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Abstract: Background: Non-small-cell lung cancer (NSCLC) is an aggressive neoplasm with a poor 

survival and novel therapies are urgently needed. The study of deregulated micro-RNAs (dereg-miRs) 

could constitute a strategy helping to detect specific genes playing a relevant role in the disease. Thus, 

the oncoproteins encoded by these genes could be exploited as novel therapeutic targets to be inhibited 

by small molecules, aptamers, or monoclonal antibodies. Methods: The present review is focused on 

candidate genes having convincing biological evidences to be both bona fide targets for dereg-miRs 

and playing a role in NSCLC progression. These genes were evaluated according to the molecular 

pathway they belong. Moreover, in the attempt to provide an even broader list of candidate therapeutic 

targets for NSCLC, the full list of genes was analyzed using the online tool Interactome DB. Results: 

Among the identified targets, some of them belong to p53 or MAP kinase signaling pathways, and 

others include caspases, MCL1, and BCL2L2 (playing a role in apoptosis), ZEB1, ZEB2, and USP25 

(epithelial-to-mesenchymal transition), EZH2, SOX9, and HOXA5 (differentiation), Paxillin, LIMK1 

and MTDH (cytoskeleton remodeling), and HDGF (angiogenesis). In addition, other targets, such as 

TIMP-2, PIM-1, and components of the IGF-signaling pathways were suggested following the 

interactome analysis. Conclusion: Studies on dereg-miRs helped to identify a set of genes whose 

encoded proteins could constitute candidates for future therapeutic approaches. 
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1. INTRODUCTION 
 
 

 
Non-small-cell lung cancer (NSCLC) accounts for about 80% of all lung cancer cases. The 

development of NSCLC, as for the other cancers, is considered a multi-step process [1]. Early 

studies identified somatic mutations in genes involved in the development of this disease and led to 

the discovery of crucial activated oncogenes and abnormally deregulated signaling pathways. 

Moreover, changes in the expression of epigenetic regulators, such as micro-RNAs (miRNAs), were 

found to play an important role [2]. MiRNAs are short noncoding RNAs of 22–27 nucleotides that 

regulate gene expression through binding to cognate sequences, preferentially the 3′-untranslated 

regions (UTR) of mRNAs. MiRNAs usually act as negative regulators inhibiting the translation of a 

mRNA targets through two proposed mechanisms: (i) miRNAs can stop the beginning of translation 

by repressing the m7G cap recognition by eIF4E (thus preventing the recruitment of 40S ribosomal 

subunit or interfering with the 60S subunit joining); (ii) miRNAs can interfere with translation after 

the very initial steps by repressing ribosome elongation or inducing ribosome drop-off and nascent 

protein chain degradation. Any of these mechanisms could lead to a decrease of protein but not 

mRNA levels. Recent papers also showed that miRNAs are involved in the decrease of target 

mRNAs levels, directing the transcripts towards the degradation machinery [3]. As mentioned, the 

main miRNA binding sites are located within the 3’-UTRs of target mRNAs. Despite this, binding 

sites were found also within coding sequences and 5’-UTRs [4-7]. The involvement of miRNAs in 

the carcinogenesis has been demonstrated for the first time in 2002, when the cluster of miR-15 and 

miR-16 (at 13q14.3) was identified as a frequently deleted region in chronic lymphocytic leukemia 

(CLL) [8]. Nowadays, the role of miRNAs in cancer is well acknowledged with some having a 

tumor-suppressor activity (mainly when they inhibit oncogenes) and others acting as oncogenes 

(also called onco-miRs, when they inhibit tumor-suppressor genes). Figure 1 resumes these 

mechanisms [9].  The first evidence of the involvement of a miRNA (let-7) in NSCLC is dated 2004 

[10].
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Figure 1.  MicroRNAs: tumor suppressors and oncogenes. 
 

 
 

NSCLC is often diagnosed at an advanced stage and shows a poor prognosis with only less than 
 

15% of patients surviving beyond 5 years [11]. Current therapies have a limited success being 

NSCLC poorly sensitive to most of the available agents and to radiotherapy with response rates 

ranging from 10 to 25% [12]. Thus, understanding molecular mechanisms that control NSCLC 

growth and metastasis could help to develop novel therapeutic strategies improving the prognosis of 

these patients [13]. A way to reach this goal is to identify deregulated miRNAs (dereg-miRs; i.e. 

miRNAs up- or down-regulated) in NSCLC tissues as compared to their adjacent normal 

counterparts (ideal control) or to healthy tissues from different subjects. In fact, the deregulation of 

a specific miRNA affects many target genes and some of them could play a role in cancer 

progression. For this reason, the study of dereg-miRs could constitute a way for detecting novel 

cancer genes to be used for targeted therapy. For example, if the expression of a miRNA is lost 

causing an aberrant over-expression of specific oncogenes, one could hypothesize, as therapeutic 

approach, to suppress/inhibit with small molecules, aptamers, or monoclonal antibodies the 

oncoproteins encoded by these genes.
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2.  A BRIEF OVERVIEW  OF  PUBLISHED METHODS  FOR IDENTIFYING CANCER 

GENES FROM DEREG-MIRS IN NSCLC 

 
 

In this section we will briefly summarize the typical experiments reported in literature aimed to find 

interesting candidate therapeutic targets for NSCLC, as a consequence of the identification of 

dereg-miRs. Dereg-miRs can be identified with several updated methods, including microarrays or 

deep sequencing [14].  They, usually, are validated on an independent series of NSCLC tissues with 

standard  qRT-PCR  [15].  However,  it  is  a  wise  strategy  to  further  confirm  these  findings  by 

extending the analyses on panels of NSCLC cell lines [16]. These approaches allow focusing on a 

smaller  set  of  dereg-miRs  truly  relevant  in  sustaining  the  malignant  phenotype,  easing  the 

successive work-flow. Once dereg-miRs are identified, typically the study continues with in silico 

analyses. Actually, the prediction algorithms are the most obvious, economic, and practical tools for 

target screening and they are an invaluable instrument for preliminary analyses and for “omics” 

investigations linking miRNAs and targets each other in complex networks. The list of tools is 

broad and it includes, among the others, miRanda (http://www.microrna.org), TargetScan 

(http://www.targetscan.org), PicTar (http://www.pictar.org), and miRWalk2.0 

(http://www.zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2) [17]. 

However, there are several problems with the identification of miRNA-targets. Firstly, each dereg- 

miR  has  dozens  or  even  hundreds  of  targets.  Moreover,  different  prediction  algorithms  yield 

different results. Thus, the accumulation of biological evidences is needed in order to consider a 

candidate target as bona fide target for a given dereg-miR. 

The most used test to verify the miRNA::mRNA interaction is the “dual luciferase assay”. Cells 

grown in vitro are co-transfected with synthetic miRNAs and with vectors carrying reporter genes 

(e.g.  Firefly luciferase) chimerized  with  the 3’-UTR  of the candidate target.  The drop  of the 

expression of the reporter gene caused by the co-transfected miRNA suggests that the miRNA is 

inhibiting the chimeric target [18]. When a given 3’-UTR is found positive to this assay, a series of 

experiments is performed by down-regulating (with antago-miRs or miRNA inhibitors) [16] or by 

mimicking the over-expression of the endogenous miRNA (with an ectopic transfection of the pre- 

miR or short-hairpin RNA) [19] and measuring the mRNA/protein expression of the candidate 

target.  Typically,  an  inverse relation  between  miRNA and  target  is  expected to  confirm  their 

interaction. In addition, the same inverse correlation is also sought in tissues (both NSCLC and 

normal) [16]. When positive results are obtained in these experiments, the candidate gene could be 

considered  a  bona  fide  target  for  a  specific  dereg-miR.  However,  this  fact  does  not  imply 

necessarily that the target gene is also relevant for the disease.

http://www.microrna.org/
http://www.targetscan.org/
http://www.targetscan.org/
http://www.pictar.org/
http://www.zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2
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Thus, since a target can be regulated by different miRNAs, another important aspect to investigate 

is when several miRNAs, insisting on the same target, are deregulated. In fact, implicitly, this type 

of redundancy could reveal that the target is truly important for the disease. For this reason, once 

the candidate gene is detected, more experimental evidences (ranging form in vitro analyses to 

experiments on animal models) need to be obtained. Thus, series of in vitro phenotypic assays are 

performed to evaluate whether the up- or down-regulation of the miRNA or of its target can affect 

the proliferation, the cell cycle, the migration, the adhesion, the invasion, the apoptosis, the 

senescence (and  so  on)  in  various  cell  lines.  Sometimes  the study progresses  in  in  vivo.  For 

example, nude SCID mice are xenografted with NSCLC cell lines stably expressing specific 

miRNAs or their inhibitors and the effect on metastasizing capacity is measured together with the 

level  of  expression  of  the  target  (at  mRNA  and  protein  level).  Other  times,  the  high-/low- 

expression of dereg-miRs or targets (measured in tissues) is related also to prognostic factors (e.g. 

the overall survival). 

