a point γ(w′), w′ ∈W ′, at distance less than H from w. We can use this to

estimate:

d(w′, p) ≤ d(γ−1(γ(w′)), γ−1(γ(p))) + 2k

≤ kd(γ(w′), γ(p)) + 3k

≤ k(H + k) + 3k,

so W ′ ∈ A. As a result, the finite set of edges corresponding to walls in A contains a

set of representatives for the action of Γ0 on E.

10.3. Stabilizers of edges and vertices

If e (resp. v) is an edge (resp. a vertex) of T , then we denote by Γ0
e (resp. Γ0

v) the

stabilizer of e (resp. of v) in Γ0.

Lemma 10.4. — For every edge e of T , the stabilizer Γ0
e is quasi-isometric to a wall.

The stabilizer Γ0
v of a vertex v is quasi-isometric to the chamber corresponding to v.

Proof. — Let us focus on proving the first statement, as the second statement follows

from a very similar argument. Let NH(W ) be the H-neighbourhood of the wall W

corresponding to the edge e ⊆ T , and let ϕe : Γ0
e → NH(W ) be defined by ϕe(γ) =

γ(w), where w ∈ W is a fixed basepoint. Let us first prove that ϕe(Γ
0
e) is p−dense

in NH(W ) for some p. For each wall Wi, i = 1, . . . ,m, in the orbit of W and having

distance less than k2+2k+H from w, we choose γi ∈ Γ0 such that γi(W ) has Hausdorff

distance from Wi bounded by H. Let L be large enough so that d(w, γi(w)) ≤ L for

every i = 1, . . . ,m. Now pick any point w′ ∈ NH(W ). We know that there is γ ∈ Γ0

(but not necessarily in Γ0
e) such that d(γ(w), w′) ≤ k. It is not difficult to show that

γ−1(W ) has finite Hausdorff distance from one of the Wi’s, so there exists j such that

γ(Wj) is at finite Hausdorff distance from W . Then γ · γj ∈ Γ0
e, and we have the

estimate:

d
(
(γγj)(w), w′

)
≤ d
(
(γγj)(w), γ(w)

)
+ d(γ(w), w′)

≤
(
d(γ(γj(w)), γ(w)) + k

)
+ k

≤
(
kd(γj(w), w) + 2k

)
+ k

≤ kL+ 3k.

This implies that ϕe(Γ
0
e) is (kL+ 3k)-dense in NH(W ).

In order to apply Lemma 1.4 we now need to construct a quasi-action of Γ0
e on

(W,dW ), where dW is the path-distance of W . With this goal in mind, for every

γ ∈ Γ0
e and x ∈W , we let he(γ)(x) be a point in W such that d(γ(x), he(γ)(x)) ≤ H.

It is easily checked that the map γ 7→ he(γ) indeed defines a quasi-action of Γ0
e on

(W,d), where d is the restriction to W of the distance on M̃ . Moreover, the orbit of w
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under this quasi-action is (kL+ 3k+ 2H)-dense in (W,d). But since M is irreducible

the identity map on W provides a quasi-isometry between (W,d) and the path metric

space (W,dW ), so h provides a quasi-action of Γ0
e on (W,dW ), and the orbit of w is p-

dense in (W,dW ) for some p. By Lemma 1.4, this implies that Γ0
e is finitely generated

and quasi-isometric to (W,dW ).

Remark 10.5. — Arguing as in the proof of Lemma 9.8, it is possible to prove that

the stabilizers Γ0
e, Γ0

v are quasi-isometrically embedded in Γ0.

Putting together Lemma 10.4 and Gromov’s Theorem 9.9 we immediately get the

following:

Proposition 10.6. — If Γ0
e is the stabilizer of an edge e ⊆ T , then Γ0

e contains Zn−1

as a subgroup of finite index.

Theorem 0.19 is now a direct consequence of Theorem 10.2, Proposition 10.6 and

Theorem 0.18.

10.4. Graph manifolds with quasi-isometric fundamental groups

We are now interested in analyzing when irreducible graph manifolds have quasi-

isometric fundamental groups.

For i = 1, 2, let Mi be an irreducible graph manifold, and let us denote by Ti the

tree corresponding to the decomposition of M̃i into chambers. We can label each

vertex v of Ti as follows: if v corresponds to a chamber projecting in M onto a piece

of the form N × T d, where N is a cusped hyperbolic manifold, then we label v with

the commensurability class of N . The following result gives a necessary condition for

M1,M2 to have quasi-isometric fundamental groups:

Theorem 10.7. — Suppose the fundamental groups of M1 and M2 are quasi-

isometric. Then T1 and T2 are isomorphic as labelled trees.

Proof. — By Milnor-Svarc’s Lemma, a quasi-isometry between π1(M1) and π1(M2)

induces a quasi-isometry, say ψ, between the universal coverings M̃1 and M̃2. By

Proposition 8.36 (see also Subsection 1.3), such a quasi-isometry induces a simplicial

isomorphism fψ between T1 and T2. We will now show that such isomorphism preserve

labels, thus proving the theorem.

Let v1 be a vertex of T1 corresponding to the chamber C1, and suppose that C1 is

the universal covering of N1×T d1 , where N1 is a cusped hyperbolic manifold. Let C2

be the chamber of M̃2 staying at finite Hausdorff distance from ψ(C1), let v2 be the

vertex of T2 corresponding to C2, and suppose that C2 projects into M2 onto a piece

of the form N2 × T d2 , where N2 is a cusped hyperbolic manifold. By construction,

fψ takes v1 onto v2, so we only need to check that the labels of v1 and v2 are equal,
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i.e. that N1 is commensurable with N2. However, since M1,M2 are irreducible, the

chamber Ci is quasi-isometrically embedded in Mi, and this implies that ψ|C1
stays

at bounded distance from a quasi-isometry between C1 and C2. By Milnor-Svarc’s

Lemma, it follows that π1(N1) × Zd1 is quasi-isometric to π1(N2) × Zd2 , so N1 is

commensurable with N2 by Proposition 9.12.

Observe that, in each dimension, there exist infinitely many commensurability

classes of complete finite-volume hyperbolic manifolds with toric cusps (see [MRS]).

Along with Theorem 10.7, this immediately allows us to deduce:

Corollary 10.8. — Suppose n ≥ 3. Then, there exist infinitely many quasi-isometry

classes of fundamental groups of irreducible graph n-manifolds.

Remark 10.9. — Let us fix the notation as in Theorem 10.7. The following con-

struction shows that the fact that T1 and T2 are isomorphic as labelled trees is not

sufficient for ensuring that π1(M1) and π1(M2) are quasi-isometric.

Let N be a cusped hyperbolic 3-manifold with two toric cusps, let ∂1N , ∂2N be the

boundary components of the truncated manifold N , and assume that the Euclidean

structures induced by N on ∂1N , ∂2N are not commensurable with each other. The

fact that such a manifold exists is proved in [GHH] (we may take for example the

manifold 7c 3548 in the census available at the address [www]). Furthermore, let

N ′, N ′′ be non-commensurable 1-cusped hyperbolic 3-manifolds (for example, suit-

able hyperbolic knot complements), and consider the (obviously irreducible) graph

manifolds M1,M2 defined as follows: M1 is obtained by gluing N with N ′ along ∂1N ,

and with N ′′ along ∂2N ; M2 is obtained by gluing N with N ′ along ∂2N , and with

N ′′ along ∂1N . Of course, the labelled trees associated to M1 and M2 are isomorphic.

