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Abstract 
Wear of engineering components is crucial to assess their performance during all their service life. 

Numerical wear models are a promising tool, cheaper and quicker than experimental tests, both to 

investigate wear effects and to compare design solutions. However, frequently, numerical models assume 

that only one body gets worn or both elements undergo the same volume loss.  

This study proposes a generalization of the Archard wear law, introducing the concept of wear partition 

factor  to take into account a different wear behaviour of the rubbing elements of a coupling. The 

proposed approach is applied to the case of a cylinder sliding over a plane with different stroke amplitudes 

st. A numerical wear model has been developed in Abaqus®, exploiting the UMESHMOTION routine. 

Implementation procedures are described and discussed along with the model convergence. Twenty 

combinations of  and st were simulated covering the cases both of unilateral/bilateral wear and 

fretting/sliding wear. Results provide important indications on the evolution of wear volumes, wear 

profiles and contact variables with travelled distance, revealing the remarkable role of .   

The present study aims to an improved understanding and modelling of sliding wear evolution thus 

clarifying some critical issues slightly discussed by the literature. 
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1 Introduction 

Wear is a damaging process that affects both biological and engineering systems, from human to gear 

teeth, from bearings to artificial joints and so on. Indeed, wear occurs anytime two surfaces are in contact 

and in relative motion. Thus, two crucial issues arise about the reliability and performance of rubbing 

couplings: to predict how the components are damaged during their service life and to establish when they 

need to be replaced. In-silico wear simulations can greatly help to achieve these aims and this explains the 

large number of wear models available in the literature, from the simplest to the most advanced ones.  

First of all, when developing a predictive wear model, it is worth observing that wear can affect only 

one of the contact surfaces or both of them, depending on their wear resistance. The different response can 

be influenced not only by the surfaces intrinsic properties (e.g. hardness and roughness) but also by the 

loading, kinematic and lubrication conditions. Typically, when one of the mating surfaces has a wear 

resistance much higher than the other one, the wear model is simplified as only one body wears out (i.e. 

unilateral wear). Otherwise, both surfaces get worn, and need to be modelled (i.e. bilateral wear). 

Generally, when surfaces with identical or similar material properties are coupled, the wear is bilateral, 

whilst when plastic is coupled with steel typically only the former gets worn. 

Another key issue in wear modelling is the definition of a wear law, able to describe the relationship 

among volume loss, material properties and testing/working conditions. According to the literature, the 

most widespread wear law was proposed by Archard and states that the volume loss is proportional to the 

product of the normal contact force LN and the sliding distance d, via a dimensional wear coefficient k, i.e. 

dLkV N  (1) 
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Generally, Eq. (1) is applied to the entire coupling, meaning that V represents the total volume loss of 

the two surfaces, and k a kind of total wear coefficient. The use of a single value of k is quite common in the 

wear modelling literature, and entails that the contact bodies wear out the same volume or that only one of 

them lose material, which unfortunately is not a general case. Moreover, the adaptation of Eq.(1) to 

estimate separately the volume loss by each contact surface is rarely employed. In particular, as far as the 

wear modeling of general pin-on-flat sliding/fretting configurations are concerned, a review of the 

literature reveals that different wear resistances, i.e. different wear coefficients, of the articulating surfaces 

have been considered only in a few studies [1-3] and, to the best of our knowledge, the concept has been 

faced only marginally. Indeed, such studies are generally focused on the discussion of new wear models and 

computational strategies rather than on the effect of such a difference in wear resistances [1-3]. The only 

work that has recently deepened this matter [1] has compared the wear evolution of a pin-on-plate 

coupling for different values of the so-called “wear mode index”, a parameter defined as a function of the 

wear coefficients of the contact pair, the sliding distance per cycle and the pin radius. The main limit of this 

study is that the wear coefficients are considered independent one from the other, i.e. not related to the 

total k. Moreover the tribological role of the wear mode index, hence also of the wear resistance, is not 

widely discussed; rather, it seems a tool/method to present results. 

From an experimental point of view, in order to define separate Archard equations for the two bodies in 

contact, also separate measurements of the volume losses are required. However, frequently the wear loss 

is assumed to be equally distributed between the contact surfaces (single k value) even when experimental 

wear tests point out a significant difference between the wear volumes of the elements [4-6].  

Thus, the present paper moves from a theoretical generalization of the Archard law (Eq.(1)), which is 

based on the introduction of a wear partition factor α. Such a factor describes how the volume loss of the 

entire contact pair is distributed between the two elements. Then, the novel approach is applied in a 

predictive wear model. 

The aim of this work is to numerically investigate the wear evolution of sliding surfaces with different 

wear resistances. A Finite Element (FE) wear model of a sliding cylinder-on-plate configuration has been 

developed in a parametric form with respect to the wear partition factor α and the stroke length, st. Such a 

simple geometry has been chosen to facilitate the generalization of the present approach to more complex 

applications. Twenty combinations of α and st have been simulated, covering the cases of both unilateral 

and bilateral wear, also with different wear resistances, and both sliding and fretting wear, depending on 

the stroke length. The sensitivity of the wear evolution to α and st has been investigated by comparing the 

wear profiles and contact pressure distributions, fixing the total travelled distance. Hopefully, this study 

allows to achieve an improved understanding and modelling of the wear evolution thus clarifying some 

critical issues slightly discussed by the literature.   

The organization of the manuscript is as follows. The background section introduces the Archard wear 

law in its more common form and its implementation in Abaqus according to two basic procedures. Then 

the case study on which the paper is focused is described. In the method section, the concept of the wear 

partition factor, through the generalization of the Archard law, is introduced. Secondly, the FE wear model 

and the simulation cases described. Third, the specific features of the wear model implementation adopted 

for the selected case study are reported. Finally, the results and discussion section is organized in several 

subsections describing: i) the numerical convergence of the model, assessed on the basis of the sensitivity 

analysis to both mesh and simulation parameters; ii) the main results for a reference simulated case; iii) the 

effect of α and st on the wear evolution; iv) the comparison with the literature studies.  

2 Background 

2.1 Archard wear law 

As discussed in the introduction, the Archard wear law is commonly adopted in wear modelling using 

a single wear coefficient. This assumption corresponds to two special cases: only one surface wears out or  



both  surfaces wear of the same amount, i.e. have the same wear resistance. However, the implementation 

into a FE code of the Archard wear law requires further steps as the form in Eq.(1) refers to a translational 

relative motion between the coupling elements, under constant load. In general, we need to simulate a 

more complex configuration, characterized by a time-varying load, a not uniform contact pressure and a 

generic three-dimensional kinematics. In such a case, it is convenient to re-write Eq.(1) in  local form, 

introducing the wear depth or linear wear at a point P of each contact surface as 



P

dsp(P,s)kh(P)  (2) 

where s is the arc length along the travelled path γP at a given time instant t (i.e. s(t)), and p(P,s) is the local 

instantaneous contact pressure in P at s. Thus the volume loss is obtained as 

 

A

dAds,s)p(PkV

P
 (3) 

Equations (1-3) hold both for unilateral and bilateral wear, and, additionally can be used both for the whole 

coupling and for each one of the bodies in contact. That can generate a misunderstanding in defining the 

correct value of k to be used. In particular, when both surfaces wear of the same amount, if k holds for the 

couple, k/2 should be applied for the single bodies.   

In order to model a more general wear problem with contact surfaces characterized by different wear 

resistances, a generalization of Eqs.(1-3) is needed and will be presented in the Sec.4.1. 