 
 

3. METHODS AND REVIEWED STUDIES 
 

 
 

The works reviewed here, reported in Table 1, were searched in Pubmed 

(http://www.ncbi.nlm.nih.gov/pubmed) using the following keywords: (micro-rna OR microrna OR 

mirna  OR  mi-rna)  AND  therapeutic  target  AND  non-small  cell  lung  [ti]  AND  (cancer  OR 

carcinoma OR neoplasia). The same table also reports the full list of candidate targets of dereg- 

miRs. However, as consequence of the work-flow illustrated before, it appears obvious that only a 

fraction of predicted targets are bona fide targets and among them, only a minority will be relevant 

for NSCLC. Thus, the present review will not discuss all predicted targets of dereg-miRs described 

in NSCLC. Rather, it will be focused only on those having convincing biological evidences to be 

both bona fide targets for dereg-miRs and playing an active role in NSCLC progression. 

These  cancer  genes,  candidate  for  a  targeted  therapy,  will  be  reviewed  and  discussed  in  the 

following sections according to the molecular pathway they belong. 

Moreover,  in  the  attempt  to  provide  an  even  broader  list  of  candidate  therapeutic  targets  for 

NSCLC, the full list of genes of table 1 was used for an interactome analysis, using the online tool 

Interactome DB (http://www.mirob.interactome.ru; [20]). It should be stressed here that these 

methods allowed identifying also known cancer genes, giving a confirmation that the analysis of 

dereg-miRs could constitute an effective strategy for the detection of novel true targets relevant for 

NSCLC carcinogenesis.

http://www.ncbi.nlm.nih.gov/pubmed
http://www.mirob.interactome.ru/
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Table1. List of dereg-miRs in NSCLC and their candidate targets. The first column reports the 

miRNA found deregulated in NSCLC tissues (irrespectively to their validation on NSCLC cell 

lines). The second shows the direction of deregulation (↑ up- or ↓ down-) as compared to non- 

malignant lung tissues. The fourth illustrates the target genes and the remaining columns reports 

what type of evidences support the identification of a given target (in silico, in vitro, in vivo-human, 

in vivo-mouse). The last column shows the bibliographic references of these studies.
 

 
 

Dereg-miRs 

discovered 

in NSCLC 

 
Was the 

miRNA 

studied in 

relation to 

diagnosis 

or 

 

 
 
Candidate 

Target 

Gene 

 
 
 
In silico 

analysis 

 

 
In vitro 

validation 

of the 

target 

 

 
Human: 

mRNA 

analysis 

in vivo 

 

 
In vivo 

exp. on 

animal 

models 

 
Was the 

target 

studied in 

relation to 

diagnosis 

or 

 

 
 
 
Reference

                                           prognosis?                                                      prognosis?      
 

miR-153 ↓ no  ADAM19  yes  yes yes no yes  Shan,2015 [229] 

miR-185 ↓ no  AKT1  yes  yes yes yes no  Li,2015 [45] 

miR-99a ↓ yes  AKT1  yes  yes yes yes no  Yu,2015 [66] 

miR-486-5p ↓ yes  ARHGAP5  yes  yes yes yes no  Wang,2014 [230] 

miR-143 ↓ no  ATG2B  yes  yes no no no  Wei,2015 [231] 

miR-150 ↑ no  BAK1  yes  yes yes no no  Gu,2014 [232] 

miR-21 ↑ no  BCL2  yes  yes no no no  Xu,2014 [55] 

miR-15a ↓ yes  BCL2L2  yes  yes yes no no  Yang,2015 [90] 

miR-203 ↓ no  BMI1  yes  yes yes no no  Chen,2015 [233] 

miR-137 ↓ no  BMP7  yes  yes yes no no  Yang,2015 [155] 

miR-224 ↑ no  CASP3  yes  yes yes no yes  Cui,2015 [86] 

miR-224 ↑ no  CASP7  yes  yes yes no yes  Cui,2015 [86] 

miR-25 ↑ no  CDC42  yes  yes yes yes no  Yang,2015 [234] 

miR-137 ↓ no  CDC42  yes  yes no yes no  Zhu,2013 [235] 

miR-544a ↑ no  CDH1  yes  yes no no no  Mo,2014 [236] 

miR-223 ↓ no  CDK2  yes  yes no yes no  Nian,2013 [237] 

miR-613 ↓ no  CDK4  yes  yes yes yes no  Li,2016 [238] 

miR-137 ↓ no  CDK6  yes  yes no yes no  Zhu,2013 [235] 

miR-512-5p ↓ no  CDKN1A  yes  yes yes no no  Chu,2016 [239] 

miR-148b ↓ no  CEA  yes  yes yes no no  Liu,2014 [240] 

miR-195 ↑ yes  CHEK1  yes  yes yes no yes  Liu,2015 [241] 

miR-375 ↑ yes  CLDN1  yes  yes yes no yes  Yoda,2014 [242] 

miR-522 ↑ no  DENND2D  yes  yes yes no no  Zhang,2016 [243] 

miR-126 ↓ no  EGFL7  no  yes no yes no  Sun,2010 [244] 

miR-330-3p ↑ no  EGR2  yes  yes yes no no  Liu,2015 [245] 

miR-7 ↑ yes  ERF  yes  yes no yes no  Chou,2010 [256] 

miR-30a ↓ no  EYA2  yes  yes yes no no  Yuan,2016, [247] 

miR-101 ↓ no  EZH2  yes  yes yes no no  Zhang,2011 [123] 

miR-138 ↓ no  EZH2  yes  yes yes yes no  Zhang,2013 [121] 

miR-25 ↑ no  FBXW7  yes  yes yes no no  Xiang,2015 [248] 

miR-99b ↓ no  FGFR3  yes  yes yes no no  Kang,2012 [249] 

miR-134 ↓ no  FOXM1  yes  yes no no no  Li,2012 [102] 

miR-149 ↓ no  FOXM1  yes  yes no no no  Ke,2013 [103] 

miR-183 ↓ no  FOXO1  yes  yes no yes no  Zhang,2015 [78] 

miR-138 ↓ no  GIT1  yes  yes no no no  Li,2015 [250] 

miR-675-5p ↓ yes  GPR55  yes  yes yes no no  He,2015 [251] 

miR-16 ↓ no  HDGF  yes  yes yes no no  Ke,2013 [168] 

miR-195 ↓ no  HDGF  yes  yes yes no no  Guo,2014 [169] 

miR-497 ↓ yes  HDGF  yes  yes yes yes no  Zhao,2014 [170] 

miR-199a ↓ yes  HIF1A  no  yes no yes no  Ding,2013 [252] 

miR-142-3p ↓ no  HMGB1  yes  yes yes no no  Xiao,2015 [253] 

miR-1271 ↑ no  HOXA5  yes  yes yes no no  Wang,2015 [135] 

miR-196a ↑ yes  HOXA5  yes  yes yes no no  Liu,2012 [134] 

miR-196b ↑ no  HOXA9  yes  yes yes no no  Yu,2015 [254] 

miR-140 ↓ no  IGF1R  yes  yes yes yes no  Yuan,2013 [203] 

miR-195 ↓ no  IGF1R  yes  yes yes no no  Wang,2014 [204] 

miR-30a ↓ no  IGF1R  yes  yes yes no no  Wen,2015 [205] 

miR-223 ↓ no  IGF1R  yes  yes no yes no  Nian,2013 [206] 

miR-503 ↓ yes  IKBKB  yes  yes yes yes no  Yang,2014 [63] 

miR-761 ↑ yes  ING4  yes  yes yes no no  Yan,2015 [255] 

miR-23a ↓ no  IRS1  yes  yes yes no yes  Cao,2014 [104] 

miR-205 ↓ no  ITGA5  yes  yes no yes no  Larzabal,2014 [256] 
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miR-125b ↓ no KLC2 yes yes yes no yes Wang,2015 [257] 

miR-135a ↓ yes KLF8 yes yes yes no no Shi,2015 [101] 
miR-181a-5p ↓ no KRAS yes yes yes yes no Ma,2015 [53] 

