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Abstract

The analysis of deep Recurrent Neural Network (RNN) models represents
a research area of increasing interest. In this context, the recent introduction
of deep Echo State Networks (deepESNs) within the Reservoir Computing
paradigm, enabled to study the intrinsic properties of hierarchically orga-
nized RNN architectures. In this paper we investigate the deepESN model
under a dynamical system perspective, aiming at characterizing the impor-
tant aspect of stability of layered recurrent dynamics excited by external
input signals. To this purpose, we develop a framework based on the study
of the local Lyapunov exponents of stacked recurrent models, enabling the
analysis and control of the resulting dynamical regimes. The introduced
framework is demonstrated on artificial as well as real-world datasets. The
results of our analysis on deepESNs provide interesting insights on the real
effect of layering in RNNs. In particular, they show that when recurrent
units are organized in layers, then the resulting network intrinsically devel-
ops a richer dynamical behavior that is naturally driven closer to the edge of
criticality. As confirmed by experiments on the short-term Memory Capacity
task, this characterization makes the layered design effective, with respect to
the shallow counterpart with the same number of units, especially in tasks
that require much in terms of memory.
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Analysis, Lyapunov Exponents

1. Introduction

The extension of deep learning methodologies to the class of Recurrent
Neural Networks (RNNs) is currently stimulating an increasing interest in
the machine learning community [1, 2]. In this area, the study of hierarchi-
cally structured RNN architectures (see e.g. [3, 4, 5, 6, 7, 8]) paved the way
to the design of models able to develop feature representations of temporal
information at increasing levels of abstraction, enabling a natural approach
to tasks on time-series featured by multiple time-scales (especially in the
cognitive area). Besides, the elaboration of temporal information in a lay-
ered and recurrent fashion is also motivated by strong evidences of biological
plausibility emerged from the area of neuroscience [9, 10].

However, the analysis of deep RNNs is relatively young, and one of the
major topics still deserving research attention is related to understanding and
characterizing their dynamical behavior, especially in relation to the inherent
role of the hierarchical composition of the recurrent units in layers. A useful
methodology in this regard is provided by the Reservoir Computing (RC)
[11, 12] paradigm and the Echo State Network (ESN) [13, 14] approach to
RNNs modeling. In particular, allowing to taking apart all the effects due
to learning, the recent introduction of the deepESN model [15, 16] enabled
the study of the intrinsic role played by the layering factor in deep RNN
architectures. Moreover, by inheriting the training characterization typical
of standard RC models, deepESNs also provide an efficient methodology for
designing and training deep learning models in the temporal domain.

A first mean to investigate the characteristics of recurrent network dy-
namics is given in the RC area by the Echo State Property (ESP) [17], which
has recently been extended to the case of deep networks in [18]. The analysis
provided by the study of the ESP conditions in has started to reveal the nat-
ural characterizations of deep RNNs under a dynamical system perspective
[18], but it might result of reduced utility in practical cases as it basically
neglects the influence of the external input on networks dynamics. By their
very nature, recurrent neural models implement dynamical systems whose
trajectories in the state space are influenced by initial conditions and by the
external input signals, which practically realize a link between the system
dynamics and the computational task at hand. In this context, the anal-



ysis of stability of deep RNNs dynamics when driven by an external input
represents a topic of great importance and still demanded in literature.

In this paper, by pursuing the study of the dynamical behavior of recur-
rent models typical in the RC area, we provide a theoretical and practical
tool that allows us to investigate and control the stability of deep recurrent
networks driven by the input. Specifically, we extend the applicability of the
study of local Lyapunov exponents [19, 20] from the case of shallow ESNs
(see e.g. [21, 22, 12]) to the case of deepESNs. In particular, the maxi-
mum among the local Lyapunov exponents is a useful mean to express the
network’s sensibility to small perturbations of its state trajectories, and as
such it can well quantify the degree of stability (or order) in the dynamical
behavior of the system. Given the actual input for the system, the proposed
methodology can be used to identify the different dynamical regimes that
follow from different cases of networks design conditions, such as the RC
scaling factors, the number of recurrent units and the depth of the network.
The proposed tool is practically demonstrated on artificial data as well as on
signals from real-world datasets.

While the developed tool could be certainly applied to the case of deep
RNNs at any stage of training, its application in the RC context enables us
to investigate the actual role of layering in RNNs and shed light on its natu-
ral effect on the richness and stability of the developed network’s dynamics.
In this regard, a particularly interesting condition of dynamical behavior is
represented by the stable-unstable transition where the maximum local Lya-
punov exponent is null, a region of the state space known as the edge of
criticality. Previous works in the RC literature already showed that the per-
formance of recurrent models for tasks requiring a long memory span peaks
near the criticality of their dynamical behavior [23, 24, 25, 26]. Examples are
represented by the benchmark tasks in the RC area (e.g. [27, 28, 12, 29, 30]),
tasks in the domain of neural circuit models (e.g. [31, 25, 24]). as well as
real-world tasks, e.g. in the area of speech processing [12] and mobile traffic
load estimation [32]. Although the methodology proposed in this paper is
not put forward as a performance predictor for trained recurrent models, as
an additional element of analysis here we use it to study the relation between
the memory and the regimes of deepESN behaviors through the short-term
Memory Capacity task [33].

The rest of this paper is organized as follows. In Section 2 we introduce
the basic elements of RC and describe the deepESN model. In Section 3 we
provide the mathematical characterization of the stability analysis of deep-



ESNs in terms of the maximum local Lyapunov exponent. The outcomes of
our experimental analysis are reported and discussed in Section 4. Finally,
conclusions are presented in Section 5.

2. Deep Echo State Networks

Within the framework of randomized neural networks [34], the RC paradigm
[11, 12] has attested as a state-of-the-art methodology for efficient RNN mod-
eling. The most widely known model in this context is represented by the
ESN [13, 14, 35]. From the architectural perspective, an ESN comprises a re-
current hidden layer of non-linear units, called reservoir, and a feed-forward
output layer of typically linear units, called readout. The essence of the
ESN operation is that the reservoir part implements a set of randomized
filters that serve to dynamically and non-linearly encode the input history
into a high dimensional state space, where the task at hand can be approach
satisfactorily even by a linear output tool.

From a dynamical system point of view, the reservoir of an ESN computes
a discrete-time input-driven non-linear dynamical system, such that at each
time step the state evolution is ruled by the reservoir state transition function.
By referring to the case of leaky integrator reservoir units [36], at each time
step t the reservoir state update equation is given by:

x(t) = (1 —a)x(t — 1) + atanh(Wyu(t) + 6 + Wx(t — 1)), (1)

where x(t) € RV% and u(t) € RM are respectively the reservoir state and the
input at time step £, a € [0, 1] is the leaking rate parameter, W, € RN¥NzxNv
is the input weight matrix, & € R™V® is the weight vector corresponding to
the unitary input bias, W € RVa*Nr ig the recurrent reservoir weight matrix
and tanh denotes the element-wise application of the hyperbolic tangent non-
linearity. Typically, a null state is used as initial condition, i.e. x(0) = 0.
The output at time step ¢ is computed by the readout as a linear com-
bination of the activation of the reservoir units, according to the following
equation:
Y(IL) = Woutx(t) + Hout; (2)

where y(t) € R is the output at time step t, W, € RV >Nz js the output
weight matrix and 6,,, € R is the vector of weights corresponding to the
unitary input bias for the readout.