2.2 FE wear model in Abaqus: basic procedures  

In this section the basic procedures for simulating wear evolution in Abaqus are described. Although 

some concepts have already been described in the literature, we prefer to present them in this section using 

our own approach, that will be consistent and useful also for the original part (Sec.4.3).  

Abaqus FE code is considered because is one of the most widespread for numerical wear simulations [2, 

7-10], but some basic steps can be found in other codes as well. 

The implementation in Abaqus of a wear model is based on the interaction among the standard FE 

solver, the FORTRAN user subroutine  UMESHMOTION (UMM) and the adaptive mesh smoothing (AMS) 

available in Abaqus. Indeed, wear simulation is an incremental process, which consists in the repetition of 

three fundamental steps (included in one single Abaqus STEP), which constitute an FE wear cycle: i) 

solution of the contact problem to evaluate the contact pressure and the sliding distance, executed by the 

standard FE solver; ii) wear computation executed by the UMM and iii) wear implementation and mesh 

smoothing, executed by the AMS+UMM.  

Different strategies can be adopted to reduce the computational cost of a wear model, mainly 

depending on the type of loading history, as described in the following paragraphs. 

2.2.1 Generic loading history 

Let us consider a generic loading history, as shown in Fig.1. For modeling wear evolution, such history 

is typically discretized in n uniform increments (corresponding also to Abaqus INCREMENTs) and, for each 

increment i (i=1..n), an FE wear cycle is performed, repeating the three steps listed above. Thus, n geometry 

updates are performed for describing the wear process. It can be observed that at each increment i the 

solution-dependent contact variables, i.e. the contact pressure 𝑝𝑖
 and sliding distance 𝑠𝑖

 for every contact 

node , are passed into the UMM and are used to compute the incremental wear depth ∆ℎ𝑖
 obtained by 

discretizing Eq.(2) as follows: 
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where  spans the set   of the nodes of the contact surfaces, while k is the wear coefficient of each one of 

the bodies in contact. Note that in Abaqus, 𝑠𝑖
 is provided by the CSLIP contact output, which represents the 

relative tangential displacement of the node with respect to the counterface. It includes both rigid and 

elastic components although in most cases the latter are negligible. Additionally, it is worth observing that, 

when i=1, 𝑝0
𝜅 and 𝑠0

𝜅  refer to the contact conditions in the initial configuration, i.e. at t=0 of the loading 

history. Frequently, a simplified expression is also used for the incremental wear depth 

   1 1 nisspk iiiih   with
  (5) 

but Eq.(4) should be preferred, requiring similar computational times for improved results. 

Next, the geometry update is performed by moving the contact nodes in the direction normal to the surface 

at the node, according to the evaluated wear depth, by the AMS+UMM. Finally, the mesh domain close to the 

contact, i.e. the wear boxes mesh, is smoothed in order to guarantee a high quality mesh throughout the 

analysis, by the AMS. The cumulative wear depth 






h  at each contact node  of the mating surfaces, at a 

given instant  corresponding to the -th iteration, is  
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so that the final wear depth of the whole loading history, is obtained for =n, i.e. 
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i
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
 (7) 

It should be noted that the wear depth increment is intended to lie along the normal to the surface (having 

unit vector 𝐧𝑖
), which however changes as wear proceeds modifying the geometry. Thus a vector sum, e.g. 

nh i
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i
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 



 0

1

nh  (8) 

could be more suitable than the algebraic one in Eqs.(6-7) for estimating the cumulative wear depth. 

However, in most cases, geometry modifications vary the normal direction less than a few degrees, thus 

differences between scalar and vector estimates are negligible and the former are conveniently used. 

 

Fig.1 Generic loading history discretized in n increments (top) and scheme of the FE wear cycle repeated for 
each increment (bottom). 
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The volume loss is automatically computed by Abaqus as the change in area or volume of an element set 

solely due to adaptive meshing. 

It is worth noting that wear computation and hence the handling/treatment of the contact variables, the 

implementation of the discretized Archard law in local form (Eq.(4)), as well as the storing of such variables 

throughout the analysis, must be coded by the user within the UMM subroutine. On the other hand, the 

UMM subroutine enables to easily prescribe the node motion, i.e. the wear depth, by providing a local frame 

that is normal to the free surface at the surface node. Also the final mesh smoothing is performed 

automatically by the adaptive meshing tool. 

2.2.2 Cyclic loading history 

Frequently, the loading history is periodic and can be described by a number N of loading cycles. 

Assuming that each cycle is discretized in nc increments, adopting a quasi-continuous geometry update as 

in Fig.1, the whole loading history would entail n=N nc FE wear cycles (Fig.2), thus an equal number of 

contact analyses (FE runs). This can imply a high computational cost, which is the main drawback of FE 

wear simulation as discussed in the literature (e.g. [1, 2, 10, 11]). For example, assuming N=10000 and 

nc=100, it comes n=100000 that, considering 15 s per analysis, means about 17 days for the simulation of 

the whole loading history.  

 

Fig.2 Cyclic loading history: quasi continuous vs. accelerated geometry update procedure. 

In an attempt to reduce the computational cost, some simplifying hypotheses and computational 

strategies are generally adopted (e.g. [1, 2, 10, 11]), although they can implicate numerical instabilities and 

thus require particular attention. Most frequently (e.g. [2, 10]), it is assumed that the contact pressure is 

affected by the wear evolution only when the incremental wear depths become significant, that is after a 

critical number of loading cycles 𝑁. Consequently, the geometry update (i.e. wear calculation and 

implementation) can be performed every 𝑁 cycles, for a total of 𝑛u = 𝑁 𝑁⁄  times. Although a constant 𝑁 is 

commonly used to define the critical interval for the geometry update during the whole loading history, 

such a number can be variable as the wear depth evolution is typically non-linear, This assumption allows 

to extremely reduce the computational cost, so that 𝑁 is also named “acceleration factor” in [10]. However, 

the validity of such an assumption is worth being discussed. Firstly, the linear wear loss occurring in a 

single cycle is typically very low (of the order of nanometers) and does not affect the contact mechanics. On 

the other hand, particular attention must be given to the setting of 𝑁 and nc, since a too high value of 𝑁 or 

too low of nc can cause numerical instabilities related to non-smoothed worn profiles (see Sec.5.1) [10]. On 
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the contrary a too low value of 𝑁 or too high of nc would slow down the analysis. Consequently, a sensitivity 

analysis is required for the optimum choice of 𝑁 and nc. 

According to the accelerated procedure, the contact analysis over the single loading cycle (without 

updating the geometry) is repeated within each FE wear cycle u, as shown in Fig.3. Then wear evolution is 

modelled in two distinct Abaqus STEPs repeated for each wear cycle u and hence for each geometry update, 

for a total of nu times: the first one is devoted to the wear computation whilst the second one to the wear 

implementation. At each increment i (also Abaqus INCREMENT) of a wear cycle u, in the computation step 

the subroutine UMM is called and the contact variables 𝑝𝑢,𝑖
𝜅 and 𝑠𝑢,𝑖

𝜅  are stored, remaining available both 

during and after the wear simulation. Then, at the end of each computation step, the cumulative wear 

depths at each contact node κ are computed according to the following relationship, obtained by replacing i 

with u, n with nu and  with u,  in Eqs.(6) 
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where the incremental depth is 
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which stresses the role of 𝑁. Frequently only pressure distribution varies with u while the sliding distance 

can be considered to vary only with i. 