Let-7 ↓ yes KRAS yes yes yes no yes Xia,2010, [54] 

miR-31 ↑ yes LATS2 yes yes yes yes no Liu,2010 [289] 

miR-1238 ↓ no LHX2 yes yes yes no no Shi,2015 [258] 

miR-143 ↓ yes LIMK1 yes yes yes no no Xia,2014 [152] 

miR-27b ↓ no LIMK1 yes yes yes no no Wan,2014 [153] 

miR-630 ↓ no LMO3 yes yes yes no no Song,2015 [259] 

miR-101 ↓ yes MCL1 yes yes yes no yes Luo,2012 [87] 

miR29b ↓ no MDM2 yes yes no no no Avasarala,2013 [31] 

miR-660 ↓ yes MDM2 yes yes yes yes no Fortunato,2014 [30] 

miR-140-5p ↓ no MMD yes yes yes yes no Li,2014 [260] 

miR‑133a ↓ no MMP14 yes yes no no no Xu,2013 [261] 

miR-25 ↑ no MOAP1 yes yes yes no no Wu,2015 [262] 

miR-125a-3p ↓ no MTA1 yes yes yes no no Zhang,2015 [177] 

miR-30c ↓ no MTA1 yes yes yes no yes Xia,2013 [178] 

miR-495 ↓ no MTA3 yes yes yes no no Chu,2014 [263] 

miR-193a-3p ↓ yes MTDH yes yes yes no yes Ren,2015 [160] 

MiR-145 ↓ yes MTDH yes yes yes no yes Wang,2015 [161] 

miR-184 ↓ no MYC yes yes no no no Liu,2014 [74] 

MiR-449c ↓ no MYC yes yes no yes no Miao,2013 [70] 

miR-124 ↓ no MYO10 yes yes yes no no Su,2015 [264] 

miR-24 ↑ yes NAIF1 yes yes yes yes yes Zhao,2015 [265] 

mir-365 ↓ yes NKX2-1 no no yes no no Sun,2015 [266] 

miR-152 ↓ no NRP1 yes yes yes no no Zhang,2015 [267] 

miR‑326 ↓ no NSBP1 yes yes yes no no Li,2016 [268] 

miR-138 ↓ no PDK1 yes yes no no no Ye,2015 [269] 

miR-212 ↓ no PED yes yes yes no no Incoronato,2010 [270] 

miR-205 ↑ no PHLPP2 yes yes yes yes no Cai,,2013 [57] 

miR-503 ↓ yes PIK3 yes yes yes yes no Yang,2014 [63] 

miR-486-5p ↓ no PIM1 yes yes yes no yes Pang,2014 [221] 

miR-296-5p ↓ no PLK1 no yes yes no no Xu,2016 [271] 

miR-136 ↑ yes PPP2R2A yes yes yes no no Shen,2014 [272] 

miR-143 ↓ no PRKCE yes yes yes no no Zhang,2013 [273] 

miR-7 ↓ yes PSME3 yes yes yes yes yes Xiong,2014 [274] 

miR-106a ↑ yes PTEN yes yes yes no no Xie,2015 [56] 

miR-205 ↑ no PTEN yes yes yes yes no Cai,2013 [57] 

miR-21 ↑ no PTEN yes yes no no no Xu,2014 [55] 

miR-26b ↓ no PTGS2 yes yes yes no no Xia,2015 [275] 

miR-340 ↓ no PUM1 yes yes yes no no Fernandez,2015 [276] 

miR-340 ↓ yes PUM2 yes yes yes no no Fernandez,2015 [282] 
miR-137 ↓ no PXN yes yes no no no Bi,2014 [144] 

miR-218 ↓ yes PXN yes yes yes no no Wu,2010 [145] 

miR-342-3p ↓ no RAP2B yes yes yes yes no Xie,.2015 [277] 

miR-92b ↑ no RECK yes yes yes no no Lei,2014 [191] 

miR-21 ↑ no RECK yes yes no no no Xu,2014 [192] 

miR-186 ↓ no ROCK1 yes yes yes no no Cui,2014 [278] 

miR-138 ↓ no SEMA4C yes yes no no no Li,2015 [256] 

miR-340 ↓ no SKP2 yes yes yes no no Fernandez,2015 [276] 

miR-137 ↓ yes SLC22A18 yes yes yes no yes Zhang,2015 [279] 

miR-224 ↑ yes SMAD4 yes yes yes yes no Cui,2015 [80] 

miR-19a ↑ no SOCS1 yes yes yes yes no Wang,2015 [281] 

miR-132 ↓ no SOX4 yes yes no yes no Li,2015 [287] 

miR-206 ↓ no SOX9 yes yes yes no no Zhang,2015 [131] 

miR-32 ↓ yes SOX9 yes yes yes no no Zhu,2015 [132] 

miR-211 ↑ no SRCIN1 yes yes yes no no Ye,2015 [282] 

miR-124 ↓ yes STAT3 yes yes yes no yes Li,2015 [283] 

miR-489 ↓ yes SUZ12 yes yes yes no yes Xie,2015 [284] 

miR-200c ↑ no THBS1 yes yes yes yes no Pacurari,2013 [50] 

miR-761 ↑ yes TIMP2 yes yes yes no no Yan,2015 [261] 

miR-429 ↑ no TIMP2 yes yes yes no no Lang,2014 [285] 

miR-224 ↑ yes TNFAIPI yes yes yes yes no Cui,2015 [80] 

miR-150 ↑ no TP53 yes yes yes no no Zhang,2013 [23] 

miR-125b ↑ no TP53INP1 yes yes yes yes yes Li,2015 [33] 
miR-19 ↑ no TP53INP1 yes yes no no no Yamamoto,2015 [36] 

miR-33a ↓ yes TWIST1 yes yes yes yes no Yang,2015 [100] 

miR-200c ↓ yes USP25 yes yes yes yes no Schliekelman,2011 [51] 

miR-4295 ↓ yes USP28 yes yes yes yes no Zhang,2015 [286] 

miR-200c ↓ yes ZEB1 yes yes yes yes no Schliekelman,2011 [51] 
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miR-132 ↓ yes ZEB2 yes yes yes yes no You,2014 [287] 

miR-215 ↓ yes ZEB2 yes yes yes yes no Hou,2015 [288] 

 

 

4. TP53 PATHWAY 
 

 
 

TP53 pathway components, in particularly p53 itself, its negative regulatory MDM2 and the protein 

kinase TP53INP have been shown to play an important role in NSCLC. More than twenty years ago 

p53 was acknowledged as the “guardian of the genome”, referring to its capabilities to block cell 

cycle progression in the presence of DNA damages [21]. About half of all neoplasia have mutations 

within TP53 gene, while the other half with wild-type TP53 yet develops a number of mechanisms 

to circumvent its function. Among them, also a role of dereg-miRs, such as miR-150, was found. In 

fact, in vivo, the expression of miR-150 in T2 stage tissue samples was higher than that in T1 stage 

tissue samples and TP53 activity was inversely correlated with miR-150 expression [22]. MiR-150 

specifically targets the 3'-UTR of TP53 and regulates its expression. This was showed in vitro in co- 

transfection experiments with the use of specific vectors carrying TP53 with or without the 3’-UTR 

and with vectors where a reporter gene was chimerized with the wild-type or a mutant TP53 3’- 

UTR. Thus, the over-expression of miR-150 leads to a reduced activity of wild-type p53 in a 

tumorigenic mechanism affecting cell cycle progression, proliferation, and apoptosis [23]. 