A major peculiarity of the ESN approach is that only the readout under-
goes a training process, such that the weights in W,,; and 8,,,; are adjusted
on a training set in order to solve a least squares problem, typically in an
off-line fashion and in closed form, using of pseudo-inversion or Tikhonov
regularization. The reservoir’s parameters are instead left untrained after
initialization constrained to the dictates of the Echo State Property (ESP)
[14]. The ESP states that the reservoir’s dynamics should asymptotically
depend only on the driving input signal, while dependencies on initial con-
ditions should vanish with time such that the state of the network tends to
represent an “echo” of the input. Essentially, the ESP links the asymptotic
behavior of the reservoir dynamics to the input signal on which the reservoir
is running. Although a certain research effort has being devoted in the last
years to describe and understand more and more in depth the conditions
under which the ESP holds (see e.g. [37, 17, 38]), two basic conditions are
widely adopted in literature for this purpose. Specifically, a sufficient condi-
tion and a necessary condition are applied to the weight matrix W, requiring
to respectively control its 2-norm (i.e. its maximum singular value) and its
spectral radius (i.e. the maximum among the eigenvalues in modulus) to be
below unity. In the following, we will refer to the standard ESN model, as
described by eq. 1 and 2 as shallow ESN.

In this paper we are concerned with the extension of the shallow ESN
model towards a deep architecture, in which the recurrent component is hi-
erarchically organized into a stack of reservoir layers. The corresponding
model is termed deepESN; as introduced in [16, 15]. From a general perspec-
tive, it is worth to note that, although several possible ways of constructing
deep recurrent architectures have been investigated in literature [3], a stacked
composition of recurrent hidden layers is likely to represent the most common
choice (see e.g. [4, b, 6, 8]).

Focusing on the recurrent part of the architecture of a deepESN, graphi-
cally illustrated in Figure 1, at each time step the state computation follows
a pipeline from the external input towards the higher layer. Specifically, at
time step t the first layer is fed by the external input, whereas each layer
in the hierarchy at depth higher than 1 is fed by the output of the previous
layer at the same time step t.

Keeping the basic notation introduced above for shallow ESNs, here we
use Ny, to denote the number of reservoir layers in the stacked architecture,
assuming for the ease of presentation that every layer has the same dimen-
sion (i.e. the same number of recurrent units), which we indicate by Ng.
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Moreover, for every i = 1,2,..., N, we use x(t) € RV to indicate the
state of the reservoir in the i-th layer at time step ¢.

Viewing the deepESN as a whole system, the global state space of the
network can be considered as the product of the INj, state spaces of the layers
in the architecture. Accordingly, the global state of the deepESN at time step
t is represented by x,(t) = (xV(¢),xP(¢),...,xM)(t)) € RVN2, From a
dynamical system point of view, the global dynamics of a deepESN is ruled
by its global state transition function F:

FoRY x RYP o x RVR — RVR . x R (3)

TV TV
Np, times Np, times

which, given the external input, describes the evolution of the global system’s
dynamics between two any consecutive time steps, i.e. for every t it results
x4(t) = F'(u(t),x4(t—1)). The global state transition function F' can be con-
veniently considered in its layer-wise form, i.e. F = (F), F@  FWNL)
where for each i = 1,2,..., N, F® represents the state transition func-
tion ruling the dynamics of the ¢-th layer. In particular, the state transition
function of the first layer, i.e. F!), can be defined as follows:

FO . RN x RNk — RNr
xD(t) = FO(u(t),xV(t-1)) =
(1 —aMxM(t — 1)+ a™ tanh(W,u(t) + 80
WOxW (- 1)),

where a) € [0,1] is the leaking rate parameter of the first layer, W;, €
RNr*Nu g the input weight matrix (as in eq. 1 for the shallow ESN case),
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Figure 1: Layered reservoir architecture of a deepESN.



0 € RV~ is the weight vector associated to the unitary input bias for the
first layer and W € R¥»*Nr ig the recurrent reservoir weight matrix for
the first layer.

For layer i > 1, the state at time step t, i.e. x¥(¢), directly depends on
the state of the previous layer i — 1 at the same time step, i.e. xPY(¢), and
on the state of the layer i at the previous time step, i.e. xV(t — 1), as can
be seen in the third line of eq. 5. Apart from the dependence on the state of
the same layer at the previous time step, we can further observe that x(¢)
recursively depends on the activation at the previous time step ¢t — 1 of all the
previous layers i —1,2—2,...,2, 1, back to the input at the present time step

u(t). Thereby, the state transnzlon function F®, for s > 1, can be defined as
follows:
FORNu 5 RNE x . x RVE — RNR

Vv
i times

xO(t) = FOMQt),xV(t—1),....xOt-1)) =

(1 — aD)x® (¢t — 1) + a® tanh (WP x=1 (1) + 00 4
W() (1)) =

(1= a)x® (¢t — 1) + a® tanh (W FE-D (u(t), x 1>( 1),
”(t—l) xUD (¢ — 1))+
0 1 mem( 1),

where a'? € [0,1] is the leaking rate parameter of the i-th layer, Wz(l)
RNRXNR is the inter-layer reservoir weight matrix for layer i, corresponding
to the connections from the state of layer i — 1, i.c x¥~D(#), to the state of
layer i, i.e. x(t), 8% € RN® is the weight vector associated to the unitary
input bias for layer ¢ and W@ e RN2*NE ig the recurrent reservoir weight
matrix at layer 7.

Remark 1. Note that a shallow ESN can be obtained as a special case of a
deepESN whose reservoir architecture has just one layer. In fact, whenever
the hierarchy of reservoirs in the deepESN contains only one layer, i.e. if
Ny, = 1, then the state transition function ' in eq. 3 reduces to FV in eq. 4,
which in turn corresponds to the case of a shallow ESN in eq. 1.

