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We define the ideal simplicial volume for compact manifolds with boundary. Roughly

speaking, the ideal simplicial volume of a manifold M measures the minimal size of

possibly ideal triangulations of M “with real coefficients”, thus providing a variation of

the ordinary simplicial volume defined by Gromov in 1982, the main difference being

that ideal simplices are now allowed to appear in representatives of the fundamental

class. We show that the ideal simplicial volume is bounded above by the ordinary

simplicial volume, and that it vanishes if and only if the ordinary simplicial volume

does. We show that, for manifolds with amenable boundary, the ideal simplicial volume

coincides with the classical one, whereas for hyperbolic manifolds with geodesic

boundary it can be strictly smaller. We compute the ideal simplicial volume of an

infinite family of hyperbolic 3-manifolds with geodesic boundary, for which the exact

value of the classical simplicial volume is not known, and we exhibit examples where

the ideal simplicial volume provides sharper bounds on mapping degrees than the

classical simplicial volume.

1 Introduction

The simplicial volume is an invariant of manifolds introduced by Gromov in his seminal

paper [11]. If M is a connected, compact, oriented manifold with (possibly empty)

boundary, then the simplicial volume of M is the infimum of the sums of the absolute
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values of the coefficients over all singular chains representing the real fundamental

cycle of M (see Section 3.1). We will denote the simplicial volume of M by the symbol

‖M‖, both when M is closed and when M has nonempty boundary.

If τ is a triangulation of M, then a suitable algebraic sum of the simplices of τ

provides a fundamental cycle for M. Hence, the simplicial volume is bounded above by

the minimal number of simplices in any triangulation of M, and it can be thought as the

minimal size of triangulations of M “with real coefficients” (even if this analogy is very

loose: e.g., fundamental cycles of manifolds can contain simplices that are very far from

being embedded).

When dealing with manifolds with boundary, it is often useful to work with ideal

triangulations rather than with traditional ones (we refer the reader to Section 3 for the

precise definition of ideal triangulation). Indeed, ideal triangulations are usually more

manageable than classical ones, and in many cases they are much more economical;

for example, the smallest cusped hyperbolic 3-manifold (which was constructed by

Gieseking in 1912, and shown to have the smallest volume among non-compact

hyperbolic 3-manifolds by Adams [1]) can be triangulated using only one ideal simplex,

and the figure-8 knot complement, which doubly covers the Gieseking manifold, admits

an ideal triangulation with two ideal tetrahedra.

In this paper we introduce and study the notion of ideal simplicial volume. To

this aim, we first introduce a homology theory for manifolds with boundary, called

marked homology, in which ideal singular simplices are allowed. We then show that

marked homology is isomorphic to the singular homology of the manifold relative to its

boundary. This allows us to define a fundamental class in the marked context, which

will be called ideal fundamental class. We then define the ideal simplicial volume ‖M‖I
of M as the infimum of the �1-norms of the representatives of the ideal fundamental

class. We refer the reader to Section 3 for the precise definition. A crucial fact is that

the canonical isomorphism between marked homology and relative homology is not

isometric; as discussed in Remark 2, a seemingly reasonable definition of the ideal

simplicial volume in the context of relative homology would not lead to an interesting

theory.

1.1 Fundamental properties of the ideal simplicial volume

For every compact manifold with boundary M, let c(M) denote the complexity of M,

that is, the minimal number of top-dimensional simplices in any ideal triangulation

of M. Just as the simplicial volume of M is bounded from above by the number of
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top-dimensional simplices in a triangulation of M (see, e.g., [7, Proposition 1.1]), the

ideal complexity provides an upper bound for the ideal simplicial volume.

Theorem 1. Let M be a compact manifold with boundary. Then

‖M‖I ≤ c(M).

We also show that the ideal simplicial volume may be exploited to bound the

degree of maps between manifolds.

Theorem 2. Let f : (M, ∂M) → (N, ∂N) be a map of pairs between compact, connected

and oriented manifolds of the same dimension. Then

‖M‖I ≥ | deg( f )| · ‖N‖I .

In particular, the ideal simplicial volume is a homotopy invariant of manifolds

with boundary (where homotopies are understood to be homotopies of pairs).

The ideal simplicial volume vanishes if and only if the ordinary simplicial

volume does.

Theorem 3. There exists a constant Kn only depending on n ∈ N such that, for every

n-dimensional compact manifold M, the following inequalities hold:

‖M‖I ≤ ‖M‖ ≤ Kn · ‖M‖I .

In particular, ‖M‖I = 0 if and only if ‖M‖ = 0.

1.2 Manifolds with amenable boundary

As Gromov himself pointed out in his seminal paper [11], in order to compute the

simplicial volume it is often useful to exploit the dual theory of bounded cohomology.

One of the peculiar features of (singular) bounded cohomology is that it vanishes on

spaces with amenable fundamental group. Via some elementary duality results, this

implies in turn that amenable spaces are somewhat invisible when considering their

simplicial volume; for example, closed manifolds with amenable fundamental group

have vanishing simplicial volume, and (under some mild additional hypothesis) the

simplicial volume of manifolds with boundary is additive with respect to gluings along

boundary components with amenable fundamental group. In Section 5 we introduce the
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dual theory to marked homology and, building on results from [4, 8], we exploit duality

to deduce the following.

Theorem 4. Let M be an n-dimensional compact manifold, and suppose that the

fundamental group of every boundary component of M is amenable. Then

‖M‖I = ‖M‖.

It is proved in [13, 17] that, under the assumptions of Theorem 4, the simplicial

volume ‖M‖ of M coincides with the simplicial volume of the open manifold int(M) =
M\∂M (which is defined in terms of the locally finite homology of M\∂M [11]), as well as

with the Lipschitz simplicial volume of int(M) (see [11, 20] for the definition). Therefore,

for manifolds whose boundary components have amenable fundamental group, all these

invariants also coincide with the ideal simplicial volume ‖M‖I of M.

Let M be a complete finite-volume hyperbolic n-manifold. As usual, we will

denote by M also the natural compactification of M, which is a compact manifold whose

boundary components admit a flat Riemannian structure. A celebrated result of Gromov

and Thurston shows that the simplicial volume of M is equal to the ratio vol(M)/vn,

where vol(M) is the Riemannian volume of M and vn is the volume of a regular ideal

geodesic simplex in hyperbolic n-space H
n (all such simplices are isometric to each

other). Since flat manifolds have virtually abelian (hence, amenable) fundamental group,

Theorem 4 implies the following.

Corollary 5. Let M be (the natural compactification of) a complete finite-volume

hyperbolic n-manifold. Then

‖M‖I = ‖M‖ = vol(M)

vn
.

In fact, Theorem 4 applies to a much bigger class of complete finite-volume

manifolds. Let M be an open complete manifold with finite volume and pinched negative

curvature. As above we still denote by M its natural compactification. It is well known

that the fundamental group of each boundary component of M is virtually nilpotent,

hence amenable (see, e.g., [2] or [3, Ex. 19.1]). Thus, Theorem 4 implies the following.

Corollary 6. Let M be (the natural compactification of) an open complete finite-volume

negatively pinched n-manifold. Then

‖M‖I = ‖M‖.
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1.3 Hyperbolic manifolds with geodesic boundary

The computation of the simplicial volume of manifolds whose boundary components

have non-amenable fundamental groups is a very challenging task. Indeed, the only

exact values of the simplicial volume of such manifolds are known for 3D handlebodies

(and, more in general, for manifolds obtained by attaching 1-handles to Seifert mani-

folds) and for the product of a surface with the closed interval [5]. In particular, the exact

value of the ordinary simplicial volume is not known for any hyperbolic 3-manifold with

geodesic boundary (and the only available estimates seem quite far from being sharp,

see [6]). On the contrary, in Section 6 we compute the exact value of the ideal simplicial

volume for an infinite family of hyperbolic 3-manifolds with geodesic boundary

(see Theorem 9 below).

In the closed case, Gromov’s and Thurston’s strategy to obtain lower bounds

on the classical simplicial volume of hyperbolic manifolds is based on two facts:

fundamental cycles may be represented by linear combinations of geodesic simplices,

and the volume of geodesic simplices in hyperbolic space is uniformly bounded. When

dealing with manifolds with geodesic boundary, the most natural building blocks turn

out to be the so-called (partially) truncated simplices. By mimicking Gromov’s and

Thurston’s strategy, here we exploit upper bounds on the volume of truncated simplices

to obtain lower bounds on the ideal simplicial volume of hyperbolic manifolds with

geodesic boundary.

If M is a compact hyperbolic manifold with geodesic boundary, then the smallest

return length �(M) of M is the length of the shortest path with both endpoints on ∂M

that intersects ∂M orthogonally at each of its endpoints. Equivalently, it is the smallest

distance between distinct boundary components of the universal covering of M.

Theorem 7. Let M be a compact n-dimensional hyperbolic manifold with geodesic

boundary. Then

‖M‖I ≥ vol(M)

Vn
�(M)

,

where Vn
� is the supremum of the volumes of n-dimensional fully truncated simplices

whose edge lengths are not smaller than � (see Definition 6.2).

It is well known (see, e.g., [22]) that, in dimension 3, the supremum of the volumes

of all truncated tetrahedra is given by the volume v8 ≈ 3.664 of the regular ideal

octahedron, so Theorem 7 implies the following.
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Corollary 8. Let M be a compact hyperbolic 3-manifold with geodesic boundary. Then

‖M‖I ≥ vol(M)

v8
.

It has been recently proved that, if � is sufficiently small, then the constant

V3
� coincides with the volume of the regular truncated tetrahedron of edge length �

[10]. Together with Theorem 7, this fact allows us to compute the exact value of the

ideal simplicial volume of an infinite family of hyperbolic 3-manifolds with geodesic

boundary.

For every g ≥ 2 let Mg be the set of hyperbolic 3-manifolds M with connected

geodesic boundary such that χ(∂M) = 2−2g (so ∂M, if orientable, is the closed orientable

surface of genus g). Recall that for every 3-manifold with boundary M the equality

χ(∂M) = 2χ(M) holds, and in particular χ(∂M) is even. Therefore, the union
⋃

g≥2 Mg

coincides with the set of hyperbolic 3-manifolds with connected geodesic boundary.

For every g ≥ 2 we denote by Mg the set of 3-manifolds M with boundary that

admit an ideal triangulation by g tetrahedra and have Euler characteristic χ(M) = 1−g.

Every element of Mg has connected boundary and supports a hyperbolic structure

with geodesic boundary (which is unique by Mostow rigidity), hence Mg ⊆ Mg

(see [9]). Furthermore, Miyamoto proved in [21] that elements of Mg are exactly the ones

having the smallest volume among the elements of Mg. In particular, Mg is nonempty

for every g ≥ 2. The eight elements of M2 are exactly the smallest hyperbolic manifolds

with nonempty geodesic boundary [16, 21]. Some estimates on the ordinary simplicial

volume of elements in Mg can be found in [6]. Here we prove the following.

Theorem 9. Let M ∈ Mg. Then

‖M‖I ≥ g

and

‖M‖I = g

if and only if M ∈ Mg.

Corollary 10. The hyperbolic 3-manifolds with geodesic boundary having the smallest

ideal simplicial volume are exactly the elements of M2.
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As a consequence of the previous corollary, among hyperbolic 3-manifolds with

geodesic boundary, the minimum of the Riemannian volume is attained exactly at those

manifolds that also realize the minimum of the ideal simplicial volume. The same result

with ideal simplicial volume replaced by ordinary simplicial volume was conjectured

in [5].

A direct consequence of Theorems 2 and 9 is the following.

Corollary 11. Take elements M ∈ Mg and M ′ ∈ Mg′ , where g ≥ g′, and let

f : (M, ∂M) → (M ′, ∂M ′)

be a map of pairs. Then

deg( f ) ≤ g

g′ .

As discussed in Section 6.7, in some cases the bound provided by Corollary 11 is

sharp. Moreover, it is strictly sharper than the bounds one can obtain by exploiting the

ordinary simplicial volume to study the restriction of f to ∂M or the extension of f to

the double of M.

1.4 Plan of the paper

In Section 2 we define marked spaces and marked homology. Moreover, we prove some

fundamental results about marked homology that are needed for the definition of the

ideal simplicial volume. In Section 3 we define the ideal simplicial volume and we prove

Theorems 1 (in Section 3.3), 2 (in Section 3.5), and 3 (in Section 3.4). We also introduce

marked bounded cohomology, and establish an elementary but fundamental duality

result that will be exploited in the proofs of Theorems 4 and 7.