On the other hand, a hypothetical quasi-isometry between π1(M1) and π1(M2)

should induce a quasi-isometry of π1(N) into itself taking the cusp subgroup π1(∂1N)

to a set at finite Hausdorff distance from π1(∂2N). By [Sc], this would imply that

π1(∂1N) and π1(∂2N) admit finite index subgroups that are conjugated by an isometry

of H3. As a consequence, the Euclidean structures induced by N on ∂1N , ∂2N should

be commensurable with each other, which would contradict our choices.

Remark 10.10. — In [BeNe], Behrstock and Neumann proved that the fundamen-

tal groups of any two closed 3-dimensional irreducible graph manifolds are quasi-

isometric. This result could seem in contrast with the phenomenon exhibited by the

previous construction. However, hyperbolic bases, in dimensions ≥ 3, are much more

rigid than hyperbolic surfaces with boundary. As a consequence, in higher dimensions

there is no obvious counterpart for all the “strechings” performed on thickened graphs

in [BeNe].
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CONCLUDING REMARKS





CHAPTER 11

EXAMPLES NOT SUPPORTING LOCALLY CAT(0)

METRICS

We already saw a method in Section 2.6 for constructing graph manifolds which

do not support any locally CAT(0) metric. The idea was to take a finite volume

hyperbolic manifold N with at least two toric cusps, and glue together two copies of

N × T 2 in such a way that the fundamental group of the resulting graph manifold

contains a non quasi-isometrically embedded abelian subgroup (see Proposition 2.21).

This method could be used to produce infinitely many such examples in all dimensions

≥ 5.

In this Chapter we provide some additional methods for constructing graph man-

ifolds which do not support any locally CAT(0) metric. In Section 11.1 we show

that certain S1-fiber-bundles over the double of cusped hyperbolic manifolds do not

support locally CAT(0) metrics. This allows us to construct infinitely many new

examples in each dimension ≥ 4.

Section 11.2 is devoted to the construction of irreducible examples. We can produce

infinitely many such examples in each dimension ≥ 4.

For ease of notation, we will omit the coefficient ring in our cohomology groups,

with the understanding that all homology and cohomology in this chapter is taken

with coefficients in Z.

11.1. Fiber bundles

In this section, we describe a construction providing graph manifolds which do not

support any locally CAT(0) metrics. We start by recalling that principal S1-bundles

over a manifold K are classified (topologically) by their Euler class in H2(K). The

Euler class is the “primary obstruction” to the existence of a section, and satisfies the

following two key properties:

Fact 1: The Euler class of a principal S1-bundle S1 → K ′ → K is zero if and only if

K ′ ∼= K × S1 (i.e. K ′ is the trivial S1-bundle).
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Fact 2: If f : L→ K is continuous, and S1 → K ′ → K is a principal S1-bundle, let

S1 → L′ → L be the pullback principal S1-bundle. Then e(L′) = f∗(e(K ′)), where

e(L′), e(K ′) denote the Euler classes of the respective S1-bundles, and f∗ : H2(K)→
H2(L) is the induced map on the second cohomology.

Since the manifolds we will be considering arise as principal S1-bundles, we now

identify a cohomological obstruction for certain principal S1-bundles to support a

locally CAT(0) metric.

Lemma 11.1. — Let K be a compact topological manifold supporting a locally

CAT(0) metric, and let S1 → K ′ → K be a principal S1-bundle over K (so that K ′

is also compact). If K ′ supports a locally CAT(0) metric, then e(K ′) has finite order

in H2(K).

Proof. — Since all spaces in the fibration are aspherical, the associated long exact

sequence in homotopy degenerates to a single short exact sequence:

0→ Z→ π1(K ′)→ π1(K)→ 0,

where the Z subgroup is central in π1(K ′) (this is automatic for principal S1-bundles).

As K ′ is compact, the action of π1(K ′) on the CAT(0) universal cover K̃ ′ is by

semi-simple isometries (i.e. for every g ∈ π1(K ′), there exists a x ∈ K̃ ′ satisfying

d(x, gx) ≤ d(y, gy) for all y ∈ K̃ ′). Applying [BrHa, Theorem II.6.12] we see that

there exists a finite index subgroup Λ ≤ π1(K ′) which contains the central Z-subgroup

as a direct factor, i.e. we have:

Z // π1(K ′) // π1(K)

Z //

=

OO

Λ

Finite Index

OO

// Λ/Z

where the bottom row splits, and Λ ∼= Z × (Λ/Z). It is easy to see (by chasing the

diagram) that there is an induced inclusion Λ/Z ↪→ π1(K) which is also of finite

index. Let L→ K be the finite cover corresponding to Λ/Z ↪→ π1(K), and L′ → K ′

the cover corresponding to Λ ↪→ π1(K ′). We now obtain the commutative diagram of

principal bundles:

S1 // K ′ // K

S1 //

=

OO

L′

OO

// L

Finite Cover

OO

where both the top row and the bottom row are principal S1-bundles. Next we note

that the bottom row splits as a product, i.e. L′ ∼= L × S1. Indeed, this follows from
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the fact that Λ centralizes the Z-factor, and splits as Z ⊕ Λ/Z, while acting on the

CAT(0) space K̃ ′. From Fact 1, this implies that e(L′) = 0 ∈ H2(L). From Fact

2, and commutativity of the diagram, we get that p∗(e(K ′)) = e(L′) = 0, where

p∗ : H2(K)→ H2(L) is the map induced by the covering projection p : L→ K.

On the other hand, recall that there is a transfer map on cohomology T : H∗(L)→
H∗(K) associated with any finite covering p : L → K. This map has the property

that T ◦ p∗ : H∗(K) → H∗(K) is just multiplication by the degree of the covering

map. Hence if d denotes the degree of the covering map, we have that:

d · e(K ′) = (T ◦ p∗)(e(K ′)) = T (0) = 0 ∈ H2(K)

implying that e(K ′) ∈ H2(K) is a torsion element, and completing the proof of the

Lemma.

Keeping the notation from Section 2.1, let N be a finite volume, non-compact,

hyperbolic manifold, with all cusps diffeomorphic to a torus times [0,∞), and let N

be the compact manifold obtained by “truncating the cusps”. Note that the boundary

∂N consists of a finite number of codimension one tori, and the inclusion i : ∂N ↪→ N

induces the map i∗ : H1(N) → H1(∂N) on the first cohomology. We will consider

principal S1-bundles over the double DN .