Remark 2. [t is interesting to observe that a deepESN can be interpreted

7



as obtained by applying some constraints to the architecture of a single-layer
(shallow) ESN with the same total number of recurrent units. Specifically,
the reservoir architecture of a deepESN does not present connections from
the input layer to layers at a level higher than 1, as well as connections from
higher layers to lower layers and connections from each layer to higher layers
different from the one that immediately follows in the pipeline. Under this
viewpoint it is possible to see that the deepESN has a simpler architecture than
a single-layer ESN, with a reduction in the number of reservoir weights that
can be quantified. For instance, assuming full-connectivity in the involved
matrices, this absolute reduction amounts to (3N NgNy) + (Zf\iﬁ N3 (i —
1))+ (M N2 i) = NgN Ny + NA(N? — Np,)/2 + NA(N? — 3N, +2)/2,
which is quadratic in both the number of units per layer and in the number of
layers. This peculiar architectural organization influences the way in which
the temporal information is processed by different sub-parts of the hierarchi-
cal reservoir, composed by recurrent units that are progressively more distant
from the input. Apart from this architectural simplification, notice that lay-
ering is implemented by using non-delayed connections between successive
reservoir levels. The absence of delays in the transmission of the state infor-
mation between successive layers enables to process the temporal information
at each time step in a deep fashion, through a hierarchical composition of
multiple levels of recurrent units. As an additional point, notice that the use
of (tanh) non-linearities applied individually to each layer during the state
computation does not allow to describe the deepESN dynamics by means of
an equivalent shallow system.

Overall, the combination of the above described constraints (i.e. architectural
simplification and non-delayed connections between layers) realizes a specific
type of model that is different from the standard ESN and that has distinctive
characteristics, started to be analyzed in [15, 18, 16] and further investigated
in this paper.

Training a deepESN is a process that is carried out similarly to the case of
a shallow ESN, i.e. by adjusting on a training set the parameters of a linear
readout layer, whose operation is characterized as in eq. 2. The difference
with respect to the shallow ESN case is that at each time step ¢ the input
for the readout is given by the global state of the deepESN, i.e. by x,(¢).
Apart from these considerations, in the rest of this paper we shall not further
address the aspects related to the network training, keeping the focus of our
investigations on the deepESN dynamics.



We shall assume in our analysis that the input and the reservoir state
spaces are compact sets. Moreover, from the notation viewpoint, we will use
the symbol p(-) to denote the spectral radius of its matrix argument, and
I to denote the identity matrix (whose dimension can be obtained from the
context).

Recently, the ESP for valid reservoir’s dynamics initialization has been
extended to the case of deepESNs in [18], where a sufficient condition and
a necessary condition for the ESP to hold in case of hierarchical reservoir
architectures have been provided. These conditions are briefly recalled in
the following, while the reader is referred to [18] for their proofs. In par-
ticular, the sufficient condition for the ESP of a deepESN is related to the
study of contractivity of the state transition function in eq. 3 that rules the
network’s dynamics. Basically, such condition states that the maximum rate
of contraction among the dynamics of all the reservoir layers should be below
unity, as reported in the following Proposition 1.

Proposition 1. Consider a deepESN whose dynamics is given by the state
transition functions in eq. 3, 4 and 5. A sufficient condition for the ESP to
hold is then given by

max CW <1, (6)
i=1,...N,

where the CY values are Lipschitz constants for the state transition functions
of the reservoir layers in the deepESN architectures. Specifically,

(a) for the first layer (i = 1)
cW =(1—-ab)+ a(l)||\fv(1)||2
(b) for higher layers (i > 1)

CO = (1= a®) 4+ aD(CEDW |5 + [WO,).

The necessary condition for the ESP of deepESNs is rooted in the analysis
of asymptotic stability of network’s dynamics. Essentially it says that the
maximum among the effective spectral radii of the reservoir layers should be
below unity, as stated by the following Proposition 2.

Proposition 2. Consider a deepESN whose dynamics is given by the state
transition functions in eq. 3, 4 and 5, and assume that the set of admissible



inputs for the system includes the null sequence. Then, a necessary condition
for the ESP to hold is given by the following equation:
1 — a1 ()W (@) 1.
izrﬁé,}z{va(( I+ a"WW) < (7)
Notice that in Propositions 1 and 2 we respectively make use of the 2-
norm and of the spectral radius. Although these operators are clearly related
[39], we recall that their values are generally different unless symmetric ma-

trices are considered, which is typically not the case in common reservoir
initialization procedures.

Remark 3. Note that if the deepESN contains only one reservoir layer, i.e. if
Ny, =1, then the sufficient and the necessary conditions reported respectively
i eq.6 and 7, reduce to the corresponding conditions for the case of shallow
ESN, as usually reported in the RC literature [14, 11].

Here it is worth to observe that, although the necessary condition in
eq. 7 is strictly related to the stability analysis of deepESN dynamics, it
actually covers only a limited aspect of the topic. Indeed, it deals with
asymptotic stability of the null state as fixed point of the state transition
function governing the system, under the assumption of a constant null input.
In this sense, the analysis of RC dynamics through the spectral radii in the
necessary condition expressed by eq. 7 is in fact “blind” to the external input.
In more general cases, the stability of the dynamical system implemented by
the (hierarchical) reservoir of a deepESN should be analyzed by taking into
consideration the actual trajectories in the state space in which the system is
driven also in dependence of the actual input signal. This aspect in addressed
in the following Section 3.

3. Stability of deepESN Dynamics

In this Section we go more in depth in the analysis of the stability of
dynamical systems realized by hierarchically organized RNNs. In particular,
in an attempt to remove the constraints that are intrinsic in the analysis
provided by the necessary condition for the ESP, we focus on the study
of the Lyapunov exponents of the dynamical system implemented by the
reservoir part of a deepESN. Lyapunov exponents represent a mathematical
tool that provides a measure of the sensitivity of a dynamical system to
initial conditions, and as such, in the case of RC networks, are intuitively
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and intimately related to the true essence of the ESP. Recently, the link
between Lyapunov exponents and the ESP has been further investigated in
[40], in which results in the area of mean field theory are used to show the
relevant role of Lyapunov exponents in delineating the domain of “local”
validity of the ESP in relation to the input [40]. In the RC area, our analysis
extends the applicability of the study of the Lyapunov exponents from the
context of shallow RC networks (see e.g. [30, 12, 21, 22, 41]) to the case of
reservoirs with a structured hierarchical organization.

In dynamical system theory, Lyapunov exponents give a measure of the
rate of exponential distortion (i.e. stretching or shrinking) of the trajec-
tories of a dynamical system starting in infinitesimally close initial states
[42, 43, 44]. In general, an N-dimensional dynamical system is featured by
N Lyapunov exponents, each of which characterizes the rate of distortion
along one of the directions in the state space in which the system’s trajec-
tory is evolving. If a Lyapunov exponent is smaller than 0 it means that
two neighboring trajectories will stay close to each other along the direc-
tion corresponding to that exponent. Conversely, if a Lyapunov exponent
is greater than 0, then two neighboring trajectories will deviate from each
other exponentially fast along the corresponding direction, and in this case
predictability of the system can be lost in a relatively short time. The maxi-
mum Lyapunov exponent plays a major role in this context, as it dominates
the rate of divergence or convergence in the state space and thereby rep-
resents a useful indicator of the stability of the whole system during its
evolution. In particular, if the maximum Lyapunov exponent has a value
that is below (resp. above) 0, then the dynamical system is characterized by
stable (resp. unstable) dynamics, with the value of 0 denoting a transition
condition known as the edge of criticality [32, 29, 45], the edge of stability
[46, 21, 47], or the edge of chaos [25, 24, 23, 30]. In common practical sit-
uations, it is useful to consider the local Lyapunov exponents [19, 20], i.e.
local finite-time approximations evaluated over a trajectory followed by the
dynamical system while it is driven by a real input sequence. The spectrum
of the local Lyapunov exponents is strictly related to the Jacobian of the
state transition function ruling the dynamics of the system, which describes
the instantaneous rate of local distortion at each time step. In particular,
such approximations can be computed from the logarithm of the eigenvalues
(in modulus) of the Jacobian of the state transition function, typically aver-
aging the outcomes over a long trajectory [42]. In the following, we shall use
the symbol \,,.. to denote the maximum among the local Lyapunov expo-
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nents, which in light of the considerations outlined above can be adopted as
a practical indicator of the local stability/instability dynamical behavior of
the system under consideration along a real trajectory in the state space.