Another important mechanism to regulate p53 is the over-expression of MDM2 (mouse double 

minute  2),  an  E3  ubiquitin  ligase  which  leads  p53  to  degradation [24].  As  a  matter  of  fact, 

MDM2 gene   is   found   overexpressed   in   a   variety   of   human   cancers,   such   as   sarcoma 

[25], lymphoma [26], breast cancer (BC) [27], lung cancer (LC) [28], and testicular germ cell tumor 

[29]. MDM2 is over-expressed, among other mechanisms, when its negative regulators, such as 

miR-660 are lacking. This dereg-miR was showed to bind MDM2 3’-UTR [30] and the results of 

preliminary in silico analyses were confirmed by in vitro and in vivo experiments. The luciferase 

reporter assay showed that following miR-660 transfection, mRNA and protein levels of MDM2 

were decreased. Moreover, subcutaneous injections of miR-660 in nude mice xenografted with 

NCI-H460 or A549 cells (both wild-type for p53) caused a delay in tumor growth of 10-15 days and 

30-35 days, respectively [30]. The functional role of miR-660 in lung tumorigenesis was evaluated 

in a series of experiments using miRNA mimics in four different lung cancer cell lines (NCI-H460, 

LT73, A549, and H1299). The transfection with miR-660 mimic caused an arrest of cell cycle in 

G0/G1 phase, and a reduction of migration and invasive capacities in all three cell lines with p53 

wild-type. No effects were noticed in H1299 cells, lacking an active p53 [30]. Also miR-29b was 

showed to act on MDM2 mRNA with mechanisms similar to miR-660, but it was found to affect 

also the Wnt7a/Frizzled9 pathway affecting the regulation of NSCLC cell proliferation [31].
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Another player involved in the regulation of p53 is TP53INP1. TP53INP1 protein promotes the 

phosphorylation at serine 46 of p53. Post-translational modifications of p53 mediated by TP53INP1 

were shown to be involved in the regulation of apoptosis and it could explain the role of this protein 

in the carcinogenesis [32]. TP53INP1 is now widely recognized as a tumor suppressor gene with 

anti-proliferative  and  pro-apoptotic  functions.  In  2015,  Li  and  co-workers  showed  that  the 

expression of miR-125b in 37 patients affected by NSCLC was statistically significant higher in 

cancer  tissues  compared  to  the  adjacent  normal  ones.  Moreover,  within  cancer  tissues  the 

expression was higher in poorly differentiated than in well and moderately differentiated tissues 

[33, 34]. To understand the putative target genes of miR-125b, TargetScan and PicTar programs 

were used and the best candidate was TP53INP1. TP53INP1 exhibited a relevant increase in mRNA 

and protein levels when primary NSCLC cells from patients were transfected with a miR-125b 

inhibitor. The transfection caused also an inhibition of invasive capacities of NSCLC cells in a 

matrigel-matrix. On the contrary, an increase of invasion was observed when cells were transfected 

with a silencing RNA (siRNA) against TP53INP1. These results were confirmed also in BALB/c 

nude mice and, in agreement with these findings, the expression of TP53INP1 was found 

significantly lower in 20 tumor tissues compared with their adjacent counterparts [35]. Moreover, 

the post-transcriptional regulation of TP53INP1 is affected also by miR-19a [36] and high level of 

miR-19a expression was significantly correlated with NSCLC TNM stage and lymph node 

metastasis [37]. The expression of TP53INP1 was found reduced not only in NSCLC but also in 

BC, pancreatic carcinoma (PC), and gastric cancers (GC) [38-40]. In PC this gene is involved in a 

feedback loop involving p53 and miR-19a, modulating proliferation and apoptosis [41]. 

In  the  last  decade,  small  molecule  compounds  targeting  mutant  p53  to  reactivate  its  normal 

functions were developed, and they are employed in pre-clinical phases or currently being tested in 

clinical trials. Gendicine, a recombinant adenovirus encoding human wild-type p53 was the first 

p53-based therapy approved in China in 2003 and it has been used locally for treating several types 

of solid tumors [42]. Another approach to restoring p53 is to directly suppress MDM2 ubiquitin 

ligase activity. Yang and co-workers [43] discovered a family of small molecules closely related to 

the 7-nitro-5-deazaflavin  compounds  (named HLI98s), whereas  Sasiela  and  collaborators  have 

identify inhibitors, such as sempervirine, following a high-throughput screening of natural product 

extracts. Like 5-deazaflavin analogs, sempervirine suppresses MDM2-mediated p53 ubiquitination, 

stabilizes p53, and induces apoptosis in wild-type p53 cancer cells44]. In summary, reactivating p53 

to its normal activity, empowering TP53INP1, or regulating MDM2 or miR-150 and miR-19a could 

be a promising strategy for developing novel therapies for NSCLC.
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5. MAP KINASE SIGNALING PATHWAY 
 

 
 

MAP-kinase signaling pathway is acknowledged as one of the most important pathway altered in 

human cancers. Changes in this pathway can promote uncontrolled cell proliferation, epithelial- 

mesenchymal transition (EMT), invasion, and metastasis [45,46]. 

Growth factors receptors, e.g. EGFR, activates (by phosphorylation) KRAS that in its turn can 

trigger the activation of PI3K and, in cascade, of AKT1. PTEN (phosphatase and tensin homolog 

deleted on chromosome 10) is an inhibitor of these processes and can de-phosphorilate specific 

intermediates antagonizing KRAS activation. KRAS is a member of the small GTPase superfamily 

and activating mutations correspond in almost all cases to single aminoacid substitutions at codons 

12 or 13. These are responsible for a constitutively activated protein with transforming properties 

that  is  found  in  human  malignancies,  including  lung  adenocarcinoma  (LA)  [47],  mucinous 

adenoma, ductal carcinoma of the pancreas [48], and colorectal carcinoma (CRC) [49]. In addition, 

as alternative to gene mutation, increased activity of KRAS can be reached also through dereg-miRs. 

For example, the down-regulation of miR-200c, that directly targets KRAS, could lead to KRAS 

over-expression. As a matter of fact, miR-200c is an important player in NSCLC progression, it is 

often down-regulated in human cancer tissues and cell lines and its expression inversely correlates 

with the expression and activity of KRAS. Biological evidences suggested also that the ectopic up- 

regulation of miR-200c could inhibit KRAS mRNA and other oncogenic pathways leading to a 

potent anti-proliferative activity [50, 51, 52]. In analogy, KRAS activity could be increased also 

with a reduced expression of miR-181a-5p [53] or of let-7, whose low expression was associated 

with a short survival of NSCLC patients [54]. 

In NSCLC tissues and cell lines [55-57], in LA [58-60], and in SCLC [61] the pathway was found 

activated also following the inhibition of PTEN, through the up-regulation of miR-21, miR-106a, 

and miR-205. The central role of miR-21 in NSCLC is well-documented in literature. A high 

expression of miR-21 is associated with disease recurrence and chemo-resistance in LC patients 

[55, 62]. The over-expression of miR-106a negatively correlated with protein expression level of 

PTEN, and with an increased pAKT protein expression [56]. The inhibitory effect of miR-106a on 

migration and invasion capabilities was showed in in vitro experiments on A549 cells transfected 

with anti-miR-106a [56]. High levels of miR-106a were also associated with a short overall survival 

of  NSCLC  patients  [56].  Concerning  miR-205,  it  was  showed  that  its  up-regulation  directly 

represses not only PTEN but also PHLPP2 leading to the activation of AKT/FOXO3a signaling 

pathway [57]. Also miR-503, miR-185, and miR-99a are relevant for NSCLC. MiR-503 targets 

PI3K and it was found down-regulated in NSCLC and its expression was associated positively with
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the overall survival of 97 NSCLC patients [63]. The expression of miR-185 was found low in 

NSCLC tissues, pleural fluids and in H460, A549 and H1299 NSCLC cell lines, when compared to 

their respective controls [64,65]. MiR-185 binds the 3'-UTR of AKT1. This was showed with in 

silico and in vitro experiments. When H1299 and A549 cells were transfected with miR-185 mimic, 

the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay) assay showed a 

reduction of cell proliferation (compared to a miRNA of control) and migration. Interestingly, these 

effects were lost if miR-185 was co-transfected with a vector over-expressing AKT1 lacking of the 

3’-UTR (i.e. unable to be regulated by miRs) [64]. AKT1 was found targeted also by miR-99a [66]. 