Proposition 11.2. — Assume there exists a non-trivial cohomology class α ∈
H1(∂N) having the property that 〈α〉 ∩ i∗(H1(N)) = 0 ⊂ H1(∂N). Then there exists

a manifold M , which is topologically a principal S1-bundle over DN , having the

properties:

1. M does not support any locally CAT(0) metric.

2. M is a graph manifold.

Proof. — It is well-known that the double DN supports a Riemannian metric of non-

positive sectional curvature (see for example [ArFa, Theorem 1]). In view of Lemma

11.1, any principal S1-bundle whose Euler class has infinite order will not support

any locally CAT(0) metric. Since every class in H2(DN) is realized as the Euler class

of some principal S1-bundle, we just need to find a cohomology class of infinite order.

Consider the Mayer-Vietoris sequence in cohomology for the decomposition DN =

N1 ∪∂N N2, where the N i are the two copies of N . We have:

H1(N1)⊕H1(N2)
i // H1(∂N)

j
// H2(DN) // H2(N1)⊕H2(N1)

Now by hypothesis there exists an element α ∈ H1(∂N) having the property that 〈α〉∩
i∗(H1(N)) = 0. If i1, i2 denotes the inclusions of ∂N into N1, N2, we have that the

first map in the Mayer-Vietoris sequence above is given by i := i∗1− i∗2, and hence the

non-trivial element α ∈ H1(∂N) has the property that 〈α〉 ∩ i(H1(N1)⊕H1(N2)) =

{0}. In particular, since H1(∂N) is torsion-free, the subgroup j(H1(∂N)) ≤ H2(DN)

contains an element of infinite order, namely j(α). Let M be the associated principal
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S1-bundle over DN ; from the discussion above, M cannot support any locally CAT(0)

metric.

So to conclude, we just need to argue that M is a graph manifold. To see this,

observe that M naturally decomposes as a union M = M1∪M2, where each Mi is the

preimage of the respective N i under the canonical map S1 →M → DN = N1∪∂NN2.

We now show that the Mi are the pieces for the decomposition of M as a graph

manifold. To do this, we need to understand the topology of the Mi.

From Fact 2, we can compute the Euler class of the bundles S1 → Mi → N i by

looking at the image of α ∈ H2(DN) under the maps H2(DN) → H2(N i) induced

by the inclusions N i ↪→ DN . But observe that these maps are exactly the ones

appearing in the Mayer-Vietoris sequence:

H1(∂N)→ H2(DN)→ H2(N1)⊕H2(N2)

By exactness of the sequence, we immediately obtain that ρ(j(α)) = 0 ∈ H2(N1) ⊕
H2(N2), and so the Euler class of both Mi is zero in the corresponding H2(N i). Ap-

plying Fact 1, we conclude that each Mi is the trivial S1-bundle over N i, i.e. each Mi

is homeomorphic to N i × S1. Let us now endow each Mi with the smooth structure

induced by the product N i×S1 of smooth manifolds. Now the only possible obstruc-

tion to M being a graph manifold lies in the gluing map between M1 and M2 being

affine. However, if the gluing map is not affine, we can replace it by a homotopic

affine diffeomorphism without affecting the Euler class of the corresponding principal

S1-bundle (actually, if n > 5, we can replace the given gluing map by a C0-isotopic

affine diffeomorphism without changing the topological type of the manifold M – see

the discussion in Remark 2.5). Then M is indeed a graph manifold, and this concludes

the proof of the Proposition.

In order to obtain the desired examples, we need to produce finite volume hyper-

bolic manifolds N so that the associated truncated N satisfies:

(1) all the boundary components of N are diffeomorphic to tori, and

(2) there exists a non-trivial element α ∈ H1(∂N) which satisfies

〈α〉 ∩ i∗(H1(N)) = {0} ⊂ H1(∂N).

The next step towards achieving this is to turn the cohomological condition (2) to a

homological condition, as explained in the following Lemma.

Lemma 11.3. — Let N be a finite volume hyperbolic manifold, so that the associated

N satisfies condition (1) above. Then N also satisfies condition (2) above if and only

if i∗ : H1(∂N)→ H1(N) is not injective.

Proof. — Since H1(∂N) is a finitely generated torsion-free abelian group, prop-

erty (2) above is equivalent to the fact that the index of i∗(H1(N)) in H1(∂N) is

infinite, so we need to prove that this last condition is in turn equivalent to the fact

that ker i∗ 6= {0}.
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For a torus T k, the Kronecker pairing induces an isomorphism between H1(T k) and

Hom(H1(T k),Z). Property (1) ensures that this duality extends to an isomorphism

between H1(∂N) and Hom(H1(∂N),Z). Moreover, it is easily seen that a subgroup H

of Hom(H1(∂N),Z) has infinite index if and only if there exists a non-trivial element

α′ ∈ H1(∂N) such that ϕ(α′) = 0 for every ϕ ∈ H. Therefore, the index of i∗(H1(N))

in H1(∂N) is infinite if and only if there exists a non-trivial element α′ ∈ H1(∂N)

such that

(11.1) 0 = 〈i∗(β), α′〉 = 〈β, i∗(α′)〉 for every β ∈ H1(N) .

An easy application of the Universal Coefficient Theorem shows that the Kro-

necker pairing between H1(N) and H1(N) induces an epimorphism H1(N) →
Hom(H1(N),Z), so the condition described in Equation (11.1) is equivalent to the

fact that ϕ(i∗(α
′)) = 0 for every ϕ ∈ Hom(H1(N),Z), whence to the fact that i∗(α

′)

has finite order in H1(N).

We have thus shown that property (2) above is equivalent to the existence of a

non-trivial element α′ ∈ H1(∂N) such that i∗(α
′) has finite order in H1(N). Since

H1(∂N) is torsion-free, this last condition holds if and only if the kernel of i∗ is

non-trivial, concluding the proof.

Now the advantage in changing to a homological criterion is that it is easier to

achieve geometrically. One needs to find examples of finite volume, non-compact,

hyperbolic manifolds N having the property that they contain an embedded S ↪→ N ,

where S is non-compact surface with finitely many cusps, and the embedding is proper.

After truncation, this yields an element in H1(∂N), namely the element corresponding

to ∂S̄ ↪→ ∂N , having the property that i∗([∂S̄]) = 0 ∈ H1(N). Moreover, if S is

suitably chosen one may also ensures that [∂S̄] 6= 0 in H1(N).

One approach to finding such examples would be to construct N so as to contain

a properly embedded totally geodesic non-compact finite volume hyperbolic surface

Σ. We refer the reader to the paper of McReynolds, Stover, and Reid [MRS] for

arithmetical constructions of such pairs (N,Σ) in all dimensions.

An alternate approach is to ignore the geometry and to try to argue purely topo-

logically. Fixing a single boundary torus T inside one of these truncated hyperbolic

manifolds N , we let x1, . . . , xn−1 be a basis for the first cohomology H1(T ) ∼= Zn−1.