In Section 4 we introduce the universal covering of marked spaces, while

Section 5 is devoted to the proof of Theorem 4. Finally, in Section 6 we focus on

hyperbolic manifolds, and we prove Theorems 7 and Theorem 9 and Corollary 11.

2 Marked Homology of Marked Spaces

Before defining the ideal simplicial volume of manifolds with boundary we need to

introduce and develop the theory of marked homology for marked spaces. If M is a

manifold with boundary, one can consider the quotient space X obtained by separately

collapsing the connected components of ∂M. Such a space X provides the motivating
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example for our theory, and the ideal simplicial volume of M will be defined in Section 3

just as the �1-seminorm of the real fundamental class in the marked homology of X. This

section is mainly devoted to collecting the fundamental properties of marked homology,

and to preparing the ground for the precise definition of the fundamental class in the

context of marked homology.

We begin by introducing a slight generalization of the notion of topological cone.

Definition 2.1. Let B be a topological space and let b be a point of B. We say that B is

a quasicone with apex b if the following condition holds: there exists a homotopy

H : B × [0, 1] → B

between the identity and the constant map at b with the following additional properties:

H(b, t) = b for every t ∈ [0, 1] (i.e., the homotopy is relative to {b}), and for every x ∈ B\{b}
the path H(x, ·) : [0, 1) → B does not pass through b. In other words, we ask that the

homotopy H is such that H(x, 0) = x for every x ∈ B, and

H−1({b}) = ({b} × [0, 1]) ∪ (B × {1}) .

A topological cone is obviously a quasicone, and in order to define the ideal

simplicial volume of compact manifolds with boundary it would be sufficient to deal

with usual cones. Nevertheless, when constructing coverings of marked spaces it will

be useful to work in a slightly more general context.

The following definition singles out the fundamental objects we will be dealing

with.

Definition 2.2. A marked space (X, B) is a topological pair satisfying the following

properties:

1. B is closed in X.

2. For every b ∈ B there exists a closed neighborhood Fb of b in X such that

Fb is a quasicone with apex b. Moreover, the Fb, b ∈ B, may be chosen to be

pairwise disjoint.

As a consequence of the definition, the subset B is discrete. Moreover, if

FB =
⋃

b∈B

Fb

then the Fb, b ∈ B, are exactly the path connected components of FB.
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Definition 2.3. A map f : (X, B) → (X ′, B′) between marked spaces is admissible if and

only if it is continuous and such that f −1(B′) = B.

It is immediate to check that there exists a well-defined category having marked

spaces as objects and admissible maps as morphisms. The notion of homotopic maps

admits an obvious admissible version.

Definition 2.4. Let f , g : (X, B) → (X ′, B′) be admissible maps between marked spaces.

An admissible homotopy between f and g is an ordinary homotopy H : X × [0, 1] → X ′

between f and g such that the map H(·, t) : X → X ′ is admissible for every t ∈ [0, 1] or,

equivalently, such that H−1(B′) = B × [0, 1]. Observe that, since B′ is discrete, for every

b ∈ B the map t �→ H(t, b) is constant: in particular, f (b) = g(b) for every b ∈ B.

2.1 The marked space associated with a manifold with boundary

Let (M, ∂M) be an n-manifold with boundary. We associate with (M, ∂M) the marked

space (X, B) that is defined as follows: X is the topological quotient obtained from M by

separately collapsing every connected component of ∂M, while B ⊆ X is the subset of X

given by the classes associated with the components of ∂M. Using that the boundary

of M admits a collar in M, it is immediate to check that (X, B) is indeed a marked

space in the sense of Definition 2.2. We will refer to the pair (X, B) as the marked space

associated with M, and the quotient map p : (M, ∂M) → (X, B) will be called the natural

projection.

2.2 Marked homology

As explained in the introduction, the ideal simplicial volume measures the �1-seminorm

of the ideal fundamental class, which in turn provides a representative of the fun-

damental class possibly containing (partially) ideal singular simplices. The following

definition gives a precise meaning to the notion of partially ideal singular simplices.

Definition 2.5. Let (X, B) be a marked space. A singular simplex σ : �n → X is

admissible if σ−1(B) is a subcomplex of �n, that is, a (possibly empty) union of

(not necessarily proper) faces of �n. For example, every constant singular simplex

is admissible, and any bijective parametrization σ : �n → X of a top-dimensional

simplex in an ideal triangulation of a manifold with associated marked space (X, B)

is admissible, since σ−1(B) is equal to the set of vertices of �n.
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Let now R be a ring with unity. It is immediate to check that the restriction of an

admissible singular simplex to any of its faces is still admissible (where we understand

that each face of �n is identified with �n−1 via the unique affine isomorphism that

preserves the order of the vertices). This readily implies that admissible simplices

define a subcomplex ĈM∗ (X, B;R) of the usual singular complex C∗(X;R). Of course, the

complex ĈM∗ (X, B;R) contains the subcomplex C∗(B;R) (which, given that B is discrete,

in each degree n only consists of the free R-module over the constant n-simplices with

values in B).

We are now ready to introduce the definition of the chain complex that computes

the marked homology of marked spaces.

Definition 2.6. Let (X, B) be a marked space. The marked chain complex of (X, B) over

the coefficient ring R is the quotient complex

CM∗ (X, B;R) = ĈM∗ (X, B;R)
/

C∗(B;R),

endowed with the differential induced by the usual differential on C∗(X;R).

The marked homology of (X, B) (with coefficients in R) is the homology of the

marked chain complex CM∗ (X, B;R), and will be denoted by HM∗ (X, B;R).

The composition of an admissible singular simplex with an admissible map

is still an admissible singular simplex. Using this one can easily check that marked

homology indeed provides a functor on the category of marked spaces. We will see later

that it is in fact a homotopy functor, i.e. that admissibly homotopic maps induce the

same morphism on marked homology.

Let i∗ : CM∗ (X, B;R) → C∗(X, B;R) be the inclusion of marked chains into ordinary

relative chains. The main result of this section is the following.

Theorem 2.7. For every n ∈ N, the inclusion

in : CM
n (X, B;R) → Cn(X, B;R)

induces an isomorphism

Hn(in) : HM
n (X, B;R) → Hn(X, B;R)

between the marked homology and the ordinary relative homology of the pair (X, B) with

coefficients in R.

This section will be mainly devoted to the proof of Theorem 2.7, which will be

concluded in Section 2.6.
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2.3 The homotopy invariance of marked homology

Recall that an admissible homotopy between admissible maps f , g : (X, B) → (X ′, B′) is

an ordinary homotopy H : X × [0, 1] → X ′ between f and g such that H−1(B′) = B × [0, 1].

As anticipated above, marked homology is a homotopy functor.

Theorem 2.8. Let f , g : (X, B) → (X ′, B′) be admissibly homotopic admissible maps.

Then the induced homomorphisms

HM
n ( f ), HM

n (g) : HM
n (X, B;R) → HM

n (X ′, B′;R)

coincide for every n ∈ N.

Proof. The proof is a slight modification of the one for ordinary singular homology

(see for instance [12, Thm. 2.10]). As in the classical case, we subdivide the prism �n × I

into (n + 1)-dimensional simplices as follows. For every i = 0, . . . , n we set vi = (ei, 0),

wi = (ei, 1), where ei is the i-th vertex of �n. We then denote by σi : �n+1 → �n × I the

affine isomorphism sending the vertices of �n+1 to the vertices v0, · · · , vi, wi, · · · , wn of

�n × I.

Let H : X × I → X ′ be an admissible homotopy between f and g. Then the usual

homotopy operator Tn : Cn(X;R) → Cn+1(X ′;R) is the unique R-linear map such that,

for every singular simplex σ : �n → X,

Tn(σ ) =
n∑

i=0

(−1)iH ◦ (σ × 1) ◦ σi.

It is clear that Tn sends Cn(B;R) to Cn+1(B′;R), so in order to conclude the

proof it is sufficient to show that Tn(σ ) ∈ ĈM
n+1(X ′, B;R) provided that σ : �n → X is

admissible.

Let us denote by Ki ⊆ �n×I the image of the affine embedding σi : �n+1 → �n×I,

and observe that �n×I admits a structure of simplicial complex whose top-dimensional

simplices are exactly the Ki. Let S = σ−1(B) ⊆ �n. Since σ is admissible, the subset S

is a subcomplex of �n. From the very definition of admissible homotopy it follows that

(H ◦ (σ × I))−1(B′) = S × I, so the pair

(
�n+1,

(
H ◦ (σ × 1) ◦ σi

)−1
(B′)

)

is affinely isomorphic (via σi) to the pair (Ki, (S×I)∩Ki). But S×I is a subcomplex of �n×I

(with respect to the structure of simplicial complex described above), so (S × I) ∩ Ki is a
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subcomplex of Ki, and this implies that the singular simplex H ◦(σ ×1)◦σi : �n+1 → X ′ is

admissible. We have thus proved that the homotopy operator T∗ induces a well-defined

homotopy operator

T ′∗ : CM∗ (X, B;R) → CM∗+1(X ′, B′;R).

Now the conclusion follows from the very same argument for ordinary singular

homology (see, e.g., [12, Thm. 2.10]). �

An admissible map f : (X, B) → (X ′, B′) is an admissible homotopy equivalence if

there exists an admissible map g : (X ′, B′) → (X, B) such that g◦f and f ◦g are admissibly

homotopic to the identity maps Id(X,B) and Id(X ′,B′), respectively. If this is the case, then

f restricts to a bijection between B and B′. Moreover, Theorem 2.8 immediately implies

the following.

Corollary 2.9. Let f : (X, B) → (X ′, B′) be an admissible homotopy equivalence. Then

the induced map f∗ : H∗(X, B;R) → H∗(X ′, B′;R) is an isomorphism in every degree.

2.4 Marked homology of quasicones

An important ingredient in our proof of Theorem 2.7 is the vanishing of marked

homology of quasicones.

Proposition 2.10. Let F be a quasicone with apex b ∈ F. Then

HM
n (F, {b};R) = 0

for every n ≥ 0 and every coefficient ring R.

Proof. Unfortunately, in order to prove the proposition we are not allowed to apply

the homotopy invariance of marked homology to the contracting homotopy that retracts

F onto b; indeed, such a homotopy is not admissible, and even the constant map

F → F sending every point of the cone to b is not admissible. Nevertheless, the

obvious algebraic contracting homotopy for singular chains on F takes admissible

chains to admissible chains, thus yielding the desired vanishing of marked homology

for quasicones.
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Let us now give some details. Recall that by definition of quasicone there exists

a homotopy

H : F × [0, 1] → F

between the identity and the constant map at b that satisfies

H−1(b) = ({b} × I) ∪ (F × {1}) .

Let σi : �n+1 → �n × I, i = 0, . . . , n, be the affine parametrizations of the

top-dimensional simplices of the decomposition of �n × I described in the proof of

Theorem 2.8. We consider as before the usual homotopy operator Tn : Cn(F;R) →
Cn+1(F;R) such that, for every singular simplex σ : �n → F,

Tn(σ ) =
n∑

i=0

(−1)iH ◦ (σ × 1) ◦ σi.

Of course Tn sends Cn({b};R) to Cn+1({b};R), and we need to check that Tn(σ ) ∈
ĈM

n+1(F, {b};R) provided that σ : �n → F is admissible.

Let Ki ⊆ �n × I be the image of the affine embedding σi : �n+1 → �n × I,

and recall that �n × I admits a structure of simplicial complex whose top-dimensional

simplices are exactly the Ki. Let S = σ−1(B) ⊆ �n. Since σ is admissible, the subset S

is a subcomplex of �n. From the fact that H−1({b}) = ({b} × I) ∪ (F × {1}) it follows that

(H ◦ (σ × I))−1({b}) = (F × I) ∪ (�n × {1}), so the pair

(
�n+1,

(
H ◦ (σ × 1) ◦ σi

)−1
({b})

)

is affinely isomorphic (via σi) to the pair (Ki, ((F × I) ∪ (�n × {1})) ∩ Ki). This implies that

the singular simplex H ◦ (σ ×1) ◦ σi : �n+1 → X ′ is admissible. We have thus proved that

the homotopy operator T∗ induces a well-defined homotopy operator

T ′∗ : CM∗ (F, {b};R) → CM∗+1(F, {b};R)

between the identity (since H(·, 0) is the identity of F) and the zero map (since H(·, 1)

is the constant map at b, and simplices supported in {b} are null in the marked chain

complex). This concludes the proof. �
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2.5 Small marked homology

A key fact in the proof of the Excision Property (or of the Mayer–Vietoris sequence) for

ordinary singular homology is that singular homology may be computed by simplices

that are supported in the elements of an open cover. In this subsection we show that the

same property holds for marked homology.

