This is a post-peer-review, pre-copyedit version of an article published in Neural Networks.
The final authenticated version is available online at: http://dx.doi.org/10.1016/7j.neunet.2018.08.002

Design of Deep Echo State Networks

Claudio Gallicchio, Alessio Micheli, Luca Pedrelli

Department of Computer Science, University of Pisa,
Largo B. Pontecorvo 3, Pisa, Italy

Abstract

In this paper, we provide a novel approach to the architectural design of
deep Recurrent Neural Networks using signal frequency analysis. In particular,
focusing on the Reservoir Computing framework and inspired by the principles
related to the inherent effect of layering, we address a fundamental open issue
in deep learning, namely the question of how to establish the number of layers
in recurrent architectures in the form of deep echo state networks (DeepESNs).
The proposed method is first analyzed and refined on a controlled scenario and
then it is experimentally assessed on challenging real-world tasks. The achieved
results also show the ability of properly designed DeepESNs to outperform RC
approaches on a speech recognition task, and to compete with the state-of-the-
art in time-series prediction on polyphonic music tasks.

Keywords: Reservoir Computing, Echo State Networks, Deep Echo State
Networks, Deep Recurrent Neural Networks, Architectural Design of
Recurrent Neural Networks

1. Introduction

In the last years, the study of deep architectures aroused a great interest in
the neural network research community. Based on a hierarchical organization
of multiple layers, such networks proved effective in developing a compositional
internal representation of the input information, allowing to address challeng-
ing real-world problems from several application fields featured by complex data
[1, 2, 3, 4, 5]. In particular, recent studies on deep recurrent neural networks
(RNNs) opened a way to develop novel models able to learn hierarchical tempo-
ral representations from signals characterized by multiple time-scales dynamics
[6, 7,8, 9, 10].

In the field of randomized neural networks [11, 12], studies in the Reservoir
Computing (RC) area [13, 14] targeting ad-hoc modular organizations of Echo
State Networks (ESNs) [15, 16], showed promising results on time-series tasks
(sec e.g. [17, 18, 19, 20]). Recently, the RC/ESN framework has been explicitly
extended towards the deep learning framework, allowing to analyze the intrinsic
aspects of layering in stacked RNN architectures, at the same time providing
efficient solutions for building deep RNNs [21]. Studies on the DeepESN model

© 2019. This manuscript version is made available under the
CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/
by-nc-nd/4.0/

[21] shed light on the significance of stacking layers of recurrent units, pointing
out the inherent characterization of the system dynamics developed at the dif-
ferent layers in deep RNNs. Empirical results in [21, 22], as well as theoretical
investigations in the field of dynamical systems [23] and Lyapunov exponents
[24, 25] highlighted the natural structured organization of the state dynamics
developed by deep recurrent architectures even without training of the recurrent
connections. Higher layers in the stack can progressively develop qualitatively
different dynamics, and this natural differentiation results in a rich multiple
time-scales representation of the temporal information. Moreover, the analysis
in [26] noticeably showed that such hierarchical organization of the temporal
features developed by the dynamics of stacked recurrent layers still holds even
in case of linear activation functions. Further details on the analysis and ad-
vancements of DeepESN can be found in [27].

Overall, the analysis conducted so far in the RC context highlighted the
potential advantages of layering as a factor of architectural design in the de-
velopment of a multiple time-scales dynamical behavior. Starting from this
intrinsic characterization, we can thus ask whether the number of layers in the
architecture is actually providing a sufficiently diversified behavior, and, on the
other hand, whether adding new layers is still effective in terms of dynamical
differentiation or not. In other words, in this paper we tackle the problem of how
to choose the number of layers in a deep recurrent architecture, which currently
represents one of the main open questions in the deep learning area. Differently
from the work in [9], which describes different possible ways of introducing deep-
ness into the architecture of an RNN trained with stochastic gradient descent,
here we explicitly address the issue of how to operatively set the number of
layers in deep stacked recurrent models, based on the properties of the specific
driving input signals and without the training of recurrent units.

Specifically, in this paper we propose an automatic method for the design of
DeepESN, based on frequency analysis and aimed at appropriately exploiting
the differentiation of temporal representation in deep recurrent architectures.
The hypotheses (that delineate the scope of the work) are that the input sig-
nals are multi-scale and that the differences in the time scales are important
for the learning task at hand. Given these hypotheses, we aim at exploiting
such differences, tailoring the layered architecture to the characteristics of the
input signals, by adding layers only as long as the changes in the frequency
spectrum are effective through layering. This will be crucial for the final classi-
fication /regression performance, under the assumed conditions, proportionally
to the effectiveness of the readout training in grasping/modulating the layered
differentiation. Under such conditions, the proposed approach has the advan-
tage to determine the proper number of recurrent layers avoiding to apply the
training algorithm for each possible number of recurrent layers explored by the
usual trial and error approach.

Besides, a secondary objective is also to bring attention to a more general
methodological aspect concerning the analysis of multi-layered recurrent archi-
tectures by means of signal processing tools for investigation aims, with a focus
on monitoring the filtering effect on input signals through the recurrent layers.

This aspect is concretely exploited for design purpose in this work, providing an
unsupervised approach to determine the number of layers for a deep recurrent
architecture on the basis of the data at hand, while conserving a more general
flavor for future research.

Based on the analysis of quantitative measures of frequency spectrum in
the state space, we define an iterative procedure to assess the diversification of
multiple time-scales dynamics among layers. First, we analyze and refine our
design method on a controlled scenario characterized by signals with multiple
time-scales dynamics, studying qualitative and quantitative aspects of frequency
analysis in layers states. Then, we experimentally evaluate the method on chal-
lenging real-world tasks in the area of temporal processing of time-series featured
by multiple times-scales, namely music processing and speech processing.

A further contribution of this work is to explicitly show, for the first time
in the literature, the performance advantage on real-world tasks resulting from
hierarchically structured recurrent state space organizations of deep RC mod-
els, through a comparative assessment with both fully trained neural network
methodologies and RC-based approaches.

The paper is organized as follows. In Section 2 we first recall the basics
of the standard (shallow) ESN approach (in Section 2.1) and then we intro-
duce the DeepESN model (in Section 2.2). In Section 3 we define the proposed
method for designing DeepESN architectures, providing an analysis of the in-
volved advantages in terms of computational cost and analyzing it under an
ad-hoc controlled scenario. In Section 4 we evaluate our approach on music
processing and speech processing tasks. We discuss the outcomes of our anal-
ysis in Section 5, and we present conclusions in Section 6. Further details on
experimental results are provided in Appendix A.

2. Deep Reservoir Computing

In this section, we introduce the deep RC framework. First, we briefly
describe the standard shallow RC in Section 2.1. After that, we introduce deep
RC architectures in Section 2.2.

2.1. Shallow Echo State Networks

The ESN [16] model is an efficient implementation of an RNN within the RC
framework [13, 14]. It is characterized by a recurrent layer called reservoir and by
a linear output layer called readout. The reservoir implements a discrete-time
dynamical system through untrained recurrent connections and it provides a
suffix-based Markovian representation of the input history [28, 29]. The readout
is a linear layer that computes the output of the network by exploiting the
temporal state representation developed by the reservoir part. In our work,
we consider a variant of ESN called Leaky Integrator ESN (LI-ESN) [30], in
which the reservoir contains leaky integrator units. Omitting the bias terms in
the following formulas for the ease of notation, the state transition function of

LI-ESN is defined as follows:
x(t) = (1 — a)x(t — 1) + atanh(W,u(t) + Wx(t — 1)), (1)

where u(t) € RN and x(t) € RV® are respectively the input and the reservoir
state at time £, W;, € RVN#XNu i the matrix of the input weights, W €
RNexNr ig the matrix of the recurrent weights, a € [0, 1] is the leaky parameter
and tanh represents the element-wise application of the hyperbolic tangent
activation function. The reservoir parameters are initialized in order to satisfy
the Echo State Property (ESP) [16, 31, 28] and after that they are left untrained.
Accordingly, the values in matrix W are randomly selected from a uniform
distribution, e.g. in [—1,1], and then re-scaled in order to control spectral-
related properties that influence the stability of network dynamics. Commonly,
following the necessary condition for the ESP, and denoting by p(-) the spectral
radius operator (i.e. the largest absolute eigenvalue of its matrix argument),
the weight values in W are re-scaled to meet the following condition:

p((l —a)1+aw) <1 (2)

The values in matrix W,, are randomly selected from a uniform distribution
over [—scale;n, scale;,], where scale;, is the input scaling parameter.

The output of the network at time ¢ is computed by the readout through a
linear combination of reservoir states, as follows:

y(t) = Wourx(t). 3)

The readout layer is the only part of the network that is trained, typically using
pseudo-inversion or ridge regression methods [13] computed through singular
value decomposition (SVD). In the following, we refer to the LI-ESN model
described so far as shallowESN.

In the context of RC, a well known approach for unsupervised adaptation of
the reservoir is given by Intrinsic Plasticity (IP) [32, 33, 34, 35], which is based
on maximizing the entropy of the output distribution of the reservoir units.
Specifically, TP aims at adjusting the parameters of the activation function of
reservoir units to fit a desired distribution, which in case of tanh is of Gaussian
type. In our context, the application of the reservoir activation function for a
generic reservoir unit can be expressed as & = tanh(g Tpet +b), where Tpet, &, g
and b are respectively the (net) input, the output, the gain and the bias of the
activation function. The IP training procedure is performed on each reservoir
unit on the basis of the IP rule [32] defined as:

Ab = —nrp(—(prp/oip) + (T/07p)(207p + 1 = 7 + p1pt)), (@)
Ag=n1p/g+ AbTyet,

where pyp and o;p are the mean and the standard deviation of the Gaussian
distribution (that is the target of the adaptation process), n;p is the learning

Nisth reservoir layer W (Nz) QE?:\} \

2nd reservoir layer VW (2) QEOQ\’\

W(Z) ﬁx(l) (t)

S e
1st reservoir layer ya7(1) (o365 Readout
w DS

Win
u(t)] Input Layer

Figure 1: Architecture of a DeepESN.

rate, Ag and Ab respectively denote the update values for gain and bias of the
TP iterative learning algorithm.

2.2. Deep Echo State Networks

The DeepESN model, recently introduced in [21], allowed to frame the ESN
approach in the context of deep learning. The architecture of a DeepESN is
characterized by a stacked hierarchy of reservoirs, as shown in Figure 1. At
each time-step t, the first recurrent layer is fed by the external input u(¢), while
each successive layer is fed by the output of the previous one in the stack.
Although the pipelined architectural organization of the reservoir in DeepESN
allows a genecral flexibility in the size of each layer, for the sake of simplicity
here we consider a hierarchical reservoir setup with Nz recurrent layers each of
which contains the same number of units Np. Furthermore, in our notation, we
use x(V () € RV% to denote the state of layer [at time .