The incremental wear depths are then passed to the implementation step, which calls the UMM 

subroutine, to simulate wear by moving the contact nodes according to the predicted Δℎ𝑢
𝜅 . Finally, the mesh 

smoothing is performed by AMS. 

 

  

Fig.3 Flowchart of the accelerated procedure. 
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Further improvements in the implementation methods can be performed and those applied in the present 

study are described in Sec.4.3. 

3 Case study: cylinder-on-plate reciprocating contact 

Periodic sliding contact between non conformal surfaces represents a general problem very common in 

engineering applications and largely investigated in the literature both experimentally and numerically. 

From an experimental point of view, the following standardized wear tests are usually performed: pin-on-

disc, pin-on-cylinder and pin-on-plate, with the pin geometry depending on the application (e.g. spherical, 

conical and cylindrical) (Fig.4). Generally, the pin is loaded and fixed while the motion is applied to the 

counterface as depicted in Fig.4. For the pin-on-disc/cylinder configurations, the motion is a rotation 

around their symmetry axis (circular sliding path), whilst for the pin-on-plate one is a reciprocating 

translation (linear sliding path). In fact, the reciprocating pin-on-plate arrangement can be used to 

investigate both the fretting and the sliding wear, which mainly differ for the sliding amplitude, being of the 

order of microns for the former and ranging from hundreds of microns up to tens of millimetre for the 

latter [12, 13]. Even the more complex contact conditions are investigated taking advantage of equivalent 

periodic pin-on-flat wear configurations, at least as a first step (e.g. [3]). 

In the literature, the general wear problem of periodic pin-on-flat contact has been largely investigated 

numerically. Many numerical models implementing the Archard law are available for the tribological 

configurations of Fig.4. For instance pin-on-disc wear models have been proposed in [3, 14], while 

reciprocating sliding pin-on-plate models can be found in [1, 4, 5, 11, 15]. Some examples of fretting models 

for cylinder-on-plate contact are described in [2, 10, 15]. It should be noted that when the pin is spherical, 

the wear model is generally three-dimensional [1, 3-5, 14]; in a few cases a simplified axial-symmetric 

geometry is assumed [14]). On the other hand, in wear models with cylindrical pin, the analysis is restricted 

to a 2D plane strain case [2, 10, 11, 15]. It is worth remarking that these models generally simulate contact 

surfaces having the same wear coefficient [1, 3-6, 10], and only rarely different ones [1-3, 16]. 

In the present study a FE wear model of a cylinder-on-plate sliding contact has been developed for 

rubbing surfaces with different wear resistances. Moreover the model can simulate both sliding and fretting 

conditions, by properly setting the stroke amplitude st. The choice of such a case study, relatively simple, is 

due to several reasons: the significance of periodic pin-on-plate wear problems; the rather low 

computational cost; the feasibility of generalizing the proposed approach to more complex applications. 

 



 

Fig.4 Sketches of the most common wear tests (a). Case study: cylinder-on-plate reciprocating contact 
(b). 

4 Methods 

4.1 Revision of the Archard law 

The limitations of the Archard wear law based on a single wear coefficient have already been stressed 

in Sec.2.1. In order to model a general wear problem with contact surfaces characterized by different wear 

resistances, a generalization of Eqs.(2-10) is needed and will be proposed in the following. 

First of all, a superscript b is conveniently introduced in Eq.(1) for distinguishing volumes and wear 

coefficients of either the two bodies in contact, in this case cylinder and plate, (i.e. b=c, p) obtaining 

dLkV
bb

N  (11) 

while no superscript denotes global quantities of the coupling, e.g. 

dLkV N . (1)bis 

It is worth observing that the product LN d, which denotes the work done by the frictional force divided by 

the coefficient of friction, is the same for the two bodies as well as for their coupling. Thus, the wear 

volumes V and Vb are proportional to the product LN d via their specific wear coefficient, k and kb 

respectively, which represent an indicator of surfaces wear resistance, being inversely proportional to it. 

The values of k and kb can be evaluated from experimental wear tests by inverting Eqs.(1,11) and measuring 

the volume losses Vexp of the couple and of the single elements according to the following 
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In general, kc and kp assume different values which designate how the total wear volume is distributed 

between them. Similarly, the wear depth at a point P of each worn surface is given by 

pc,  bds,s)p(Pk)h(P

bP

bbb


 (13) 

so that the volume loss of each body is obtained by integrating Eq.(13) over the articulating surface Ab 

  
b

bbb

A

bdAds,s)p(PkV pc,
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

 (14) 

It should be noted that the double integral in Eq.(14) is the generalized form of the product LN d so 

represents the work performed by the frictional force divided by the coefficient of friction. Thus, it can be 

also used to replace LN d in Eqs.(12) for the estimation of the wear coefficients. It is worth stressing that, 

being the work done by internal contact forces, it can be evaluated considering P belonging to the contact 

surface c or p indifferently, as it holds 
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from which the following fundamental relationship can be derived 
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Equations (14,16) can be denoted as the generalization of the Archard wear law. Moreover, considering 

that 

pc VVV    (17) 

and combining it with Eqs. (14) and (15), we obtain  

pc kkk    (18) 

To the authors’ best knowledge Eq. (18), despite its simplicity, is never reported in the literature. Although 

specific wear coefficients for the two bodies have been applied in other studies as well, the fundamental 

result of Eq.(18) is never mentioned or exploited, probably because the relationship in Eq.(15) was not fully 

developed. 

As the concept of the wear coefficient k is strongly connected with the coupling more than with single 

elements, a dimensionless parameter α, named wear partition factor, is introduced in this study 
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so that the volume losses can be written as 
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The wear partition factor can span the range [0,1] assuming the values at the  endpoints in case of 

unilateral wear and the intermediate values in case of bilateral wear. Thus, for α =0 (i.e. kc=0, kp= k) only the 

plate gets worn; moving from α=0 to α=1 the wear resistance of plate increases whilst that the cylinder 



decreases, assuming the same values for α =0.5 (i.e. kc=kp= k/2); lastly, for α =1 only the cylinder is affected 

by wear (i.e. kc =k, kp =0).  

The proposed approach aims at overcoming the use of a single wear factor in the Archard law, often 

encountered in the literature, which is ambiguous and valid only in special cases (i.e. α=0, 1 and α=0.5). 

Moreover it provides an original relationship between the single bodies and coupling wear coefficients. 

4.2 FE model 

The FE wear model was developed using the FE package Abaqus® (v. 6.11) and the UMESHMOTION 

(UMM) subroutine, ad-hoc coded in FORTRAN by the authors. 

4.2.1 Geometry and materials 

The model geometry consists in a non-conformal cylinder-on-plate coupling (Fig. 5). According to the 

literature [2, 10], the problem can be treated as a plane strain case, and the geometry simplified by 

modelling a 2D-section of the contact pair. The model consists in a half cylinder of radius R=10 mm in 

contact with a rectangular plate of dimensions R x 2R.  

The coupling is considered a metal-on-metal one, with the following material properties for both the 

bodies: elastic modulus E=200 GPa and Poisson ratio ν=0.3.  

 

 

Fig. 5 Top: Model geometry and specimens dimensions (R=10 mm). The outer and inner partition faces 
used for meshing are also shown for each body. Bottom: Model meshing (a). Partitions faces used to 

optimized the meshing: zoom in the outer (b) and the inner (c) partition faces. Zoom in the wear box made 
of elements affected by wear (d). 