Definition 2.11. Let (X, B) be a marked space and let U be a family of subsets of X

such that

X ⊆
⋃

U∈U
int(U),

where int(U) denotes the biggest open set contained in U. We say that a(n admissible)

singular simplex σ : �n → X is U-small if its image lies entirely in some U ∈ U .

We denote by CU∗ (X, B;R) (resp. CU ,M∗ (X, B;R)) the submodule of C∗(X, B;R) (resp. of

CM∗ (X, B;R)) generated by the classes of U-small simplices (resp. U-small admissible

simplices).

Then CU∗ (X, B;R) (resp. CU ,M∗ (X, B;R)) is a subcomplex of C∗(X, B;R) (resp. of

CM∗ (X, B;R)), whose homology is denoted by HU∗ (X, B;R) (resp. HU ,M∗ (X, B;R)).

The following theorem extends a fundamental result about ordinary singular

homology to marked homology.

Theorem 2.12. Let s∗ : CU ,M
n (X, B;R) → CM

n (X, B;R) be the obvious inclusion. Then,

there exists a chain map ρ∗ : CM∗ (X, B;R) → CU ,M∗ (X, B;R) such that the compositions

s∗ ◦ ρ∗ and ρ∗ ◦ s∗ are both chain homotopic to the identity.

Proof. The proof for ordinary singular homology (see, e.g., [12, Prop. 2.21]) works

also in the context of marked homology. Here below we focus our attention on some

subtleties that arise in the context of marked homology.

Let S∗ : C∗(X;R) → C∗(X;R) be the usual barycentric subdivision operator.

We would like to prove that S∗ induces a well-defined operator SM∗ : CM∗ (X, B;R) →
CM∗ (X, B;R) on marked chains. The fact that S∗ sends chains supported in B to chains

supported in B is obvious, so we need to show that S∗(σ ) is an admissible chain provided

that the singular simplex σ is admissible. To this aim, observe that a singular simplex

σ : �n → X is admissible if and only if the following condition holds: let p ∈ �n and

let D(p) ⊆ �n be the unique open face of �n containing p (such a face may have any

dimension between 0, when p is a vertex of �n, and n, when p lies in the interior of �n);

if σ(p) ∈ B, then σ(D(p)) ⊂ B.
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Suppose now that σ : �n → X is admissible, let K ⊆ �n be a geometric n-

simplex appearing in the barycentric decomposition of �n, and let τ : �n → K be

an affine parametrization of K. In order to show that S∗(σ ) is an admissible chain

it is sufficient to prove that σ ◦ τ is an admissible singular simplex. However, let

p ∈ �n be such that σ(τ(p)) ∈ B. Let D(p) (resp. D(τ (p))) be the unique open face of

�n containing p (resp. τ(p)), and observe that τ(D(p)) ⊆ D(τ (p)). Thus, if σ(τ(p)) ∈ B,

then by admissibility of σ we have σ(D(τ (p))) ⊆ B; hence, σ(τ(D(p))) ⊆ B. This

proves that σ ◦ τ is admissible, thus showing that the operator SM∗ is indeed well

defined.

In order to prove the theorem we also need to show that the operator SM∗
is homotopic to the identity. To this aim, let T∗ : C∗(X;R) → C∗+1(X;R) be the

standard homotopy between S∗ and the identity of C∗(X;R) (as defined, e.g., in [12,

Prop. 2.21]). As usual we need to prove that T∗ preserves admissible chains. To this

aim we first describe the geometric meaning of T∗. We inductively triangulate the prism

�n × I by taking the cone of the whole triangulated boundary
(
�n × {0})⋃ (

∂�n × I
)

with respect to the barycenter of �n × {1}. We also fix an arbitrary top-dimensional

simplex K of the triangulation of �n × I just described, and an affine parametrization

τ : �n+1 → K of K.

Let now σ : �n → X be an admissible simplex, and let π : �n × I → �n be the

projection onto the 1st factor. In order to prove that T∗ preserves admissible chains, it

is sufficient to show that the singular simplex

σ ◦ π ◦ τ : �n+1 → X

is admissible. As before, for every p ∈ �n+1 we let D(p) be the smallest open

face of �n+1 containing p. Moreover, for every q ∈ �n × I we define C(q) as the

smallest open cell containing q in the product cell structure of �n × I (where we

understand that �n and I are endowed with the cellular structure induced by their

simplicial structure). Then it is easy to check that τ(D(p)) ⊆ C(τ (p)). As a consequence,

if σ(π(τ(p))) ∈ B, then by admissibility of σ we have σ(D(π(τ(p)))) ⊆ B; hence,

σ(π(C(τ (p)))) ⊆ B. But this implies in turn that σ(π(τ(D(p)))) ⊆ B, that is, that σ ◦ τ is

admissible.

We have thus proved that the homotopy operator T∗ induces an operator

TM∗ : CM∗ (X, B;R) → CM∗+1(X, B;R) that realizes a homotopy between SM∗ and the identity

of CM∗ (X, B;R). Now the conclusion follows from the very same arguments described in

[12, Prop. 2.21] for ordinary singular homology. �



16 R. Frigerio and M. Moraschini

Corollary 2.13. The inclusion s∗ : CU ,M
n (X, B;R) → CM

n (X, B;R) induces an isomor-

phism

HM
n (sn) : HU ,M

n (X, B;R) → HM
n (X, B;R)

in every degree n ∈ N.

We are now ready to provide the proof of Theorem 2.7, which states that the

inclusion

in : CM
n (X, B;R) → Cn(X, B;R)

induces an isomorphism

Hn(in) : HM
n (X, B;R) → Hn(X, B;R)

for every n ∈ N.

2.6 Proof of Theorem 2.7

Let (X, B) be a marked space, and let

FB =
⋃

b∈B

Fb

be the union of disjoint quasiconical closed neighborhoods of the points in b. We also

fix the cover U = {FB, X \ B} of X, and we observe that the interiors of the elements of

U still cover the whole of X. The marked chain complex CU ,M∗ (FB, B;R) is naturally a

subcomplex of CU ,M∗ (X, B;R), so we can consider the short exact sequence of complexes

where

E∗ = CU ,M∗ (X, B;R)/CU ,M∗ (FB, B;R).

Recall now from Proposition 2.10 that the marked homology of the pair (FB, B) vanishes

in every degree. Therefore, by looking at the long exact sequence associated with the

short exact sequence above we conclude that the quotient map induces an isomorphism

Hn(πE) : HU ,M
n (X, B;R) → Hn(E∗)

for every n ∈ N.
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The usual relative chain complex C∗(FB, B;R) is naturally a subcomplex of

CU∗ (X, B;R), so we can consider the quotient map

(πD)∗ : CU∗ (X, B;R) → D∗ = CU∗ (X, B;R)/C∗(FB, B;R).

Since B is a strong deformation retract of FB we have Hn(FB, B;R) = 0 for every n ∈ N, so

arguing as above we deduce that the induced map

Hn(πD) : HU
n (X, B;R) → Hn(D∗)

is an isomorphism for every n ∈ N.

Observe that the set of (the classes of) singular simplices that are supported in

X \ B but not entirely contained in FB \ B provides a basis both of E∗ and of D∗, so the

inclusion iU∗ : CU ,M∗ (X, B;R) ↪→ CU∗ (X, B;R) induces an isomorphism

α∗ : E∗ → D∗.

Since Hn(πE), Hn(πD), Hn(α) are all isomorphisms, from the commutative

diagram

we deduce that the map

Hn(iU∗ ) : HU ,M
n (X, B;R) → HU

n (X, B;R)

is an isomorphism for every n ∈ N.

Let us now fix n ∈ N and consider the commutative diagram
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where the horizontal arrows are induced by the inclusions of small chains into

generic chains. Theorem 2.12 and [12, Prop. 2.21] ensure that the horizontal arrows are

isomorphism, and we have just proved that also the map Hn(iU∗ ) is an isomorphism. It

follows that the map Hn(i∗) is also an isomorphism, and this concludes the proof of

Theorem 2.7.

3 Ideal Simplicial Volume

In order to define the ideal simplicial volume we need to introduce an �1-seminorm on

marked homology. Henceforth, unless otherwise stated, we will deal only with chains

and classes with real coefficients. Therefore, when this does not create ambiguities, we

will omit to specify the coefficients we are working with. The reader will understand

that, unless otherwise stated, all the homology (and cohomology) modules will have real

coefficients.

3.1 �1-(semi)norms and simplicial volumes

Let us first recall the definition of the �1-(semi)norm on ordinary singular homology. If

(X, Y) is a topological pair, then for every singular chain c = ∑k
i=1 aiσi ∈ Cn(X, Y) written

in reduced form (i.e., such that σi �= σj if i �= j and no σi is supported in Y ⊆ X) we set

‖c‖1 =
k∑

i=1

|ai| ∈ R.

The norm ‖ · ‖1 restricts to a norm on the space of relative cycles Zi(X, Y), which defines

in turn a quotient seminorm (still denoted by ‖ · ‖1) on the homology module Hi(X, Y).

If M is a compact oriented n-manifold with boundary, then Hn(M, ∂M) ∼= R admits a

preferred generator, called real fundamental class, which is the image via the change of

coefficient map of the generator of Hn(M, ∂M;Z) ∼= Z corresponding to the orientation of

M. If [M, ∂M] ∈ Hn(M, ∂M) denotes the real fundamental class of M, then the simplicial

volume ‖M‖ of M is defined by

‖M‖ = ‖[M, ∂M]‖1.

If (X, B) is a marked space, then the �1-norm on the relative chain complex

C∗(X, B) restricts to an �1-norm on CM∗ (X, B), which induces in turn a seminorm on

the homology modules HM∗ (X, B). We will denote these (semi)norms again with the

symbol ‖ · ‖1.
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Let now (M, ∂M) be a compact oriented n-manifold with boundary, and denote

by (X, B) the associated marked space as defined in Section 2.1, and by p : M → X the

natural projection. Since ∂M is a strong deformation retract of an open neighborhood of

∂M, the quotient map p′ : (M, ∂M) → (M/∂M, [∂M]) induces an isomorphism

Hk(p′) : Hk(M, ∂M) → Hk(M/∂M, [∂M])

for every k ∈ N (see, e.g., [12, Prop. 2.22]). For the same reason, also the obvious quotient

map q : (X, B) → (M/∂M, [∂M]) induces isomorphisms on relative homology in every

degree, so from the commutative diagram

we can deduce that also the map Hk(p) : Hk(M, ∂M) → Hk(X, B) is an isomorphism in

every degreee k ∈ N. By composing this map with the inverse of the isomorphism

Hk(i∗) : HM
k (X, B) → Hk(X, B) (see Theorem 2.7), we thus obtain, for every k ∈ N, the

isomorphism

ψk : Hk(M, ∂M) → HM
k (X, B).

Definition 3.1. The ideal fundamental class of M is the element

[M, ∂M]M = ψn([M, ∂M]) ∈ HM
n (X, B),

and the ideal simplicial volume of M is defined by

‖M‖I = ‖[M, ∂M]M‖1.

Observe that both the classical and the ideal simplicial volume of an oriented

manifold do not depend on its orientation and that it is straightforward to extend

the definition also to nonorientable or disconnected manifolds; if M is connected and

nonorientable, then its simplicial volumes are equal to one half of the corresponding

simplicial volumes of its orientable double covering, and the simplicial volumes of

any manifold is the sum of the corresponding simplicial volumes of its connected

components.
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Henceforth, every manifold will be assumed to be compact, connected, and

oriented.

Remark 3.2. Let us describe a characterization of ideal fundamental cycles that will

prove useful in the sequel.