MiR-99a was down-regulated in 105 NSCLC tissues (when compared to the adjacent non tumor 

ones), and this deregulation was associated with a poor prognosis. Moreover, in BALB/c-nu/nu 

nude male mice xenografted with NCI-H1299 cells stably over-expressing miR-99a in a lentiviral 

construct  (NCI-H1299-miR-99a  group)  showed  a  decreased  number  of  lung  metastases  as 

compared to the controls (mice xenografted with cells stably over-expressing an empty lentiviral 

construct) [67]. AKT1/protein kinase B α is the most extensively investigated member of the 

serine/threonine protein kinase subfamily [68] and its activity is elevated in PC, BC, and ovarian 

carcinomas [69].  An important effector of the MAP kinase signaling pathway is C-MYC (V-Myc 

Avian Myelocytomatosis Viral Oncogene Homolog), a multifunctional nuclear phosphor-protein 

that acts as transcription factor and it promotes cell growth, proliferation, and transformation in 

numerous cell types  [70,71]. MYC plays an important role in metastasis and its activation is 

associated with aggressive cancer phenotypes [72]. Its activity is regulated by the stabilization of 

Mad1 under the control of Ras/MAPK and PI3K/mTOR pathways [73], and in its turn its activity 

can regulate PI3K, AKT, and C-Jun expression. Two miRNA studies identified miR-184 and miR- 

449c as down-regulated in NSCLC and further experiments showed that both can directly target 

MYC [74,70]. Liu and co-workers showed also that once MYC mRNA has been targeted and 

inhibited by miR-184 a cascade of cell growth suppression, mediated by CCDC19, is triggered, 

finally affecting the PI3K/AKT/C-Jun pathway [74]. Among other important effectors of MAP 

kinase signaling pathway there are other pleiotropic molecules such as tuberous sclerosis complex 2 

(TSC2), forkhead box O1 (FOXO1), eIF4E [75], IκB kinase (IKK), NF-κB [76], and MDM2 [77]. 

These downstream molecules were found deregulated in LC not only by an aberrant activation of 

the PI3K/PTEN>AKT1 signaling pathway but also by dereg-miRs, such as for example miR-183 

[78] that targets FOXO1 mRNA. 

Nowadays, there is the critical need to develop the appropriate drugs against the above mentioned 

partners, including mutant KRAS. However, we propose here that the use of inhibitors against the 

endogenous miR-106a, miR-205, miR-21 (such as AC1MMYR2, [79]), AKT1 (such as the novel
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agent NSC156529, [80]) or FOXO3a, or the restoration of the expression of miR-99a, miR-185, 

miR-183, PHLPP2, or PTEN could be at the basis for developing novel therapies. Concerning 

MYC, several MYC inhibitors, namely the small molecules 10058-F4, KSI-3716, 10074-G5, 

“Omomyc” [81-84], have been developed. However, no clinical trials are ongoing with this class of 

molecules, yet. 

 
 

6. APOPTOSIS 
 

 
 

The apoptotic pathway includes a family of cysteine proteases called Caspases with pro-apoptotic 

activities and Bcl-2 family members, with pro-survival functions, that counteract caspases’ signals. 

Dereg-miRs can affect their function leading to cancer progression by suppressing the pro-apoptotic 

or enhancing the pro-survival signaling. MiR-224 was found up-regulated in NSCLC [85, 86] and 

CASP3 and CASP7 were identified as their targets [86]. In vitro experiments showed that the up- 

regulation of miR-224, leading to the down-regulation of CASP7, significantly increased the 

resistance to apoptosis and the migratory and proliferative abilities of H1299 and H460 malignant 

cells, thus suggesting a role of miR-224 and Caspase-7 in apoptosis and lung metastasis [86]. 

In another miRNA study, Luo and co-workers (2012) reported a down-regulation of miR-101 which 

was associated with an over-expression of MCL1 (mRNA and protein) in 45 NSCLC tissues [87]. 

MCL1  is  a  potent  multi-domain  anti-apoptotic protein  that  hetero-dimerizes  with  other  BCL2 

family members to protect against apoptotic cell death [88]. It was found that the co-expression of 

MCL1 with MYC could constitute a useful biomarker for identifying aggressive forms of NSCLC 

and for predicting patient outcomes [89]. 

Finally, miR-15a was found down-regulated in 18 paired NSCLC and adjacent non-tumor lung 

tissues [90]. MiR-15a binds the 3'-UTR of BCL2L2, another pro-survival member of the BCL2 

protein family which acts as an inhibitor of apoptosis [91]. The over-expression of miR-15a caused 

a significant decreased of the protein levels of BCL2L2 and an increase of the downstream effectors 

of BCL2L2, i.e. Caspase-9, Caspase-3, and BAX [90]. 

In summary, studies on dereg-miRs could help in selecting, among a multitude of molecules, 

specific players (i.e. CASP3, CASP7, MCL1 and BCL2L2) of the apoptotic and anti-apoptotic 

pathways involved in the progression of NSCLC. Theoretically, the rescue of the normal expression 

levels of these genes could help in developing novel therapeutic strategies. As an example, recently, 

it has been discovered that ABL, a natural chemical component obtained from Inula britannica, a 

plant used in the Chinese traditional medicine, alone or in combination with gemcitabine induced 

apoptosis in NSCLC cells through the down-regulation of Bcl-2 and the up-regulation of Bax [92].
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7.  EPITHELIAL-MESENCHYMAL TRANSITION (EMT) 
 

 
 

EMT is an evolutionarily conserved process in which cells undergo transformation from a more 

differentiated status (e.g. epithelial-like) to a less differentiated one (i.e. mesenchymal). In this 

modification, epithelial cells lose cell-cell adhesion and cell polarity, decrease the expression of 

epithelial cells’ markers such as E-cadherin, increase the expression of mesenchymal cell markers 

such as Vimentin, fibronectin, N-cadherin, alpha-smooth muscle actin (α-SMA), as well as increase 

the activity of matrix MMPs, associated with an invasive phenotype [93,94]. Thanks to miRNAs 

studies, changes in the expression of a number of transcriptional factors have been identified, 

including ZEB1/2, Twist1, KFL8,  IRS1, and  FOXM1, all potential candidate target  genes  for 

NSCLC [95]. 

ZEB1 and ZEB2, major transcriptional repressors of E-cadherin, are zinc finger E-box binding 

homeobox transcription factors playing an important role in the carcinogenesis of NSCLC [95]. In 

vitro  and  in vivo  studies  showed  they are bona  fide  targets  of miR-200c a  potent  anti-tumor 

oncomiR (already mentioned as regulator of KRAS) and of miR-215 [96], both miRNAs often 

down-regulated in NSCLC [97-99]. 

In NSCLC tissues and cell lines, EMT was also related to a low expression of miR-33a, miR-135a 

miR-134, miR-149, and miR-23a [100-104]. Concerning miR-33a, various experiments in vitro and 

in vivo showed that Twist1 is one of its preferred targets [100]. Notably, in NCI-H1299 cells the 

inhibition of Twist1 by siRNA induced the expression of CDH1 and suppressed the expression of 

Vimentin suggesting a regulatory network between miR-33a, CDH1, and Vimentin. Twist1 belongs 

to the basic helix-loop-helix (bHLH) family of transcription factors involved in cell lineage 

determination and differentiation, and it is expressed preferentially by mesodermal-derived tissues. 

Moreover, also miR-135a was down-regulated in NSCLC cells and in clinical tissue samples. It was 

showed to target KLF8, and in vitro experiments proved that silencing KLF8 was able to inhibit 

migration and invasion of lung cancer cells [101]. MiR-134 and miR-149, both targeting FOXM1 

mRNA, were found down-regulated in NSCLC tissues [102, 103]. FOXM1 belongs to the forkhead 

box transcription factor family and it is involved in EMT induced by TGF-β1 (at least in A549 

cells) [105]. FOXM1 was found highly expressed in various tumors, including NSCLC, prostate 

(PaC), head and neck squamous cell carcinoma (HNSCC), GC and acute lymphoblastic leukaemia 

[106-111].  In  NSCLC,  it  was  found  associated  with  poor  prognosis  [112].  Finally,  miR-23a 

promotes TGF-β-induced EMT in NSCLC in a Smad-dependent manner [113] by targeting IRS1, a 

critical EMT suppressor in NSCLC cells [114]. 