Omitting the bias terms in the formulas for the ease of notation, the state
transition function of the first layer is defined as follows:

xV() = (1 = aM)xV(t - 1) + aVtanh(Winu(t) + W xO (¢t — 1)), (5)
while for every layer [> 1 it is described by:
xO(t) = (1 — a®)xO (¢ — 1) + aVtanh(WOxED (1) + WxO (¢ — 1)), (6)

« (1
where W, € RN2XNu js the input weight matrix, W() € RN=*Nz ig the matrix

of the recurrent weights for layer I, W e RN#xNr jg the matrix relative to
the inter-layer connection weights from layer [— 1 to layer I, a¥) is the leaky
parameter at layer [and tanh represents the element-wise application of the
hyperbolic tangent.

As in the standard ESN approach, the reservoir component of a DeepESN
is left untrained after initialization subject to stability constraints. In the case
of DeepESN, such constraints are expressed by the conditions for the ESP of
deep RC networks, given in [23]. Accordingly, the weight values in the recurrent

< (1
matrices W ', for [= 1,..., Np, are randomly initialized from a uniform distri-
bution, e.g. in [—1,1], and then are rescaled to satisfy the necessary condition
for the ESP of deep reservoirs [23], described by the following equation:

< (D)
1— a4+ o OW): O <1 7
é?é‘?%ﬁ((el +a 18N, S ")

in which we used the notation p*) to denote the effective spectral radius of
the reservoir system in the [-th layer. As regards input and inter-layer matri-
ces, the values in Wy, and {W(l)}f\; %, are randomly initialized from a uniform
distribution and then re-scaled in the [—scale;,, scale;,] range.

Note that, as in the case of standard RC, in experimental assessments of
DeepESNs, for each reservoir hyper-parameterization a number of different (in-
dependently initialized) instances are considered, all with the same reservoir
hyper-parameters, but generated using different random seeds. In this paper,
we refer to such instances as reservoir guesses. The performance of each hyper-
parameterization is then obtained by averaging the performance achieved by
the corresponding reservoir guesses.

As pertains to the output computation, although different patterns of state-
output connectivity have been explored in recent literature in the case of deep
recurrent models [7, 9], in this paper we focus on the case represented in Figure 1,
in which the states of all the reservoir layers are used to feed the readout.
Specifically, considering the global state of the DeepESN as the composition of
the states in the different layers, ic. x(t) = (x(V(¢),...,x(Ne)(t)) € RNtNr,
the output of the network at time ¢, i.e. y(t) € RVY | is computed as follows:

y(t) = Wourx(t), (®)

where Wy, € RVY*NLNr denotes the matrix of the output weights. Note
that in the case of DeepESN, the readout formulation given in Equation 8
expresses a linear combination between the global reservoir state of the network
x(t) and the readout weight matrix W, i.c. a weighted sum of the states
coming from all the reservoir layers in the architecture. In the training phase,
this directly enables the model to differently weight the contribution of the
multiple time-scales dynamics developed through the layers of the deep recurrent
architecture, thus enhancing the quality of the temporal representation and the
ability to approach temporal tasks for which such differentiation in dealing with
the different time-scales is important. As regards the training algorithms, the

output layer in DeepESNs is trained as in the standard RC paradigm [13], i.e.
using pseudo-inversion or ridge regression implemented through SVD.

Although the DeepESN model has been introduced in the neural networks’
literature only recently [21, 22], the outcomes of its study already allowed to
clearly highlight a number of major advantages that are inherently brought by
a layered construction of RNN architectures [36], i.e. even prior to training
of the recurrent connections. These advantages, which contribute to delineate
the characterizations of the DeepESN approach, are briefly summarized in the
following.

o Multiple temporal representations. The hierarchical organization of the
reservoir in successive layers is naturally reflected into the structure of
the developed system dynamics. Specifically, it has been experimentally
observed in [21, 22] that the global state of a DeepESN tends to develop a
multiple time-scales representation of the input history, hierarchically or-
dered along the layers of the recurrent architecture. In particular, higher
layers showed progressively slower dynamics in the conditions, setup and
tasks analyzed in [21]. In this regard, an interesting observation from the
work in [21] is that the hierarchical structure of DeepESN state represen-
tations can be achieved even in the case in which all the reservoir layers
share the same values for the hyper-parameters. Another relevant out-
come of the work in [21] is that TP adaptation applied in conjunction with
a layered recurrent organization is able to further enhance the effect of
temporal scales differentiation across the layers.

The aspect of temporal scales differentiation in RC models has been ad-
dressed in literature also from a different, though related, line of archi-
tectural studies. These are based on the idea of structuring the reservoir
into sub-groups, or sub-reservoirs, characterized by different dynamical
properties with the aim to achieve a decoupling among the state dynam-
ics [37], an idea that has been pursued also outside of the RC context e.g.
in [38]. A recent development, described in [39], proposed an incremen-
tal approach to the construction of the sub-groups reservoir organization.
Differently from the DeepESN model, all of these architectural variants
are based on a structured but non-hierarchical organization of the recur-
rent dynamical part, i.e. they are shallow networks purposely designed
to achieve a multiplicity of temporal scales by construction. The exper-
imental comparison between the two approaches, already studied in [21],
pointed out the actual relevance of a layered architectural construction,
in which pools of recurrent units are progressively more distant from the
input (and there is no feedback from higher to lower layers).

The multiplicity of temporal representations developed by the global in-
ternal state of a DeepESN has been also analyzed in terms of the frequency
spectrum of state components in case of linear activation functions. In this
case, results in [26] pointed out the natural propensity of DeepESN states
to produce a multiple frequency representation of the input information,

distributed through layers, whereas (in the conditions analyzed in [26])
higher layers tended to focus on lower frequencies.

Richness of reservoir states. A hierarchical construction of the reservoir is
also beneficial in terms of increasing the richness of the developed state dy-
namics. This has been experimentally observed in [21], by measuring the
averaged entropy of DeepESN states, using the IP rule for unsupervised
adaptation and in comparison to the shallow case. On the theoretical side,
studies in the field of dynamical system theory [23] showed that reservoir
states in different layers of DeepESN are able to develop dynamics that
are qualitatively different in terms of contractive behavior. Specifically,
as analyzed in [23] (in a basic setting without IP learning), when the
DeepESN is initialized using the same hyper-parameters for the scaling of
reservoirs matrices in all the levels of the architecture, progressively higher
layers tend to be characterized by progressively less contractive dynamics.
Furthermore, stability analysis in presence of driving inputs, conducted
through the study of Lyapunov exponents in [24, 25], pointed out that
layered RNN architectures, compared to shallow counterparts in condi-
tion of equal number of recurrent units, show a dynamical behavior that
is naturally pushed closer to the edge of chaos. This represents a transi-
tion condition of states regime near which the RNN system exhibits a rich
internal representation of the driving input signals and high performance
in tasks requiring long memory spans [40, 41].

Memory Capacity The hierarchical reservoir organization in DeepESNs
has also a natural positive effect on the short-term memory abilities of the
network, which in the context of RC is commonly evaluated by means of
the Memory Capacity (MC) task defined in [42]. Experimental evidences
reported in [21] showed that DeepESNs are able to considerably and con-
sistently outperform corresponding shallow ESN settings (with the same
total number of recurrent units) in terms of MC. A further performance
gain on the MC task was found through the combination of DeepESN
with IP adaptation, providing a concrete example of a case in which the
introduction of depth in the RNN design is able to naturally enhance the
advantages brought by IP in tasks (such as MC) on which this adaptation
technique is already effective by itself [32]. Moreover, recent results given
in [43] indicated that the MC improvement that can be achieved by hier-
archical reservoir models can be observed not only at a global scale, i.e.
considering the entire network’s global dynamics, but also at the level of
individual layers’ dynamics at increasing height in the architecture.

Efficiency. From an architectural view-point, introducing a layered reser-
voir construction into the architectural RNN/ESN design has also the
effect of reducing the number of non-zero recurrent connections. This
contributes to a number of inherent implications on the characterization
of the developed system dynamics, as discussed in the previous points. Be-
sides, layering turns out to be a striking advantageous setting also under

the perspective of computational efficiency [36], which in an RC context
sums to the well-known efficiency of training algorithms. In particular,
under the condition of a total number of recurrent units given by Ny Ng,
while the cost of each state update for shallow ESNs (Equation 1) amounts
to O(N? N3), in the case of DeepESNs (Equations 5 and 6) it is reduced,
by the sparsity of the connectivity given by the layering costraints, to
O(NN3). This straightforwardly implies a saving in the time complex-
ity required by the reservoir operation that scales with the number of
layers in which the same number of units is organized.

Finally, it is worth noticing that the use of IP in combination with deep
reservoir organizations generally resulted effective in improving DeepESN per-
formance under several aspects, as briefly recalled in the above points. In light
of this observation, in this paper we use DeepESNs in synergy with the IP
adaptation technique.

3. Spectral Analysis and Depth of DeepESN

In the following sections, we introduce our approach based on the spectral
analysis for automatically determine the depth of DeepESN architectures. First,
in Section 3.1 we define the iterative algorithm, then in Section 3.2 we discuss
its advantages with respect to a standard cross-validation approach in terms
of computational costs. In Section 3.3 we assess our method on a controlled
scenario. Finally, in Section 3.4 we experimentally analyze the role of the depth
in deep RNNs using spectral analysis.

3.1. Method

In this section, we define an automatic algorithm, based on spectral analysis,
to determine the depth of DeepESN architectures in which every layer encodes a
different range of time-scales dynamics. Recent research findings [21, 26](briefly
discussed in Section 2.2) showed that a stack of recurrent layers can develop a
multiple time-scales differentiation among the layers even considering the same
value of the leaky rate for each recurrent layer and unit. These considerations
allowed us to define a simple design method based on building blocks (recurrent
layers with same hyper-parameters) used to build up the deep architecture.
As it is known, a recurrent layer can be studied as a filter [30, 44, 45, 46].
However, differently from filter design, in which the purpose is to design a filter
with a specific cut-off frequency, in our work we aim to exploit the richness of
dynamics represented in the state of each recurrent layer through the training
of the readout component. In such a way, the output layer can adaptively
choose a proper modulation of time-scales on the basis of the characteristics
of the supervised task to solve. Therefore, the main idea behind the proposed
automatic method for network design is to stop adding new layers whenever
the filtering effects become negligible, i.e. when adding new layers essentially
does not enrich anymore the multiplicity of temporal dynamics developed by
the reservoir states.