Let (Z, Z′) be a topological pair such that Z \ Z′ is an oriented n-manifold,

and let α be a relative cycle in Cn(Z, Z′). Recall that for every x ∈ Z \ Z′ one may define

the local degree of α at x as the real number d(α)(x) corresponding to the element

defined by α in Hn(Z, Z \ {x}) via the canonical identification between Hn(Z, Z \ {x}) and

R induced by the orientation of Z \ Z′. In fact, the number d(α)(x) is independent of

x ∈ Z \ Z′.
Let now M be an n-dimensional compact oriented manifold with associated

marked space (X, B). By definition, a marked cycle z ∈ CM
n (X, B) is an ideal fundamental

cycle if and only if, when considered as a cycle in the relative chain module Cn(X, B), it

defines the same homology class as the image via the natural projection of the classical

fundamental class of M. Now the fundamental class of M may be characterized as the

unique class α ∈ Hn(M, ∂M) having local degree equal to 1 at every point p ∈ M \ ∂M. As

a consequence, z is an ideal fundamental cycle if and only if it has local degree equal to

1 at every point x ∈ X \ B.

Remark 3.3. One may wonder why we do not define the ideal simplicial volume just

by taking the �1-seminorm of the image of [M, ∂M] in the relative homology module

Hn(X, B), where (X, B) is the marked space associated to M. The following example

shows that this choice would not lead to any meaningful invariant. Let M be the (natural

compactification) of the complement of a hyperbolic knot in the 3-sphere S3. Since the

fundamental group of ∂M is abelian, hence amenable, we have ‖M‖I = ‖M‖ > 0 (see

Corollary 5). On the other hand, it is not difficult to show that X is simply connected

(indeed, the Wirtinger presentation of π1(M) shows that π1(M) is generated by meridian

loops, all of which are killed in X). As a consequence, the bounded cohomology (with real

coefficients) of the pair (X, B) vanishes in every positive degree [11], and by a standard

duality argument this implies in turn that the �1-seminorm of any element in H3(X, B)

vanishes [18].

Another possible definition of ideal simplicial volume would arise from defining

admissible simplices as those singular simplices σ : �n → X such that σ−1(B) coincides

with the set of vertices of �n. On the one hand, this choice would lead to ideal

fundamental cycles that are closer in spirit to ideal triangulations. On the other hand,
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with this choice the whole theory would be much more complicated: for example,

showing that admissibly homotopic maps induce the same morphism on marked

homology would be much more difficult; the simplices obtained by subdividing an

admissible one would not be admissible; and even the fact that the ordinary simplicial

volume bounds from above the ideal one, if true, would not be obvious at all. However,

by Proposition 3.9 the ideal simplicial volume can be computed by looking only at ideal

fundamental cycles whose simplices have all their vertices in B.

3.2 (Marked) bounded cohomology and duality

As anticipated in the introduction, in order to compute the (marked) simplicial volume

it is often useful to switch from the study of singular chains to the dual theory of

(bounded) singular cochains.

Recall that the chain modules Ci(M, ∂M) and CM
i (X, B) are endowed with

�1-norms, both denoted by the symbol ‖ · ‖1. We denote by Ci
b(M, ∂M) (resp. Ci

M(X, B))

the topological dual of Ci(M, ∂M) (resp. of CM
i (X, B)), that is, the space of bounded linear

functionals on Ci(M, ∂M) (resp. on CM
i (X, B)), endowed with the operator norm ‖·‖∞ dual

to ‖ · ‖1.

In the case of ordinary (relative) singular (co)chains, the modules C∗
b(M, ∂M)

define a subcomplex of the ordinary singular chain complex Ci(M, ∂M), and are called

the bounded cochains modules of the pair (M, ∂M). The �∞-norm of a cochain α ∈
Ci

b(M, ∂M) is equal to the supremum of the values taken by α on single singular

i-simplices with values in M (and not supported in ∂M). The cohomology of the

complex C∗
b(M, ∂M) is the bounded cohomology of the pair (M, ∂M), and it is denoted

by H∗
b(M, ∂M). The �∞-norm on each Ci

b(M, ∂M) restricts to the subspace of cocycles, and

induces a seminorm (still denoted by ‖ · ‖∞) on Hi
b(M, ∂M), for every i ∈ N.

An analogous characterization holds also for the �∞-norm on Ci
M(X, B); indeed,

for every ϕ ∈ Ci
M(X, B),

‖ϕ‖∞ = sup{|ϕ(σ)| | σ admissible singular i-simplex not supported in B}.

Just as in the ordinary case, the boundary map ∂i : CM
i (X, B) → CM

i−1(X, B) is bounded

with respect to the �1-norm; hence, it induces a bounded dual map δi−1 : Ci−1
M (X, B) →

Ci
M(X, B), which endows (C∗

M(X, B), δ∗) with the structure of a normed complex. We

denote by H∗
M(X, B) the cohomology of the complex (C∗

M(X, B), δ∗), and we endow each

Hi
M(X, B), i ∈ N, with the seminorm induced by ‖ · ‖∞, which will still be denoted

by ‖ · ‖∞.
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The obvious pairings between Ci
b(M, ∂M) and Ci(M, ∂M) and between Ci

M(X, B)

and CM
i (X, B) induce pairings

〈·, ·〉 : Hi
b(M, ∂M) × Hi(M, ∂M) → R ,

〈·, ·〉 : Hi
M(X, B) × HM

i (X, B) → R .

The following duality result is proved for example, in [18], and will be used in the proofs

of Theorems 4 and 7.

Proposition 3.4. Let α ∈ HM
i (X, B). Then

‖α‖1 = max{〈ϕ, α〉 | ϕ ∈ Hi
M(X, B), ‖ϕ‖∞ ≤ 1}.

3.3 Ideal simplicial volume versus complexity

Recall that a �-complex is a topological space obtained by gluing a family of copies of

the standard simplex along affine diffeomorphisms of some of their faces. Therefore,

�-complexes provide a mild generalization of (geometric realizations of) simplicial

complexes, the only differences being that simplices in �-complexes need not be

embedded (since identifications between pairs of faces of the same simplex are allowed),

and that distinct simplices in �-complexes may share more than one face.

Definition 3.5. Let (M, ∂M) be a compact n-manifold with boundary with associated

marked space (X, B). An ideal triangulation of M is a realization of (X, B) as a �-complex

whose set of vertices is equal to B. The complexity c(M) of M is defined as the minimal

number of n-dimensional simplices in any ideal triangulation of M.

Let us now prove that the complexity bounds the ideal simplicial volume from

above. Let M be an n-manifold with boundary with c(M) = m, and let (X, B) be the

marked space associated with M. By definition of complexity, there exists an ideal

triangulation of M with m top-dimensional simplices, that is, a realization of X as a

�-complex with the following properties: X is obtained by gluing m copies �n
1 , . . . , �n

m

of the standard simplex �n; the set of vertices of the resulting �-complex is equal to B.

Recall that M is oriented, so for every j = 1, . . . , m we can fix an orientation-preserving

affine identification σj : �n → �n
j . It is not quite true that the sum of the σj defines

a marked cycle. Nevertheless, in order to obtain a cycle out of the σj it is sufficient to

alternate them as follows.
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Let Sn+1 be the group of permutations of the set {0, . . . , n}, and denote by

e0, . . . , en the vertices of the standard simplex �n. For every τ ∈ Sn+1 we denote by τ the

unique affine automorphism τ : �n → �n such that τ(ei) = eτ(i) for every i = 0, . . . , n.

Observe now that for each j = 0, . . . , m and every τ ∈ Sn+1 the set (σj ◦ τ)−1(B) is equal

to the set of vertices of �n, so σj ◦ τ is admissible. We may thus define the marked chain

z = 1

(n + 1)!

m∑

j=1

∑

τ∈Sn+1

ε(τ )σj ◦ τ ∈ CM
n (X, B),

where ε(τ ) ∈ {1, −1} denotes the sign of τ .

It is now easy to check that z is indeed a cycle. Moreover, the local degree of z

at any point in X \ B is equal to one, so Remark 3.2 implies that the class [z]M of z in

HM
n (X, B) is the ideal fundamental class of M. Finally, we have ‖z‖1 = m; hence,

‖M‖I = ‖[M, ∂M]M‖1 ≤ ‖z‖1 = m = c(M).

This concludes the proof of Theorem 1.

3.4 Ideal simplicial volume versus classical simplicial volume

Let σ : �i → M be a singular simplex, and recall that p : (M, ∂M) → (X, B) is the natural

projection. We say that σ is admissible if p ◦ σ is admissible as a simplex with values

in the marked space (X, B), that is, if σ−1(∂M) is a subcomplex of �i. Moreover, a chain

c ∈ C∗(M, ∂M) is admissible if it is (the class of) a linear combination of admissible

simplices. The following lemma provides the key step in the proof of the inequality

‖M‖I ≤ ‖M‖, and will be useful also in the proof of Theorem 2.

Lemma 3.6. Let M be a manifold with boundary, and let A′ be a closed subspace

of a perfectly normal topological space A. Let also f : (A, A′) → (M, ∂M) be a map of

pairs. Then f is homotopic (as a map of pairs) to a map g : (A, A′) → (M, ∂M) such that

g−1(∂M) = A′.

Proof. A classical result in general topology ensures that ∂M admits a closed collar

C in M. More precisely, there exists a subset C ⊂ M containing ∂M such that the

pair (C, ∂M) is homeomorphic to the pair (∂M × [0, 1], ∂M × {0}). Henceforth, we fix an

identification C ∼= ∂M × [0, 1] induced by such a homeomorphism.
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Since f is a map of pairs, we already know that f −1(∂M) ⊇ A′, and we need to

perturb f in order to push out of ∂M all points not belonging to A′. Since A is perfectly

normal, there exists a continuous map h : A → [0, 1] such that h−1(0) = A′. Moreover, for

every x ∈ f −1(C) we have

f (x) = (m(x), d(x)) ∈ ∂M × [0, 1]

where m : f −1(C) → ∂M and d : f −1(C) → [0, 1] are continuous functions. Let us now

define a map H : A × [0, 1] → M as follows. If x ∈ f −1(M \ C), then H(x, t) = f (x) for every

t ∈ [0, 1]. If x ∈ f −1(C), then

H(x, t) = (m(x), min{d(x) + th(x), 1}).

First, observe that, if x ∈ f −1(M \ C) ∩ f −1(C), then necessarily f (x) = (m(x), 1), and this

readily implies that the map H is well defined, hence, continuous. Moreover, if x ∈ A′,
then d(x) = h(x) = 0, so H(x, t) = f (x) ∈ ∂M for every t ∈ [0, 1], that is, the maps

f = H(·, 0) and g = H(·, 1) are homotopic as map of pairs. Finally, we have g(x) ∈ ∂M if

and only if f (x) ∈ C and d(x) = h(x) = 0, that is, if and only if x ∈ A′, as desired. �

We are now ready to prove that the ideal simplicial volume is bounded from

above by the classical simplicial volume.

Theorem 3.7. Let (M, ∂M) be an orientable compact manifold with boundary. Then

‖M‖I ≤ ‖M‖.

Proof. Let ε > 0 be given, and let z ∈ Cn(M, ∂M) be a fundamental cycle such that

‖z‖1 ≤ ‖M‖ + ε. We would like to modify z into an admissible fundamental cycle

without increasing its �1-norm. To this aim, we briefly discuss a well-known geometric

description of cycles in singular homology, also described in [8, Section 13.2]. We refer

the reader to [19, Section 5.1] for an alternative approach to this construction.

Let z = ∑k
i=1 aiσ i, and assume that σ i �= σ j for i �= j. One can construct a �-

complex P associated to z by gluing k distinct copies �n
1 , . . . , �n

k of the standard n-

simplex �n as follows. For every i we fix an identification between �n
i and �n, so that

we may consider σi as defined on �n
i . For every i = 1, . . . , k, j = 0, . . . , n, we denote by Fi

j

the j-th face of �n
i , and by ∂ i

j : �n−1 → Fi
j ⊆ �n

i the usual face inclusion. We say that the
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faces Fi
j and Fi′

j′ are equivalent if σ i|Fi
j

= σ i′ |Fi′
j′

, or, more formally, if ∂ i
j ◦ σ i = ∂ i′

j′ ◦ σ i′ . We

now define a �-complex P as follows. The simplices of P are �n
1 , . . . , �n

k , and, if Fj
i , Fj′

i′ are

equivalent, then we identify them via the affine diffeomorphism ∂
j′
i′ ◦ (∂

j
i )

−1 : Fj
i → Fj′

i′ . By

construction, the maps σ 1, . . . , σ k glue up to a well-defined continuous map f : P → M.