For a deepESN whose dynamics is described by the global state transition
function F'in eq. 3, and it is layer-wise implemented through equations 4 and
5, the Jacobian matrix at time step ¢, denoted by Jpx,(t), can be written as
a block matrix in the following form:

JF(I),xU) (t) JF(l),x(Z) (1) . JF(1)7X(NL) (t)
JF(Z),xU) (t) JF(Q)yx(Z) (t) oo Jp@ v (t)

JF,xg (t) - . : .. : / (8)
JF(NL)7X(1) (t) JF(NL)7X(2) ) ... JF(NL>,X(NL) (t)

where for 4,5 = 1,..., N, the block in position (i,7), i.e. Jpu o (t), is
the partial derivative of the state transition function of the i-th layer with
respect to the state of the j-th layer at previous time step, i.e.

OFD(u(t),xM(t —1),xP(t—1),...,xO(t—-1)) 9
X0 —1) - 0

Jpw) ) (t) =

It is interesting to observe that the hierarchical organization of the reservoir
layers in a deepESN architecture is reflected into the shape of the Jacobian
matrix, which results to be a lower triangular block matrix. This structure
can be exploited in the computation of the Jacobian matrix in eq. 8, as stated
by the following Lemma 1.

Lemma 1. Consider a deepESN with Ny layers, and whose dynamics is
given by eq. 3, 4 and 5. For everyi,j =1,2,..., N the block element (i, j)
of the Jacobian matriz of the global state transition function of the deepESN
can be computed as follows:

(

0 fori<j
(1 — aNI + DD ()W fori=j
Jrw o (t) =
(Hi;(g*'l) ali—k)pli—k ) [ (1— a(J)
\ a(])D(?)( )W(7)] fori>j
(10)
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where, for everyi =1,2,..., Ny, DW(t) is a diagonal matriz whose non-zero
entries are given by (1— (21 (1))?), (1— (25 (1)), ..., (L= (FW, (1))?). where
the elements of the vector XV (t) are defined as:

tanh(Wi,u(t) + 00 + WxW (¢ — 1)) ifi=1
(1) = 5 .
() tanh(W3 FO-D (u(t),xD(t —1),...,x0D(t — 1))+
0% + Wix0 (¢t — 1)) ifi > 1.
(11)
Proof. The proof is given in Appendix A. (I

The knowledge of the Jacobian of the global state transition function of
a deepESN is useful, e.g. for the computation of local first-order approxi-
mations of the network’s state evolution over time. However, whenever we
are interested in the computation of the eigenvalues of the Jacobian in eq. 8
we can exploit a result from matrix theory to simplify the computation and
avoid explicit calculation of the lower triangular blocks of the Jacobian. This
result is reported in the following Lemma 2.

Lemma 2. Consider a deepESN with Ny layers, and whose dynamics is
giwen by eq. 3, 4 and 5. Then the set of the eigenvalues of the Jacobian
matriz of its global state transition function (in eq. 8) is given by the set of
the eigenvalues of its diagonal block matrices, i.e. for every time step t it
results

¢ig(J e, (1)) = {eig(T g oo (£)]i = 1,2, N}, (12)

where eig(+) is used to denote the set of eigenvalues of its matriz argument.
Proof. The proof is given in Appendix B. O

Given the results of the previous Lemmas 1 and 2, we can now provide
an analytical expression for the A, of a deepESN, as stated in the following
Theorem 1.

Theorem 1. Consider a deepESN with Ny, layers, whose dynamics is given
by eq. 3, 4 and 5, and that is driven by an input sequence of length Ns. Then
the mazimum local Lyapunov exponent of the dynamical system implemented
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by the (hierarchical) reservoir component of the deepESN can be estimated
as follows:

N
1 Qs . N
Amaz =  Max — — z In (Jeig, (1 — aNI + DO (t)W(’L)) ), (13)
i=1,..., NL s t=1
k=1,.,Ng

where |eig,(-)| denotes the modulus of the k-th eigenvalue of its matriz argu-
ment and DO(t) is defined as in Lemma 1.

Proof. Given the input sequence of length N, and the resulting network’s
dynamics, the A, value can be estimated by the quantity:

N,

=S In(feig (T (0], (14)

max —
k'=1,2,...N,Ng Ny

Amax

where the index k' spans over the entire dimension of the whole Jacobian. By
applying the results of Lemmas 1 and 2 directly to the expression in eq. 14,
we have that at each time step, the maximum of the |eig;, (Jpx,(t))| values
corresponds to the maximum of the |eig, ((1—a®)I+a@DO (t)W®)| values.
From this, the statement of the theorem easily follows. O

The value of the \,,,, estimate derived in Theorem 1 provides us with
useful information about the quality of the deepESN dynamics in terms of
stability. In particular, from eq. 13 we can see that the relation to the driving
input signal at each time step is embedded into the D (¢) matrices, through
the actual values of the network’s states along the trajectory followed in
response (also) to the history of the inputs that have excited the reservoir.
In this sense, the condition A, < 0 can provide a mean for assessing the
network stability that is more complete than the one that is given by the
necessary condition for the ESP in eq. 7. On the other hand, if we restrict
our analysis around the null state and assume null input for the system, then
the condition \,,.. < 0 reduces back to the necessary condition for the ESP
ineq. 7.