4.2.2 Mesh 

The model was meshed using linear plane strain elements, both triangular (CPE3) and quadrilateral 

(CPE4). The mesh density changes throughout the bodies, increasing in the regions adjacent the contact, 

where smaller elements are important to capture the sharp variations of the contact pressure. The 
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characteristic element size thus span from 1 mm, away from the contact, down to 20 μm, close to the 

contact. As a meshing technique, two partition faces, one inside the other, were defined for each part, as 

depicted in Fig.5. The outer and inner partition faces have dimensions respectively of about 4x1 mm and 

1x0.5 mm for the cylinder, and of 4.2x1.5 mm and 1.2x0.5 mm for the plate. The meshing of the inner 

partitions was designed in order to ease the contact convergence and the wear implementation. In 

particular, the mesh is almost coincident on the contact surfaces in the configuration/position represented 

in Fig.5, and consists in quadrilateral elements with size of 20 μm in width and 25 μm in height. Such an 

element shape enables to maintain the element stability during the wear process, which indeed causes a 

reduction of the element height. To note that only the elements belonging to wear boxes depicted in Fig.5-d 

will be affected by the wear process. Each wear box consists in an element subset of the inner partitions, 

corresponding to the first three element rows close to the contact. 

The partition sizes and the mesh densities were chosen according to the sensitivity analyses to the 

model mesh and the wear simulation parameters (see Sec.4.4), in order to guarantee both accuracy and low 

computational cost.  

 

4.2.3 Boundary conditions 

Surface interactions 

The interaction between the cylinder and the plate surfaces was modelled as a frictionless and hard 

contact (the contact is total when is detected), taking into account the possibility of finite sliding. 

Additionally, a double contact was prescribed by inverting the slave and the master surfaces. That allows to 

obtain the nodal contact variables of both the contact surfaces, otherwise available only for the slave 

surface, according to the standard contact outputs of Abaqus.  

The assumption of a frictionless contact is worth of being discussed. Firstly, the presence of friction in 

most engineering applications has a negligible effect on the contact pressure distribution [17, 18]. For 

instance, numerical wear investigations described in [2] and [1] and assuming a coefficient of friction of 

about 0.3 and 0.7, respectively, report symmetric contact pressure profiles, even during/after the wear 

process. Secondly, the coefficient of friction combined with stick-slip phenomena would involve further 

complex aspects which goes beyond the goal of the present study. However, this point is also discussed in 

the Results Sec.5.4.  

 

Kinematics and loading conditions 

The top of the cylinder was built-in while the kinematics of the plate was driven by the reference point 

RP of a rigid base tied at the bottom surface of the plate, as shown in Fig.6. The rotation of the rigid base 

was restrained while the translation in y direction was left as unconstrained since this degree of freedom 

was indirectly controlled by the load. The sliding contact was implemented through the motion in x 

direction, which consisted in a periodic reciprocating displacement as depicted in Fig.6-b. In particular, the 

distance travelled in a half-period is commonly known as the stroke st. Depending on the stroke magnitude, 

different wear problems can be modelled, i.e. fretting and sliding. The following values of st were simulated: 

a, 2a and 4a, a being the half-width of the Hertzian contact region. A fourth kinematic condition consisted in 

a half reciprocating motion with st =2R, i.e. the stroke covers the whole plate width Fig.6-b) and no return 

path is considered. This condition aimed at simulating the periodic motion of the pin-on-disc/cylinder 

tests: precisely, the two configurations for x=±R (pin in contact with the top lateral corners of the plate) are 

assumed to be coincident, like whether the cylinder, after having travelled the stroke distance, would 

return to the initial position.   



 

Fig. 6 (a) Scheme of the model boundary conditions. The top surface of the cylinder is built-in while the 
reference point RP, fixed to the plate, is used to apply both the kinematics and the load. The global 

coordinate system {O; x, y} is shown and the model is represented in its reference configuration (x=0). (b) 
Plate displacement in x direction vs scaled time for all simulated cases. 

As far as the loading condition is concerned, a load LN was applied in the RP, normal to the rigid base, 

and was kept constant throughout the wear cycle (Fig.6). A load magnitude of 100 N was adopted, which 

entails the following Hertzian contact conditions (unworn status): maximum contact pressure pH=591.4 

MPa, and half-width of the contact region a=0.11 mm. Thus, the simulated stroke ranged from 0.11 mm 

(fretting wear) to 20 mm (sliding wear), covering much different wear conditions. 

It should be noted that the period of the wear cycle T is not relevant in FE wear modelling, as static 

simulations are carried out.  

4.2.4 Simulated cases 

The wear evolution was simulated for different combinations of values of the wear partition factor and 

stroke. In particular, α was assumed equal to 0, 0.25, 0.5, 0.75, 1 (keeping k=10-8 mm2/N) while st=a, 2a, 4a, 

2R for a total of 20 analyses. They cover the cases of both unilateral (α=0, 1) and bilateral wear (0<α<1), 

and both sliding (st=2R) and fretting conditions (st =a, 2a, 4a).  

The sensitivity of the wear evolution to α and st was analysed by comparing the worn profiles and the 

contact pressure, on the same total travelled distance dt=1320 mm. In the simulated cases, such a distance 

is covered by a different number of loading cycles, depending on the stroke, i.e.  

t

t

sr

d
N    (21) 

where r depends on the kinematic conditions and hence r=2 for reciprocating motion (st =a, 2a, 4a) and r=1 

for half-reciprocating motion (st=2R). 

4.3 Wear model implementation 

With respect to the accelerated procedure described in Sec.2.2, in the present study the wear 

implementation was based on two additional computational strategies, which helped to further reduce the 

processing time: 
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a) Simulating only half loading cycle, that means  𝑛c 2⁄   increments  

b) Dealing separately with cases where the worn plate surface remains plane. 

 

a) The first simplification derives from the observation that in reciprocating contacts (for which r=2), 

the outbound (0≤t/T≤0.5) and the return (0.5≤t/T≤1) stroke within a wear cycle cause identical wear 

conditions both for the cylinder and the plate, thus only half wear cycle can be simulated. Consequently, the 

number of FE runs per wear cycle, i.e. of simulated increments, can be reduced to 𝑛c 2⁄  also halving the 

number of total FE runs 𝑛 = 𝑁 𝑛c 2⁄ . Accordingly, the wear losses are obtained by doubling the wear 

predictions of the half-cycle. On the other hand, the simulation of the half-reciprocating contact (for which 

r=1), corresponding to the simulation of a single stroke, requires the same number of FE runs 𝑛c 2⁄  but not 

the doubling of the wear predictions. Consequently, Eqs.(10) and (9) are replaced by the following ones, 

respectively 
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where the upper script b are introduced for distinguishing between the cylinder and the plate, whose wear 

coefficients are related to the partition factor according to Eq.(20). As mentioned in Sec.2.2, when i=1 the 

quantities 𝑝𝑢,0
𝑏,𝜅and 𝑠𝑢,0

𝑏,𝜅  describe the contact conditions at the beginning of the wear cycle u and hence at the 

beginning of the correspondent loading cycle, i.e. in x=-st/2. In particular, at the first wear cycle u=1, i.e. in 

the unworn conditions, 𝑝1,0
𝑏,𝜅corresponds to the Hertzian pressure and the sliding distance 𝑠1,0

𝑏,𝜅  is due only to 

the elastic deformations. 