In order to determine when the filtering effect becomes negligible, we perform
a spectral analysis by computing the spectral centroid and the spectral spread
(defined below in Equations 10 and 11) on the state signal of layers. Intuitively,
they represent weighted average and bandwidth of frequency spectrum values
computed on the state of recurrent layers over time. Spectral centroid tends
to converge to a certain value as we add recurrent layers (further details in
Section 3.4). Therefore, we define a stop condition of the iterative algorithm to
detect when the shift of spectral centroid converges:

) = p=D < oy (9)

where 0 < 7 < 1 (see Section 3.4 for details regarding the 7 value). pY) and
u=1 are the spectral centroid computed on state of layers [and [— 1 respec-
tively, and o(‘~1) is the spectral spread computed on the state of layer [— 1. On
the right-hand side of Equation 9, the 7 value is multiplied by ¢~ in order
to take into account also the bandwidth of the spectrum.

In formulas, the spectral centroid (Equation 10) and the spectral spread
(Equation 11) are defined as follows:

k k
) £ l
W= Qon 1> (10)
7j=1 j=1
u l l : l
o® = (PO — p®)2) 3, (11)
Jj=1 j=1

where f) = [fl(l),...,f,g)] and p¥) = [p(ll),...,p,(f)] respectively denote the
normalized frequencies and the corresponding magnitudes of components, com-
puted over time on the state of layer I, i.e. x¥), by the FFT algorithm, whereas
k is the number of frequency components (i.c., the length of both vectors p()
and f). More in detail, the steps performed for the computation of £ and
p® are detailed in Algorithm 1.

10

Algorithm 1 FFT of layer state signal

1: procedure FFT(x()

2 comps_g = [] > frequency components on guesses
3 for guess in 1, ..., number_of_guesses do

4 comps_u = [] > frequency components on units
5: for unit in 1, ..., number_of_units do

6 signal = x (unit, :) > state signal of the unit
7 timesteps = length(signal)

8 comps = fft(signal) > Matlab fft function
9 comps_u(unit,:) = abs(comps(l : [timesteps/2)|) > positive fqs
10: comps_g(guess,:) = mean(comps_u) D average on units (rows)
11: p¥) < mean(comps_g) > average on guesses (rows)
12: £ < [1: |timesteps/2|]/timesteps © normalized frequency (cyc/s)

13: return p® £

Algorithm 1 computes the frequency components for each unit of each reser-
voir guess. For each layer I, terms p") are obtained by averaging over the
reservoir units and guesses. Depending on the number of time-steps, terms £(*)
are computed in order to have normalized frequency components measured as
cycles/seconds.

Here we assume to consider a standard model selection process in which for
each hyper-parameterization a certain number of reservoir guesses are instan-
tiated (with different random initialization). Given a configuration of hyper-
parameters of the model, denoted by 6, the design Algorithm 2 selects a num-
ber of layers for the network’s architecture. The function computeState() called
inside Algorithm 2, is composed by two steps, first, the TP Adaptation is per-
formed (see Equation 4) over the layers and, second, the state of the network is
computed and returned. Finally, the number of layers is calculated before train-
ing the readout, incrementally considering new layers of recurrent units in the
architecture until the stop condition in line 8 of Algorithm 2 (i.e., Equation 9)
is satisfied or the max number of layers (i.e., M) is reached.

3.2. Analysis of the Computational Cost

Typically, the number of layers in a deep (RNN) architecture is selected on a
validation set through a cross-validation approach that results in an extremely
expensive procedure from the computational point of view [6]. The aim of
the analysis provided in this sub-section is to quantify the advantage, in terms
of computational cost, of the use of the proposed design algorithm for deep
recurrent models with respect to a basic cross-validation approach.

In the case of deep recurrent models, a typical systematic procedure to choose
the number of layers consists in training each hyper-parameterization of the
network on a training set for every number of layers considered, i.e. using
networks with a number of layers from 1 to a maximum number of layers M.

11

Algorithm 2 Design of DeepESN

1: procedure DESIGNDEEPESN(6)
2: forl in 1, ..., Mg-1do

3: x() « computeState(l,0(l)) ® state on layer [with h-params (1)
4: p®, £ « FFT(xY) > output of Algorithm 1

i
5: pl) - =t

j=15j
Sh p (D —)2

6: o <—\/ * 1Z§=1P§U
7: if 1 > 1 then
8: if |u® — p-V| <= ¢(=Yy then
9: return 1
10: return M,

Algorithm 3 Basic Cross-Validation

1: for £ in 1, ...,Nde

2 for § in 1, ...,Ny do

3 for1l in 1, ...,M; do

4: TRAINRNN(6,1,) > TRAINREADOUT(6,1, f) in DeepESN cases
5

6:

VALIDATE(f,1, f)

return SELECTMODEL(.) > 6 obtaining the best result on the validation
set

The number of layers is then chosen (along with the other hyper-parameters)
to maximize the performance achieved on a validation set. The basic cross-
fold validation procedure, considering a number of Ny folds and Ny hyper-
parameterizations, is summarized in Algorithm 3.

For each hyper-parameterization ¢ and fold £, the cost of such procedure is
given by:

My,
Cdeep(ML) - Z CtT(NL)7 (12)
Np=1

where Cy-(N7) is the cost of training a deep recurrent architecture with N,
recurrent layers.

Within the context of the deep RC paradigm, considered in this paper, the
readout layer is the only part of the network that is trained. Accordingly, for
DeepESNs the training cost in Algorithm 3, i.e. the C;, term in Equation 12, is
determined by the cost of training the readout. Considering a DeepESN with
Ny, layers, a training set with Np time-steps, and adopting a typical direct
method based on SVD for choosing the readout’s weights, the training cost is
given by:

Cirre(NL) = O((NrNL)*Nr). (13)

12

Algorithm 4 Cross-Validation with the Design Algorithm

1: for £ in 1, ...,Nde

2 for § in 1, ...,Ny do

3: 1 = DESIGNDEEPESN(6, f) > output of Algorithm 2

4 TRAINREADOUT(6,1, f)

VALIDATE(f,1, f)

6: return SELECTMODEL(.) > 6 obtaining the best result on the validation
set

9"\

Therefore, using the right-hand side of Equation 13 as training cost in Equa-
tion 12, we can see that the process of choosing the number of layers (for each
hyper-parameterization 6§ and fold f) using the basic procedure described by
Algorithm 3 is given by:

My,
Cbasic(ML) = Z O((NRNL)QNT) = O(NIQQMIS/NT) (14)
Np=1

Compared to the basic procedure explained above, the design methodology
proposed in this paper allows to restrict the number of cases for which training
is applied, taking into account only the number of layers that are selected by the
design Algorithm 2. The resulting selection process is illustrated in Algorithm 4.

We can note that the cost of Algorithm 2 is dominated by the cost of per-
forming the FFT, given by:

Cyri(My) = O(Ng Mz, Nylog(Nvy)), (15)

where Ny is the size of the validation set. Owverall, the cost entailed by the
proposed Algorithm 4 is determined by the sum between C; s (My) in the Equa-
tion 15, which is linear in the total number of recurrent units Nz My, and the
cost Cyp_re(Mp) in Equation 13, which is quadratic in Ng M. Accordingly, re-
ducing the total cost to the sole cost of the dominant operation (i.e., training
the readout), the cost of Algorithm 4 (for each hyper-parameterization 6 and
fold £) can be expressed as follows:

Cdesign(ML) = O<Nf?M1%NT) (16)

Overall, comparing Cgesign and Cpqsic emerges that the cross-validation pro-
cedure that makes use of our proposed design algorithm leads to a clear re-
duction of the cost (per fold and per hyper-parameterization) that scales with
the number of layers Mp. Notice that these benefits are even more enhanced
when the number of hyper-parameterizations (Ng) and folds (Ny) is considered
in the total cost of the selection procedure. In such case, the reduction of the
cost amounts to O(NyNy M), which could be quite high both considering deep
networks and the typical high dimension of the hyper-parameter space in the
RC applications.

13

3.3. Design Experiments in a Controlled Scenario

In this section, we define an artificial task called Frequency Based Classi-
fication (FBC) characterized by signals with multiple time-scales dynamics in
order to analyze and refine our method on a controlled scenario. Accordingly,
we consider an input sequence s formed by a random concatenation of elements
that belong to subsequences s; or sg. The subsequence s; contains a sum of
impulse trains with periods from 3 to 29, while sy contains trains with periods
from 3 to 31. The classification task consists in determining, at each time-step
t, if the element s(t) is equal to s;(t) or sg(t). The FBC dataset is made publicly
available for download'.

In formulas, let signal, be an impulse train with period ¢ such that the
element ¢ of the signal (i.e., signal;(t)) is 1 every period ¢ and 0 otherwise. The
sequence s is defined as follows:

s = [s0(0),s;,(1),...,85,(n)] (17)

where s;, € {s1,s0}, 1 = 2323 signal; and sp = Z§i3,signali. Moreover, the
index j; € {0,1} is different from j,_, € {0,1} with a probability of 0.01, in
formulas:

) j+ +1mod 2 with probability 0.01
Jt+1 = (18)

Jt otherwise.

Figure 2 shows an excerpt of the sequence s. The continuous lines and the
dashed lines indicate that the element s(t) belongs to s; or sg, respectively.
Consider that the probability (defined in Equation 18) to have a switch between
subsequences s; and sg is low, for instance in Figure 2, this happens only in
time-steps, 1107, 1122 and 1194. Therefore, sequence s tends to have long
ranges with elements of the same subsequence s;. In particular, in the generated
sequence s for this task, the average number of time-steps of such ranges is 88.2.
Note that the information involved in a single element s(t) is not sufficient to
discriminate the elements sg(¢) and s1(t). Therefore, the capacity of the model
in representing temporal dynamics of the past of s(t) is relevant to perform the
correct classification.

l<http://www.di.unipi.it/groups/ciml/Data/fbc.html>

14

15

s(t)

10f P

—t et

0 =
1000 1050 1100 1150 1200 1250 1300
time-steps (t)

Figure 2: A 300 time-step long excerpt of the sequence s for the FBC task.

The dataset contains a total number of 6000 time-steps, and it is split such
that the first 2000 time-steps are used for training, the following 2000 for vali-
dation and the last 2000 for test, while the first 20 time-steps of the training set
are used for the washout phase. The y,,, ..,(t) target, contained in the labeled
dataset {y;qpger(t), s(t) 720, is defined as follows:

0" it s(t) =sa(t)
ytarget(t) - {[1 O]T if S(t) _ So(t).