Remark 4. Note that if the deepESN contains only one reservoir layer, i.e.
if Ni, =1, then the formula for the computation of A\ in eq. 13 reduces to
the case of shallow ESNs as reported in literature (see e.g. [21, 22, 40]).
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Remark 5. Here it is worth noticing that in general cases the value of Az
should not be considered as a predictor of the network performance on com-
putational tasks. On the one hand, values of A\pae > 0 denote an unstable
(chaotic) network’s behavior, which is undesirable as it would imply that two
input sequences that only slightly deviate from each other will lead the same
network towards completely different states, thus compromising the general-
ization ability of the model. On the other hand, too small values of Apae could
denote a dynamic regime that is restricted into a region of excessive stability
(order) of network’s states, in which differences in the external input do not
have a strong impact on the state. In such cases it is possible that the net-
work forgets the previous inputs too fast, resulting in a system with limited
memory that could not be suitable to tackle some kind of tasks (e.g. those
requiring much in terms of memory). Essentially, the value of \pax that is
more appropriate to solve a specific task results from a delicate trade-off be-
tween stability of dynamics and memory span, as already discussed in the RC
literature in terms of the relation between pairwise separation property and
fading memory of reservoirs [23]. Thus, the result provided by Theorem 1
should not be interpreted as a mean to predict the performance on general
tasks, instead it should be seen as a tool to accurately control the regime of
system dynamics developed by a deep recurrent architecture.

Remark 6. By inspecting eq. 13 we can notice that the individual contri-
butions given to the Apae computation by the different layers in the deep
recurrent architecture are collectively aggregated by means of the mazimum
operator. This means that when we consider a deep recurrent architecture
with progressively more layers, the resulting value of Mpae can never decrease
as the number of layers increases. In this sense, i.e. in the process of incre-
mental network construction, we can see that the value of Apas 1S @ monotonic
non-decreasing function of the number of layers.

Remark 7. A closer look at the Apae formula in eq. 13 allows us to give an
insight on the conditions under which adding reservoir layers to a deepESN
architecture actually increases the value of Apae and thereby lowers the degree
of stability of the system. Assuming that all the layers in the network are fea-
tured by the same hyper-parameterization (leaking rate, inter-layer and recur-
rent weight matrices), then we can see that for each time step the eigenvalues
(in modulus) of Jpw o (t) are upper bounded e.g. by its 2-norm. Following
this line of reasoning, we can see that if the norm of the inter-layer weights
is smaller than 1, then the bounds on the eigenvalues will tend to increase at
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each layer. Thereby, whenever one desires to have a Apq. trend character-
ized as an increasing function of the number of reservoir layers, all with the
same properties, our suggestion is to use “small” weights in the inter-layer
connections.

Remark 8. The mathematical framework of Theorem 1, although proposed
for deep RC models, can be applied also to the case of trained deep RNNs
made up of stacked recurrent layers, at any stage of the training process,
taking care of the evolution of the recurrent weight matrices over time.

4. Numerical Simulations

In this section we practically demonstrate the tool for stability analysis of
deepESN dynamics developed in the previous Section 3. We first investigate
the effect of the variation of deepESN hyper-parameters on the resulting
values of A4, for increasing number of network’s layers. Then, we focus on
assessing the effect of layering itself on the \,,,, value, varying the conditions
for network’s setting and in comparison with shallow ESN cases. Finally, in
Section 4.1 we investigate the relations to the short-term Memory Capacity.

In our experimental investigation, we considered deepESN where the
weights in Wy, and WO, as well as, for every layer ¢ > 1, the weights
in Wl(;) were chosen from a uniform distribution over [—1,1]. For the sake
of simplicity, all the bias terms for the reservoir layers were included into
the corresponding input or inter-layer weight matrix. The values in w
were randomly chosen in [—1, 1], and then re-scaled to meet a desired spec-
tral radius value, denoted by p, whereas the values in W, were re-scaled
to a desired value of its 2-norm, an input scaling parameter denoted by
scalej,, 1.e. ||[Wi,l|l2 = scaley,. Analogously, the values in each Wz(ll) were
re-scaled to a desired 2-norm, an inter-layer scaling parameter denoted by
scalel! . ic. WY, = scalel?). For the sake of simplicity, we used the
same hyper-parameterization in all the layers, ie. for all i = 1,2,..., Np,
we considered p = p, ¥ = g and scalegl’) = scale;. We generally varied
the considered values of the hyper-parameters, through the different exper-
iments, in the following ranges: p € [0.5,1.5], a € [0.1,1], scale;, € [0.1,1],
and scale; € [0.1,1], using in every case a step-size of 0.1. The values of
p, a, scaley, and scale;, as well as the number of layers Ny, were set in
the different cases with the sole purpose of analysis and without any aim to
optimize the achieved results. For every hyper-parameterization we indepen-
dently generated 100 network realizations (i.e. guesses with different random
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seeds), and averaged the results over such realizations. As driving input sig-
nal for A\, computation' we considered a one-dimensional time-series ( Ny
= 1) of length 5000 (N, = 5000), whose elements were individually drawn
from a uniform distribution in [—0.8, 0.8], and whose first 100 steps were used
as initial transient for the reservoir states.

In a first set of experiments, we targeted the analysis of A\, variability
resulting from changing the values of the deepElSN hyper-parameters, while
increasing the number of layers and the total number of reservoir units. For
these experiments we considered reservoir layers with Nz = 10 units, increas-
ing the number of layers from 1 to 10, i.e. Ny € {1,2,...,10}. The results of
the A4 computation under the considered settings are graphically reported
in Fig. 2, where progressively lighter colors correspond to higher values of
Amaz, 1-€. to progressively less stable networks dynamics.
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Figure 2: Averaged values of A4, obtained by deepESN for increasing number of reservoir
layers. (a): Increasing values of p, a = 1, scale;, = 1, scaley = 1. (b): Decreasing values
of a, p =1, scale;, = 1, scaley = 1. (c): Decreasing values of scale;,, p =1, a = 1,
scale; = 1. (d): Decreasing values of scaley, p =1, a =1, scale;, = 1.

As we can see, the developed tool allows us to identify regions in the net-
work’s hyper-parameters space characterized by different degrees of stability

Every 50 time steps, which did not affect the precision of the results.
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of the involved state dynamics. Specifically, we can observe in Fig 2(a) that
higher values of p result in higher values of A,,4,, confirming what has been
observed also in shallow ESNs e.g. in [22]. Moreover, we can see that the
value of \,q. tends to increase for increasing number of layers in the deep
recurrent architecture, eventually switching from stability to an unstable be-
havior in correspondence of the higher values of p and of Ny. From Fig. 2(b),
2(c) and 2(d) we can appreciate the effect of the variation of a, scale;, and
scaley, respectively, on the value of \,,.,. As a rule of thumb, we can see
that for all these three hyper-parameters smaller values lead to higher values
of A\paz, With an increasing trend for increasing Ny, although the general
impact appears to be less strong than in the case of p, as it can be observed
by comparing the ranges of A, variation in the different cases. Results
achieved on the synthetic data described so far are qualitatively confirmed
by the experimental assessment on cases with real-world input, as reported
in Appendix C.