b) A subset of cases has been identified for which the plate surface remains flat throughout the 

wear process and consequently the contact analysis does not vary within the loading cycle. Therefore, the 

wear predictions do not require the simulation of the sliding motion of the plate and only one FE run for 

loading cycle has to be performed (nc=1). That happens when the plate does not wear (i.e. α=1 and ⩝ st) or 

wears uniformly, i.e. in case of sliding contact (i.e. st=2R, ⩝ α). In such cases, the wear depth at each node of 

the cylinder contact surface at any wear cycle u can be obtained as 

   ,c
1

,c,c
1,

,c
 uuuu sspNkrh  (24) 

Since the elastic component of the sliding distance (i.e. the sliding produced by a change in the elastic 

deformation caused by pressure redistribution after the geometry update) was proved to be significantly 

lower than st, the following approximation can be assumed 
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and thus Eq.(23) can be simplified as  

tuu spNkrh   ,c
1,

,c   (26) 

In case of sliding contact, also the uniform wear loss of the plate needed to be predicted. That was 

easily computed considering that, during a loading cycle, each node of the plate surface, moving below the 

cylinder, is subjected to every value of the contact pressure profile. Moreover the sliding distance 

increment Δs is given by the element size of the wear box elements. Thus, the uniform wear depth of the 

plate surface generated in a wear cycle u results proportional to the integral of the contact pressure over 

the contact surface, according to the following equation 
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where the nodes κ and κ+1 belong to the same element and thus the counter κ allows to span over the 

contact region, moving from one element to the closest one.  

Therefore, two procedures were implemented in two different subroutines, differing for simulating 

(procedure SP) or not (procedure NSP) the sliding motion of the plate.  

The global flow-chart is provided in Fig.7. It can be noted that both procedures have as input the two 

analysis parameters  and st and the total travelled distance to be simulated, i.e. dt. First, a check is 

performed on their values (st =2R, =1 or not) to select the execution of the SP or NSP procedures. Then, 

such inputs are used to set r and to compute N (from Eq.(21)) and the number of wear cycles nu, exploiting 

the values of 𝑁 and nc estimated by the sensitivity analyses.  

 

Fig. 7 Flow-chart of the implementation procedures SP and NSP. 

As shown in Fig.7, the NSP procedure resembles the quasi-continuous implementation (Fig.2), as each 

wear cycle corresponds to a contact analysis and successive geometry update. However, in this case the 

increment is defined by u instead of i as in Fig.1. It is worth mentioning that the geometry update of the 

plate is not implemented in the FE model because the worn plate remains a flat surface. It can also be noted 

that the case =0 (within the NSP procedures) under sliding contact does not require any FE simulation as 
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the geometry is not affected by wear and the contact problem can be solved analytically by means of Hertz 

formulas.  

On the other side, the SP procedure is analogous to the one described in Fig.3 for the accelerated 

procedure, apart from the values of some indexes and superscripts. In particular the index i varies in the 

range 1…𝑛𝑐 2⁄ , according to the above simplifications, and specifications for the two bodies are introduced 

as in Eqs.(22-23).   

4.4 Model convergence requirements 

The numerical convergence of the wear model required two sensitivity analyses, one for the unworn 

configuration and the other one for the worn configuration. The former consisted in the classical mesh 

sensitivity analysis, according to which the mesh element size is repeatedly halved until the maximum 

contact pressure remains almost unchanged. In particular, the mesh size was reduced until the maximum 

contact pressure differed less than 1% with respect to the Hertzian solution pH.  

The sensitivity analysis for the worn configuration dealt with the optimal setting of the parameters for 

model implementation, i.e. 𝑁 and nc for the procedure SP and just 𝑁 for the procedure NSP. The analysis 

was carried out for each simulation case of Sec.4.2.4 because both 𝑁 and nc are affected by the simulated 

conditions. It consisted in refining initial values of 𝑁 and nc until the predicted worn profiles after 10-20 

geometry updates were smooth and symmetrical for both components. In particular, the initial guess value 

of 𝑁 was chosen so that the initial total (cylinder + plate) wear depth increment Δh0, defined as  

Δh0= 𝑁 k pH 2st  (28) 

was about 0.1 μm. It is worth noting that Δh0 is an overestimation of the maximum total wear depth to be 

implemented at the first wear step (i.e. at the first geometry update). On the other hand, the initial value of 

nc was set in order to guarantee each surface node to keep the contact throughout two consecutive 

increments. Since interplay exists between 𝑁 and nc, once their initial values were defined, a trial and error 

procedure was necessary to evaluate the couple of optimized values of 𝑁 and nc, which guaranteed the 

model convergence. The results of the sensitivity analysis for the worn configuration are summarized in 

Table 1. They revealed that optimum value of nc was the same for all simulated cases, i.e. nc=100, whilst 𝑁 

depended on the simulated conditions and thus on Δh0. 

The computational times vary significantly with the simulated case and hence with the implementation 

procedure, spanning the interval 1 min – 100 min on an Intel Xenon processor at 3.19 GHz and 8 GB RAM. 

In particular, simulations adopting the SP procedure typically require 60-100 min depending on the value 

of  𝑁 (as nc=100 for all cases), whilst those one exploiting the NSP procedures take less than 2 min 30 s. 

 

Table 1 Values of  𝑵̅ and Δh0 for all the simulated cases, for nc=100. For each stroke (a, 2a, 4a 2R), its length 
and the number of cycles N are reported. 

  
st 

a 
(0.11 mm, N=6000 c) 

2a 
(0.22 mm, N=3000 c) 

4a 
(0.44 mm, N=1500 c) 

2R 
(20 mm, N=66 c) 

    𝑁̅ Δh0 (μm) 𝑁̅ Δh0 (μm) 𝑁̅ Δh0 (μm) 𝑁̅ Δh0 (μm) 

α 

0 75 0.1 50 0.13 30 0.15 -- -- 

0.25 100 0.13 40 0.1 25 0.13 1 0.12 

0.5 100 0.13 50 0.13 30 0.15 1 0.12 

0.75 100 0.13 40 0.1 20 0.1 1 0.12 

1 100 0.13 50 0.13 30 0.15 1 0.12 



5 Results and discussion 

The main outputs of both procedures consist in the evolution of the pressure and wear profiles of the 

two bodies in contact. Such profiles are obtained extracting the contact/wear variables along node paths in 

undeformed configuration and with the node distance scaled by a. In particular, wear profiles are obtained 

by subtracting the computed wear depth from the original geometry since it was verified that the difference 

with respect to the real wear profile (i.e. considering the vector expression of the wear depth in Eq.(8)) is 

negligible (lower than 0.1%).  

5.1 Model convergence analysis 

The convergence analysis for the worn configuration is a fundamental step when developing a wear 

model, since a precise setting of the implementation parameters allows to reduce the computational costs, 

preserving accurate results. In order to clarify the important role played by the implementation parameters 

𝑁 (for SP and NSP) and nc (for SP) on the reliability of the predictions, an example of convergence analysis is 

provided for the case st=a and α=0.5, at N=1000. In particular, the effect of different combinations of 𝑁 and 

nc values on pressure and wear profiles is described in Fig.8: in a) for nc=40 while 𝑁 =50, 100, 200; in b) for 

nc=200 while 𝑁 =50, 100, 200 and in c) 𝑁 = 100 and nc=16, 40, 100, 200. Figure 8-a shows that the 

convergence was not reached for nc=40 as the pressure and worn profiles presented numerous 

irregularities and, in particular, characteristic pressure peaks increased towards the contact borders. Such 

an effect was due to numerical instabilities caused by a too high 𝑁, as also reported in the literature [2, 10]. 