The performance on the FBC task was evaluated in terms of classification
accuracy (ACC), i.e., the percentage of correctly classified elements of the se-
quence s. We applied the design algorithm proposed in Section 3.1 to deter-
mine the number of DeepESN recurrent layers, considering the network’s hyper-
parameterizations as specified by the ranges reported in Table 1. We fixed the
same number of recurrent units (i.e., Ng = 100) in each layer in order to have a
comparable frequency spectrum of the temporal dynamics among layers’ states.
Moreover, the recurrent layers considered have a small/medium number of units
because our aim is to consider them as a sort of building blocks for the DeepESN
architecture. Finally, we performed model selection on the validation set, using
for each hyper-parameterization the number of layers computed by the design
algorithm. For each reservoir hyper-parameterization, we independently gener-
ated 10 reservoir guesses, and the predictive performance in the different cases
has been averaged over such guesses. Moreover, the proposed approach was com-
pared with a shallowESN (a DeepESN model with one recurrent layer). Each

15

model is individually optimized with grid search on hyper-parameters values as
specified in Table 1, and on a range of total recurrent units in {100,200, ..., 2000}.
We adopted an experimental setting in which the hyper-parameter values are
the same for all layers, in particular, /Y and p() are the same for every layer I.
Note that the models are compared on a wide range of hyper-parameters: this
range is large respect to the standard ranges used in literature for ESN and it is
suitable to optimize both shallow and deep configuration without specific bias.
The training of free parameters has been performed by means of ridge-regression
with regularization term A,. For determining the depth of the DeepESN we used
Algorithm 2 with n = 0.01 The choice of such 7 value is motivated and discussed
in Section 3.4.

Hyper-parameter

readout regularization \,. 0,10~,10~ 1, ..., 100
input and inter-layer scaling scale;, | 0.01, 0.1, 1, 10

leaking rate a 0.1, 0.3, 0.5, 0.7, 0.9, 1.0
spectral radius p 0.1, 0.3, 0.5, 0.7, 0.9, 1.0
IP standard deviation o;p 0.1,1

Table 1: Range of DeepESN and shallowESN hyper-parameters values for model selection in
the considered tasks.

Table 2 shows the training, validation and test classification accuracy achicved
by the DeepESN model with the optimal number of recurrent layers obtained by
the design algorithm, compared with the accuracy achieved by the shallowESN
model.

| Model | TR ACC | VL ACC | TS ACC

DeepESN 83.37 (0.0019) % | 83.00 (0.0017) % | 81.77 (0.0056) %

shallowESN | 82.22 (0.0065) % 77.37 (0.0196) % 79.31 (0.0067) %

Table 2: Training (TR), validation (VL) and test (TS) classification accuracy (ACC) obtained
by DeepESN and shallowESN on the FBC task.

The hyper-parameters that obtained the best performance on the validation
set are N, = 7 (by the design algorithm), N = 100, p = 0.9, scale;, = 0.1,
a=0.1, 0rp = 0.01 and A\, = 1071 for DeepESN and Ny, = 1, Ng = 300, p =
0.9, scale;, =1, a = 0.1, o;p = 0.01 and A, = 10~ for shallow ESN. Results
in Table 2 show that DeepESN outperforms shallowESN on both validation and
test sets, with an accuracy improvement of 5.63% and 2.46%, respectively. It is
worth to note that, noticeably, shallowESN obtains worse results on validation
and test sets than DeepESN despite the difference between the two models is due
to the number of layers in which the recurrent units are arranged, in condition
of equal range of possible values of hyper-parameters for model selection. This
is an instance of the fact that choosing the proper number of recurrent layers in

16

a hierarchical architecture can play a big role in the representation of multiple
time-scales dynamics involved in complex signals, with an effect also on the
accuracy.

In order to evaluate the quality of the proposed design algorithm in the
selection of the number of layers, we compared the performance obtained by our
approach with the results achieved using a DeepESN with a number of layers
that goes from 1 to 20. Figure 3 shows the classification errors (= 100 —ACC %)
obtained on the validation set by DeepESN considering a progressively larger
number of layers. In this case, for the sake of analysis, the readout is trained
for each configuration to show the comparison.

28 T —T— T —— T T
= Classification Error (%)
X Selected Number of Layers

1]
[=2]

N
B

Classification Error (%)
[r
o ()%]

—_
o

12 3 4 5 6 7 8 9 10 11 12 13 14 1

5 16 17 18 19 20

16
Number of Layers

Figure 3: Classification error obtained on the validation set of the FBC task by DeepESN
architectures with a number of recurrent layers up to 20. Results are obtained through model
selection individually performed for each number of layers. The marker ‘X’ indicates the
number of recurrent layers selected by the design algorithm.

In Figure 3, the marker ‘X’ represents the number of layers selected by the
design algorithm (7 in our case-study). Noteworthy, the design method added
the optimal number of layers in the hierarchy, besided filtering aspects, also
with respect to the final accuracy of the global model, i.e. allowing to obtain
the lowest error among the considered configurations. In the studied case, these
results show that the developed approach allowed us to accurately select the
number of layers by just analyzing the time-scales diversification among the
temporal dynamics developed in the hierarchy, avoiding to perform the training
algorithm for each possible number of recurrent layers.

The qualitative aspects of the temporal representation encoded in the state
dynamics of the recurrent layers is further investigated by means of frequency

17

analysis. Figures 4a), 4b), 4c) and 4d) show the frequency components com-
puted over time on the state of layers 1, 3, 5 and 7 respectively.

a) b)
40 ‘ 1/31 cycls 40 —1/31 cycls
3 1/30 cycls 1/30 cycls
2 —magnitude —magnitude
=30 30 9
S XKeentroid Bcentroid shitt
g XKcentroid
- 20 20
@
N
©
€10 10
S
: | | N |
0 |||Il |))\ Ll il 0 bt Inll.l L |.* oo |
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 x 0.4 0.5
d
c) 40)
40 1731 —1/31 cycls
) cyefs —1/30 cyc
° —1/30 cycls es
y .
2 . 5 30 magnitude
€30° magnitde Blcentroid shift
&) E.(centroid shift .
© . centroid
= centroid
520 20
9]
N
©
£10- 10
<]
= b
0 0 bl A FUTR I 9
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Normalized Frequency (cyc/s) Normalized Frequency (cyc/s)

Figure 4: Frequency components computed over time on reservoir states, encoding the se-
quence defined in Equation 17, in progressively higher layers of DeepESN. a): layer 1, b):
layer 3, c): layer 5, d): layer 7. The red range represents the shift of spectral centroid
between current and previous layer, multiplied by a factor of 10. Normalized Frequency is
expressed in cycles per second (cyc/s).

Note that the frequency components of the impulse trains (1/3,1/4,1/5, ...,
1/31) that have smaller frequencies have smaller magnitudes. In this task, the
frequencies that discriminate sg from s; are 1/31 and 1/30, represented by the
azure and red vertical lines on the left of Figures 4a), 4b), 4c) and 4d). In
Figure 4a), the components around frequencies 1/31 and 1/30 have almost null
magnitudes. Therefore, it is more difficult to perform the classification task
by a 1-layered model, as indeed showed by the lower performance achieved by
shallowESN on the task. In higher layers, instead, the frequency components
around 1/31 and 1/30 are progressively more visible, showing the filtering ef-
fect that naturally results in the state computation taking place in successive
layers of the architecture. The red range in 4b), 4c¢) and 4d) represents the
difference of frequency mean (i.e., the shift of the spectral centroid) between
the current layer and the previous layer (the measure defined on the left side
of Equation 9) amplified by a factor of 10 in order to make it visually more
clear. We can sce that the frequency mean, represented by the marker ‘X’ in
4b), 4c) and 4d), shifts progressively to the left in the higher layers towards

18

low-frequency components. At layer 7 the condition in Equation 9 is satisfied
and the design algorithm stops adding new recurrent layers. In this regard, it
is also worth to note that, in the case illustrated in Figure 4, the magnitude
of the frequency components, e.g. as measured in a range of 0.01 cyc/s around
the vertical line indicated in the plots in correspondence of the frequency 1/31,
in layer 7 are quantitatively amplified by more than 500% in comparison to
layer 1. Given the quantitative and the qualitative results described so far, we
can say that differently from the case of shallowESN, in the higher layers of
the DeepESN reservoir hierarchy, the information of the frequency components
around 1/31 and 1/30 becomes more easily accessible and can be exploited in
order to improve the classification accuracy. Overall, in the analyzed scenario,
the proposed design algorithm allows to choose a proper number of recurrent
layers, ensuring a rich representation of the input history and at the same time
guaranteeing the time-scale differentiation in the hierarchy avoiding to consider
further recurrent layers with similar dynamics.

3.4. Experimental Analysis of Depth in the Controlled Scenario

In this section, we empirically evaluate how the spectral centroid, computed
by Algorithm 1 over the layers, varies with the depth of the stacked recurrent
architecture. This allows us to assess the considered 7 value and to evaluate the
effectiveness of the Algorithm 2 and the stop condition defined in Equation 9

A recurrent layer can be studied as a (low/high/band pass) filter [45, 30, 44,
46]. The effect of the filter determines a cut-off frequency and a roll-off, which
tells how the frequency magnitude decreases for increasing (resp. decreasing)
frequencies after (resp. before) the cut-off frequency in a low (resp. high) pass
filter. Hence, a deep RNN architecture, such is DeepESN, operates as a stack
of progressively applied filters. Stacking progressively more filters, i.e. adding
layers to a DeepESN, leads the roll-off value to converge towards the cut-off
frequency [47], which entails that the spectral centroid converges to a certain
asymptotic value. Hence, when a new layer is added, its filtering effect in terms
of shifting the spectral centroid of state signals progressively decreases.

In this context, the purpose of the proposed automatic method for network
design is to stop adding new layers whenever the filtering effects become neg-
ligible, i.e. when adding new layers essentially does not enrich anymore the
multiplicity of temporal dynamics developed by the reservoir states. Here, the
role of the 1 parameter in Equation 9 is to practically terminate the process of
adding layers when the spectral centroid is close enough to its convergence point.
Since the convergence can be asymptotic or some numerical errors can lead to
small fluctuations in the shift of the spectral centroid computed through layers,
the n value should not be 0. However, in order to reach a point that is close
enough to the convergence, the n value should be sufficiently small. Overall,
the choice of 77 stems from a reasonable trade-off between such conditions (as
typical in any iterative algorithm with asymptotic behaviour, which does not
lose generality with a termination cut-off condition). Empirically, we observed
that in all considered tasks a value of 7 = 0.01 meets this trade-off, being large
enough to avoid chasing the asymptote (or following the small fluctuations), and

19

at the same time being sufficiently small to reach a point near the convergence.
In order to empirically verify the soundness of this choice, we conducted several
experimental evaluations on the FBC task, in this section, and on the real-world
tasks (described in Sections 4.1 and 4.2), in Appendix A.