We also define the boundary ∂P of P as the subcomplex of P given by all the (n−1)-faces

of P which are sent by f entirely into ∂M. By definition, the map f is a map of pairs from

(P, ∂P) to (M, ∂M).

For every i = 1, . . . , k, let σ̂i : �n → P be the singular simplex obtained by

composing the identification �n ∼= �n
i with the quotient map with values in P, and let

us consider the singular chain zP = ∑k
i=1 aiσ̂i ∈ Cn(P). By construction, zP is a relative

cycle in Cn(P, ∂P), and the push-forward of zP via f is equal to z. Moreover, ‖zP‖1 = ‖z‖1.

By applying Lemma 3.4 to the map f : (P, ∂P) → (M, ∂M) we now obtain a map

g : (P, ∂P) → (M, ∂M) such that g−1(∂M) = ∂P. We now set

z′ = g∗(zP) ∈ C∗(M, ∂M).

Since g is homotopic to f as a map of pairs, the chain z′ is a relative fundamental cycle

for M. Moreover, we have

‖z′‖1 = ‖g∗(zP)‖1 ≤ ‖zP‖1 = ‖z‖1 ≤ ‖M‖ + ε.

Finally, if σ ′
i : �n → M is a singular simplex appearing in z′, then σ−1(∂M) is a (possibly

empty) union of (n − 1)-faces of �n; hence, it is admissible.

Let p : (M, ∂M) → (X, B) be the natural projection of M onto its associated marked

space. Since z′ is admissible, we have p∗(z′) ∈ CM(X, B). Moreover, since z′ is a relative

fundamental cycle for M, the chain p∗(z′) is an ideal fundamental cycle for M. Thus,

‖M‖I = ‖[p∗(z′)]‖1 ≤ ‖p∗(z′)‖1 ≤ ‖z′‖1 ≤ ‖M‖ + ε.

Since ε is arbitrary, this concludes the proof. �

In order to conclude the proof of Theorem 3 we now need to show the following.

Proposition 3.8. There exists a constant Kn > 0 such that

‖M‖ ≤ Kn · ‖M‖I

for every n-dimensional manifold M.
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Proof. Let (X, B) be the marked space associated with M, let π : M → X be the natural

projection, and let zM = ∑k
i=1 aiσi ∈ CM∗ (X, B) be an ideal fundamental cycle for M.

We are going to truncate the singular simplices σi to obtain a realization of the relative

fundamental class of M via singular polytopes. We will then triangulate these polytopes

to get a classical relative fundamental cycle, at the cost of the multiplicative constant

Kn mentioned in the statement.

Let us begin with a general definition. Let Q be an m-dimensional polytope (i.e.,

the convex hull of a finite number of points that span an m-dimensional affine space in

some Euclidean space), m ≤ n. We inductively define the notion of fundamental cycle

for Q as follows. If m = 0, then Q is a point, and we set zQ = σ ∈ C0(Q), where σ is

the constant singular simplex at Q. If 0 < m ≤ n, we say that a chain zQ ∈ Cm(Q) is a

fundamental cycle for Q if the following conditions hold: the class of zQ in Hm(Q, ∂Q) is

indeed a relative fundamental cycle for (Q, ∂Q) ∼= (Dm, ∂Dm); if F1, . . . , Fk are the facets

of Q (i.e., the codimension-1 faces of Q), then ∂zQ = ∑k
i=1 ci, where ci is a fundamental

cycle for Fi for every i = 1, . . . , k.

We now fix 0 < ε < 1/(n+1) and, for every 0 ≤ m ≤ n, we define a family �(m, ε)

of oriented polytopes that are obtained by truncating the standard simplex

�m =
{

(t0, . . . , tm) ∈ Rm+1
∣
∣
∣
∣

m∑

i=0

ti = 1

}

around some of its faces. Namely, we say that a polytope Q belongs to �(m, ε) if there

exists a subcomplex K ⊆ �m such that

Q =
{

(t0, . . . , tm) ∈ �m
∣
∣
∣
∣

∑

i∈A

ti ≤ 1 − ε whenever A is the set of indices

corresponding to a face in K
}

.

In other words, Q is obtained by removing from �m a neighborhood of K (see

Figure 1). We endow Q with the orientation induced by �m, and every facet of Q will

also be oriented as (a subset of) the boundary of Q. The condition ε < 1/(n + 1) ensures

that Q has nonempty interior unless K = �m. If Q lies in �(m, ε), then every facet of Q

is affinely isomorphic to an element of �(m − 1, ε).

We now claim that for every 0 ≤ m ≤ n and for every Q ∈ �(m, ε) there exists a

fundamental cycle zQ for Q such that the following conditions hold:

1. ‖zQ‖1 ≤ Km, where Km is a constant only depending on m;
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Fig. 1. On the left, a standard simplex. On the right, the truncated simplex obtained by removing

neighborhoods of the edge PQ and of the vertices R and S.

2. let F1, . . . , Fk be the facets of Q and let ∂zQ = ∑k
i=1 ci, where ci is a funda-

mental cycle for Fi for every i = 1, . . . , k. If ϕ : Fi → Q′ is any orientation-

preserving affine isomorphism between Fi and an element Q′ ∈ �(m − 1, ε),

then ϕ∗(ci) = zQ′ ;

3. if ϕ : Q → Q is an affine isomorphism, then ϕ∗(zQ) = τ(ϕ)zQ, where τ(ϕ) = ±1

is positive if ϕ is orientation-preserving, and negative otherwise.

The existence of the claimed family of fundamental cycles may be proved by

induction as follows. If m = 0, then either Q = ∅ or Q is a point, and in both cases the

conclusion easily follows. Suppose now that the desired fundamental cycles have been

constructed for every i = 0, . . . , m − 1, and let Q ∈ �(m, ε). For every facet F of Q we

have an orientation-preserving affine isomorphism ϕ : F → Q′ for some Q′ ∈ �(m − 1, ε),

and we set zF = ϕ−1∗ (zF) ∈ Cm−1(F) ⊆ Cm(Q). By (3) (applied to the polytope Q′) the

chain zF does not depend on the chosen affine isomorphism. Let us now consider the

cycle z∂ = ∑
F zF . Using (2) and (3) it is immediate to check that ∂z∂ = 0, and this readily

implies that z∂ is a classical fundamental cycle for ∂Q. We can then fill z∂ thus obtaining

a chain z′
Q ∈ Cm(Q) such that ∂z′

Q = z∂ . If G is the group of the affine isomorphisms of Q

into itself, we then set zQ = (1/|G|)∑
g∈G τ(g)g∗(z′

Q). Using that each zF satisfies (3) we

easily see that ∂zQ = ∂z′
Q, and this readily implies that zQ satisfies (2) and (3). In order to

get (1), we only need to observe that �(m, ε) is finite, so we may set Km = max{‖zQ‖1 | Q ∈
�(m, ε)}. Indeed, if ε′ �= ε, then there exists an obvious bijection between �(m, ε) and

�(m, ε′), and fundamental cycles for elements of �(m, ε′) may be chosen to have exactly

the same �1-norm as the ones for the corresponding elements of �(m, ε). This concludes

the proof of the claim.
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We can now proceed with the proof of the proposition. Let zM = ∑s
i=1 aiσi ∈

CM
n (X, B) be an ideal fundamental cycle for M. For every b ∈ B denote by Fb a closed

quasiconical neighborhood of b such that X \ ⊔
b∈B int(Fb) is homeomorphic to M. We

also set FB = ⊔
b∈B Fb and we denote by ∂FB the topological boundary of FB in X, so that

(X \ int(FB), ∂FB) is homeomorphic to (M, ∂M).

By continuity, there exists ε0 > 0 such that the following condition holds: for

every i = 1, . . . , s, if Ki = σ−1
i (B), then σi(�

n \ int(Qi)) ⊆ int(FB), where Qi ∈ �(n, ε0) is

obtained as above by removing from �n a neighborhood of Ki. For every i = 1, . . . , s let

now zQi
be the fundamental cycle for Qi defined above, and set

zi = (σi)∗(zQi
) ∈ Cn(X \ B) , z =

s∑

i=1

aizi.

Using that zM is a marked cycle and the properties of the zQi
it is not difficult to show

that ∂z ∈ Cn

(
FB \ B

)
. In particular, z is a relative cycle in Cn

(
X \ B, FB \ B

)
. By retracting

each Fb \ {b} onto ∂Fb we can construct a homotopy equivalence of pairs

r :
(
X \ B, FB \ B

) → (
X \ int(FB), ∂FB

) ∼= (M, ∂M).

We claim that the chain r∗(z) is a relative fundamental cycle for M. Indeed, zM is an

ideal fundamental cycle, so its image in Hn(X, B) has local degree equal to 1 at every

point x ∈ X \ B (see Remark 3.2). Using this and the fact that every zQi
is a relative

fundamental cycle for Qi, we deduce that also z has a local degree equal to 1 at every

point x ∈ X \ FB. Then, the same holds true for r∗(z), and this shows that r∗(z) is a

fundamental class for M. Therefore,

‖M‖ ≤ ‖r∗(z)‖1 ≤ ‖z‖1 =
∥
∥
∥
∥
∥

s∑

i=1

ai(σi)∗(zQi
)

∥
∥
∥
∥
∥

1

≤
s∑

i=1

|ai| · ‖zQi
‖1 ≤ Kn

s∑

i=1

|ai| = Kn · ‖zM‖1.

By taking the infimum over all possible ideal fundamental cycles we get

‖M‖ ≤ Kn‖M‖I ,

which concludes the proof. �

By exploiting the techinques introduced in the proof of Theorem 3.7 we may

show that the �1-norm of a marked homology class can be computed by looking only at

marked chains whose simplices have all their vertices in B.
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Proposition 3.9. Let (X, B) be a marked space such that H0(X, B) = 0 (i.e., B intersects

every path connected component of X), and let i ∈ N. Then, for every α ∈ HM
i (X, B)

and every ε > 0 there exists a marked cycle z ∈ CM
i (X, B) satisfying the following

properties:

1. [z] = α in HM
i (X, B) and ‖c‖1 ≤ ‖α‖1 + ε;

2. all the vertices of every singular simplex appearing in z lie in B.

Proof. Let z ∈ CM
i (X, B) be an admissible cycle. In order to prove the proposition, it is

sufficient to show that z is homologous to an admissible cycle z′ ∈ CM
i (X, B) such that

‖z′‖1 ≤ ‖z‖1 and all the vertices of every singular simplex appearing in z′ lie in B.

Let z = ∑k
j=1 ajσj. We exploit the notation introduced in the proof of

Theorem 3.7 (with (M, ∂M) replaced by (X, B)), and we denote by P the �-complex

associated with z (which is obtained by gluing k copies of the standard simplex �i), and

by f : P → X the continuous map obtained by gluing the maps σ1, · · · , σk. Moreover, we

denote by σ̂j : �i → P the characteristic map of the j-th copy of �i in P (see the proof of

Theorem 3.7), and we set zP = ∑k
j=1 ajσ̂j ∈ Ci(P).

By construction, zP is a relative cycle in Ci(P, f −1(B)), and z = f∗(zP). Moreover,

since every σj is admissible, the subset f −1(B) ⊆ P is a subcomplex of P.

We now aim to construct a homotopy of pairs H : (P, f −1(B))× I → (X, B) between

f and a map g such that every singular simplex appearing in z′ = g∗(zP) is admissible

and has all its vertices in B. We will then have [z′] = [z] in Hi(X, B); hence, in HM
i (X, B)

thanks to Theorem 2.7. Then the proposition will follow from the inequality

‖z′‖1 = ‖g∗(zP)‖1 ≤ ‖zP‖1 = ‖z‖1.