Moreover, both the pressure and the wear profiles resulted asymmetric with respect the y-axis, which is in 

disagreement with the symmetry of the problem. Such an effect, clearly showed in the plate worn profiles 

was caused by a too low value of nc, in fact the increase of nc up to 200 led to the disappearance of such 

asymmetries (Fig.8-b). Moreover, assuming 𝑁⩽100 (with nc=200), the model convergence was reached and 

smooth and symmetric profiles both of contact pressure and worn geometry were predicted (Fig.8-b). To 

the purpose of reducing as much as possible the computational cost, a sensitivity analysis with respect to nc 

was also carried out fixing 𝑁=100, and thus the optimized couple of input parameters 𝑁=100 and of nc=100 

was evaluated (Fig.8-c). The effect of a decreasing nc, i.e. asymmetric profiles, is also highlighted in Fig. -c.  

The sensitivity analysis showed that the effect of non-convergent simulation parameters, and in particular 

of nc, affected plate wear predictions more significantly than pin ones. That can be explained considering 

that the contact regions continuously change for the plate, moving over the plate surface, whilst are almost 

constant for the pin, and thus the effect of the stroke discretization results enhanced for the plate. 

 

 
(a) nc=40 and 𝑁 = 50, 100, 200 
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(b) nc=200 and 𝑁 = 50, 100, 200 

 
(c) 𝑁 =100 and nc=16, 40, 100, 200 

Fig. 8 Effect of the different combinations of values for 𝑁 and nc on the pressure and wear profiles predicted 
for the case st=a and α=0.5, at N=1000. 

5.2 General features of the wear evolution in sliding surfaces 

The main results for each simulation case consists in the evolution of the contact pressure and wear 

profiles with increasing wear cycles; as the number of the loading cycles N is different from case to case 

(Table 1) results are plotted with respect to the travelled distance d  

ut nusrNud 1  (29) 

whose total value has been fixed at dt=1320 mm for all simulations (see Eq.(21)). Other important results 

are the trends of the maximum wear depth both of pin ℎ𝑚𝑎𝑥
𝑐  and plate ℎ𝑚𝑎𝑥

𝑝 , the wear volumes and the 

maximum contact pressure at the centre of the contact area, labelled pmax. Although in some cases higher 

peak values were located at the borders of the worn regions, we chose to describe pmax, that is how the 

maximum value of the Hertzian solution changes with wear evolution, instead of the real maximum contact 

pressure at each increment. 

Some typical features of the wear process which are common to all simulated cases can be pointed out. 

Thus, as an example, the results for st=a and α=0.5 are considered and discussed in the present section. At 

the first wear cycle, when the Hertzian solution holds, the contact region with an amplitude of 2a translates 

of st=a over the plate surface, resulting in worn areas almost equal to 2a and 3a for the cylinder and the 

plate, respectively (Fig.9-a,b). As wear proceeds, a wear scar on the cylinder and a wear groove on the flat 

surface develop (Fig.9Fig. -a,b): the coupling surfaces become more conforming, the contact/worn areas 

widen and, consistently, the contact pressure flattens (Fig.9-c). It is worth noting that the contact pressure 

profile presents characteristic peaks at the contact edges due to the discontinuity of curvature radius at the 

borders between the worn and unworn regions, both on pin and plate surfaces. However, such peaks tend 

to reduce with increasing wear cycles (Fig.9-c). The maximum contact pressure markedly lowers (about 

66%) as wear develops, although the maximum wear depths reach roughly 2 m. While ℎ𝑚𝑎𝑥
𝑐  and ℎ𝑚𝑎𝑥

𝑝
, 
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increase not linearly with time, the trend of the wear volume is perfectly linear. These general 

characteristcs of the wear process are well consistent with the literature (e.g. [1, 2, 10, 15]).  

 

Fig. 9 Main results of the case st=a and α=0.5. The effect of the wear evolution over 6000 cycles is described 
in terms of: cylinder (a) and plate (b) wear profiles; contact pressure distribution (c); trends of maximum 

contact pressure (d), maximum wear depths (e) and wear volumes during the loading history. 

Additionally, it should be noted that the same value of the total wear volume is predicted for all the 20 

simulated cases, that is 1.320 10-3 mm3, according to Eq.(1). The partition factor α distributes the total wear 

volume between the bodies but also the single volume losses remain obviously linear and do not dependent 

on the stroke amplitude, but on α and on the total travelled distance d. 

5.3 Effect of the wear partition factor and the stroke amplitude on wear evolution 

This section describes the results of the sensitivity analysis of wear evolution with respect to the wear 

partition factor and the stroke amplitude, for the twenty combinations of α and st described in Table 1.  
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5.3.1 Effect of the wear partition factor  

All simulations pointed out that the wear partition factor  plays a fundamental role on the wear 

evolution of sliding surfaces, affecting wear rates, wear profiles and contact pressure. The redistribution of 

the total wear volume between the mating surfaces is well depicted in Fig.10, where the worn profiles both 

of cylinder and plate are compared for different values of α and st. The main effects of  appear to be 

independent from the stroke amplitude and, moving from α=0 (no wear of the pin) to α=1 (no wear of the 

plate), the pin wear scar increases both in width and depth, whilst the plate wear groove becomes less 

marked. This opposite trend of pin and plate wear losses  vs. α is also demonstrated in Fig.11 (left and 

central columns), which shows the maximum linear wear of the contact bodies as a function of the travelled 

distance d.  

As far as the contact pressure is concerned, Fig.10 shows that the higher the value of α (i.e. the deeper 

the cylinder wear scar and thus the flatter its surface), the more conformal the contact and the more 

uniform the contact pressure distribution at the centre of the contact region. Additionally, the pressure 

peaks at the contact edges, not found for the case α=0, occur and become more marked with increasing 

values of α. Furthermore, as depicted in Fig.11 (right column), the maximum contact pressure significantly 

decreases with the travelled distance for all values of α. However, it should be noted that the effect of α on 

the evolution of the contact pressure is strongly affected by the stroke amplitude, resulting more significant 

for larger strokes. For instance, in case st=a, similar contact pressure distributions and trends of pmax are 

predicted for different values of α, as depicted in the right columns of Fig.10 and Fig.11, respectively. On the 

other hand, in case st=2R, much different pressure distributions are predicted for different values α, holding 

the Hertzian solution for α=0 and a uniform pressure distribution (at the centre of the contact) for α=1. This 

is also confirmed by the evolutions of pmax portrayed in Fig.11 (right column). Indeed, for st=4a and α=0, 

pmax decreases almost linearly with the travelled distance, whilst, for higher values α , it decreases non-

linearly dropping down in the first 500 c.  

 



 

Fig. 6 Effect of the wear partition factor α on the wear evolution of sliding surfaces for dt=1320 mm. Plots of 
wear profiles of cylinder (left column) and plate (central column), and of contact pressure distribution 

(right column). In each plot curves with different values of α (0, 0.25, 05, 075, 1) are represented. Each row 
gathers plots of a specific stroke amplitude st.  
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Fig. 7 Effect of the wear partition factor α on the trend of maximum wear depth of cylinder (left column) 
and plate (central column) and of maximum contact pressure (right column) with increasing travelled 

distance d: the cases st=a (top) and st =4a (bottom) are considered as examples.  