Another candidate gene player of the EMT is USP25, encoding for a poorly studied member of the
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ubiquitinating-specific proteases family. Interestingly, the 3’-UTR of this gene is targeted directly 

by miR-200c (the same miRNA that regulates KRAS) that causes a decreased expression of USP25 

both at mRNA and protein level. The silencing of USP25 gene mimicked the effects of miR-200c 

over-expression.  In  NSCLC  tissues  miR-200c  and  USP25  expression  was  found  inversely 

correlated.  Interestingly,  the  mRNA  and  protein  expression  of  USP25  was  higher  in  NSCLC 

patients, compared to healthy controls, and its expression also correlated with the clinical stage and 

lymphatic  node  metastases  [97].  The  over-expression  of  miR-200c  or  the  down-regulation  of 

USP25 gene was found to inhibit NSCLC cells migration, invasion, and EMT in vitro and lung 

metastasis formation in vivo [50, 51]. 

Silibinin, a natural flavonolignan, either alone or in combination with DNA methyl transferase 

inhibitors or 5'-Aza-deoxycytidine (Aza), was showed to modulate the expression of ZEB1 [115]. 

Inhibitors of FOXM1, including the thiazole antibiotic thiostrepton, the more recently developed 

small drug FDI-6, and the natural compound plumbagin [114-119], have been used in in vitro and in 

vivo experiments on xenografted mice showing the ability to reduced invasiveness and metastatic 

capacities of cancer cells. Until now, no small molecule inhibitors of USP25 were developed. In 

summary, molecules developed to inhibit the endogenous ZEB1, ZEB2, USP25, Twist1, Vimentin, 

miR-23a, or FOXM1 or to restore the expression of CDH1, IRS1, miR-33a, miR-215, or miR-200c 

could be of help in the therapy of NSCLC. 

 
 

8. DIFFERENTIATION 
 

 
 

Genes involved in differentiation are deregulated in cancer, as de-differentiation is part of the 

malignant phenotype. This process involves shifts between cell proliferation and differentiation, 

thus mutations or changes in these genes are observed in cancer and this mechanism is often related 

to a poor prognosis [120]. In the context of NSCLC, dereg-miRs helped to identify EZH2 a member 

of the polycomb complex, SOX9 and HOXA5 as candidate target gene for therapeutic approaches. 

The expression level of miR-138 was investigated in 18 human NSCLC tissue samples and matched 

normal ones, in 4 NSCLC cell lines, and in the non-malignant 16HBE cell line. Overall, a down- 

regulation of this miRNA was observed [121]. The role of miR-138 in NSCLC was also reinforced 

by another independent study showing that miR-138 down-regulation was significantly associated 

with advanced stages, positive lymph node metastasis, and short overall survival of NSCLC patients 

[122]. In silico predictions [121] showed that EZH2 (Enhancer of zeste homolog 2), a fundamental 

member of the polycomb repressive complex 2, is a target for miR-138 [122, 123].  In A549 and 

H460 cells stably over-expressing miR-138, increased levels of apoptosis and a slow cell cycle with
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a high percentage of cells accumulating in the G1/S transition were reported when compared to 

cells infected with a lentivirus carrying the empty construct (controls) [121]. These results were 

replicated also in BALB/c nude mice (injected with A549 cell overexpressing miR-138 or control 

miRNA) [121]. 

Also miR-101 was found deregulated in NSCLC and it was showed as another miRNA targeting 

EZH2 mRNA [124] providing a further evidence of the role of EZH2 in NSCLC. In fact, in a recent 

meta-analysis including 1,695 patients with LC the combined hazard ratios suggested that EZH2 

protein overexpression was associated with poor prognosis and short overall survival [125]. EZH2 

is frequently over-expressed in different types of human neoplasms including BC [126], PC [127], 

GC [128], and CRC [129] reinforcing the importance of the polycomb complex in cancer. This 

complex  is  known  to  have  pleiotropic  effects  by  regulating  hundreds  of  genes  by  causing 

epigenetic changes in the chromatin conformation.  EZH2, in particular, has a histone methyl- 

transferase activity (HMT) and mediates the down-regulation of gene transcription through post- 

translational histone modifications [130]. 

MiRNA studies showed that the expression of miR-206 and miR-32 was decreased in NSCLC 

tissues compared  with  adjacent  non-tumor tissues [131,132]. Further  research  identified  SOX9 

mRNA (Sry-related high-mobility group HMG box 9) as their main target. SOX9 is a transcription 

factor involved in the development and differentiation [133-136] and its over-expression plays a 

role in the process of metastasis, by enhancing cell migration, invasion and EMT, at least in part, 

through the activation of Wnt/β-catenin signaling pathway [137]. SOX9 was found up-regulated in 

BC, CRC, and PC [138-140]. In particular, SOX9 was found up-regulated in NSCLC tissues and its 

elevated levels were associated with poor prognosis [133]. 

Another gene involved in cell differentiation and deregulated in NSCLC is HOXA5. It belongs to 

the homeobox gene family that  contains  a common  183-nucleotide sequence (homeobox) and 

encodes for specific transcription factors involved in the morphogenesis of vertebrate embryonic 

cells, providing regional information along the main body axis. HOXA5 is found down-regulated in 

NSCLC likely depending on the up-regulation of miR-196a [134] or of miR-1271 [135], as showed 

in NSCLC tissues [134, 136], cell lines [134], and in an independent analysis on GEO datasets 

[137]. The down-regulation of HOXA5 mRNA causes a reduced apoptosis mediated by retinoic acid 

(RA) and enhances the cellular growth acting directly downstream of RARβ [138]. HOXA5 has an 

important role in modulating cell-cell and cell-matrix interactions, as its activity was also shown to 

suppress cell migration and invasion [138]. HOXA5 is hypothesized to bind promoters of 

cytoskeleton-related genes and down-regulate their mRNA and protein expression levels. In fact, 

the  ectopic  expression  of  HOXA5  is  involved  in  the  down-regulation  of  the  expression  of
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cytoskeleton proteins, in tissue-remodeling pathways, and it inhibited filopodia formation [139]. 

EZH2 inhibitors could be employed as potential agents for NSCLC therapy. The S-adenosyl-l- 

homocysteine hydrolase inhibitor, 3-Deazaneplanocin A (DZNep), has been shown to deplete and 

inhibit EZH2 [140]. More recently, the Ursolic acid (UA), a pentacyclic triterpenoid, was shown to 

inhibit the growth of NSCLC cells through SAPK/JNK-mediated inhibition of SP1. This, in turn, 

results in the inhibition of DNMT1 (DNA methyl-transferase 1), an interactor of EZH2, and thus it 

could be considered an indirect inhibitor of EZH2 [141]. At the present time, small drugs inhibitors 

of SOX9 are not reported in literature, however a natural endogenous inhibitor, i.e. the extracellular 

protein Epimorphin [142], has been identified and this could of help for future therapies. 

 
 

9. CYTOSKELETON REMODELING 
 

 
 

Cell migration is essential for tumor invasion and it is a highly integrated multistep process that is 

initiated by the protrusion of the cellular membrane spatially and temporally regulated by actin 

cytoskeleton polymerization. Genes of cytoskeleton remodeling altered in NSCLC are PXN, LIMK1 

(LIM kinase 1), and MTDH. Paxillin seems particularly important in NSCLC and it is one of the 

key components within the focal adhesions machinery, forming a structural link between the actin 

cytoskeleton and the extracellular matrix [143]. MiRNA studies found that PXN is deregulated also 

by the aberrant expression of PXN-targeting dereg-miRs, such as miR-137 and miR-218 [144, 145]. 

Paxillin is a protein of 68 kDa that was found over-expressed not only in NSCLC, but also in 

HNSCC [146], in CRC, [147], in BC, in PaC [148], and in GC [149]. 