Let v ∈ P0 \ f −1(B) be a vertex of P that is not sent to B by f . Since H0(X, B) = 0,

there exists a continuous path γv : [0, 1] → X joining v with a point in B. Moreover,

since every point of B has a quasiconical neighborhood in X, we can safely assume that

γ −1
v (B) = {1}, that is, the path γv hits B only at its endpoint. Let us now consider the

homotopy

Ĥ : ( f −1(B) ∪ P0) × I → X

Ĥ(x, t) =
⎧
⎨

⎩

f (x) if x ∈ f −1(B)

γx(t) if x ∈ P0 \ f −1(B)
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( Ĥ is indeed continuous since both f −1(B) and P0 \ f −1(B) are closed in P). Since f −1(B)∪
P0 is a subcomplex of P, thanks to the Homotopy Extension Property for CW-pairs

(see [12, Proposition 0.16]) we can extend Ĥ to a homotopy H : P → X. Moreover, since

the homotopy Ĥ is relative to f −1(B), we may assume that H is also relative to f −1(B). In

particular, H also defines a homotopy of pairs H : (P, f −1(B)) × I → (X, B). We then set

g = H(·, 1), and we are left to show that every singular simplex appearing in z′ = g∗(zP)

is admissible and has all its vertices in B.

The fact that every singular simplex appearing in z′ has all its vertices in B

readily follows from the construction of g. Moreover, in order to prove that each singular

simplex appearing in z′ is admissible it is sufficient to show that g−1(B) is a subcomplex

of P. However, from the definition of Ĥ and from the explicit description of its extension

H given in [12, Proposition 0.16] we deduce that g−1(B) = f −1(B) ∪ P0. Since f −1(B) is a

subcomplex of P, this concludes the proof. �

3.5 Bounding mapping degrees

Let us now turn to the proof of Theorem 2. Let f : (M, ∂M) → (N, ∂N) be a map of pairs

between n-dimensional manifolds with boundary. We denote by (XM , BM) (resp. (XN , BN))

the marked space associated with M (resp. to N).

By Lemma 3.6, the map f is homotopic (as a map of pair) to a map

g : (M, ∂M) → (N, ∂N) such that g−1(∂N) = ∂M. This condition ensures that the map

g : (XM , BM) → (XN , BN) induced by g is admissible. By looking at the commutative

diagram

we easily deduce that

HM
n (g)([M, ∂M]M) = deg(g) · [N, ∂N]M = deg( f ) · [N, ∂N]M.
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Moreover, the operator HM
n (g) is norm nonincreasing, since it is induced by a map

on marked chains that sends every single admissible simplex to a single admissible

simplex. Thus,

‖M‖I = ‖[M, ∂M]M‖1 ≥ ‖HM
n (g)([M, ∂M]M)‖1

= ‖ deg( f ) · [N, ∂N]M‖1 = | deg( f )| · ‖N‖I .

This concludes the proof of Theorem 2.

4 The Universal Covering of a Marked Space

When computing the (co)homology of a space, it is often useful to work with (co)invariant

(co)chains on coverings. In order to implement this strategy in the context of marked

(co)homology, we first need to define coverings of marked spaces. For the sake of

simplicity (and since this will be sufficient for our purposes) we only define the

universal covering of a marked space, even though our construction may be easily

adapted to define a more general notion of covering between marked spaces.

Let (X, B) be a marked space, and assume for simplicity that Y = X \ B admits

a universal covering q : Ỹ → Y. Then we define the universal covering (X̃, B̃) of (X, B) as

follows. Let {Fb}b∈B be a collection of disjoint quasiconical closed neighborhoods of the

points of B. We pick a set B̃ endowed with a fixed bijection with the set of connected

components of q−1(
⋃

b∈B(Fb \ {b})) and we define X̃ = Ỹ ∪ B̃. Observe that the covering

projection q : Ỹ → Y extends to a map π : X̃ → X sending to b ∈ B all the points of B̃

corresponding to a component of q−1(Fb).

In order to turn the pair (X̃, B̃) into a marked space, we endow X̃ with the unique

topology such that the following conditions hold: the subset Ỹ = X̃ \ B̃ is open in X̃ and

inherits from X̃ the topology of Ỹ as total space of the universal covering of Y; if b̃ ∈ B̃

corresponds to a component F̃ of q−1(Fb \ {b}), then a basis of neighborhoods of b̃ in X̃ is

given by the collection {̃F ∩ π−1(U)}, as U varies in a basis of neighborhoods of b in X.

Lemma 4.1. The pair (X̃, B̃) is indeed a marked space, and the map π : (X̃, B̃) → (X, B)

is admissible.

Proof. Let us check that every b̃ ∈ B̃ admits a quasiconical neighborhood in X̃. Let

b = π(̃b) and let Fb be a quasiconical neighborhood of b in X. Let also H : Fb × [0, 1] → Fb

be a contracting homotopy as in Definition 2.1, and denote by

H ′ :
(
Fb \ {b}) × [0, 1) → Fb \ {b}
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the restriction of H ′ to
(
Fb \ {b}) × [0, 1) (which is well defined thanks to the properties

of H). Let also F̃ ⊆ X̃ \ B̃ be the connected component of q−1(Fb \ {b}) corresponding to b̃.

Covering theory ensures that the homotopy H ′ lifts to a homotopy

H̃ ′ : F̃ × [0, 1) → F̃

such that H̃ ′(x, 0) = x for every x ∈ F̃. We now set F̃b̃ = F̃ ∪ {̃b}, and we extend H̃ ′ to a

homotopy

H̃ : F̃b̃ × [0, 1] → F̃b̃

by setting H̃(x, t) = b̃ whenever x = b̃ or t = 1. It is now easy to check that the map

H̃ is continuous and satisfies the requirements of Definition 2.1; hence, F̃b̃ is a closed

quasiconical neighborhood of b̃ in X̃. As b̃ varies in B̃, the construction just described

provides disjoint sets, and this concludes the proof that (X̃, B̃) is a marked space.

The fact that π−1(B) = B̃ is obvious, while the continuity of π readily follows

from the definitions. Thus, π is admissible, whence the conclusion. �

In general, the map π : X̃ → X is no longer a covering (in fact, it is a covering if

and only if the image of π1(Fb \ {b}) into π1(X \ B) is trivial for every b ∈ B).

Remark 4.2 Let M be a compact manifold with boundary with associated marked

space (X, B). Let f : M̃ → M be the universal covering of M, and let pM̃ : (M̃, ∂M̃) →
(XM̃ , BM̃) be the natural projection on the associated marked space. It is very natural to

ask whether (XM̃ , BM̃) may be identified with the universal covering (X̃, B̃) of (X, B).

First, observe that the identification

M̃ \ ∂M̃ = M̃ \ ∂M ∼= X̃ \ B

extends to a projection p′
M̃ : M̃ → X̃ that is continuous and sends every connected

component of ∂M̃ to a single point in B̃. As a consequence, there exists a (unique) map

α : XM̃ → X̃ such that the following diagram commutes:

Since XM̃ is endowed with the quotient topology, the map α is continuous. Moreover, it is

easy to check that it is bijective. However, we now show that α is not a homeomorphism

if ∂M̃ contains a non-compact connected component ∂0M̃.
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Let b̃ = pM̃(∂0M̃) ∈ BM̃ be the point corresponding to ∂0M̃. We claim that b̃ does

not admit a countable basis of neighborhoods in XM̃ . In fact, let {Un}n∈N be a countable

collection of neighborhoods of b̃ in XM̃ . Let d be a distance inducing the topology of M̃

(every topological manifold is metrizable), and choose a diverging sequence {xn}n∈N in

∂0M̃. For every n ∈ N there exists εn > 0 such that the d-ball B(xn, εn) is contained in

p−1
M̃

(Un). Using that the sequence {xn}n∈N diverges, it is not difficult to construct an open

neighborhood V of ∂0M̃ in M̃ such that V does not contain B(xn, εn) for every n ∈ N. The

projection pM̃(V) of V is now an open neighborhood of b̃ in XM̃ that does not contain any

of the Un, n ∈ N. This shows that b̃ does not admit a countable basis of neighborhoods

in XM̃ .

In order to show that α is not a homeomorphism it is now sufficient to observe

that α(̃b) has a countable basis of neighborhoods in X̃. In fact, let b = π(α(̃b)) be the

projection of α(̃b) under the covering of marked spaces π : X̃ → X introduced above.

It follows from the very definition of the topology of X̃ that a basis of neighborhoods

at α(̃b) is given by the set {π−1(U)} as U varies in a basis of neighborhoods of b in X.

Now it is easy to check that X is second countable (e.g., it is metrizable and compact);

hence, b has a countable basis of neighborhoods in X. This implies in turn that α(̃b)

has a countable basis of neighborhoods in X̃, thus concluding the proof that α is not a

homeomorphism.

This fact may seem a bit annoying at first sight, but our choice for the definition

of the topology of X̃ allows us to lift admissible simplices from X to its covering (see

Lemma 4.3 and Remark 4.4).

4.1 Lifting admissible simplices

Let Y = X \ B be as before, and let � denote the automorphism group of the universal

covering q : Ỹ → Y. It is immediate to check that every element of � extends to an

admissible map of (X̃, B̃) into itself. As it is customary for ordinary (co)homology,

we would like to compute the marked (co)homology of X by looking at (co)invariant

(co)chains on the universal covering. To this aim we need the following important

lemma.

Lemma 4.3. Let π : X̃ → X be the universal covering constructed above, and let

σ : �i → X be an admissible singular simplex. Then, there exists an admissible singular

simplex σ̃ : �i → X̃ such that π ◦ σ̃ = σ . Moreover, if σ̃ ′ : �i → X̃ is any admissible

singular simplex such that π ◦ σ̃ ′ = π ◦ σ̃ = σ , then there exists an element γ ∈ � such

that σ̃ ′ = γ ◦ σ̃ .
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Proof. If σ(�i) ⊆ B, then by discreteness of B we have σ(�i) = {b} for some b ∈ B. We

then choose an element b̃ in π−1(b) and define σ̃ (x) = b̃ for every x ∈ �i. The conclusion

follows from the fact that � acts transitively on the fiber of b.

We may thus set K = σ−1(B) and suppose that A = �i \ K is nonempty. Since σ is

admissible, the set K is a subcomplex of �i, and A is a convex subset of �i. In particular,

A is simply connected. Since the restriction of π to X̃ \ B̃ is a classical covering, this

implies that there exists a continuous lift β : A → X̃ of the restriction σ |A. Let us fix

as usual a family Fb, b ∈ B, of disjoint closed quasiconical neighborhoods of the points

of B, and let F̃b̃, b̃ ∈ B̃, be the family of disjoint closed quasiconical neighborhoods of

points of B̃ obtained by lifting the Fb (see the proof of Lemma 4.1).

Let K0 be a connected component of K. Since B is discrete, there exists b ∈ B

such that σ(K0) = {b}. Since σ is admissible and nonconstant, the subset A contains

�i \ ∂�i. In particular, every point x ∈ K0 is an accumulation point for A. By continuity

of σ , there exists an open neighborhood U of K0 in �i such that U ∩ (K \ K0) = ∅ and

σ(U) ⊆ Fb. Moreover, we can choose U so that U \ K0 = U ∩ A is path connected. We

now have

β(U \ K0) ⊆ π−1(σ (U \ K0)) ⊆ π−1(Fb) =
⊔

b̃∈π−1(b)

F̃b̃.

Since U \ K0 is connected, this shows that there exists a unique b̃ ∈ π−1(B) such that

β(U \ K0) ⊆ F̃b̃, and we set σ̃ (x) = b̃ for every x ∈ K0. Using the definition of the topology

of X̃ it is not difficult to show that σ̃ : �i → X̃ is continuous. By construction, it is also

admissible, thus providing the desired lift of σ .

Suppose now that σ̃ ′ : �i → X̃ is an arbitrary lift of σ . The maps σ̃ ′|A and σ̃ |A
both lift σ |A, so it readily follows from classical covering theory that σ̃ ′|A = γ ◦ σ̃ |A for

some γ ∈ �. Observe now for every b ∈ B, x ∈ X \ {b} there exist disjoint neighborhoods

of b and x in X. Therefore, since A is dense in �i the singular simplices σ̃ ′ and γ ◦ σ̃

coincide on the whole of �i, and this concludes the proof. �

Remark 4.4. Let M be a compact manifold with universal covering M̃, and denote by

XM , XM̃ the marked spaces associated to M and M̃, respectively. As observed in Remark

4 .2, there exists a natural bijection between X̃ and XM̃ , so it makes sense to ask whether

Lemma 4.3 would hold with X̃ replaced by XM̃ . The answer is negative in general.