5.3.2 Effect of the stroke amplitude 

The effect of the wear partition factor is modulated by the stroke amplitude, as highlighted in Figs. 10-

11. In order to explain more clearly such a modulation, the effect of stroke for a given α is firstly considered. 

In particular, Figure 12 (left-central columns) compares the wear profiles caused by different stroke 

amplitudes for α =0.5, showing that st causes a kind of wear redistribution between pin and plate. Indeed, 

the higher the value of st, the wider and less depth the wear groove on the plate, and thus the less conformal 

the contact and the less wide and more depth pin wear region. In the extreme case of st=2R, the plate 

surface being flat, the contact is even less conformal and such an effect is stressed.  
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Fig. 12 Effect of the stroke amplitude on the wear profiles of cylinder (left column) plate (central column), 
and of contact pressure distribution (right column) for any case of α (0, 0.5, 0.25, 0.75, 1) (dt=1320 mm). In 
each plot curves with different values of st (a, 2a 4a 2R) are represented. Each row gathers plots of a specific 

wear partition factor α. 
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The effect of the stroke on the wear evolution can be captured also from Figs. 10-11 (left-central 

columns). For instance, by comparing the wear profiles of the cases st=a and st=4a for a given α, it can be 

observed that for higher values of st the plate worn region becomes wider and flatter, whilst the opposite 

happens for the pin, even if less markedly. This is also proved by the comparison of the correspondent 

maximum wear depth trend in Fig.11: for the same value of α, the maximum wear depth of the cylinder is 

higher for st=4a than st=a, while the opposite happens for the plate. 

It can be noted also that the effect of stroke amplitude is in agreement with the contact pressure 

distributions. For a given α, the lower the stroke, the more conformal the contact, the more uniform the 

contact pressure (at the centre of the contact region) (right columns of Fig.10 and Fig.12). However, such 

an effect is more marked for low values of α (0–0.5). Accordingly, Fig.12 shows that the pressure 

distributions predicted for α=1 are almost uniform and do not vary with st, as well as the cylinder wear 

profile. Also for α=0.75 pressure plots are very similar and uniform for any values of st whilst those 

predicted for α=0.25 are much different. In the latter case the pressure distribution is almost uniform for 

low strokes, but presents a maximum value at the centre of the contact region at higher strokes. In 

particular, for α→0 and st →2R, the contact pressure tends to the Hertzian solution. Additionally, it can be 

observed that the smaller the values of st and α, the lower the edge effects, i.e. lateral pressure peaks. 

5.3.3 Wear depth partition factor 

Although the wear partition factor in Eq.(19) defines how the total wear volume is distributed between 

pin and plate, it does not provide an equivalent indication for the proportion between their wear depths, 

for which numerical simulations are needed. At this purpose another parameter 𝛼̃, the wear depth partition 

factor, can be introduced as the ratio between the maximum wear depth of the cylinder and the sum of 

maximum wear depths of the two bodies, i.e. 
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It is worth noting that 𝛼̃ is a function of the wear cycles (i.e. travelled distance d), while  is a constant input 

parameter for a given simulation.  

The trends of 𝛼 ̃during the loading history for all the simulated cases are plotted in Fig.13 showing the 

effect of the stroke amplitude. In case st=a, 𝛼 ̃slightly increases or decreases with the travelled distance, 

depending on α, and assumes an average value very close to α. For instance, for the case α=0.25 (st=a), the 

percentage variation of 𝛼̃ over the travelled distance is 4.5%, with an average value 𝛼 ̃ of about 0.266, so 

that  𝛼̃ 𝛼⁄  is about 1.064. The differences for the other cases α=0.5 and α=0.75 are even lower, as it can be 

observed from Fig.13 a). Similar trends are also verified for st=2a (Fig.13 b), although the ratio  𝛼̃ 𝛼⁄  is 

higher than 1, up to 1.30 for α=0.25. As the stroke amplitude increases up to st,=4a, the trend of 𝛼 ̃ changes 

markedly (Fig.13 c): firstly, it considerably decreases with d; secondly, 𝛼 ̃is much higher than α, up to 1.83 

times for α=0.25. Finally, in the last/extreme case st=2R, 𝛼 ̃ tends to 1, being higher than 0.96 for any case of 

α. That is in full agreement with the shape of the worn profiles: the wider the stroke, the deeper the wear 

scar of the pin (i.e. the higher ℎ𝑚𝑎𝑥
𝑐 ) and the flatter the wear groove on the plate surface (i.e. the lower 

ℎ𝑚𝑎𝑥
𝑝 ). In fact, according to Eq. (28), ℎ𝑚𝑎𝑥

𝑝 (
𝑢

) → 0 entails 𝛼̃(
𝑢

) → 1. 

Actually, st=a was demonstrated to be a special case for which 𝛼 ̃ is almost constant and can be 

approximated by α, with an error lower than 8%. Furthermore, in this case, if we consider the wear profiles 

in the reference configuration, that is when the maximum wear depth of the cylinder and the plate are 

aligned, the local ratio of the wear depths 
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appears nearly equal to 𝛼 ̃over most of the worn area, Fig.13 e. For instance, Fig.13 e shows the 𝛼̃𝑥(𝑥, 𝑑𝑡) for 

α=0.25, 0.5, 0.75, highlighting that 𝛼̃𝑥 is uniform and equal to 𝛼 ̃ at the centre of the worn profiles (-1⩽ x/a 



⩽1), although a rapid decrease to null value takes place close to the contact edges (x/a <-1 and x/a >1), 

being the plate worn profile slightly wider than the pin one.  

To the purpose of fully investigating how α affects the worn profiles, the sum of the pin and cylinder 

wear profiles in the reference configuration, i.e. 

),(),(),( pc dxhdxhdxhcp   (31) 

was estimated for all simulated cases, as shown in Fig.14. It is interesting to note that, for st=a, ℎ𝑐𝑝 is not 

affected by α whilst, as the stroke amplitude increases, the effect of the wear partition factor becomes more 

and more significant, because the extension of the worn regions becomes different between the bodies, 

particularly it increases in the plate. Consequently, when st=a, the wear partition factor provides a good 

approximation also of the repartition of the wear depth between the pin and the plate. It can be observed 

also that, according to Eq.(29), being in this case 𝛼 = 𝛼̃, the following relationship holds:  
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where the sum of the wear depths on the right hand does not vary with . Thus, the value of ℎmax
c  for =’ 

is equal to value of ℎmax
p

 calculated for =1-’, as confirmed by the results reported in Fig.11 (e.g. see 

curves for =0.25 and =0.75). However, it is important to underline that this is not true in other cases. 



 

Fig. 13 Wear depth partition factor (Eq.(28)) vs. travelled distance (a-d) (to note the different axis scale for 
st =2R (d))and its local distribution (Eq.(29)) for dt=1320 mm (e).  
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Fig. 84 Sum of the cylinder and plate wear profiles for dt=1320 mm, in the reference configuration (aligned 
maximum values), for all the simulated cases. 

5.4 Comparison with the literature 

A comparison of the presented results with respect to literature is reported in this section. However, it 

is worth noting that it is complicated by two facts: on the one hand only a few papers are focused on the use 

of different wear coefficients for the mating surfaces, and, on the other hand, such papers frequently refer 

to different tribo-systems (i.e. different geometries and BCs) or assume different wear models (e.g. 

frictional vs frictionless contact, partial slip vs gross slip) with respect to the one described in the present 

study. Furthermore, as stressed in the introduction, the effect of different wear coefficients is generally not 

deepened. For instance, an important study in this field was proposed by Mary and Fouvry in 2007 [10], 

which describes a 2D fretting model of a cylinder-on-plate in gross slip conditions, with friction, under a 

variable stroke amplitude, lower than the semi-contact width (i.e. st<a). The wear model was applied to 

simulate three different conditions: unilateral wear of the cylinder or of the plate, and bilateral wear, with 

=0.5. Results show that, for the latter case, the wear profiles of the pin and the plate are almost identical. 