Figure 5 shows the trend of the spectral centroid obtained from the state of
each recurrent layer of the DeepESN, optimized on the FBC task and considering
the value of n = 0.01. The red vertical line represents the number of selected
layers.

o
N
N

—Spectral Centroid
0.265 ___Selected Layers ||

o©
)
)
T
1

0.255 b

o
N
o
T
|

0.245 1

Normalized Frequency (cycles/s)

o

[N}

i
T
|

L L L Il 1
0 2 4 6 8 10 12 14 16 18 20
Number of Layers

Figure 5: Spectral centroid computed on the state of DeepESN layers optimized on FBC
task. The red vertical line indicates the number of layers selected by the design algorithm.
Threshold 7 value is set to 0.01. Normalized Frequency is expressed in cycles per second

(cyc/s).

As expected, the layers progressively apply a filter to the signal. In particu-
lar, in the case represented in Figure 5, the resulting effect is that of a cascade
of low pass filters, with a decreasing trend of the spectral centroid as more
layers are taken into account. More in general, the specific trend of this behav-
ior might depend on the combined effect of the reservoir hyper-parameters, IP
adaptation and characteristics of the input signal (on the considered real-world
tasks both the cases of low pass filters and high pass filters are found - see
Appendix A). Moreover, as we can see in Figure 5 for the considered case, the
effect of filtering clearly tends to decrease, with the shift of the spectral centroid
approaching convergence as the depth of the recurrent architecture increases.
Interestingly, in the case of FBC task convergence is achieved on the 7-th layer,
i.e. in correspondence to the optimal number of layers found for the task (see
Figure 3). Furthermore, from Figure 5, we note that, after convergence, some
small fluctuations of the spectral centroid can be observed, which can be due
to possible numerical errors of FFT operations and to the characteristics of the
input signals (e.g., for the MuseData and Piano-midi.de tasks the convergence
is smoother - see Appendix A). In this respect, the adoption of n = 0.01 em-
pirically shows to be a safe threshold value that is not too small to follow the
fluctuations neither too large to determine an insufficient depth (too far from
the convergence). Apart from the specific trend of the spectral centroid for

20

increasing number of layers, the same qualitative considerations made here gen-
erally apply also for the real-world tasks considered in this paper, as reported
more in detail in Appendix A.

Overall, the properties of stacked filters are empirically evident in our exper-
imental analysis that shows the convergence of the shift of the spectral centroid
in both controlled scenario and real-world cases considered in this paper, and
the non-critical role of the 1 value for the generality of the algorithm. At the
same time, our investigation shows an analysis methodology (i.e. to follow the
trend of the spectral centroid on the plot over the layers, similarly to Figure 5)
that can be helpful in assessing the useful (possibly different) 7 choice for the
task at hand.

4. Experimental Assessment on Real-world Tasks

In this section we present the experimental assessment on real-world tasks
of the DeepESN approach (Section 2.2) constructed according to the design
method proposed in Section 3. Specifically, results achieved on tasks in the
areas of music processing and speech processing are respectively presented in
Section 4.1 and Section 4.2.

4.1. Polyphonic Music Tasks

In this section, we evaluate our model on polyphonic music tasks defined
in [48]. In particular, we consider two datasets, namely Piano-midi.de 2 and
MuseData . These datasets are characterized by high dimensionality and com-
plex temporal dependencies involved at different time-scales, forming interesting
benchmarks for RNNs [49]. The two datasets are characterized by complex piano
and orchestral compositions with a number of simultanecous notes that ranges
from 0 to 15. The musical compositions are represented by piano-rolls that were
preprocessed from MIDI files. Training, validation and test sets of preprocessed
piano-rolls are available on the website* of the authors of [48]. Table 3 shows the
main characteristics of Piano-midi.de and MuseData preprocessed piano-rolls as
provided in [48].

2Classical piano MIDI archive www.piano-midi.de
3Library of orchestral and piano classical music from CCARH www.musedata.org
4yww-etud.iro.umontreal.ca/~boulanni/icm12012

21

| Dataset | Split | # Samples | Avg len | Min len | Max len |

Training 87 872.5 111 3857
Piano-midi.de | Validation | 12 711.7 209 1637
Test 25 761.4 65 2645
Training 524 467.9 9 3457
MuseData Validation | 135 613.0 63 3723
Test 124 518.9 45 4273

Table 3: The main characteristics of the preprocessed piano-rolls samples in training, valida-
tion and test set, as defined in [48].

In this representation, a musical composition is a sequence of 88- and 82-
dimensional vectors for Piano-midi.de and MuseData tasks, respectively. In
both cases, at each time-step a variable is set to 1 if the note is played and to
0 otherwise.

A polyphonic music task is a next-step prediction task on high-dimensional
vectors. In particular, the aim of the tasks is to predict the notes played at time-
steps t+1 (i.e., the vector u(t+1)) given the notes played at time-step ¢ (i.e., the
vector u(t)). In order to compare and evaluate the classification performance of
the models, we measured the expected frame-level accuracy (FL-ACC) defined
as in [50] and adopted in polyphonic music tasks in [48], computed as follows:

_ S TP()
A S a rr L N)

where T is the total number of time-steps of all sequences (i.e., musical compo-
sitions) considered for the evaluation and TP(t), FP(t) and FN(t) are respec-
tively the number of true positive notes, false positive notes and false negative
notes predicted at time-step ¢ (i.e., the vector y(¢)).

In our experiments on these tasks, we used reservoirs initialized with 10%
of connectivity. For what regards DeepESN, the model selection process is per-
formed by considering recurrent layers with a number of units per layer Ng
varying in {50, 100,200}. As regards readout training, we used ridge-regression
with a regularization parameter \, in {0,1073,1072,1071,10°}. We performed
the design Algorithm 2 considering a number of maximum recurrent layers
My, = 50. All other aspects of experimental setup were as described in Sec-
tion 3.3, and the remaining hyper-parameters were chosen (for model selection
purposes) from the same ranges as shown in Table 1. To assess the effectiveness
of the proposed methodology, we compared the performance achieved by Deep-
ESNs built using the method proposed in Section 3, with the one obtained by
shallowESNs, considering the same ranges for hyper-parameters values shown
in Table 1 and a range of total recurrent units in 1000 — 7000 and 1000 — 7200
(with a step of 200), for Piano-midi.de and MuseData respectively. Moreover,
we compared the performance obtained by our model with the state-of-the-art
approach that achieved the best FL-ACC results on the considered tasks [48],

22

namely RNN-RBM. RNN-RBM is a sequence of Restricted Boltzmann machines
(RBMs) whose parameters are the output of a deterministic RNN with proper
constraint on the distribution of hidden units [48]. Other examples of applica-
tions that assess the performance of RNNs models using the FL-ACC measure
on the considered polyphonic music tasks are presented in [51], in which however
the pre-processing of piano-rolls is different® and, as this affects the performance,
the corresponding results are thereby difficultly comparable.

| Model | Piano-midi.de | MuseData |
DeepESN 33.22 (0.12) % | 36.43 (0.05) %
shallowESN | 31.76 (0.08) % | 35.31 (0.03) %
RNN-RBM [48] | 28.92 % 34.02 %

Table 4: FL-ACC (and standard deviation on reservoir guesses, shown in parentheses) ob-
tained on the test set of the Piano-midi.de and MuseData tasks by DeepESN, shallowESN
and RNN-RBM.

Table 4 shows the FL-ACC obtained on the test set by DeepESN, shal-
lowESN and RNN-RBM on Piano-midi.de and MuseData tasks. In Piano-
midi.de task, the hyper-parameters that obtained the best performance on the
validation set are Ny, = 35, Np = 200, p = 0.1, scale;,, = 0.1,a = 0.7, 01p = 0.1
and A\, = 107! for DeepESN, and N; = 1, Ng = 5000, p = 0.5, scale;, = 0.01,
a = 0.1, o;p = 0.1 and A\, = 1072 for shallow ESN. While for what regards
MuseData task, the hyper-parameters that obtained the best performance on
the validation set are Nj, = 36, Np = 200, p = 0.1, scale;, = 0.1, a = 0.7,
orp = 0.1 and A, = 1072 for DeepESN, and Ny, = 1, Ng = 6000, p = 0.3,
scales, = 0.01,a = 0.3, orp = 0.1 and A\, = 1072 for shallow ESN. Noteworthy,
our approach achieved the best results on both the tasks, outperforming the
state-of-the-art RNN-RBM model and leading to an improvement of the test
accuracy of 4.30% and 2.41% for Piano-midi.de and MuseData, respectively.
Moreover, DeepESN outperforms shallowESN with an improvement of 1.46%
and 1.12% FL-ACC on Piano-midi.de and MuseData tasks, respectively.

These results highlight the effectiveness of the proposed design approach to
manage complex high-dimensional time-series on real-world tasks without re-
training the readout for each configuration of the number of layers considered,
outperforming at the same time the shallowESN.

We next analyzed how the choice of the number of layers performed by
the design algorithm allows the DeepESN architecture to reach a good perfor-
mance. To this end, we evaluated the quality of our design method by comparing
the results obtained considering progressively more layers in the DeepESN ar-
chitecture with the performance achieved by shallowESN with the same total

5Table 3 shows the characteristics of preprocessed piano-rolls provided by the authors of
paper [48] in which are defined the polyphonic music tasks. Note that the characteristics of
preprocessed piano-rolls in Table 1 of paper [51] are different.

23

number of recurrent units. To evaluate the choice performed by the design al-
gorithm, we re-trained the readout for each number of recurrent layers until
the number of layers selected by the design algorithm is reached, i.e. 35 for
Piano-midi.de and 36 for MuseData. Thereby, for DeepESN we considered an
architecture with reservoirs composed by 200 recurrent units each, and with a
number of layers chosen in the range {5, 10, 15, 20, 25, 30, selected_layers} where
selected_layers equals 35 and 36 for Piano-midi.de and MuseData respectively.
Accordingly, the number of total recurrent units considered for shallowESN
is {1000, 2000, 3000, 4000, 5000, 6000, max_units} where max_units is 7000 and
7200 for Piano-midi.de and MuseData, respectively. For each configuration of
the number of DeepESN layers (total number of units for the shallow ESN),
the networks were selected on the basis of the performance achieved on the val-
idation set considering values of the hyper-parameters chosen from the ranges
defined in Table 1.