LIMK1 protein is a downstream effector of PAK4 (P21-activated kinase 4) and it acts as a regulator 

of  the  actin  cytoskeleton,  cell  motility,  and  invasion  [150].  In  NSCLC,  the  LIMK1  is  over- 

expressed and the low levels of miR-143 and miR-27b (both found significantly decreased in tissues 

and cell lines [151, 152]) is part of the mechanism. LIMK1 positivity in NSCLC was associated 

also  with  high  TNM  stages  and  lymph  node  metastases  [153].  Finally,  MTDH  protein  is  a 

component of the tight junction complexes and it is a marker of matured tight junctions [154]. 

MTDH over-expression was showed to play an important role in the carcinogenesis of NSCLC 

[155-158] by promoting NSCLC metastasis and invasion and by suppressing apoptosis. A variety of 

pathways, including PI3K/AKT1 MAP kinase, are aberrantly activated following MTDH over- 

expression.  Also  cancer  proteins  such  as  matrix  metalloproteinase-9  (MMP-9)  and  the  anti- 

apoptotic Bcl-2 are enhanced [159]. The over-expression of MTDH could be due, at least in part, to 

the down-regulation of two miRNAs, i.e. miR-193a-3p and miR-145 [160,161]. MTDH is up-
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regulated in various human cancers, including BC [162, 163], hepatocellular carcinoma (HCC), and 
 

HNSCC [164, 165]. 
 

Molecules that can inhibit MTDH would have potential to be developed for cancer therapeutics. 

Recently, in vitro, it was showed that evodiamine suppresses the proliferation of LC cells through 

the inhibition of MTDH [166] holding promises as novel NSCLC therapeutic agent. In summary, 

empowering HOXA5 or inhibiting PXN, SOX9, LIMK1, or MTDH could provide benefits in 

NSCLC patients. 

 
 

10. ANGIOGENESIS 
 

 
 

Angiogenesis plays a key role in tumorigenesis, thus controlling players involved in this process 

could be an efficacious therapeutic strategy. Independent  studies  showed  that  miR-16,  miR-195, 

and  miR-497  are  down-regulated  in  NSCLC  tissues  and  cells  lines  [167-169]  and  that  these 

miRNAs can bind to 3’-UTR of the hepatoma-derived growth factor (HDGF). HDGF is a secreted 

growth factor and could promote cellular processes like proliferation, differentiation, migration 

[170] and in particular angiogenesis through the stimulation of VEGF release [171, 173, 179]. Its 

overexpression has been detected in several cancers including HCC, cholangiocarcinoma, 

gastrointestinal stromal tumors, PC, and GC [174]. In NSCLC, the expression of HDGF is also a 

prognostic predictor for patients with early-stages [175]. In HCC, cells stably transfected with an 

anti-HDGF shRNA assayed in in vitro and in xenografted mice resulted in a decreased proliferative 

activity with suppressed VEGF expression and reduced angiogenesis of developing tumors [176]. 

Overall, these findings suggested that the targeted inhibition of HDGF could be a novel anti-cancer 

therapy. 

 
 

11. METASTASIS 
 

 
 

MiR-125a-3p and miR-30c were found down-regulated in NSCLC [177, 178]. Both miRNAs were 

showed to target MTA1 mRNA (metastasis-associated protein 1). The encoded protein plays an 

important  role in  nucleosome remodeling and  histone deacetylation  complex,  regulating many 

genes involved in promotion of malignant tumor metastasis [179-181]. MTA1 increased also the 

expression of VEGF vascular endothelial growth factor thus promoting tumor angiogenesis 

[182,183]. Overexpression of MTA1 was reported in BC, PaC, and LC [184-186] and it was 

suggested   as   prognostic   biomarker   of   poor   survival   in   BC,   esophageal,   and   urinary 

cancers [187,188].  MTA1  can  activate  the  Wnt/β-catenin  signaling  pathway  [189],  another
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important  pathway  playing  a  critical  role  in  lung  tumorigenesis  [190].  Another  metastasis- 

associated gene, RECK (reversion-inducing-cysteine-rich protein with kazal motifs), was shown to 

be involved in NSCLC by studies on miR-92b and miR-21 [191, 192]. Both were showed to target 

RECK mRNA and their expression was found increased in NSCLC tissues and cell lines. It was 

showed that the miRNA-dependent down-regulation of RECK gene expression could constitute an 

important step in the tumorigenesis process [192]. RECK is a membrane-anchored glycoprotein and 

it could act as a negative regulator for matrix metalloproteinase-9, a key enzyme involved in tumor 

invasion and metastasis. The appropriate levels of RECK could modulate cell growth and motility 

in lung and bladder cancers [191]. 

Interestingly, researchers showed that curcumin could inhibit the proliferation and invasion of 

NSCLC cells through the inhibition of MTA1 and the Wnt/β-catenin signaling pathway. Thus, these 

investigators provided novel insights into the mechanisms of curcumin on inhibition of NSCLC cell 

growth and invasion, suggesting potential therapeutic strategies for NSCLC [190]. 

However, therapeutic approaches aimed to restore a lost expression of cancer-inhibiting molecules 

like RECK are intuitively less feasible than others based on inhibiting up-regulated targets. The 

inhibition of miR-92b or miR-21 could be a possibility. 

 
 

12.  NETWORK  OF  INTERACTIONS  AMONG  MIRNAS  AND  THEIR  BONA  FIDE 
 

TARGETS 
 

 
 

In order to get the maximal information from the collected studies, in this review the miRNAs and 

their targets reported in table 1 were also analyzed in silico with the use of the tool Interactome DB. 

The output (strictly related to LC) was implemented with more information from the manuscripts 

listed in table 1 (related to NSCLC only) and the results are showed as regulatory network in figure 

2.
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Figure 2. The regulatory network found in NSCLC by Interactome DB, implemented 

with data of literature. 

 
 

The displayed  network  should  be considered  as  a simplified  graph  showing only a subset  of 

miRNAs together with their bona fide targets found (experimentally) deregulated in NSCLC. 

Although the picture shows a small part of the actual interactions, the observation of the arrows (an 

alias for the up- or down- expression, all experimentally confirmed in NSCLC) tells that cancer is a 

very complex phenomenon where each node is affected by multiple signals. Thus, in practice, a 

given player can be deregulated by several different mechanisms and this suggests also that, likely, 

one therapeutic drug alone could not counteract the overwhelming changes happened once the 

disease is triggered. As a summary view of the network, it is interesting to note that studies are 

basically all in agreement to show how miRNAs and targets have a coherent and unique flux of 

deregulation.  In  fact,  in  general,  there is  an  inverse  correlation  between  miRNAs  and  targets
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detected by Interactome DB confirming what observed in NSCLC tissues. Moreover, the analysis 

links most of the players each other into an unique regulatory network where each node is found up- 

or down-regulated coherently to the status of its neighbors. For example, the figure shows that miR- 

21 is up-regulated in NSCLC and this is consistent with the down-regulation of its target, PTEN. In 

turn, PTEN was showed to be down-regulated also by the up-regulation of miR-205, miR-106a, and 

miR-429. This latter, in turn, inhibits TIMP2, in concert with the up-regulation of miR-761. Thus, 

this analysis could allow identifying more nodes (such as TIMP-2) involved in NSCLC. In this last 

section of the review, we will give a particular focus on TIMP2, IGF-signaling pathway, and PIM1 

as additional putative therapeutic targets. 