The following proposition was suggested to us by Juan Souto:

Proposition 11.4. — Assume that the cohomology classes xi for 1 ≤ i ≤ n−2 have

the property that 〈xi〉 ∩ i∗(H1(N)) 6= {0}. Then there exists an embedded smooth

surface with boundary (Σ, ∂Σ) ↪→ (N, ∂N), having the following properties:

i) Σ ∩ ∂N = ∂Σ is entirely contained in the boundary component T , and

ii) the collection of curves ∂Σ represent a non-zero class in H1(T ) (and in particular,

∂Σ 6= ∅).
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Proof. — Since each 〈xi〉 ∩ i∗(H1(N)) 6= {0}, we can find non-zero integers

r1, . . . , rn−2 with the property that ri · xi ∈ i∗(H1(N)) for 1 ≤ i ≤ n − 2. Let

yi ∈ H1(N) be chosen so that i∗(yi) = ri ·xi. We will be considering elements in four

(co)-homology groups, related via the commutative diagram:

H1(N)
i∗ //

∼=
��

H1(∂N)

∼=
��

Hn−1(N, ∂N)
∂ // Hn−2(∂N)

where the vertical maps are isomorphisms given by Poincaré-Lefschetz duality, the

top map is induced by inclusion, and the bottom map is the boundary map. We now

proceed to use the cohomology classes yi to construct the surface Σ.

First, recall that for a smooth k-manifold M (possibly with boundary), the

Poincaré-Lefschetz dual of a 1-dimensional cohomology class x ∈ H1(M) has a sim-

ple geometric interpretation. One can think of the element x as a homotopy class of

maps into the classifying space K(Z, 1) = S1, with the trivial element corresponding

to a constant map. Fixing a reference point p ∈ S1, we can find a smooth map f

within the homotopy class with the property that f is transverse to p. Then f−1(p)

defines a smooth submanifold, which represents the Poincaré-Lefschetz dual to x.

This will represent a class in either Hk−1(M) or in Hk−1(M,∂M), according to

whether ∂M = ∅ or ∂M 6= ∅. For example, in the special case consisting of the trivial

cohomology class, one can perturb the constant map to not contain p in the image,

so that the dual class is represented by the “vacuous” submanifold.

Let us apply this procedure to each of the cohomology classes yi ∈ H1(N), ob-

taining corresponding smooth maps fi : N → S1 transverse to p. Now the re-

striction of fi to ∂N will yield the Poincaré-Lefschetz dual to the cohomology class

i∗(yi) = ri · xi ∈ H1(∂N). The cohomology H1(∂N) decomposes as a direct sum

of the cohomology of the individual boundary components, and by construction the

class i∗(yi) = ri · xi is purely supported on the H1(T ) summand. Geometrically, this

just says that the restriction of fi to any of the remaining boundary components is

homotopic to a point, which we can take to be distinct from p. Using a collared

neighborhood of each of the boundary components, we can effect such a homotopy,

allowing us to replace fi by a homotopic map which has the additional property that

T is the only boundary component of N whose image intersects p.

Taking pre-images of p under these maps, we obtain a collection of (n − 1)-

dimensional manifolds W1, . . . ,Wn−2 representing the dual homology classes

in Hn−1(N, ∂N). Moreover, each Wi intersects ∂N in a collection of (n − 2)-

dimensional submanifolds ∂Wi ⊂ T , which represent the duals to the cohomology

classes ri · xi ∈ H1(T ). Perturbing the pairs (Wi, ∂Wi) ⊂ (N,T ) slightly, we may

assume they are all pairwise transverse. This in turn ensures that the intersection
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Σ = ∩n−2
i=1 Wi is a smooth submanifold. Since Σ is the intersection of n− 2 manifolds

each of which has codimension one, we see that Σ has codimension n − 2 in the n-

dimensional manifold N , i.e. Σ is a surface. Since T is the only boundary component

which intersects any of the Wi, we have that ∂Σ ⊂ T giving us (i).

So to conclude, we need to verify property (ii): that the family of curves defined

by ∂Σ represent a non-zero class in H1(T ). But recall that ∂Σ = ∩n−2
i=1 ∂Wi, where

each ∂Wi is an (n− 2)-dimensional submanifold of the (n− 1)-dimensional torus T ,

representing the Poincaré dual to the cohomology class i∗(yi) = ri ·xi ∈ H1(T ). Under

Poincaré duality, the geometric intersection of cycles corresponds to the cup product

of the dual cocycles. As such, the collection of curves ∂Σ represents the Poincaré dual

of the cup product

∪n−2
i=1 (ri · xi) =

(∏
ri
)
·
(
∪n−2
i=1 xi

)
∈ Hn−2(T ) ∼= Zn−1.

We know that the cohomology ring H∗(T ) is an exterior algebra over the xi, hence

the cup product ∪n−2
i=1 xi is non-zero. Since the coefficient

∏
ri is a non-zero integer,

the Poincaré dual of [∂Σ] ∈ H1(T ) is non-trivial. This implies that the homology class

[∂Σ] is likewise non-zero, establishing (ii), and concluding the proof of the Proposition.

Corollary 11.5. — The map i∗ : H1(∂N)→ H1(N) is not injective.

Proof. — Fix a boundary component T of N , and choose a basis x1, . . . , xn−1 for the

first cohomology H1(T ) ∼= Zn−1. If any of the elements x1, . . . , xn−2 has the property

that 〈xi〉 ∩ i∗(H1(N)) = {0}, then we are done by Lemma 11.3. So we can assume

that 〈xi〉 ∩ i∗(H1(N)) 6= {0} for each 1 ≤ i ≤ n− 2, allowing us to apply Proposition

11.4, whence the conclusion again.

Putting together Proposition 11.2, Lemma 11.3 and Corollary 11.5, we can now

establish:

Theorem 11.6. — Let N be any finite volume, non-compact, hyperbolic manifold,

with all cusps diffeomorphic to a torus times [0,∞), and let N be the compact manifold

obtained by “truncating the cusps”. Then one can find a graph manifold, arising as

a principal S1-bundle over the double DN , which does not support a locally CAT(0)

metric.

To conclude, we recall that there exist examples, in all dimensions ≥ 3, of non-

compact finite volume hyperbolic manifolds with toric cusps (see [MRS]). From

Theorem 11.6, we immediately deduce:

Corollary 11.7. — There are examples, in all dimensions ≥ 4, of principal S1-

bundles which are graph manifolds, but do not support any locally CAT(0) metric.
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11.2. Irreducible examples

In this Section we prove that in any dimension ≥ 4 there exist irreducible graph

manifolds which do not support any locally CAT(0) metric. In fact, we provide ex-

amples of irreducible graph manifolds whose fundamental groups are not CAT(0).

Usually, a group is defined to be CAT(0) if it acts properly, cocompactly and isomet-

rically on a CAT(0) space (see e.g. [Ge4, Sw, PaSw, AlBe, GeOn, Ru2]). Our

Definition 11.8 below is slightly less restrictive.

Let us briefly recall some definitions and results from [BrHa, Chapter II.6]. Let G

be a group acting by isometries on the complete geodesic metric space X. For every

g ∈ G the translation length of g is defined by setting

τ(g) = inf{d(x, g(x)) |x ∈ X} .

We also set

Min(g) = {x ∈ X | d(x, g(x)) = τ(g)} ⊆ X .