In a second set of experiments, we have analyzed more in depth the
impact of the hyper-parameters that led to a higher excursion in the results
illustrated in Fig. 2, namely the spectral radius and the number of recurrent
units (layers in the deepESN). We started by comparing the values of A4
obtained by deepESNs for increasing values of the p hyper-parameter, varying
the number of networks layers while keeping constant the number of total
reservoir units to 100. Fig. 3 shows the achieved values of A,,,, when the
100 reservoir units are arranged into 20, 10 and 5 layers, where in each case
results are averaged (and standard deviations are computed) over the network
realizations. For a further comparison, in the same figure we also plotted the
results achieved with a shallow ESN with the same hyper-parameterization
and total number of reservoir units. From Fig. 3 the effect of layering emerges
clearly: a higher number of layers leads to a higher value of \,,4,. This effect
is amplified and becomes increasingly significant for increasing values of p (as
can be seen by looking also at the standard deviations in Fig. 3). Moreover,
from the same figure we can see that from a certain point on, the same
values of A4 achieved by shallow ESNs are obtained by layered reservoirs
in correspondence of smaller values of p. Although Fig. 3 refers to one among
the possible choices of the a, scale;, and scale;; parameters, we observed that
the emerging properties are qualitatively independent of such choice?.

2Exceptions are represented by the degenerate cases achieved in correspondence of a
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Figure 3: Averaged values of A4, obtained by deepESN with a total number of 100
reservoir units organized in 20, 10 and 5 layers. The considered hyper-parameterization
is for increasing values of p and a = 1, scale;, = 1 and scale; = 0.5. Results achieved by
a shallow ESN with the same hyper-parameterization and the same number of reservoir
units are reported as well for the sake of comparison.

An analogous experimental assessment, but for increasing total number
of recurrent reservoir units, is provided in Fig. 4, which shows the A4, val-
ues obtained by deepESNs in which the recurrent units are organized in a
progressively higher number of layers, each composed of 10 units. For com-
parison, in the same figure we plotted the results achieved, under the same
experimental conditions and number of reservoir units, by shallow ESNs and
ESNs in which the reservoir units are arranged into an increasing number of
non connected groups. The latter represents an architectural variant called
groupedESN, which in practice implements a similar degree of sparsity than
deepESN, but neglecting the layering factor. Specifically, in the architec-
ture of a groupedESN the recurrent units are organized in groups, or sub-
reservoirs, each of which is fed by the external input, while connections among
the units in different sub-reservoirs are avoided. The groupedESN has been
introduced in [15, 16] as an architectural baseline for comparative assess-

values close to 0.
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ment of the impact of the layering factor on the characterization of the state
evolution in deepESNs. For all the cases considered in Figure 4, the plot
shows the values averaged (and the standard deviations computed) over the
different network realizations. Results in Fie. 4 clearlv show that oreanizing

0 ! 3 -
-0.05 | G 1.---- bi
x -0.17 .
~ -015F .
-0'25;/ 1 —4—deepESN |
-0.25 - - $- ‘groupedESN| |
shallow ESN
_0'3| 1 | | 1 | 1 | L

10 20 30 40 50 60 70 80 90 100
Number of Recurrent Units

Figure 4: Averaged values of \,,,, obtained by deepESN for increasing number of reser-
voir units, organized in layers of 10 units each. The considered hyper-parameterization
corresponds to p =1, a = 1, scaley, = 1 and scale;; = 0.5. Results achieved by a shallow
ESN and groupedESN with the same hyper-parameterization and the same number of
reservoir units are reported as well for the sake of comparison.

the same number of recurrent units into a layered architecture naturally and
systematically leads to an overall network’s dynamics that is characterized
by higher values of \,,.., with regimes closer to the edge of criticality. In
this respect, the impact of layering can be observed already for networks
with a few tens of recurrent units (i.e. with a small number of layers in the
deepESN experimental setting), while it becomes increasingly significant for
increasing number of units (by looking at the standard deviations in Fig. 4).
Moreover, we can observe that the results achieved for increasing number of
units by groupedESNs and shallow ESNs are very close to each other, and,
in comparison, a smaller number of units in deepESNs leads to similar (and
even higher) values of \,,,4,. Looking at the standard deviations in the plot in
Figure 4 we can also observe that the variability of the achieved results tends
to decrease for increasing network’s sizes (a common effect in RC due to the
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randomized initialization process on the reservoir’s weights, see e.g. [12]),
with an even more noticeable effect in the case of deepESN. Furthermore, it
is worth noticing that while the case illustrated in Fig. 4 is well representa-
tive of the emerging behavior, we observed the same characterization of the
dynamics also for other choices of models hyper-parameters in the considered
ranges>.

Overall, the findings described in this section revealed the intrinsic role of
layering in recurrent neural models in terms of increased values of the maxi-
mum local Lyapunov exponent A,,,. This also implies that compared to the
shallow case, deep recurrent networks can be brought more easily close to
the critical region of stable-unstable transition of system dynamics. In this
regard it is worth mentioning that, although in general not directly related
to the predictive performance on learning tasks, the edge of criticality iden-
tifies an region of dynamical regimes in which interesting and rich behaviors
emerge. In fact, several evidences have been reported in literature that RNNs
whose dynamics is brought close to the edge of criticality are able to develop
richer representations of their input history, with the ability to perform com-
plex processing on temporal data and likely resulting in better performances
on computational tasks that require longer short-term memory abilities (see
e.g. [23, 24, 25, 26]). The fact that the performance of RNN models has a
peak when the their dynamics are nearby the critical transition is a known
fact in literature for several classes of problems, e.g. in real-world tasks in
the areas of speech processing [12] or telephone load predictions [32]. Other
examples are provided by benchmark tasks in the area of spiking neuron
models, such as the computation of parity functions of spiking inputs or the
classification of noisy spike patterns (see e.g. [31, 25, 24]), as well as in the
ESN area, including the assessment of short-term memory and modeling of
sinusoidal, Mackey-Glass, and NARMA systems (see e.g. [29, 30, 12, 32]). In
particular, a well representative task in this regard is given by the short-term
Memory Capacity task [33], whose relation to the critical regime of system
dynamics has already been experimentally shown e.g. in [27, 28, 12, 30, 29].
In this context, allowing to incorporate the influence of the driving input
signal in the analysis of network stability, the control of the maximum lo-
cal Lyapunov exponent represents a more accurate way to characterize the

3Exceptions are represented by the degenerate cases obtained for large values of p > 1
and for values of a or scale;, close to 0.
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richness of reservoir dynamics in the critical regime than just controlling the
spectral radius of the recurrent reservoir weight matrix, which in this respect
acts just as an a-priori measure [27, 22, 12, 46, 37].