 
 

12.1. TIMP2 
 

The interactome analysis predicted that TIMP-2 is down-regulated in NSCLC because under the 

control of miR-761 and miR-429, that are often up-regulated in NSCLC, the latter controlling also 

the expression of PTEN. TIMP-2 has been poorly studied in relation to NSCLC and the expression 

status of TIMP-2 in this disease is unknown, however a reduced level of TIMP-2 was associated 

with a poor prognosis [193]. Thus, further studies on this specific target are warranted. TIMP-2, 

together with TIMP-1, -3, -4, belongs to the TIMP (Tissue Inhibitor of Metalloproteinase) family 

playing a role in remodeling the extracellular matrix (ECM). Each of their N- and C-terminal 

domains contains 6 conserved cysteine residues that form three disulfide loops. The N-terminal 

region binds to the (matrix-metalloproteinases) MMPs’ catalytic domain and inhibits MMP activity, 

whereas, the C-terminal region interacts with the pro-forms of MMP-2 and MMP-9 C-terminal 

hemopexin domain to stabilize the pro-enzyme inhibitor complex [194]. TIMP-2 is the only TIMP 

member that specifically interacts on the cell surface with both MT1-MMP and pro-MMP-2 in 

order to facilitate the activation of pro-MMP-2. Thus, TIMP-2 could function both as a MMP- - 

inhibitor and -activator [195]. It was showed that TIMP-2 has a role also in inhibiting the neo- 

angiogenesis through the binding to endothelial cell receptors [202] such as the α3β1-integrin 

receptor [196] or acting as a Vascular Endothelial Growth Factor A (VEGF-A) antagonist and 

blocking endothelial cell proliferation  [195]. The anti-angiogenic activity of TIMP-2 could be 

elicited also through the increase of the SHP-1 activity associated with FGFR1 (Fibroblast Growth 

Factor Receptor 1) and VEGFR2 (Vascular Endothelial Growth Factor Receptor 2). TIMP-2 could 

also affect the vascular permeability by increasing the vascular E-cadherin distribution in cell-cell 

contacts through increased association with the actin cytoskeleton TIMP-2 suppresses also 

endothelial cell migration through RECK expression that is considered a suppressor of angiogenesis 

[196]. Furthermore, TIMP-2 treatment was also able to inhibit endothelial cell growth, by mediating
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the G1-growth arrest through the activation of the cyclin-dependent kinase inhibitor p27/Kip1 

synthesis [197]. Studies with knock-out mice showed also that TIMP-2 modulates the recruitment 

of inflammatory cells  within xenografted  NSCLC cells, suggesting that it could modulate  the 

cytokine release affecting the tumor micro-environment, tumor-immune-stealth, and the 

aforementioned intra-tumor neo-angiogenesis [196]. Finally, TIMP-2 was found to inhibit the 

signaling of Insulin-like Growth Factor Receptor 1 (IGFR1) [198]. Thus, in spite the fact that 

TIMP-2 could be not targeted directly in NSCLC because of its down-regulation, a therapeutic 

strategy could consist in rescuing or mimicking its (inhibitory) activity towards VEGFR2, FGFR1, 

α3β1-integrin   receptor,   SHP-1,   p27,   IGFR1,   endothelial,   or  immune  cells.   For  example, 

delphinidin,  an  anthocyanidin  present  in  pigmented fruits  and  vegetables,  was  shown  to  be  a 

potent inhibitor of both VEGFR2 (and EGFR) in NSCLC cells and it could be further developed for 

clinical use [199]. Inhibitory small molecules against FGFR1 such as NVP-BGJ398 or Ponatinib 

were developed and at least in H1581 NSCLC cells they showed to induce cell growth inhibition 

and death [200, 2011]. In vivo, mice xenografted with FGFR1-mutant NSCLC cells exhibited 

attenuated tumor growth and prolonged survival when the FGFR-specific tyrosine-kinase inhibitor 

AZ4547 was combined with an mTOR inhibitor, but the response was weak when AZ4547 was 

administered as monotherapy [202]. 

 
 

12.2. miR-486 and IGF signaling pathway 
 

The interactome analysis implemented with miRNA studies showed that  IGF1R could be up- 

regulated by several mechanisms that involve the down-regulation of various miRNAs such as miR- 

140, miR-195, miR-30a, miR-223, and miR-486 [203-207]. In a cohort of 81 NSCLC patients miR- 
 

486 was showed as the most down-regulated miRNA within tumor tissues compared with adjacent 

healthy lung tissues [207] and this finding was confirmed also in other studies [208,209]. 

Interestingly, miR-486 was proved to be regulated by p53 by using anti-p53 antibody in chromatin 

immunoprecipitation experiments [207] and it  is an important  regulator of the  IGF1-signaling 

pathway targeting not only IGF1R but also IGF1 mRNAs [207]. 

IGF1R is a membrane receptor-type tyrosine kinase that plays a crucial role in cancer cell 

proliferation,  inhibition  of  apoptosis,  angiogenesis,  and  anchorage-independent  growth  via  the 

PI3K-AKT (phosphatidylinositol 3-kinase-AKT) and RAS/RAF/mitogen activated protein kinase 

signaling pathways [210, 211]. The axis p53>miR-486>IGF plays an important role in NSCLC. 

Indeed, the IGF1R was discovered as playing an important role in the pathogenesis of NSCLC 

already about 15 years ago [212, 213] and it was already suggested as therapeutic target in 2010 

[214]. IGF1R is a potential therapeutic target also for patients affected by BC and sarcoma and
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therapeutic agents include both monoclonal antibodies to IGF1R (dalotuzumab, figitumumab, 

cixutumumab, ganitumab, R1507, AVE1642) or IGF1R pathway targeting strategies such as the use 

of monoclonal antibodies to IGF1 and IGF2 (MEDI-573, BI 836845) or linsitinib, a small-molecule 

tyrosine kinase inhibitor of IGF1R [215]. 

The  human  IgG2  monoclonal  antibody  against  IGFIR,  figitumumab,  was  developed  for  the 

treatment of NSCLC [216] but the subsequent clinical trials (ended in 2013, see clinicaltrials.gov 

for  CP-751,871)  did  not  provide  evidence  of  benefits  in  combination  with  the  standard 

chemotherapy (paclitaxel plus carboplatin) [217]. Negative trials obtained on patients with BC 

and NSCLC contrasted with the sustained success of IGF1R inhibitor monotherapy in a subset of 

patients with sarcoma [217, 218]. This underlines, once more, the importance of combing inhibitors 

for a more effective approach to improve overall survival in NSCLC. Likely, in NSCLC the down- 

stream effectors of IGF1R receptor (i.e. the KRAS pathway) are activated by multiple mechanisms 

and this could explain the relatively poor effectiveness of these IGF1R-directed therapies. It is 

thought that specific biomarkers should be developed for predicting patients who could benefit from 

these therapies [219, 220]. 

 
 

12.3. PIM1 
 

MiR-486 down-regulation could play a role also in the up-regulation of PIM1 gene expression that 

could be up-regulated also by a low expression of miR-1 [221]. PIM1 was originally identified as a 

proviral integration site in Moloney murine leukemia virus-induced murine T-cell lymphomas. It is 

a serine/threonine kinase oncogene that plays a role during differentiation and it is a potent mediator 

of cell survival by inhibiting apoptosis, by promoting cell proliferation and genomic instability 

[222]. It is also a pivotal mediator for radio-resistance of NSCLC cells [222]. The overexpression of 

PIM1 protein was observed closely associated with transformation of malignant cells and 

acceleration of tumorigenesis in a significant fraction of human myeloid and lymphoid leukemia, as 

well  as  in  lymphomas  [223].  In  HNSCC,  immune-histochemical  analyses  revealed  that  PIM1 

protein is expressed in tumors of different grades and stages, but not in normal tissues [224]. In GC 

it was found that immunoreactivity of PIM1 increased as the grade of malignancy increased, further 

emphasizing that PIM1 levels might serve as a tumor marker [225]. PIM1 up-regulation correlates 

with a poor prognosis [226] and it could be a critical survival signaling factor in NSCLC (213). 

Small molecules, such as SGI-1776, ETP-45299, tryptanthrin [222] and the imidazo-[1,2-b]- 

pyridazine-based Pim1 kinase inhibitors, were developed and are at the pre-clinical research stages 

with nearly 40 patents emerged in the last years [227, 228]. There is hope some of them will be of 

benefit for NSCLC patients.
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CONCLUSIONS 
 

 
 

Various omics approaches are ongoing in order to unravel the secrets of cancer. The more data are 

cumulated more knowledge is gained, with the perception that cancer is a moving target with 

hundreds of genes subject to plastic and adaptive deregulation. In the present review, although we 

did  not  approach  the  complexity of  NSCLC  with  omics  tools,  we  reported  the  collection  of 

experimental studies where bona fide targets for specific miRNAs (found altered in NSCLC) were 

validated. We showed that these studies helped to identify a plethora of genes whose encoded 

proteins could constitute known/novel candidates to be studied in view of future therapeutic 

approaches. Thus, the study of deregulated miRNAs could be of help in this process and further 

experimentation is warranted with the aim to find novel targets to develop drugs, or for improving 

those already synthesized that are currently in pre-clinical stages or under clinical trials. 
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