If H is a subgroup of Γ, then we set Min(H) =
⋂
γ∈H Min(γ) ⊆ X. An element

g ∈ G is semisimple if Min(g) is non-empty, i.e. if the infimum in the definition of

τ(g) is a minimum. It is well-known that, if G acts cocompactly on X, then every

element of G is semisimple. Following [BrHa, Chapter I.8], we say that the action

of G on X is proper if every point x ∈ X has a neighbourhood U ⊆ X such that

the set {g ∈ G | g(U) ∩ U 6= ∅} is finite. As observed in [BrHa], it is probably more

usual to say that G acts properly on X if the set {g ∈ G | g(K) ∩K 6= ∅} is finite for

every compact set K ⊆ X. The definition we are adopting here implies that every

compact subset K ⊆ X has a neighbourhood UK such that {g ∈ G | g(UK)∩UK 6= ∅}
is finite, so the two definitions coincide if X is a proper metric space (i.e. if X is

locally compact or, equivalently, if every bounded subset is relatively compact in X).

Definition 11.8. — Let G be a group. Then G is CAT(0) if it acts properly via

semisimple isometries on a complete CAT(0) space.

By Cartan-Hadamard Theorem for metric spaces (see [BrHa, Chapter II.4]),

the universal covering of a complete locally CAT(0) space is complete and globally

CAT(0), so if a compact topological space M supports a locally CAT(0) metric, then

π1(M) is a CAT(0) group.

Let us now come to our construction. Let N be a complete finite-volume hyperbolic

n-manifold with toric cusps, n ≥ 3, and set V = N × S1, where N is as usual

the natural compactification of N . We denote by n the dimension of V . We are

going to show that one may always choose affine gluing maps between the boundary

components of two copies of V in such a way that the resulting graph manifold M

is irreducible, and the fundamental group π1(M) is not CAT(0). As a consequence,

irreducible graph manifolds which do not support any locally CAT(0) metric exist in

every dimension ≥ 4.
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Let T ∗1 , . . . , T
∗
r be the boundary components of V . We denote by V +, V − two

copies of V , and by T+
i (resp. by T−i ) the boundary component of V + (resp. of V −)

corresponding to T ∗i , i = 1, . . . , r. For every i = 1, . . . , r we fix an affine diffeomor-

phism ψi : T
+
i → T−i , we denote by M the graph manifold obtained by gluing V +

and V − along the ψi, and by Ti ⊆ M the torus corresponding to T+
i ⊆ ∂V + and

T−i ⊆ ∂V −.

We denote by Γ the fundamental group π1(M) of M , and we suppose that Γ

acts properly by semisimple isometries on the complete CAT(0) space X. For every

i = 1, . . . , r we also denote by Ai (a representative of the conjugacy class of) the

subgroup π1(Ti) < Γ. Following [Le], we briefly describe the Euclidean scalar product

induced by the metric of X on each H1(Ai) ∼= Ai ∼= Zn−1, i = 1, . . . , r.

Since Ai ∼= Zn−1, by the Flat Torus Theorem the subset Min(Ai) splits as a metric

product Min(Ai) = Yi × En−1, where Ek is the Euclidean k-dimensional space (see

e.g. [BrHa, Chapter II.7]). Moreover, Ai leaves Min(Ai) invariant, and the action of

every a ∈ Ai on Min(Ai) splits as the product of the identity on Yi and a non-trivial

translation v 7→ v + va on En−1. If l1, l2 are elements of H1(Ai) we set

〈l1, l2〉i = 〈va1 , va2〉 ,

where aj is the element of Ai ∼= H1(Ai) corresponding to lj , and 〈·, ·〉 denotes the

standard scalar product of En−1. It is readily seen that 〈·, ·〉i is indeed well-defined.

Moreover, the norm ‖l‖i =
√
〈l, l〉i of any element l ∈ H1(Ai) coincides with the

translation length of the corresponding element a ∈ Ai < Γ, so if l1, l2 ∈ H1(Ti)

correspond to the elements a1, a2 ∈ Ai we have

2〈l1, l2〉i = τ(a1 ◦ a2)2 − τ(a1)2 − τ(a2)2 .

Let us fix a representative Γ± of the conjugacy class of the subgroup π1(V ±) of

π1(M) ∼= Γ. We also choose the subgroups Ai corresponding to the tori Ti in such a

way that Ai < Γ± for every i = 1, . . . , r. We denote by f± ∈ H1(Γ±) the class repre-

sented by the fiber of V ±, i.e. the element of H1(Γ±) = H1(π1(N))⊕H1(π1(S1)) corre-

sponding to the positive generator ofH1(π1(S1)) = Z. If i±∗ :
⊕r

i=1H1(Ai)→ H1(Γ±)

is the map induced by the inclusions Ai ↪→ Γ±, then for every i = 1, . . . , r there exists

a unique element f±i ∈ H1(Ai) such that i±∗ (f±i ) = f±. Observe that our definitions

imply thatM is irreducible if and only if f+
i 6= ±f

−
i for every i = 1, . . . , r. Lemma 11.9

and Proposition 11.10 below are inspired by the proof of [KaLe2, Theorem 3.7]:

Lemma 11.9. — For every i = 1, . . . , r let bi be an element of H1(Ai) such that

i±∗ (b1 + . . .+ br) = 0 .

Then
r∑
i=1

〈bi, f±i 〉i = 0 .
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Proof. — Let φ± ∈ Γ± be the element corresponding to (Id, 1) under the identifica-

tion

Γ± = π1(V ±) = π1(N)× π1(S1) = π1(N)× Z .

By construction we have φ± ∈
⋂r
i=1Ai ⊆ Γ±, and the image of φ± under the Hurewicz

homomorphism Γ± → H1(Γ±) coincides with f±.

Since φ± lies in the center of Γ± the set Min(φ±) ⊆ X is Γ±-invariant. Moreover,

the action of Γ± preserves the isometric splitting Min(φ±) = W × E1, so we have

an induced representation ρ : Γ± → Isom(W ) × Isom(E1). If ρ0 : Γ± → Isom(W ),

ρ1 : Γ± → Isom(E1) are the components of ρ, then ρ0(φ±) is the identity of W ,

while ρ1(φ±) is a non-trivial translation. As a consequence, since for every γ ∈ Γ±

the isometries ρ1(γ) and ρ1(φ±) commute, the representation ρ1 takes values in the

abelian group of translations of E1, which can be canonically identified with R. There-

fore, the homomorphism ρ1 factors through H1(Γ±), thus defining a homomorphism

ρ1 : H1(Γ±)→ R.

Let us now observe that, since φ± ∈ Ai, we have Min(Ai) ⊆ Min(φ±) = W × E1,

so in order compute the translation length of elements of Ai it is sufficient to consider

their action on W × E1. Therefore, for every a ∈ Ai we have τ(a)2 = τW (ρ0(a))2 +

ρ1(a)2, where we denote by τW the translation length of elements of Isom(W ), and

we recall that we are identifying the group of translations of E1 with R. We now

let βi ∈ Ai be a representative of bi ∈ H1(Ai), and proceed to evaluate the scalar

product 〈bi, f±i 〉i. We know that:

2〈bi, f±i 〉i = τ(φ± ◦ βi)2 − τ(φ±)2 − τ(βi)
2 .