For example, let M = S1 × [0, 1], so that M̃ = R × [0, 1], and let σ : �1 → M̃

be defined by σ(t) = (1/t, t) if t �= 0 and σ(0) = (0, 0). Let also pM̃ : M̃ → XM̃ be the

natural projection, and q : XM̃ → XM the projection obtained by precomposing the map

X̃ → XM with the bijection XM̃
∼= X̃. Then it is not difficult to prove that the simplex
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q◦pM̃◦σ : �1 → X is continuous, hence admissible. On the contrary, the map pM̃◦σ : �1 →
XM̃ is not continuous: in fact, if U = {(t, y) ∈ R × [0, 1], t > 1, and y < 1/t} ⊆ M̃, then the

set pM̃(U) is open in XM̃ and intersects the image of pM̃ ◦ σ only at the point pM̃(R× {0}),
against the continuity of pM̃ ◦σ . (On the other hand, the simplex pM̃ ◦σ : �1 → XM̃ would

be continuous if we endowed the set XM̃ with the topology inherited from the bijection

XM̃
∼= X̃.) Using this fact, one can easily show that the admissible simplex q◦pM̃ ◦σ does

not lift to an admissible simplex with values in XM̃ .

5 Manifolds with Amenable Boundary

Let M be a manifold with boundary with associated marked space (X, B). As usual, we

assume that M is compact, connected, and oriented. Denote by M̃ the universal covering

of M, and let us fix an identification of the fundamental group of M with the group �

of automorphisms of the covering π : M̃ → M. Let (X, B) be the marked space associated

with M, and denote by (X̃, B̃) the universal covering of (X, B) as a marked space.

5.1 Proof of Theorem 4

Let us now suppose that the fundamental group of every component of ∂M is amenable.

We would like to prove that ‖M‖I = ‖M‖. We already know that ‖M‖I ≤ ‖M‖, so we need

to show the converse inequality ‖M‖ ≤ ‖M‖I . The duality principle for ordinary singular

(co)homology (see, e.g., [18] or [8]) implies that there exists a bounded cohomology class

ψ ∈ Hn
b (M, ∂M) such that ‖ψ‖∞ ≤ 1 and 〈ψ , [M, ∂M]〉 = ‖M‖.

Let ε > 0 be given. Since the fundamental group of each component of ∂M is

amenable, by [8, Corollary 5.18] there exists a representative f ∈ Cn
b (M, ∂M) of ψ such

that ‖f ‖∞ ≤ ‖ψ‖∞ + ε that is special in the following sense.

• Let σ , σ ′ : �n → M be singular simplices that lift to maps σ̃ , σ̃ ′ : �n → M̃ such

that, for every i = 0, . . . , n, at least one of the following conditions holds:

either σ̃ (ei) = σ̃ ′(ei), or σ̃ (ei) �= σ̃ ′(ei) but σ̃ (ei) and σ̃ ′(ei) belong to the same

connected component of ∂M̃, where e0, . . . , en are the vertices of the standard

n-simplex. Then f (σ ) = f (σ ′).

We are now ready to construct a cocycle fM ∈ Cn
M(X, B) out of the cocycle f . Let

us denote by p′̃
M

: M̃ → X̃ the projection described in Remark 4.2.

Let σ : �n → X be an admissible simplex, and let σ̃ : �n → X̃ be a lift of σ ,

as described in Lemma 4.3. It may be the case that σ̃ is not the projection on X̃ of any
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singular simplex with values in M̃. Nevertheless, we can arbitrarily choose a singular

simplex σ̂ : �n → M̃ such that σ̃ and p′̃
M

◦ σ̂ coincide on the vertices of �n. We then set

fM(σ ) = f (π ◦ σ̂ ),

where π : M̃ → M is the universal covering projection.

The fact that f is special implies that fM is well defined. Moreover, it is readily

seen that fM is a cocycle, and

‖fM‖∞ ≤ ‖f ‖∞ ≤ ‖ψ‖∞ + ε ≤ 1 + ε.

Let ψM ∈ Hn
M(X, B) be the class represented by fM. We are now going to

evaluate ψM on the ideal fundamental class of M. So let z ∈ Cn(M, ∂M) be a fundamental

cycle for M. The proof of Theorem 3.7 shows that we can modify z into an admissible

fundamental cycle without increasing its �1-norm. Therefore, we may assume that the

chain z is admissible. As a consequence, the chain zM = p∗(z) ∈ CM
n (X, B) is also

admissible. By definition, it follows that zM is an ideal fundamental cycle for M.

Moreover, it readily follows from the definition of fM that fM(zM) = f (z). We then

have

〈ψM, [M, ∂M]M〉 = fM(zM) = f (z) = 〈ψ , [M, ∂M]〉 = ‖M‖.

Moreover,

‖ψM‖∞ ≤ ‖fM‖∞ ≤ 1 + ε.

Therefore, by applying Proposition 3.4 with α = [M, ∂M]M and ϕ = ψM/(1 + ε) we get

‖M‖I = ‖[M, ∂M]M‖1 ≥ 〈ψM, [M, ∂M]M〉
1 + ε

= ‖M‖
1 + ε

.

Since ε is arbitrary, we thus have

‖M‖I ≥ ‖M‖.

This concludes the proof of Theorem 4.

6 Hyperbolic Manifolds with Geodesic Boundary

This section is devoted to the proof of Theorem 9, which computes the ideal simpli-

cial volume of an infinite family of hyperbolic 3-manifolds with geodesic boundary.
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Mimicking the well-known computation of the classical simplicial volume for hyper-

bolic manifolds due to Gromov and Thurston, we will first establish the lower bound on

the ideal simplicial volume in terms of the Riemannian volume described in Theorem 7.

To this aim, rather than defining a proper straightening of simplices as in the classical

case, we will directly exploit the duality principle described in Proposition 3.4. In the

3D case, building on a recent result on the volumes of peculiar classes of (partially)

truncated tetrahedra in hyperbolic space, we will then show that the resulting lower

bound is sharp for an infinite family of 3-manifolds.

6.1 A geometric realization of the associated marked space

We denote by Hn the hyperboloid model of hyperbolic space H
n, that is, we set

Hn = {x ∈ R
n+1 | 〈x, x〉 = −1, x0 > 0},

where

〈(x0, . . . , xn), (y0, . . . , yn)〉 = −x0y0 +
n∑

i=1

xiyi

is the Minkowsky scalar product. We also denote by Sn the hyperboloid

Sn = {x ∈ R
n+1 | 〈x, x〉 = 1}.

For every element x ∈ Sn we define the dual hyperplane H(x) (resp. dual half-space

H+(x)) of Hn by setting

H+(x) = {y ∈ Hn | 〈y, x〉 ≤ 0},
H(x) = ∂H+(x) = {y ∈ Hn | 〈y, x〉 = 0}.

Let now M be a compact hyperbolic manifold with nonempty geodesic boundary.

The universal covering M̃ of M is a convex subset of H
n bounded by infinitely many

disjoint hyperplanes, and the fundamental group � of M acts by isometries on M̃. In

fact, every isometry of M̃ is the restriction of a unique element in SO(n, 1), so � acts also

on Sn. By taking the dual vectors of the boundary component of M̃, one can construct a

�-invariant countable set D̂ ⊆ Sn such that for every q̂ ∈ D̂ the dual hyperplane

H(q) ⊆ Hn is a connected component of ∂M̃, and

M̃ =
⋂

q̂∈D̂

H+(q̂).

Moreover, up to acting via an isometry of Hn, we may suppose that (1, 0, . . . , 0) belongs

to int(M̃) = M̃ \ ∂M̃, and this easily implies that the set D̂ is contained in the half-



38 R. Frigerio and M. Moraschini

space {x0 > 0}. This allows us to fruitfully exploit the projective model of hyperbolic

space; indeed, let U ∼= R
n be the affine chart defined by U = {[x] ∈ P

n(R) | x0 �= 0},
consider the projection π : Rn+1 \ {0} → P

n(R) and let P ⊆ U be the projective model of

hyperbolic space, that is, set P = π(Hn). Also set D = π(D̂) ⊆ U. With a slight abuse, we

denote simply by M̃ the set π(M̃) ⊆ P and, for every q̂ ∈ D̂, we denote by H+(q̂) also the

projection π(H+(q̂)) ∩ U ⊆ U.

Let now (X, B) be the marked space associated with M, and let (X̃, B̃) be the

universal covering of the marked space (X, B). Let us also set Y = int(M̃) ∪ D. We will

now fix the the following identification between (X̃, B̃) and (Y, D): recall from Remark 3

that there exists a natural bijection between (X̃, B̃) and (XM̃ , BM̃); this induces in turn an

identification between X̃ \ B̃ and XM̃ \ BM̃
∼= int(M̃); moreover, B̃ ∼= BM̃ admits a natural

bijection with the set of connected components of M̃, hence with D. We will endow

the pair (Y, D) with the structure of marked space inherited from this identification.

Observe that the identification (X̃, B̃) ∼= (Y, D) is equivariant with respect to the action

of G on (Y, D).

6.2 (Partially) truncated simplices

Just as ideal simplices are the fundamental building blocks for cusped hyperbolic

manifolds, truncated simplices may be exploited to construct hyperbolic manifolds

with geodesic boundary. Just as the name suggests, truncated simplices are obtained

by truncating Euclidean simplices in the chart U ⊆ P
n(R) along the dual hyperplanes of

their hyperideal vertices. Here is a precise definition.

Definition 6.1. Let v0, . . . , vn be points of (U \ ∂P) ⊆ P
n(R), let � ⊆ U be the convex

hull of the vi, and let I ⊆ {0, . . . , n} be the set of indices i such that vi /∈ P. Also suppose

that the following conditions hold:

1. For every i, j = 0, . . . , n, i �= j, the straight segment joining vi with vj intersects

P;

2. For every i ∈ I, let v̂i ∈ Sn be the lift of vi such that x0(vi) > 0. Then vj ∈ H+(v̂i)

for every j /∈ I.

Then the set

�∗ = � ∩
(

⋂

i∈I

H+(v̂i)

)

is a partially truncated simplex (see Figure 2).
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Fig. 2. A partially truncated tetrahedron. The vertices v0 and v1 are hyperideal, while v2 and v3

are finite.

The vi are the vertices of �∗. A vertex vi is finite if vi ∈ P, and ultraideal if

vi ∈ U \ P. The simplex �∗ is degenerate if its vertices are all contained in a hyperplane

of U.

The intersection of �∗ with any face of � is an internal face of �∗. We say that

an internal edge of �∗ is fully hyperideal if both the vertices of the corresponding

edge of � are hyperideal, and that �∗ is fully truncated if every vertex of � is

hyperideal. For every i ∈ I, the set �∗ ∩ H+(v̂i) is the truncation simplex of �∗.

When n = 3, truncation simplices are usually called truncation triangles. The dihedral

angle between a truncation simplex and any internal face adjacent to it is equal

to π/2. (Partially) truncated tetrahedra are compact; in particular, they have finite

volume.

Remark 6.2. In our definition of (partially) truncated tetrahedra we did not allow

ideal vertices, nor (partially) ideal truncation simplices (which occur when the straight

segment joining two hyperideal vertices is tangent to P at a point in ∂P). Truncated

tetrahedra with ideal vertices arise in the decomposition of hyperbolic n-manifolds with

geodesic boundary and rank-(n − 1) cusps, while truncated tetrahedra with ideal trun-

cation simplices arise in the decomposition of hyperbolic manifolds with non-compact

geodesic boundary. This choice allows us to avoid some technicalities, and the study of

compact truncated simplices is sufficient for our applications.
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For any geodesic segment e in P we denote by L(e) the hyperbolic length of e.

Definition 6.2. Let � > 0. Then we set for any n ∈ N

Vn
� = sup{vol(�∗) | �∗ fully truncated n − simplex ,

L(e) ≥ � for every internal edge of �∗}.

6.3 The marked volume form

Let M be a compact hyperbolic manifold with geodesic boundary. Recall from the

introduction that �(M) denotes the smallest return length of M, that is, the length of

the shortest path with both endpoints on ∂M that intersects ∂M orthogonally at each

of its endpoints (equivalently, it is the smallest distance between distinct boundary

components of the universal covering of M). Let (X, B) be the marked space associated

to M, and let (Y, D) ∼= (X̃, B̃) be the marked space described in Section 6.1. We are going

to define a marked volume form on M by assigning to every admissible simplex σ the

signed volume of a partially truncated simplex having the same vertices as a lift of σ .