Figures 6 and 7 show the validation FL-ACC obtained by DeepESN and
shallowESN on Piano-midi.de and MuseData, respectively, for increasing num-
ber of layers and total number of recurrent units. For the sake of graphical
comparison, in the same figures we also plotted the test performance achieved
by RNN-RBM in [48] as a horizontal dashed line. As we can see from both
Figures 6 and 7, DeepESN always performs better than shallowESN for every
number of total recurrent units considered. Furthermore, the comparative plots
clearly show that DeepESNs are able to reach (and even outperform) the perfor-
mance achieved by shallowESNs with a much larger number of recurrent units,
e.g. a DeepESN with only 1000 total recurrent units reaches a similar perfor-
mance to what achieved by a shallowESN with a total reservoir size of 3000.
Results in Figures 6 and 7 also point out that the choice of the design algorithm
to select 35 layers for Piano-midi.de and 36 layers for MuseData is appropriate,
especially in light of the saturation effect on the performance that can be appre-
ciated in both cases after 30 layers. Moreover, looking at the relation between
validation and test performance, we observed that DeepESN obtained valida-
tion FL-ACCs of 32.61 and 37.76 on Piano-midi.de and MuseData, respectively,
with a deviation of 0.39 and 1.33 FL-ACCs from correspondent test errors. Such
results highlight the effectiveness of the design choice also in what concerns the
generalization error. Overall, in the studied cases, these results show the good
ability of our approach in the automatic selection of the proper number of re-
current layers, also approaching challenging real-world tasks, reaching a good
performance able to outperform the state-of-the-art results and at the same time
avoiding to build up a too complex model.

24

34 T

33,51 .
33 :
'1' "/IN[
32,5 T ==t
32 I........-------I...--......___ih. i
Q315 i,
3]
z 3 —f—DeepESN
305T »J+ shallowESN
= = =RNN-RBM
30 :
29.5 - &
20 L o e o o o e e e e e e e e e e e e e e e e e - .
285 L | | | L
5(1000) 10 (2000) 15 (3000) 20 (4000) 25 (5000) 30 (6000) 35 (7000)

Number of Layers (Total Recurrent Units)

Figure 6: Comparison between the FL-ACCs (and standard deviations on reservoir guesses
represented by vertical intervals) obtained on the validation set of the Piano-midi.de task
by DeepESN and shallowESN, considering a number of recurrent layers in the range 5 — 35
and, correspondingly, a total number of recurrent units in the range 1000 — 7000 (results
are obtained through model selection individually performed for each number of layers or
total recurrent units for shallowESN). The dashed line at the bottom represents the test set
performance achieved by RNN-RBM in [48].

25

38

37.5

36T el .
8 goor —F—DeepESN
L3551 = shallowESN
-

('l

~ = "RNN-RBM

e e L b L L L .

33.5]

33 1 1] 1 1 |
5(1000) 10 (2000) 15 (3000) 20 (4000) 25 (5000) 30 (6000) 36 (7200)
Number of Layers (Total Recurrent Units)

Figure 7: Comparison between the FL-ACCs (and standard deviations on reservoir guesses
represented by vertical intervals) obtained on the validation set of the MuseData task by
DeepESN and shallowESN, considering a number of recurrent layers in the range 5 — 36 and,
correspondingly, a total number of recurrent units in the range 1000—7200 (results are obtained
through model selection individually performed for each number of layers or total recurrent
units for shallowESN). The dashed line at the bottom represents the test set performance
achieved by RNN-RBM in [48].

4.2. Speech Recognition

In this section, we consider the isolated spoken digit recognition task dis-
cussed in [52]. This is a widely used task in the RC context (see e.g. [14, 53, 54]),
and it is characterized by multiple time-scales dependencies in high-dimensional
sequences. The problem is modeled as a multi-class classification task, and it
comnsists in recognizing ten (zero to nine) isolated spoken digits. Each digit is
spoken 10 times by 5 different speakers. The 500 spoken digits are randomly
split into training and test sets, each containing 250 sequences. As in works
[14, 53, 54], the model selection is performed by 10-fold cross-validation on the
training set, and the error is evaluated using the Word Error Rate (WER). As
proposed in [14], the speech audio was preprocessed using a biological model of
the human cochlea by [55], resulting in a 77-channel cochleagram.

For what regards DeepESN, the model selection process is performed as in
Section 4.1. Moreover, the performance obtained by DeepESN is compared with

26

the one achieved by shallowESN model, considering a range of total recurrent
units in 50— 550 (with a step of 50). For this task, the design algorithm selected
a DeepESN with 11 recurrent layers.

| Model | Test WER |
DeepESN.__ | 0.0028 (0.0005)
shallowESN | 0.0530 (0.0318)
SRC [53 0.0081 (0.0022)
CRJ [54 0.0046 (0.0021)

Table 5: Test WER (and standard deviation on folds, shown in parentheses) obtained on the
speech recognition task by DeepESN, shallowESN, SRC and CRJ.

Table 5 shows the test WER obtained by DeepESN designed with the pro-
posed design algorithm, shallowESN, Simple Circular Reservoir (SCR) [53] and
Circular Reservoir with Jumps (CRJ) [54]. The hyper-parameters that ob-
tained the best performance in validation set are N; = 11, Ngp = 50, p = 0.7,
scaley, = 10, a = 0.1, o;p = 0.1 and A\, = 107! for DeepESN and Ny = 1,
Ngr =250, p = 1, scale;, = 10, a = 0.1, o;p = 0.1 and A, = 1073 for shallow
ESN. As results show, on this task the difference between the performance of
DeepESN and shallowESN is remarkable, with a gap of 0.0502 WER on the test
set. Note that, the state-of-the-art approaches SRC and CRJ, already reached
good results in this task with respect to shallowESN, achieving a test WER of
0.0081 and 0.0046, respectively. Moreover, such results are obtained by CRJ
and SCR models using 300 recurrent units. We can note from Figure 8 that the
error obtained by DeepESN using 300 recurrent units remains lower than the
error achieved by such models considering the same number of freec paramecters.

Remarkably, the number of layers selected by the proposed design algorithm
allows the DeepESN model to outperform the state-of-the-art, reaching a test
performance that is almost 4 and 2 times better than SRC and CRJ, respectively.

The effectiveness of the proposed approach is investigated by considering the
results obtained by re-training the readout of DeepESNs with a progressively
larger number of recurrent layers. Specifically, in this case the number of recur-
rent layers in the DeepESN architecture varied in the range 1 — 11, while the
total number of recurrent units was in the range 50 — 550. The other hyper-
parameters values were chosen from the ranges in Table 1. Also in this case,
the experimental analysis was conducted in comparison to the results achieved
by shallowESN under the same experimental scttings and with the same total
number of recurrent units.

Figure 8 shows the validation WERs obtained by DeepESN and shallowESN
by re-training the readout in correspondence of networks settings with a progres-
sively larger number of layers (and recurrent units) in the architecture. In the
same figure, we also indicated the test WERs achieved by the state-of-the-art
models on the task, i.e. SRC and CRJ, as horizontal dash-dotted and dashed
lines, respectively.

27

0.07

0.06 | 5
—]—DeepESN
w:J+ shallowESN

0o5f%, e SRC
- --CRJ

0.04 i

o
L
=

0.03 -

(023 N N e Y R (N (Y RN IR 5

0.01 I]

J-----g-==p=-=-o
| L L '1 * +

” i
1(50) 2(100) 3(150) 4(200) 5(250) 6 (300) 7(350) 8(400) 9 (450) 10 (500) 11 (550)
Number of Layers (Total Recurrent Units)

Figure 8: Comparison of WERs (and standard deviations on folds represented by vertical
intervals) obtained on the validation set by DeepESN and shallowESN considering a number
of recurrent layer in the range 1 — 11 and a total number of recurrent units in the range
50 — 550 on speech recognition task (results are obtained through model selection individually
performed for each number of layers or total recurrent units for shallowESN). The horizontal
dash-dotted and dashed lines respectively represent the test set performance achieved by SRC
and CRJ in [54].

From Figure 8 we can see that DeepESN outperformed the shallowESN also
on this task, for all the cases of total number of recurrent units considered.
Moreover, we can see that DeepESNs required a smaller number of units to
reach and outperform the performance of shallowESNs. For example, from the
plot in Figure 8 we can see that DeepESNs with only 150 units in total were
already able to beat the results of shallowESNs with even up to more than
three times larger reservoirs (i.e. up to 550 units). In general, we can see
that for increasing number of layers the validation performance of the DeepEESN
continues to improve (i.e. the WER continues to decrease), with a saturation
effect that can be observed also in this case. Finally, note that the DeepESN
with 11 layers obtained a validation WER of 0.0024, with a corresponding test
WER of 0.0028 (i.e. the validation-test deviation is ~ 4 x 10~ WER) which
suggests that the choice made by our proposed design method results effective
also with respect to the generalization error.

28

5. Discussion

The fundamental goal of the work presented in this paper consisted in the
development of a design strategy for automatizing the choice of the number
of layers in DeepESNs. Essentially, we exploited the idea that each new layer
should provide an internal state representation that, in terms of frequency spec-
trum, is sufficiently diversified with respect to those developed in the previous
ones. Collectively, this ensures that the dynamical component of the network
provides an advantageous trade-off between the richness of temporal informa-
tion representation (multiplicity of temporal scales) and the resulting complexity
(final number of layers).

The outcomes of our experimental analysis showed that the proposed design
strategy is effective in the RC context, leading to DeepESN setups that on the
one hand are able to fruitfully exploit the depth in the comparison with shallow
ESN counterparts, and on the other hand outperform previous state-of-the-art
results achieved by fully trained RNN on real-world problems. It is worth to
note also that such tasks are characterized by hundreds of sequences with high-
dimensionality and very heterogeneous lengths in which the regularization can
play a relevant role in relation to our opportunistic and parsimonious construc-
tion.

From the point of view of filtering, unlike previous works [21, 26], the qualita-
tive analysis on the considered tasks empirically showed that recurrent layers of
a DeepESN architecture with TP adaptation can not only act as low pass filter (as
observed in previous analyses discussed in the Section 1), but also as high pass
filter (see Appendix A). We believe that these observations can stimulate fur-
ther analytical/theoretical studies on the characterization of the filtering effect
operated by a recurrent layer, in particular, focusing on the hyper-parameters
of reservoirs in hierarchical architectures.