Considering the terms on the right hand side, we recall that φ± ∈ Ai is a representative

of f±i ∈ H1(Ai), and hence we have τ(φ±)2 = ρ1(φ±)2. Using the product structure

on W ×E1, the remaining two terms are τ(βi)
2 = τW (ρ0(βi))

2 + ρ1(βi)
2, and τ(φ± ◦

βi)
2 = τW (ρ0(βi))

2 + (ρ1(φ±) + ρ1(βi))
2. Substituting these into the expression and

simplifying, we obtain that

2〈bi, f±i 〉i = 2ρ1(φ±)ρ1(βi) = 2ρ1(φ±)ρ1(i±∗ (bi)) .

Summing over all i, we deduce that

r∑
i=1

〈bi, f±i 〉 = ρ1(φ±) ·
r∑
i=1

ρ1(i±∗ (bi)) = ρ1(φ±) · ρ1

(
i±∗

(
r∑
i=1

bi

))
= 0 ,

whence the conclusion.

Proposition 11.10. — There exists a choice for the gluing maps ψi : T
+
i → T−i such

that the following conditions hold:

1. the graph manifold M obtained by gluing V + and V − along the ψi’s is irre-

ducible;
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2. the group Γ = π1(M) is not CAT(0) (in particular, M does not admit any locally

CAT(0) metric).

Proof. — Let Y1, . . . , Yr be the boundary components of N . By Corollary 11.5, there

exist elements b′i ∈ H1(Yi), i = 1, . . . , r, such that 0 6= b′1 + . . .+ b′r ∈ H1(Y1)⊕ . . .⊕
H1(Yr) = H1(∂N), and j∗(b

′
1 + . . . + b′r) = 0 in H1(N), where j∗ is induced by the

inclusion ∂N ↪→ N . Recall that V ± = N ×S1, so that we have natural identifications

T±i = Yi×S1 and H1(T±i ) = H1(Yi×S1) ∼= H1(Yi)⊕H1(S1), i = 1, . . . , r. Under these

identifications, every affine diffeomorphism ψi : T
+
i → T−i induces an isomorphism

(ψi)∗ : H1(Yi)⊕H1(S1)→ H1(Yi)⊕H1(S1) .

Let us denote by λ the positive generator of H1(S1). For every i = 1, . . . , r, we

choose the diffeomorphism ψi : T
+
i → T−i as follows. Let I = {i | b′i 6= 0} ⊂ {1, . . . , r},

and observe that our assumptions ensure that I is non-empty. Then:

1. if i /∈ I, we only ask that the gluing ψi is transverse, i.e. that (ψi)∗(0, λ) 6=
(0,±λ),

2. if i ∈ I, we choose a positive integer ni and we let ψi be an affine diffeomorphism

such that (ψi)∗(v, 0) = (v, 0) for every v ∈ H1(Yi) and (ψi)∗(0, λ) = (nib
′
i, λ).

Also in this case, our choice ensures that ψi is transverse.

Recall that Ti is the toric hypersurface corresponding to T+
i and T−i in the resulting

graph manifold M , and that we fixed a representative Ai in the conjugacy class of

π1(Ti) in π1(M). We denote by bi ∈ H1(Ai) the unique element corresponding to the

elements (b′i, 0) ∈ H1(T+
i ) and (b′i, 0) = (ψi)∗(b

′
i, 0) ∈ H1(T−i ) under the canonical

identifications H1(T+
i ) ∼= H1(Ti) ∼= H1(Ai) and H1(T−i ) ∼= H1(Ti) ∼= H1(Ai). Ob-

serve that bi = 0 if and only if b′i = 0, i.e. if and only if i /∈ I. Moreover, for every

i ∈ I we have f+
i = f−i + nibi.

Let M be the graph manifold obtained by gluing V + and V − along the ψi’s. By

construction, M is irreducible. Let us suppose by contradiction that π1(M) acts

properly by semisimple isometries on the complete CAT(0) space X. We denote by

〈·, ·〉i the scalar product induced on H1(Ai) by the metric of X. Since j∗(b
′
1+. . .+b′r) =

0 in H1(N), we have i±∗ (
∑r
i=1 bi) = 0 in H1(Γ±) ∼= H1(V ±), so Lemma 11.9 implies

that

0 =

r∑
i=1

〈f+
i , bi〉i =

r∑
i=1

〈f−i + nibi, bi〉i

=

r∑
i=1

〈f−i , bi〉i +

r∑
i=1

ni〈bi, bi〉i

=

r∑
i=1

ni‖bi‖2i ,



154 CHAPTER 11. EXAMPLES NOT SUPPORTING LOCALLY CAT(0) METRICS

a contradiction since ni > 0 and bi 6= 0 for every i ∈ I. We have thus shown that

π1(M) cannot act properly via semisimple isometries on a complete CAT(0) space,

and this concludes the proof.

Corollary 11.11. — Let n ≥ 4. Then, there exist infinitely many closed irreducible

graph n-manifolds having a non-CAT(0) fundamental group. In particular, there exist

infinitely many closed irreducible graph n-manifolds which do not support any locally

CAT(0) metric.

Proof. — Let us fix an integer m ≥ 3. It is proved in [MRS] that there exist infinitely

many complete finite-volume hyperbolic m-manifolds with toric cusps. If N is any

such manifold, Proposition 11.10 shows that there exists an irreducible graph manifold

M which does not support any locally CAT(0) metric and decomposes as the union

of two pieces V + and V −, each of which is diffeomorphic to N × S1.

In order to conclude it is sufficient to show that the diffeomorphism type of M com-

pletely determines the hyperbolic manifold N , so that the infinite family of hyperbolic

manifolds provided by [MRS] gives rise to the infinite family of desired examples.

However, Theorem 0.5 implies that the diffeomorphism type of M determines the

isomorphism type of the fundamental group of V ±. Since π1(N) is equal to the quo-

tient of π1(V ±) by its center (see Remark 2.10), the conclusion follows by Mostow

rigidity.

Remark 11.12. — Even when starting with a fixed pair of pieces, one can still

obtain an infinite family of irreducible graph manifolds with non-CAT(0) fundamental

group. For example, let N be a hyperbolic knot complement in S3, set V + = V − =

N×S1 and denote by T+ (resp. T−) the unique boundary component of V + (resp. of

V −). The boundary of a Seifert surface for K defines an element b′ ∈ H1(∂N) which

bounds in N , whence an element b ∈ H1(T±) such that i∗(b) = 0 ∈ H1(V ±). Let

M(n) be the irreducible graph manifold obtained by gluing the base of V + to the base

of V − via the identity of ∂N , and by gluing the fibers of V + and V − in such a way

that f+ = f− + nb in H1(T ), where T is the internal wall in M(n) corresponding to

T+ and T−. As described in the proof of Proposition 11.10, for every positive integer

n the group π1(M(n)) is not CAT(0). Moreover, as explained in Remark 6.37, the

proof of Theorem 6.35 can be adapted to show that among the fundamental groups

of the M(n)’s, there are infinitely many non-isomorphic groups.