To this aim, let us first define the function

algvol : Yn+1 → R

as follows. Take an element (y0, . . . , yn) ∈ Yn+1. If the yi are all contained in a hyperplane

of P (e.g., if yi = yj for some i �= j), then we simply set algvol(y0, . . . , yn) = 0. Otherwise,

it is easy to check that {y0, . . . , yn} is the set of vertices of a nondegenerate (partially)

truncated simplex �∗ ⊆ M̃, and we set

algvol(y0, . . . , yn) = ε(y0, . . . , yn) · vol(�∗),

where ε(y0, . . . , yn) = 1 (resp. ε(y0, . . . , yn) = −1) if the barycentric parametrization

�n → U , (t0, . . . , tn) �→ t0y0 + . . . tnyn

of the Euclidean simplex with vertices v0, . . . , vn is orientation-preserving (resp.

orientation-reversing). Here we are endowing U with the unique orientation that induces

the positive orientation on M̃ ⊆ P ⊆ U.
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Observe now that there is an obvious isometric isomorphism between Cn
M(X, B)

and Cn
M(Y, D)�. We can then define the cochain ω ∈ Cn

M(Y, D)� by setting

ω(̃σ ) = algvol(v0, . . . , vn),

where vi = σ̃ (ei) and ei is the i-th vertex of the standard simplex �n. It is easy to check

that ω is a cocycle; hence, we may denote by [ω] ∈ Hn
M(X, B) the coclass represented

by ω.

Proposition 6.4. We have

〈[ω], [M, ∂M]M〉 = vol(M).

Proof. It is sufficient to exhibit an ideal fundamental cycle zM ∈ CM
n (X, B) for which

ω(zM) = vol(M).

Kojima’s canonical decomposition for hyperbolic manifolds with geodesic

boundary [14, 15] shows that M can be decomposed into fully truncated polyhedra.

Unfortunately, it is not clear whether these polyhedra may be coherently subdivided

to give a triangulation of M by nondegenerate truncated simplices. However, a

decomposition of M into possibly degenerate truncated simplices may be obtained

by subdividing Kojima’s decomposition and, if needed, by inserting a finite number

of degenerate truncated simplices between the faces of the original polyhedra. One

can finally obtain the desired fundamental cycle zM by alternating the barycentric

parametrizations of these simplices just as we did in Section 3.3. It is then obvious that

ω(zM) = vol(M), and this concludes the proof.
�

6.4 Proof of Theorem 7

We are now ready to conclude the proof of the lower bound on ‖M‖I in terms of the

Riemannian volume of M. By Proposition 3.9, for every ε > 0 we may find an ideal

fundamental cycle

zM =
k∑

i=1

aiσi ∈ CM
n (X, B)

such that all the vertices of every σi lie in B, and ‖zM‖1 ≤ ‖M‖I + ε. As a consequence,

since the length of any internal edge of any fully truncated simplex with vertices in

Y = int(M̃) ∪ D is not smaller than �(M), for every i = 0, . . . , k we have |ω(σi)| ≤ Vn
�(M).
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Therefore,

vol(M) = ω(zM) ≤
k∑

i=0

|ai| · |ω(σi)| ≤ Vn
�(M)

k∑

i=0

|ai| = Vn
�(M)‖zM‖1

≤ Vn
�(M)

(‖M‖I + ε
)

.

Since ε is arbitrary, this concludes the proof of Theorem 7.

6.5 The class Mg

As in the introduction, let Mg, g ≥ 2, be the class of 3-manifolds M with boundary that

admit an ideal triangulation by g tetrahedra and have Euler characteristic χ(M) = 1 − g

(so χ(∂M) = 2 − 2g). We also denote by Mg the set of hyperbolic 3-manifolds M with

connected geodesic boundary such that χ(∂M) = 2 − 2g. It turns out that elements of

Mg admit a geometric decomposition into regular truncated tetrahedra.

A fully truncated tetrahedron � is regular if any permutation of its vertices is

realized by an isometry of the truncated tetrahdron. Equivalently, � is regular if and

only if the dihedral angles along its edges are all equal to each other, and this happens

if and only if the hyperbolic lengths of its internal edges are all equal to each other. Up

to isometry, regular truncated tetrahedra are parametrized by their edge length (which

may vary in (0, +∞)), or by their dihedral angles (which may vary in (0, π/3)). It is well

known (see,e.g., [22]) that, if θ(�) denotes the dihedral angles along the internal edges of

a regular truncated tetrahedron with edge lengths equal to �, then the map � → θ(�) is

strictly increasing, and has limits

lim
�→0+ θ(�) = 0

(when the truncated tetrahedron is tending to a regular ideal hyperbolic octahedron),

and

lim
�→+∞ θ(�) = π/3

(when the truncated tetrahedron is tending to a regular ideal hyperbolic tetrahedron).

For every g ≥ 2, we denote by �g the length of the internal edges of the regular

truncated tetrahedron with dihedral angles equal to π/(3g). Moreover, for every � > 0 we

denote by �� the (isometry class of the) regular truncated tetrahedron with edge length

equal to �. It is proved for example, in [16] that

vol(��g
) = v8 − 3

∫ π
3g

0
arccosh

(
cos t

2 cos t − 1

)

dt

where v8 is the volume of the regular ideal octahedron.
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The following result is a restatement of the main theorem of [10], and shows

that, at least for every � ≤ �2, the regular tetrahedron �� has the largest volume among

all fully truncated tetrahedra whose edge lengths are not smaller that �.

Theorem 6.5. Let � ≤ �2. Then

V3
� = vol(��).

The following result lists some known properties of manifolds belonging to Mg.

The last point implies that Mg coincides with the set of the elements of Mg of smallest

volume.

Proposition 6.6 ([9, 16]). Let g ≥ 2. Then,

1. the set Mg is nonempty;

2. every element of Mg admits a hyperbolic structure with geodesic boundary

(which is unique up to isometry by Mostow Rigidity Theorem);

3. the boundary of every element of Mg is connected, so Mg ⊆ Mg;

4. if M ∈ Mg, then M decomposes into the union of g copies of ��g
, so in

particular vol(M) = g · vol(��g
);

5. if M ∈ Mg, then vol(M) ≥ g · vol(��g
);

6. if M ∈ Mg, then the shortest return length �(M) of M is equal to �g;

7. if M ∈ Mg, then �(M) ≥ �g.

Proof. Items (2), (3) and (4) are proved in [9], items (1) and (5) in [16, 21]. Item (7) is

proved in [21 , Lemma 5.3], and (6) follows from (7) together with the fact that the internal

egdes of the truncated tetrahedra in the decomposition described in (4) define return

paths of length �g. �

6.6 Proof of Theorem 9 and Corollary 10

We are now ready to prove Theorem 9. Let M ∈ Mg. By Proposition 6.6 we have vol(M) =
g·vol(��g

) and �(M) = �g. Moreover, Theorem 6.5 ensures that V3
�g

= vol(��g
), so plugging

these equalities into the lower bound given by Theorem 7 we obtain

‖M‖I ≥ vol(M)

V3
�(M)

=
g · vol(��g

)

vol(��g
)

= g.

On the other hand, the manifold M admits an ideal triangulation with g tetrahedra, so

‖M‖I ≤ c(M) ≤ g.
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We thus get

‖M‖I = c(M) = g,

which proves the 2nd statement of Theorem 9.

If M ∈ Mg, Proposition 6.6 implies that vol(M) ≥ g · vol(��g
) and �(M) ≥ �g, so

that V3
�(M) ≤ V3

�g
= vol(�g). Therefore, we have

‖M‖I ≥ vol(M)

V3
�(M)

≥
g · vol(��g

)

vol(��g
)

= g.

This concludes the proof of Theorem 9.

In order to prove Corollary 10, it is sufficient to observe that, if M is an oriented

compact hyperbolic 3-manifold with geodesic boundary having an ideal simplicial

volume not greater than 2, then Corollary 8 ensures that

2 ≥ ‖M‖I ≥ vol(M)

v8
>

vol(∂M)

4π
,

where the last inequality is due to Miyamoto [21, Theorem 4.2]. In particular, from

Gauss–Bonnet Theorem we deduce that ∂M is a connected surface of genus 2, so

‖M‖I ≥ 2 by Theorem 9. We have thus proved that the elements of M2 are exactly the

compact hyperbolic 3-manifolds with geodesic boundary having the smallest possible

ideal simplicial volume.

6.7 An application to mapping degrees

Take elements M ∈ Mg and M ′ ∈ Mg′ , where g ≥ g′. As stated in Corollary 11,

Theorems 2 and 9 imply that any map of pairs

f : (M, ∂M) → (M ′, ∂M ′)

satisfies the inequality

deg( f ) ≤ g

g′ . (1)

The following proposition implies that there are cases where this bound is sharp.

Proposition 6.7. Let g′ ≥ 2 and let g = k · g′, k ∈ N \ {0}, be a multiple of g′. For every

M ′ ∈ Mg′ there exist a manifold M ∈ Mg and a map of pairs f : (M, ∂M) → (M ′, ∂M ′) such

that

deg( f ) = g

g′ .
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Proof. As proved for example, in [9], manifolds in Mg′ can be characterized as those

orientable manifolds that admit an ideal triangulation with g′ tetrahedra and only one

edge, meaning that all the edges of the truncated tetrahedra of the triangulation are

identified to each other in the manifold.

Let us denote by e′ the unique edge of the triangulation of M ′. Then by removing

from M ′ a small open neighborhood of e′ one gets a genus–(g′ + 1) handlebody. In

particular, a small loop encircling e′ has infinite order in π1(M ′ \ e′), so for every

k ≥ 1 we can consider the cyclic ramified covering f : M → M ′ having order k and

ramification locus equal to e′. By construction, the ideal triangulation of M ′ lifts to an

ideal triangulation of M having g = k · g′ tetrahedra and only one edge e = f −1(e′). Thus,

M belongs to Mg. Since the map f has topological degree equal to k, this concludes the

proof. �

One could bound the degrees of maps between manifolds with boundary also

by looking at the ordinary simplicial volume both of the boundaries and of the doubles

of the manifolds involved. Indeed, if f : (M, ∂M) → (M ′, ∂M ′) is a map of pairs between

oriented manifolds with boundary of the same dimension, then f restricts to a map

g : ∂M → ∂M ′ and extends to a map F : DM → DM ′ between the double DM of M and the

double DM ′ of M ′. Moreover,

deg(F) = deg(g) = deg( f ).

Therefore, by exploiting the usual bounds of mapping degrees in terms of the ordinary

simplicial volume, one gets

deg( f ) = deg(F) ≤ ‖DM‖
‖DM ′‖ , (2)

deg( f ) = deg(g) ≤ ‖∂M‖
‖∂M ′‖ . (3)

Let us show that, at least when M ∈ Mg and M ′ ∈ Mg′ , these bounds are less effective

that the bound (1) obtained by exploiting the ideal simplicial volume. Indeed, in this

case the inequality (2) ensures that, for every map of pairs f : (M, ∂M) → (M ′, ∂M ′),
one has

deg( f ) ≤ ‖DM‖
‖DM ′‖ = vol(DM)

vol(DM ′)
= vol(M)

vol(M ′)
=

g · vol(��g
)

g′ · vol(��g′ )
,
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and the right-hand side of this inequality is strictly bigger than g/g′, since g > g′

implies �g < �g′ and vol(��g
) > vol(��g′ ). For example, if g′ = 2 and g = 2k is

very big, then vol(��g′ ) ≈ 3.226, while vol(��g
) ≈ v8 = 3.664, so the integral part of

(g · vol(��g
))/(g′ · vol(��g′ )) ≈ 1.135(g/g′) is strictly bigger than the (sharp) bound g/g′.

On the other hand, in this case the inequality (3) gives

deg(f ) ≤ ‖∂M‖
‖∂M ′‖ = |χ(∂M)|

|χ(∂M ′)| = g − 1

g′ − 1
,

and again the right-hand side of this inequality is strictly bigger than g/g′. For example,

if g′ = 2 this bound gives deg( f ) ≤ g − 1, which is a much less restrictive condition than

the inequality deg( f ) ≤ g/2 provided by the study of ideal simplicial volume.
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