The exploitation of our contribution can be also considered from the point of
view of studies on the initialization and architectural properties of fully trained
multi-layered neural architectures with back-propagation (stochastic gradient
descent approaches). This is particularly interesting in consideration of the dif-
ficulties that are typically encountered in training deep networks [56], especially
for studies regarding RNNs with ESN-based initialization, see [57]. Indeed,
initialization approaches based on pre-training analysis can influence the effi-
ciency and the stability of the convergence of gradient based algorithms in deep
nonlinear networks [47, 58].

Investigations conducted in this paper also allowed to address other research
issues arising hot debates in the neural networks community. In particular,
two relevant instances of such questions regard the performance comparison
between deep and shallow RNN models [59, 5, 9, 1], on the one hand, and
between untrained (randomized) and trained RNNs, on the other.

As regards the former question, in this paper, through experimental com-
parisons between DeepESNs and ESNs, we practically demonstrated, at least in
the considered tasks, the performance advantages that inherently stem from a
suitable multi-layered organization of the recurrent part of the model (in the RC

29

framework, i.e. taking aside the learning aspects of the recurrent part). At the
same time, the possibility to effectively exploit the layering factor in the design
of multi-layered recurrent networks, using the approach proposed in this paper,
paves the way for a grounded comparison between deep and shallow RNNs also
in the context of trained models. Additionally, the results contributing to settle
deep recurrent approaches, further encourage future analysis aimed at exploit-
ing properly designed deep RNNs in modeling temporal information with latent
compositionality under a generative setting.

As regards the concrete impact of supervised training of the recurrent con-
nections in RNN applications (the second question above), the results of our
experiments on the polyphonic music tasks showed that ESN-based approaches
(both in the shallow and in the deep cases) are actually able to outperform
fully trained complex RNN architectures that achieved previous state-of-the-
art results (as represented, in this case, by the RNN-RBM model). Moreover,
the good results obtained by DeepESNs on the isolated-word speech recogni-
tion task, also allow to foresee future comparisons between the untrained RC
approach and trained gated RNNs, such as Long Short Term Memory [60] and
Gated Recurrent Unit [61], popularized in the context of continuous (rather
than isolated-word) speech recognition problems [62, 1], although such analy-
sis would necessarily take into account also other aspects of model design (e.g.
bi-directionality or the use of ad-hoc loss functions) that deserve further con-
siderations out the scopes of this paper.

6. Conclusions

In this work, we have proposed a novel approach to address a fundamental
issue in deep learning for sequence processing, i.e. the problem of how to choose
the number of recurrent layers in a deep recurrent architecture. Remembering
the scope of the approach, namely that the input signals are featured by multiple
time-scales and that the differences in the time-scales are important for the
learning task at hand, we aim at exploiting such differences to tailor the layered
architecture to the task. In turns, the trained output part of the model can
exploit the differentiation provided through the layering for the performance
aims on the learning task.

Indeed, framing our work in the deep RC area and making use of frequency
analysis tools, we have defined an automatic design algorithm for DeepESNSs,
aimed at exploiting as much as possible the differentiation of the temporal in-
formation representation naturally developed by recurrent hierarchies. Under
the assumed conditions, the provided approach enables to choose the proper
number of recurrent layers avoiding to perform the training of the readout part
for each possible number of considered layers. As such, compared to a standard
selection process, the proposed method allows to obtain a reduction of the time
cost of model selection that scales with the number of layers.

On the experimental side, in order to asses the effect of the diversification of
the frequency components enriching the state representation through layering,
we have first analyzed the approach on a controlled scenario with a synthetic

30

task characterized by signals with a predefined multiple time-scales dynamics.
Quantitative and qualitative analysis on such task revealed that, in the con-
sidered experimental setting, the proposed design method is able to choose a
proper number of layers reaching a better performance compared to alternative
configurations with a different number of layers or with a shallow recurrent ar-
chitecture. After that, we have assessed our approach on challenging real-world
tasks in the areas of music and speech processing.

The results achieved on the considered tasks showed that DeepESNs de-
signed by our automatic algorithm consistently improve the performance of
shallow ESNs counterparts under the same experimental settings (and ranges for
the hyper-parameter values). Noteworthy, the performance achieved by Deep-
ESN outperforms the state-of-the-art results previously obtained by fully trained
RNN-based models on real-world tasks and RC approaches on the speech recog-
nition task. This, in turn, suggests that music and speech processing represent
instances of applicative domains with multiple time-scales information that can
benefit from the DeepESN approach. In this respect, at the best of our knowl-
edge, the results presented in this paper represent also the first experimental
evidence that RC networks with hierarchical reservoir organization consistently
outperform RC shallow (one recurrent layer) architectures in challenging real-
world tasks.

In conclusion, we believe that the design method proposed in this work can
contribute to, and further stimulate, the development of approaches aimed to
a principled automatic design of deep reservoir architectures in an information-
based fashion, i.e. through quantitative and qualitative analysis of the dynamics
emerging in the layers of stacked recurrent models.

7. Acknowledgments

We wish to thank the anonymous action editor and reviewers of this journal
for their valuable suggestions and constructive feedbacks, which allowed us to
definitely improve the quality of this paper.

8. References

[1] A. Graves, A.-R. Mohamed, G. Hinton, Speech recognition with deep recur-
rent neural networks, in: Acoustics, speech and signal processing (icassp),
2013 ieee international conference on, IEEE, 2013, pp. 6645-6649.

[2] A.-R. Mohamed, G. E. Dahl, G. Hinton, Acoustic modeling using deep
belief networks, IEEE Transactions on Audio, Speech, and Language Pro-
cessing 20 (1) (2012) 14-22.

[3] I. Sutskever, O. Vinyals, Q. V. Le, Sequence to sequence learning with
neural networks, in: Advances in neural information processing systems,
2014, pp. 3104-3112.

31

(4]

A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with
deep convolutional neural networks, in: Advances in neural information
processing systems, 2012, pp. 1097-1105.

I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016,
http://www.deeplearningbook.org.

P. Angelov, A. Sperduti, Challenges in deep learning, in: Proceedings of
the 24th European Symposium on Artificial Neural Networks (ESANN),
i6doc.com, 2016, pp. 489-495.

M. Hermans, B. Schrauwen, Training and analysing deep recurrent neural
networks, in: Advances in neural information processing systems, 2013, pp.
190-198.

S. E. Hihi, Y. Bengio, Hierarchical recurrent neural networks for long-
term dependencies., in: Advances in neural information processing systems,
1995, pp. 493-499.

R. Pascanu, C. Giilgehre, K. Cho, Y. Bengio, How to construct deep recur-
rent neural networks, in: Proceedings of the Second International Confer-
ence on Learning Representations, 2014.

J. Schmidhuber, Deep learning in neural networks: An overview, Neural
Networks 61 (2015) 85-117.

C. Gallicchio, J. Martin-Guerrero, A. Micheli, E. Soria-Olivas, Random-
ized machine learning approaches: Recent developments and challenges,
in: Proceedings of the 25th European Symposium on Artificial Neural Net-
works (ESANN), i6doc.com, 2017, pp. 77-86.

C. Gallicchio, A. Micheli, P. Tiflo, Randomized recurrent neural networks,
in: Proceedings of the 26th European Symposium on Artificial Neural Net-
works (ESANN), i6doc.com, 2018, pp. 415-424.

M. Lukosevicius, H. Jaeger, Reservoir computing approaches to recurrent
neural network training, Computer Science Review 3 (3) (2009) 127-149.

D. Verstraeten, B. Schrauwen, M. d’Haene, D. Stroobandt, An experimen-
tal unification of reservoir computing methods, Neural networks 20 (3)
(2007) 391-403.

H. Jaeger, The "echo state” approach to analysing and training recurrent
neural networks - with an erratum note, Tech. rep., GMD - German Na-
tional Research Institute for Computer Science, Tech. Rep. (2001).

H. Jaeger, H. Haas, Harnessing nonlinearity: Predicting chaotic systems

and saving energy in wireless communication, Science 304 (5667) (2004)
78-80.

32

[17]

[18]

H. Jaeger, Discovering multiscale dynamical features with hierarchical echo
state networks, Tech. rep., Jacobs University Bremen (2007).

F. Triefenbach, A. Jalalvand, K. Demuynck, J.-P. Martens, Acoustic mod-
eling with hierarchical reservoirs, IEEE Transactions on Audio, Speech,
and Language Processing 21 (11) (2013) 2439-2450.

F. Triefenbach, A. Jalalvand, K. Demuynck, J.-P. Martens, Acoustic mod-
eling with hierarchical reservoirs, IEEE Transactions on Audio, Speech,
and Language Processing 21 (11) (2013) 2439-2450.

Z. Malik, A. Hussain, Q. Wu, Multilayered echo state machine: a novel
architecture and algorithm, IEEE Transactions on cybernetics 47 (4) (2017)
946-959.

C. Gallicchio, A. Micheli, L. Pedrelli, Deep reservoir computing: a critical
experimental analysis, Neurocomputing 268 (2017) 87-99. doi:10.1016/
j.neucom.2016.12.089.

C. Gallicchio, A. Micheli, Deep reservoir computing: A critical analysis,
in: Proceedings of the 24th European Symposium on Artificial Neural Net-
works (ESANN), i6doc.com, 2016, pp. 497-502.

C. Gallicchio, A. Micheli, Echo state property of deep reservoir computing
networks, Cognitive Computation 9 (3) (2017) 337-350. doi:10.1007/
s12559-017-9461-9.

C. Gallicchio, A. Micheli, L. Silvestri, Local Lyapunov Exponents of Deep
Echo State Networks, Neurocomputing 298 (2018) 34—45.

C. Gallicchio, A. Micheli, L. Silvestri, Local Lyapunov Exponents of Deep
RNN, in: Proceedings of the 25th European Symposium on Artificial Neu-
ral Networks (ESANN), i6doc.com, 2017, pp. 559-564.

C. Gallicchio, A. Micheli, L. Pedrelli, Hierarchical temporal representation
in linear reservoir computing, in: A. Esposito, M. Faundez-Zanuy, F. C.
Morabito, E. Pasero (Eds.), Neural Advances in Processing Nonlinear Dy-
namic Signals, Springer International Publishing, Cham, 2019, pp. 119-129,
arXiv preprint arXiv:1705.05782. doi:10.1007/978-3-319-95098-3_11.

C. Gallicchio, A. Micheli, Deep Echo State Network (DeepESN): A Brief
Survey, arXiv:1712.04323 (2017).

C. Gallicchio, A. Micheli, Architectural and markovian factors of echo state
networks, Neural Networks 24 (5) (2011) 440-456.