Remark 11.13. — Let N be a complete finite-volume hyperbolic manifold with

toric cusps. We have proved in Proposition 11.10 that there exist “twisted doubles”

of N×S1 which provide examples of closed irreducible graph manifolds not admitting

any locally CAT(0) metric. However, in principle one can use a similar construction

to also get examples with non-empty boundary.

Indeed, if T1 ∪ . . . ∪ Tk ⊆ ∂N × S1 is a family of boundary tori such that the map

i∗ : H1(T1∪. . .∪Tk)→ H1(N×S1) is not injective, then the proof of Proposition 11.10
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shows that the obstruction to putting a global nonpositively curved metric on such

twisted doubles is concentrated near the gluing tori T1, . . . , Tk. In other words, if

∂(N × S1) contains some boundary component other than T1, . . . , Tk, we can easily

construct irreducible graph manifolds just by gluing two copies of N × S1 along

the corresponding copies of T1, . . . , Tk, thus obtaining examples of irreducible graph

manifolds, with non-empty boundary, and which do not support any locally CAT(0)

metric.





CHAPTER 12

DIRECTIONS FOR FUTURE RESEARCH

Our purpose in this monograph was to initiate the study of the class of high-

dimensional graph manifolds. In this final chapter, we collate various problems that

came up naturally in the course of this work, and could serve as directions for future

research.

12.1. Further algebraic properties

In Chapter 6, we established various algebraic properties of the fundamental groups

of high dimensional graph manifolds. Most of the results followed fairly easily from

the structure of such groups, expressed as a graph of groups. In contrast, there are

a number of interesting properties of groups whose behavior under amalgamations is

less predictable. It would be interesting to see which of these properties hold for the

class of graph manifold groups. For concreteness, we identify some properties which

we think would be of most interest:

Problem. — Are fundamental groups of high dimensional graph manifolds Hopfian?

Are they residually finite? Are they linear? What if one additionally assumes the

graph manifold is irreducible?

A slightly different flavor of problems come from the algorithmic viewpoint. We

showed that the word problem is solvable for the π1(M) of irreducible graph manifolds.

Some other algorithmic problems one can consider include:

Problem. — Is the conjugacy problem solvable for fundamental groups of high di-

mensional graph manifolds? Is the isomorphism problem solvable within the class of

graph manifold groups?

Finally, one can also ask for a better understanding of the outer automorphism

group Out(π1(M)), and of how it relates to the topology of M . For instance:
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Problem. — Is the group Out(π1(M)) always infinite? What can be said about the

structure of Out(π1(M))?

Problem. — If we have a finite subgroup in Out(π1(M)), can we lift it back to a

finite subgroup of Diff(M)?

This last problem is an analogue of the classic Nielson realization problem. Note

that, by Theorem 0.7, the natural map Diff(M) → Out(π1(M)) is surjective. So

we can always lift back individual elements from Out(π1(M)) to Diff(M), and the

problem asks whether we can choose the lifts in a compatible manner.

12.2. Studying quasi-isometries

One of our main results, Theorem 0.19, gives us some structure theory for groups

which are quasi-isometric to the fundamental group of an irreducible graph manifold.

Specializing to the class of graph manifold groups, this result gives us a necessary con-

dition for deciding whether two such groups π1(M1) and π1(M2) are quasi-isometric

to each other: loosely speaking, the two graph manifolds Mi must essentially be built

up from the same collection of pieces (up to commensurability), with the same pat-

terns of gluings. The only distinguishing feature between M1 and M2 would then

be in the actual gluing maps used to attach pieces together. This brings us to the

interesting:

Problem. — To what extent do the gluing maps influence the quasi-isometry type

of the resulting graph manifold group? More concretely, take pieces V1 and V2 each

having exactly one boundary component, and let M1,M2 be a pair of irreducible graph

manifolds obtained by gluing V1 with V2. Must the the fundamental groups of M1 and

M2 be quasi-isometric?

In order to prove that the answer is positive, one could try to follow the strategy

described in [BeNe], as follows:

1. Define a flip manifold as a graph manifold whose gluing maps are such that

fibers are glued to parallel copies of the traces at the toric boundaries of the

adjacent base (this definition generalizes the one given in [KaLe4]).

2. Observe that since V1 and V2 can be glued to provide irreducible graph mani-

folds, they can also be glued to obtain a flip manifold M . Note however that

such a manifold is not uniquely determined by V1 and V2.

3. Prove that the universal covering of Mi, i = 1, 2, is quasi-isometric to the

universal covering of M .

The analogue of Step (3) for pieces with 2-dimensional bases is proved in Section 2

of [KaLe4]. However, the argument given there does not apply in our case, since our

bases are not negatively curved.
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In Theorem 10.7, we argued that a labelled version of the Bass-Serre tree associated

to an irreducible graph manifold (with each vertex labelled by the commensurability

class of the hyperbolic factor in the corresponding vertex group) provides a quasi-

isometric invariant. However, it is shown in Remark 10.9 that this is not a complete

invariant, i.e. that there exist a pair of irreducible graph manifolds with the same

invariant, but which are nevertheless not quasi-isometric. We can ask:

Problem. — Can one devise a more sophisticated labeling in order to get a complete

quasi-isometric invariant?

It would be interesting to see how the quasi-isometry classes behave with respect

to curvature conditions. For instance, we could ask:

Problem. — Is there a pair of irreducible graph manifolds with quasi-isometric fun-

damental groups, with the property that one of them supports a locally CAT(0) metric,

but the other one cannot support any locally CAT(0) metric?

Note that if the quasi-isometry class ends up being independent of the gluing maps

used (among the ones giving irreducible graph manifolds), then by varying the gluing

maps, one can give an affirmative answer to this last question. If one removes the

word “irreducible” in the last problem, Nicol’s thesis [Ni] gives infinitely many such

pairs in each dimension n ≥ 4.

Now all the quasi-isometry results we have are for the class of irreducible graph

manifolds. The key result we use is that, for this class of graph manifolds, all the walls

are undistorted in the universal cover (see Chapter 7). This in turn can be used to

show that quasi-isometries must send walls to walls (up to finite distance), and hence

chambers to chambers (see Chapter 8). Trying to generalize these, we can formulate

the following question, which was suggested to us by C. Drutu and P. Papasoglu:

Problem. — For a graph manifold M , assume that a wall W in the universal cover

M̃ is not too distorted (say, polynomially distorted). What additional hypotheses are

sufficient to ensure that quasi-isometries send walls to (bounded distance from) walls?

And how can we choose gluings in order to ensure these hypotheses are satisfied?

For example, one possibility is to assume that all fibers have dimension which is

small relative to the degree of polynomial growth. It seems like this constraint might

be enough to show that walls are rigid under quasi-isometries. Finally, we have the

most general (and consequently, the most difficult):

Problem. — Develop methods to analyze quasi-isometries of general graph manifolds

(i.e. without the assumption of irreducibility).