The experimental results illustrated in this section showed that organiz-
ing the same amount of recurrent units into layers has the inherent effect of
accelerating the process of approaching the stability limit of network’s dy-
namics. In this sense, layering in recurrent networks can be seen as a sort of
reservoir optimization methodology that is both simple and cheap, allowing
a network with a smaller total number of recurrent units (than required in
shallow cases) to develop a state behavior within a rich dynamical region.
As already expressed in Remark 5, in general the performance on a compu-
tational task is strongly related to the properties of the task itself (and its
target). Thereby, in general cases, dynamics at the edge of stability could
neither guarantee nor be necessary to obtain good results (just like setting
a spectral radius value close to 1 does not necessarily lead to a better per-
formance in shallow ESNs). Our analysis suggests that whenever one knows
that the temporal task at hand has a characterization that requires dynamics
close to the edge of stability to be properly addressed, then it is well advis-
able to organize the recurrent units into layers and control the proximity to
the boundary of stability using the mathematical framework proposed in this
paper. Besides, note that also when the task at hand is known to require re-
current dynamics quite far from the border of stability, our framework can be
used to control the dynamical regime developed by the network and keep it
within the region of interest for the task. Moreover, in uncertain cases, when
nothing is known on the task to be approached, the reservoir organization
by layering could anyway represent a convenient choice for network construc-
tion. The results of our analysis, on the one hand, contribute to explain the
potentiality of layered recurrent models in outperforming shallow networks
with the same number of recurrent units [15, 16] in tasks for which reservoirs
brought to the limit of stability have shown a performance maximization,
such as the short-term Memory Capacity (see [30] for a discussion on this
aspect in the case of shallow ESNs). On the other hand, as the increase in
the number of layers could result in an undesired unstable network dynamics,
they also emphasize the importance of the analysis and control of the A4,
value through the proposed methodology.

The relation between A4, and the short-term Memory Capacity of deep-
ESNs is investigated in the following Section 4.1.
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4.1. Short-term Memory Capacity

The short-term Memory Capacity (MC) task has been introduced in [33]
with the aim of assessing the ability of a reservoir network to precisely recall
its previous input history from its state. Specifically, the task consists in
training different readout units to reconstruct the input signal with an in-
creasing delay. Using y,4(t) to denote the output of the readout unit trained
to recall the input signal with delay d, i.e. u(t — d), the MC is defined as
follows:

o0
MC =" r*(ult - d),ya(t)) (15)
d=0
where 72(u(t — d),y4(t)) is the squared correlation coefficient between the
signals u(t — d) and y4(t). As input signal for the task we adopted the same
sequence used for the experiments described in Section 4, prolonging it to a
total length of 6000 time steps. Specifically, the first 5000 time steps have
been used for readout training using pseudo-inversion (with a transient of 100
steps), leaving the remaining 1000 time steps for test. Following a similar
approach to e.g. [48, 30], we practically implemented the task by considering
a finite number of 200 delays, equal to the twice the maximum number of
total reservoir units used in the experiments, i.e. 100 in our case. Also for the
experiments described in this section, for each hyper-parameterization con-
sidered, the presented results were obtained as the average over 100 network
realizations (i.e. guesses with different random seeds for initialization).

We started by considering deepESNs with 10 layers of 10 units each,
varying the value of p in [0.5,1.5] and the value of scale; in [0.1, 1], keeping
fixed ¢« = 1 and scale;,, = 1. We computed the values of A, for the
different cases on the training sequence, plotting the achieved data versus
the corresponding test MC values. The result is illustrated in Fig 5. As it
can be seen, the MC values tend to increase for increasing values of \,,.z
with a peak close to the edge of stability (i.e. for A\, =~ 0), after which
the MC suddenly drops. We could also observe that the MC values tend to
naturally cluster based on the values of the p hyper-parameter.

A further set of experiments aimed at comparing the MC values obtained
by deepESNs with those obtained by shallow ESNs under the same range
of settings, varying the number of recurrent units and the value of p. For
these experiments we considered an increasing number of total reservoir units
varying from 10 to 100, organized in layers of 10 units each in the case of
deepESNs, and in a single layer in the case of shallow ESN. Note that this
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Figure 5: Test MC values of deepESNs plotted versus the A4, estimated on the training
set.

choice allowed us to perform a fair comparison between the deep and shallow
cases, under the condition of using the same number of trainable weights for
the linear readout (i.e. the same number of free parameters for the learner).
As regards the other aspects of networks hyper-parameterization, we consid-
ered values of p in [0.5,1.5], while keeping fixed the values of scale; = 0.5
and scale;, =1 (in order to ensure, for both deepESNs and shallow ESNs; to
have similar conditions of reservoir non-linearities operating sufficiently far
from a linear regime, where the MC results could be biased towards higher
values).

The results are illustrated in Fig. 6, where lighter colors corresponds to
higher values of the MC. A comparison between the results of deepESN and
shallow ESN, respectively in Fig. 6(a) and Fig. 6(b), clearly highlights the
advantage of the layered architecture and, in light of the results in Fig. 5,
it reflects the evidences reported in Section 4. First of all, we can see that
deepESNs achieve higher values of MC than shallow ESNs under the same ex-
perimental conditions, which is in line with previous results on hierarchichal
reservoir architectures [15, 18]. Secondly, and more importantly, results in
Fig. 6 point out that deepEiSSNs are able to reach higher values of MC “be-
fore” shallow ESNs; both in terms of smaller p values and in terms of a
smaller total number of recurrent units (i.e. with a cheaper network’s ar-
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Figure 6: Test MC values for increasing number of total reservoir units and p. (a):
deepESNs with reservoir layers of 10 units; (b): shallow ESNs under the same hyper-
parameterization and number of reservoir units.

chitecture), which confirms the results on the A, computation provided
in Section 4 (see Fig. 3 and 4). Moreover, we can see that the drop in the
MC value for higher values of p is rather abrupt for deepESNs, while it is
smoother for shallow ESNs. In light of our analysis, such observation can
be explained in terms of the higher rate of \,,,, increase emerged in layered
reservoir architectures for increasing values of p (see Fig. 3).

5. Conclusions

In this paper we have addressed the study of deep RNNs from a dynamical
system viewpoint, focusing on the fundamental issue of stability. To this aim,
we have developed a mathematical tool that extends the applicability of the
analysis through the local Lyapunov exponents to the case of hierarchically
organized recurrent neural models. In the analysis of the network’s stability,
such a tool allows us to take into practical account also the external input
signals that are actually influencing the system’s dynamics.
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The proposed methodology has been introduced in the domain of deep
RC networks, where its effectiveness has been shown on three datasets, cov-
ering both cases of artificial as well as real-world input signals. Moreover,
the proposed tool allowed us to study the inherent role played by the layer-
ing factor in recurrent models. In particular, we have shown that increasing
the number of layers in a recurrent architecture naturally leads the resulting
systems dynamics towards progressively less stable and richer regimes. We
have provided experimental evidence suggesting that the same amount of
recurrent units has a richer dynamical behavior that is pushed closer to the
edge of stability whenever the units are arranged into a hierarchy of layers.
Results on the MC task pointed out that this phenomenon has interesting
implications in cases in which the temporal task under consideration is better
approached by a recurrent model operating close to the border of stability.
Specifically, compared to shallow recurrent architectures, hierarchically or-
ganized recurrent models required a smaller number of recurrent units to
achieve similar memory lengths, at the same time showing a higher peak of
memory under analogous settings.