P. Tino, B. Hammer, M. Bodén, Markovian bias of neural-based archi-
tectures with feedback connections, in: Perspectives of neural-symbolic
integration, Springer, 2007, pp. 95-133.

33

301

H. Jaeger, M. Lukosevicius, D. Popovici, U. Siewert, Optimization and
applications of echo state networks with leaky-integrator neurons, Neural
Networks 20 (3) (2007) 335-352.

I. B. Yildiz, H. Jaeger, S. Kiebel, Re-visiting the echo state property, Neural
networks 35 (2012) 1-9.

B. Schrauwen, M. Wardermann, D. Verstraeten, J. J. Steil, D. Stroobandt,
Improving reservoirs using intrinsic plasticity, Neurocomputing 71 (7)
(2008) 1159-1171.

J. J. Steil, Online reservoir adaptation by intrinsic plasticity for
backpropagation—decorrelation and echo state learning, Neural Networks
20 (3) (2007) 353-364.

J. Triesch, A gradient rule for the plasticity of a neurons intrinsic excitabil-
ity, in: International Conference on Artificial Neural Networks, Springer,
2005, pp. 65-70.

M. Lukosevicius, H. Jaeger, Reservoir computing approaches to recurrent
neural network training, Computer Science Review 3 (3) (2009) 127-149.

C. Gallicchio, A. Micheli, Why layering in Recurrent Neural Networks? a
DeepESN survey, in: Proceedings of the 2018 IEEE International Joint
Conference on Neural Networks (IJCNN), IEEE, 2018, pp. 1800-1807.

Y. Xue, L. Yang, S. Haykin, Decoupled echo state networks with lateral
inhibition, Neural Networks 20 (3) (2007) 365-376.

Y. Yamashita, J. Tani, Emergence of functional hierarchy in a multiple
timescale neural network model: a humanoid robot experiment, PLoS com-
putational biology 4 (11) (2008) €1000220.

J. Qiao, F. Li, H. Han, W. Li, Growing echo-state network with multiple
subreservoirs, IEEE transactions on neural networks and learning systems

28 (2) (2017) 391-404.

R. L. W. Maass, Edge of chaos and prediction of computational perfor-
mance for neural circuit models, Neural Networks 20 (3) (2007) 323-334.

N. Bertschinger, T. Natschldger, Real-time computation at the edge of
chaos in recurrent neural networks, Neural computation 16 (7) (2004) 1413—
1436.

H. Jaeger, Short term memory in echo state networks, Tech. rep., German
National Research Center for Information Technology (2001).

C. Gallicchio, Short-term memory of Deep RNN, in: Proceedings of
the 26th European Symposium on Artificial Neural Networks (ESANN),
i6doc.com, 2018, pp. 633-638.

34

[44]

[45]

[46]

M. Lukosevicius, A practical guide to applying echo state networks, in:
Neural networks: Tricks of the trade, Springer, 2012, pp. 659-686.

G. Holzmann, H. Hauser, Echo state networks with filter neurons and a
delay&sum readout, Neural Networks 23 (2) (2010) 244-256.

F. Wyffels, B. Schrauwen, D. Verstraeten, D. Stroobandt, Band-pass reser-
voir computing, in: Proceedings of the 2008 IEEE International Joint Con-
ference on Neural Networks (IJCNN), TEEE, 2008, pp. 3204-3209.

J. M. Jacob, Advanced AC circuits and electronics: principles & applica-
tions, Cengage Learning, 2004.

N. Boulanger-Lewandowski, Y. Bengio, P. Vincent, Modeling temporal de-
pendencies in high-dimensional sequences: Application to polyphonic mu-
sic generation and transcription, in: Proceedings of the 29th International
Conference on Machine Learning, 2012.

Y. Bengio, N. Boulanger-Lewandowski, R. Pascanu, Advances in optimizing
recurrent networks, in: Acoustics, Speech and Signal Processing (ICASSP),
2013 IEEE International Conference on, IEEE, 2013, pp. 8624-8628.

M. Bay, A. F. Ehmann, J. S. Downie, Evaluation of multiple-f0 estimation
and tracking systems., in: 10th International Society for Music Information
Retrieval Conference (ISMIR), 2009.

L. Pasa, A. Sperduti, Pre-training of recurrent neural networks via lin-
ear autoencoders, in: Advances in Neural Information Processing Systems,
2014, pp. 3572-3580.

D. Verstraeten, B. Schrauwen, D. Stroobandt, J. Van Campenhout, Isolated
word recognition with the liquid state machine: a case study, Information
Processing Letters 95 (6) (2005) 521-528.

A. Rodan, P. Tino, Minimum complexity echo state network, IEEE trans-
actions on neural networks 22 (1) (2011) 131-144.

A. Rodan, P. Tino, Simple deterministically constructed cycle reservoirs
with regular jumps, Neural computation 24 (7) (2012) 1822-1852.

R. Lyon, A computational model of filtering, detection, and compression
in the cochlea, in: Acoustics, Speech, and Signal Processing, IEEE Inter-
national Conference on ICASSP’82., Vol. 7, IEEE, 1982, pp. 1282-1285.

X. Glorot, Y. Bengio, Understanding the difficulty of training deep feed-
forward neural networks, in: Proceedings of the thirteenth international
conference on artificial intelligence and statistics, 2010, pp. 249-256.

I. Sutskever, J. Martens, G. Dahl, G. Hinton, On the importance of initial-
ization and momentum in deep learning, in: International conference on
machine learning, 2013, pp. 1139-1147.

35

[58] A. M. Saxe, J. L. McClelland, S. Ganguli, Exact solutions to the nonlin-
ear dynamics of learning in deep linear neural networks, arXiv preprint
arXiv:1312.6120.

[59] S. Zhang, Y. Wu, T. Che, Z. Lin, R. Memisevic, R. R. Salakhutdinov,
Y. Bengio, Architectural complexity measures of recurrent neural networks,
in: Advances in Neural Information Processing Systems, 2016, pp. 1822—
1830.

[60] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural computa-
tion 9 (8) (1997) 1735-1780.

[61] K. Cho, B. Van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, Y. Bengio, Learning phrase representations using rnn encoder-
decoder for statistical machine translation, arXiv preprint arXiv:1406.1078.

[62] A. Graves, J. Schmidhuber, Framewise phoneme classification with bidi-
rectional Istm networks, in: Proceedings of the 2005 IEEE International
Joint Conference on Neural Networks (IJCNN), Vol. 4, IEEE, 2005, pp.
2047-2052.

Appendix A. Experimental Analysis of Depth on Real-world Tasks

In this section, we empirically evaluate how the spectral centroid of reservoir
states, computed by Algorithm 1 on the layers of the DeepESN, varies with the
depth of the stacked recurrent architecture on the considered real-world tasks
(see Section 3.4 for methodological details). The aim is to assess the considered
7 value as well as to evaluate the effectiveness of the Algorithm 2 and the stop
condition defined in Equation 9 on the considered real-world tasks.

Figure A.9 shows the trend of the spectral centroid obtained from the state
of each recurrent layer of the DeepESN, optimized on the speech recognition
task and considering the value of n = 0.01. The red vertical line represents the
number of selected layers. As in the case of FBC task (see Section 3.4), the
layers progressively apply a low pass filter to the signal. Moreover, also in this
case, we can note that numerical FFT errors lead to small fluctuations of the
spectral centroid after convergence. From this, we can observe that also for this
task the value of 7 = 0.01 for the stop condition in Equation 9 is adequate to
reach a point near the convergence.

For what regards the polyphonic music tasks (defined in Section 4.1), Figures
A.10 and A.11 show the spectral centroid obtained from the state of each re-
current layer of DeepESN optimized on the Piano-midi.de and MuseData tasks
respectively. Note that, differently from the cases of FBC (in Figure 5) and
speech recognition (in Figure A.9) tasks, the spectral centroid shifts progres-
sively on high frequencies. This can depend on many factors such as leaky
integration, spectral radius of W, input scaling and IP adaptation. Please

36

0.016 T " T
—Spectral Centroid
0.014 —Selected Layers |

0.012 b

0.008 - 7

5 10 15 20 25 30 35 40 45 50
Number of Layers

o o
o o
S o
E &

Normalized Frequency (cyc/s)
=
2

Figure A.9: Spectral centroid computed on the state of DeepESN layers optimized on speech
recognition task. The red vertical line indicates the number of layers selected by the design
algorithm. Threshold n value is set to 0.01. Normalized Frequency is expressed in cycles per
second (cyc/s).

0.45 T S m———
—Spectral Centroid
—Selected Layers
0.4

0 5 10 15 20 25 30 35 40 45 50
Number of Layers

Normalized Frequency (cyc/s)

Figure A.10: Spectral centroid computed on the state of DeepESN layers optimized on Piano-
midi.de task. The red vertical line indicates the number of layers selected by the design
algorithm. Threshold n value is set to 0.01. Normalized Frequency is expressed in cycles per
second (cyc/s).

37

o
o

—Spectral Centroid ' '
—Selected Layers

o
N
T

o
N
T

Normalized Frequency (cyc/s)
o
w

15 20 25 30 35 40 45 50
Number of Layers

e
5
o
o L
s
=L

Figure A.11: Spectral centroid computed on the state of DeepESN layers optimized on Muse-
Data task. The red vertical line indicates the number of layers selected by the design algo-
rithm. Threshold n value is set to 0.01. Normalized Frequency is expressed in cycles per
second (cyc/s).

note that, although these empirical results on high pass filtering are very in-
teresting in themselves, the analytical study of this aspect in relation to the
hyper-parameterization of the reservoirs is out of the scope of this paper. How-
ever, even in this case, the filtering effect becomes progressively negligible in
determining the convergence of the spectral centroid. Moreover, we can note
that the trend of the spectral centroid is smooth and the convergence is asymp-
totic. This is a reason why the 7 value should be greater than 0. However, on
these tasks the spectral centroid (Figures A.10 and A.11) and the performance
(Figures 6 and 7) tend to saturate, thus leading to small differences for both
the number of selected layers and the performance obtained if # is set to val-
ues smaller than 0.01 (see considerations regarding the performance obtained
on these tasks in Section 4.1). Overall, we can conclude that on all considered
cases, the value of n = 0.01 resulted to be an empirically adequate threshold for
the stop condition (Equation 9) of the proposed design algorithm. Nevertheless,
it is worth to observe that the methodology assumed by looking at the trend of
the spectral centroid over the layers, similarly to the plots shown in this section,
can be used to fix a value of 7 tailored to different tasks.

38