Notice that in the proof of Theorem 0.19 we studied each vertex stabilizer sepa-

rately. It might be possible to obtain additional information by studying the interac-

tion between vertex stabilizers of adjacent vertices.
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Problem. — Is it possible, under additional hypotheses, to obtain a better description

of the vertex stabilizers?

A possible strategy to achieve this is to use the fact that walls admit “foliations”

which are coarsely invariant under quasi-isometries, namely those given by fibers of

the adjacent chambers. In order to obtain additional information out of this, one

probably has to assume that the dimension of the fibers is half that of the walls.

Finally, it is natural to ask whether versions of our quasi-isometric rigidity results

hold for extended graph manifolds as well. The very first step in this direction would

be the quasi-isometric rigidity of the fundamental group of a single piece. But the

fundamental group of a single piece is just the product of a free group and an abelian

group, which leads to the following natural question.

Problem. — What can one say about a group G quasi-isometric to Fk × Zd, where

Fk is the free group on k ≥ 2 generators? Is it true that G is virtually of the form

Fk′ × Zd?

Notice that quasi-isometric rigidity is known for both abelian groups (see [Gr1])

and for free groups (see [St] and [Du]).

12.3. Non-positive curvature and differential geometry

We have already given three different constructions of high dimensional graph

manifolds which cannot support a locally CAT(0) metric (see Section 2.6 and Chapter

11), and hence no Riemannian metric of non-positive sectional curvature. It would

be interesting to identify precise conditions for such metrics to exist:

Problem. — Find necessary and sufficient conditions for a graph manifold M to

(i) support a Riemannian metric of non-positive sectional curvature, or

(ii) support a locally CAT(0)-metric.

It is not even clear whether or not items (i) and (ii) above are really distinct:

Problem. — Assume the high dimensional graph manifold M supports a locally

CAT(0) metric. Does it follow that M supports a Riemannian metric of non-positive

sectional curvature?

Note that, for the classical 3-dimensional graph manifolds, Buyalo and Svetlov

[BuSv] have a complete criterion for deciding whether or not such a manifold supports

a non-positively curved Riemannian metric (see also [Le]). Some partial results in

dimension = 4 appear in [BuKo].

Concerning the second problem, in the 3-dimensional setting, there is no differ-

ence between Riemannian and metric non-positive curvature (see for instance [DJL,

Section 2]). However, in all dimensions ≥ 4, there exist manifolds supporting locally
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CAT(0) metrics which do not support Riemannian metrics of non-positive curvature

(see the discussion in [DJL, Section 3]). For the class of graph manifolds, the situation

is relatively tame, and one might expect the two classes to coincide.

Next, we discuss a question about ordinary hyperbolic manifolds. One can ask

whether examples exist satisfying a strong form of the cohomological condition ap-

pearing in Proposition 11.4. More precisely:

Problem. — Can one find, in each dimension n ≥ 4, an example of a truncated

finite volume hyperbolic n-manifold N , with all boundary components consisting of

tori, such that at least one boundary component T has the property that the map

i∗ : H1(T )→ H1(N) induced by inclusion has a non-trivial kernel?

Note that such examples clearly exist in dimensions = 2, 3. A recent result by

Kolpakov and Martelli ensures that one-cusped hyperbolic manifolds with toric cusp

exist also in dimension 4 [KoMa]. Moreover, if one could construct a finite volume

hyperbolic n-manifold having a single cusp with toral cross section, then Proposition

11.4 could be used to show that the corresponding ker(i∗) is non-trivial. The problem

of constructing hyperbolic manifolds with a single cusp is, however, still open.

We have already discussed the behaviour of fundamental groups of graph manifolds

with respect to several conditions encoding nonpositive curvature for groups: for

example, we showed that our groups are often non-relatively hyperbolic, and that, in

general, they do not act properly via semisimple isometries on CAT(0) spaces. An

interesting question, which was suggested to the authors by the anonymous referee,

is the following:

Problem. — Does there exist an (irreducible) graph manifold whose fundamental

group does not admit any proper action on a proper CAT(0) space?

A positive answer to this question would support the feeling that fundamental

groups of graph manifolds are genuinely outside of the world of non-positively curved

groups.

Our next question comes from a differential geometric direction. Intuitively, one

can think of high dimensional graph manifolds as being “mostly” non-positively

curved: the difficulties in putting a global metric of non-positive curvature is con-

centrated in the vicinity of the gluing tori, which are a collection of smooth, pairwise

disjoint, codimension one submanifolds. Gromov has formulated the notion of almost

non-positively curved manifolds: these are manifolds with the property that for each

ε > 0, one can find a Riemannian metric with the property that the diameters d and

maximal sectional curvature K satisfy the inequality K · d2 ≤ ε (see [Gr3]). It would

be interesting to study graph manifolds from this viewpoint. In particular:
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Problem. — Are graph manifolds almost non-positively curved?

We note that the class of almost non-positively curved manifolds is very mysterious.

The only known examples of manifold which are known to not be almost non-positively

curved are the sphere S2 and the projective plane RP 2 (by Gauss-Bonnet). Aside from

manifolds supporting non-positive curvature, the only additional known examples of

almost non-positively curved manifolds occur in dimension =3 (all 3-manifolds are

non-positively curved, see Bavard [Ba]) and in dimension =4 (a family of examples

was constructed by Galaz-Garcia [G-G]).

Keeping on the theme of differential geometry, we recall that the minimal volume

of a smooth manifold is defined to be the infimum of the volume functional, over

the space of all Riemannian metrics whose curvature is bounded between −1 and 1.

Gromov [Gr4] showed that manifolds with positive simplicial volume have positive

minimal volume and have positive minimal entropy. In view of our Proposition 6.25,

one can ask the following:

Problem. — Let M be a graph manifold with at least one purely hyperbolic piece

(i.e. a piece with trivial fiber). Can one compute the minimal volume of M? Does

it equal the sum of the hyperbolic volumes of the purely hyperbolic pieces? Does the

choice of gluing maps between tori affect this invariant? If there are some pieces with

non-trivial fiber, can the minimal volume ever be attained by an actual metric on M?

Similarly, minimal entropy is defined to be the infimum of the topological entropy

of the geodesic flow, over the space of all Riemannian metrics whose volume is equal

to one. Gromov [Gr4] also showed that positive simplicial volume implies positive

minimal entropy. One could formulate the same types of questions concerning the

minimal entropy.

A recent preprint by Connell and Suárez-Serrato [CS] gives a complete answer to

this last problem.
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[De] T. Delzant, Sur l’accessibilité acylindrique des groupes de présentation
finie, Ann. Inst. Fourier 49 (1999), 1215–1224.

[Do] A. Dold, A simple proof of the Jordan-Alexander complement theorem,
Amer. Math. Monthly 100 (1993), 856–857.

[DMS] C. Druţu, S. Mozes & M. Sapir, Divergence in lattices in semisimple Lie
groups and graphs of groups, Trans. Amer. Math. Soc. 362 (2010), 2451–
2505.
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