Moreover, as the obtained total wear profiles for the three conditions are very similar, (relative difference 

of the maximum wear depths of 1%), the authors conclude that the simulation of a simple unilateral wear 

case can be a strategy to reduce the computational costs. That is in very good agreement with our findings 

for the case st=a, thus this result seems not to be affected by the presence of friction.  

The two studies by Sfantos and Aliabadi, [16] and [3], also investigate bilateral wear in a pin-on-disc, for 

the cases kc= kp and kc=2 kp, using both a 2D and a 3D wear models. However, their simulations are based 

on some important limiting assumptions. In particular, the 2D model is used to simulate a case where the 
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sliding occurs orthogonally to the plane (e.g. along z direction in Fig.6) thus considering that the contact 

area does not to change throughout each wear cycle and nodes in the contact region undergo the same 

contact pressure and the same sliding distance. Consequently, the pin and the disc have identical worn 

areas and the resulting wear depths appear to be proportional to the specific wear coefficients. Accordingly, 

the present study points out that the relationship between the wear partition factor and the wear depth is 

almost linear in case of very small stroke, holding 𝛼 = 𝛼̃ = 𝛼̃𝑥 for st=a. However this is not a general results, 

as it is not so for higher stroke amplitudes. 

As mentioned in the introduction, the only work that has deepened the matter of simulating different 

wear resistances of the rubbing surfaces was recently proposed by Lengiewicz and Stupkiewicz, [1]. An 

analytical 3D wear model of a periodic pin-on-flat configuration was developed assuming that the elastic 

deflections do not influence the contact pressure and the wear process, and it was applied to carry out a 

sensitivity analysis of wear evolution with respect to a wear mode index, defined as Iw∝ kp/(st kc) 

(definition revised using the variables of the present study). Unfortunately, a comparison with their results 

is not possible because, firstly, Iw is varied without specifying the values of each single parameter, and 

mostly important, the wear coefficients are considered independent one from the other.  

As far as the effect of the stroke amplitude is concerned, to the best of our knowledge, only [15] 

describes a wear model able to simulate both small (i.e. fretting) and large (i.e. sliding) stroke amplitudes. 

However, different sliding conditions were simulated for different tribo-systems to the purpose of 

reproducing results available in the literature and validating the model, without deepening the specific 

effect of the stroke amplitude. 

Finally, a brief discussion on the model hypotheses and its limitations is worth being added. First of all, 

the presented results are based on the assumption of constant values both for k and . Actually, the wear 

rate varies throughout the wear process, for example from the running-in to the steady-state wear phase. 

Consequently it would be important to have experimental measurements of the evolution of the 

cylinder/pin volume losses to represent the real trend of k and  vs. time/loading cycles that could be 

easily implemented in our model. Additionally, it is worthnoting that the present study considers the wear 

factor to be uniform on a contact surfaces. Although this assumption is well accepted for many materials 

(e.g. steel alloys and ceramics), it does not hold for others ones whose k changes locally on the contact 

surface. An example is given by ultra high molecular weight polyethylene, a material commonly used in 

medical prosthesis, whose wear resistance depends from the local re-orientation of the polymeric chains 

(i.e. cross-shearing effect) [19]. 

 Secondly, the model is based on the simplifying hypothesis of a frictionless contact and thus a gross slip 

regime. As far as friction is concerned, many literature studies confirmed that its effect on the contact 

pressure is negligible. On the other hand, the assumption that the effect of the partial slip regime on the 

overall wear process would be negligibly small is demonstrated by the consistent wear predictions 

reported in [15] and [2], where identical wear profiles were obtained simulating gross slip regime under 

frictionless contact and stick-slip conditions under frictional contact (i.e. both partial and gross slip), 

respectively. 

6 Conclusions  

The present study describes both procedures and results of the numerical simulations of a two-

dimensional wear evolution problem, defined by a cylinder sliding over a plate. The developed procedure 

has allowed investigating the effect of the wear resistance of the mating surfaces and of the stroke 

amplitude on the wear process, only marginally treated in the literature.  

The paper is organized in order to extensively describe the main aspects, theoretical and numerical, 

involved in wear simulations. First of all, the Archard wear law, commonly based on one wear coefficient k 

for the whole coupling, has been generalized to deal with different wear resistances of the rubbing surfaces, 

thus requiring two distinct wear coefficients kp and kc. Such wear coefficients are related to the total one 

according to the straightforward but fundamental equation k=kp+kc. As the concept of wear coefficient is 



strictly linked to the coupling, instead of using kp and kc,  the wear partition factor  is introduced and 

applied in numerical simulations. Secondly, two basic procedures for wear implementation in Abaqus are 

described, and the specific solutions adopted in the presented simulations detailed by means of flow charts 

and equations representing the discretized version of the generalized Archard wear law. In particular, some 

indications to check the results accuracy while reducing the computational cost are provided. The third 

aspect is specifically the wear evolution of a cylinder sliding over a plate, and the effect of the stroke 

amplitude st and  on the process, analysed through twenty simulation cases given by the combination of  

different values of st (a, 2a, 4a, 2R) and  (0, 0.25, 0.5, 0.75, 1). The main results obtained from numerical 

investigations can be summarized as follows 

- The load and the total travelled distance being the same in all simulated cases, the total wear 

volume is the also same, and can be calculated according to the Archard wear law. 

- The volume losses of plate and cylinder depend on the value of  and have a linear trend with 

respect to the travelled distance or loading cycles; in some studies in the literature, it is assessed 

that linearity holds when geometry does not vary with wear. Our results suggest that it is not so.  

- The maximum wear depth of the two profiles have a non linear trend with a decreasing rate as time 

increases, as contact pressure also decreases as the mating surface become more and more 

conformal with wear. 

- The wear partition factor play a fundamental role on wear evolution and must be included in 

numerical wear simulations; to this aim, the measurements of separate wear volumes of the contact 

bodies, though rarely reported in the literature, is needed.  

- When the stroke amplitude is comparable to the unworn contact width, i.e. in case of fretting, the 

wear partition factor provides a reliable indication also of the ratio of the wear depths of the mating 

surfaces. This means also that the sum of the cylinder and plate wear profiles is constant and does 

not depend on α. Therefore, the effect of α on the worn profiles, at a given wear cycle, can be easily 

obtained from a single wear simulation, even from the easiest case of unilateral wear. It should be 

noted that these observations are not general but related to the examined geometry. 

- For a given α, the maximum cylinder wear depth is only slightly affected by the stroke amplitude, 

while the opposite happens for the plate as the worn region is wider by less depth for higher st. 

- The effect of α on the contact pressure is more relevant at larger strokes, when indeed higher 

values of α entail a more conformal contact and uniform pressure distributions.  On the other hand, 

the effect of st on the contact pressure is significant for low values of α under which the smaller the 

stroke, the flatter the pressure distribution. 

Some of these points are confirmed by other studies in the literature, although here a wider perspective 

is provided. In conclusion, although the present study has dealt a simple 2D pin-on-plate configuration, it 

introduces in every detail the simulation of wear evolution with a partition factor, providing a tool that can 

be rather easily applied to three dimensional problems as well.  
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