We hope that the approach developed in this paper would help to enhance
the understanding on the theoretical properties of the dynamical behaviors
developed by deep RNNs. At the same time, we believe that the proposed
methodology represents a useful ground for a principled exploitation of the
intrinsic potentiality of hierarchical recurrent models.

Appendix A. Proof of Lemma 1

case 1 < J:

This case corresponds to the higher triangular block matrices in Jpx, (t).
Based on the definition of the state transition function of individual layers in
the deepESN, in eq. 5, it is straightforward to see that such block matrices
are all null, as the state of each layer i in the architecture does not depend
on the state of higher layers j > 1.

case i = j:

This case corresponds to the diagonal block matrices in Jry, (t), expressing
the dependence between two consecutive states at the same layer. In the
following computations we assume that ¢ > 1, whereas the case i = 1 is
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obtained in the same fashion. We have:

OF @ (u(t),xM (t—1),x@ (t—1),... xD (t—1
JF(O,x(i)(t) _ (u(2), (8x()'i)(t—(1) ) (t=1) _

o (L= a®)xO(t — 1) + ol tanh (W FE=D (u(t), xV(t — 1),

xO(t = 1), xEV (= 1)) + 00 + WOxO)(t — 1)) =
(A.1)

(1= a1+ al) 2 (tanh(W FED (u(t), xD( - 1),
@ (t —1),....x0D(t - 1)) + 00 + WOxO (1 — 1)) =

(1 — aNI + DD (WD,
where D@ (t) is a diagonal matrix whose non zero elements are the derivative

of the activation of the reservoir units in the i-th layer computed by neglecting
the leaky dynamics, which in the case of tanh non-linearity is as follows:

1— @2 o .0
~ (1) 11)2
. 0 1— (75 (1 . 0
D(z)(t) _ ' ' ( 2 ( )) ' '
0 0 o 1= (@ (1)
and where for j = 1,2,..., Ng, igl) (t) are the elements of the vector XV (t) =

tanh(W FO-D(u(t), xV (t—1), x@ (t—1), ... x0V(t—1))+00+ WO xO) (1—
1)).

case i > j:

This case corresponds to the block matrices below the diagonal of Jp, (1),
expressing the dependence between the state of the layer ¢ at time step ¢ and
the state of the lower layer j in the architecture at the previous time step.
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In this case we have:

AF@® (u(t),xD (t—1),x@ (t—1),... x® (t—1
JF(i),x<j>(t) = e (ax<)j)(t_(1) : i)

% (1= a)xD(t —1) 4+ al tanhEWE;)F(ifl)(u(t), xW(t —1),
x@(t—1),..., x0TVt -1)) + 00 + WOxO(t — 1)) =

0l 52— (tanh(W FOD (u(t), xD(t — 1), x@(t = 1),

xUD(1— 1)) + 09 + WixD (1 —1))) =

aD® (t)WE;)JF(i—1)7x(j) (t);

(A.2)
where, solving the recursion in the last line of eq. A.2, we get
Jpa <o (t) =
( ;‘c—:(gﬂ) a(i—k)D(i—k)(t)wgli—k))JF(j>7x<j)(t) = (A.3)

A

( Z_:(gﬂ) =R i—k) (t)Wz(zi_k)) [(1 — a1 + a(j)D(j)(t)W(j)}.

Appendix B. Proof of Lemma 2

The result of Lemma 2 follows from elementary matrix theory. In the
following we describe a simple way of seeing it. We first recall that the set of
eigenvalues of a matrix is given by the roots of its characteristic polynomial.
In our case we have that the eigenvalues of Jpy, () are the solutions of

det(T s, (£) — \T) = 0, (B.1)

where det(-) denotes the determinant of its matrix argument. We can then
recall that the determinant of a lower triangular block matrix is given by the
product of the determinants of its diagonal blocks. In light of this we can

rewrite eq. B.1 as
Np

H det(JF(i)7x(7;)(t) — /\I) =0, (B.Q)
i=1
from which we can conclude that the set of eigenvalues of Jpy, (f) is given
by the set of eigenvalues of its block diagonal matrices, i.e. eig(Jrx,(t)) =
{eig(JF(z‘),X(i) (t))|l =1,2,..., NL}.
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Appendix C. Numerical Simulations on Real-world Cases

Here we show the application of the proposed tool for the stability anal-
ysis of deep recurrent models on real-world cases. Specifically, we report the
results of the computation of the maximum local Lyapunov exponent of deep-
ESN states, analyzing the impact of varying the network’s hyper-parameters
and the number of layers in the architecture.

As driving input we have considered temporal signals from two real-world
datasets. The first is the Sunspot dataset from http://www.sidc.be/silso/
home, which provides updated sunspot numbers aggregated in different ways.
This dataset has been used, under a predictive setting, in previous works on
RC-based networks, e.g. in [49, 50, 51]. In our experiments we considered
daily sunspot numbers from October 23 2003 to June 30 2017, for a total
number of 5000 time-steps. The second dataset, referred to as the Electricity
dataset, contains the hourly single national price of electricity on the Italian
market and is online available at http://www.mercatoelettrico.org/en/
download/DatiStorici.aspx. The work in [52] reported an excellent per-
formance of an ad-hoc RC model in a 24 hours-ahead prediction settings on
this data. Here, for our purposes, we considered the first 5000 time-steps of
the hourly data pertaining to the year 2013. For both datasets, the original
input data were divided by 100 to get signals with similar amplitudes as
in the case of artificial data in Section 4, at the same time avoiding trivial
saturation effects on the reservoir units in the first layer. All other aspects
of the experimental settings adopted were as reported in Section 4 for the
case of the artificial input data sampled from a uniform distribution. Re-
sults achieved on the Sunspot and on the Electricity datasets are reported in
Fig. C.7 and C.8, respectively.

As already observed in Section 4, inspection of the plots in Fig. C.7 and
C.8 reveals conditions of network’s settings characterized by state dynamics
with different regimes. In particular, results show that higher values of A,
are obtained when a progressively deeper architecture is considered, and
for increasing values of p. As regards the other hyper-parameters we can
see that they have a more limited impact on the dynamical regimes than
p. Specifically, decreasing values of a, scale;, and scale; lead to increasing
values of \,,4., with a trend that is more pronounced for deeper networks.

Overall, results in Fig. C.7 and C.8 generally confirm the qualitative
analysis already discussed in Section 4 with regard to Fig. 2, though with
few differences on the quantitative side (i.e. on the exact values of A\juz).
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Figure C.7: Averaged values of A4, obtained by deepESN on the Sunspot dataset for

incr

easing number of reservoir layers. (a): Increasing values of p, a = 1, scaley, = 1,

scale; = 1. (b): Decreasing values of a, p = 1, scale;, =1, scaleg = 1. (c): Decreasing
values of scaley,, p =1, a =1, scale;; = 1. (d): Decreasing values of scale;, p=1,a =1,
scale;, = 1.
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