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Abstract

We show that, even in a framework in which monopolistic exploitation of patents does
not occur, patents still give rise to serious drawbacks. We rely on a recombinant growth
framework that provides a stylized but clear description of the formation of knowledge
externalities. In our setting a benevolent government buys immediately new patents in
a competitive market and releases their contents for free. We show that inefficiencies
nevertheless arise and welfare can be improved by correcting the market price through a
taxsubsidy scheme. We characterize the (asymptotic) steady-state equilibrium, and some
properties of the transitional path. We show that if certain conditions are met, then
the economy will converge to its (asymptotic) balanced growth path, and along such a
path growth will be independent of the policy parameter; conversely, transition dynamics
are affected by the choice of the policy parameter. We then quantitatively analyze the
effect of different policy interventions on welfare, and show that stricter tax (weaker
appropriability) regimes lead to higher social welfare.
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1 Introduction

Knowledge advances are a crucial ingredient in explaining economic growth. While the public
good nature of knowledge is widely recognized, the literature on innovation alleges that ap-
propriation opportunities—implemented via intellectual property rights (IPRs)—which entitle
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the right holder a legal monopoly over a fragment of knowledge, are indispensable institutions
aimed at avoiding the market failure arising from the free-riding problem. Such a stylization,
nevertheless, raises several concerns. Since a monopoly is unable to appropriate all social sur-
plus, in general it does not supply the optimal incentive to inventors and authors, while different
arrangements, such as rewards systems administered by the government,1 seem to a large extent
better equipped to attain optimality (Arrow [1962], Shavell and van Ypersele [2001]). Further
critical concerns relate to the incremental nature of knowledge production that recognize its
role as an input; in such a case the above-cost pricing that monopoly entails will equally in-
crease the cost of knowledge2 yielding ambiguous results both on social welfare and eventually
on innovator profit (Scotchmer [1991], Bessen and Maskin [2009]). While most of the literature
on endogenous growth in economies with IPRs has considered jointly the problems raised by
the non-competitive nature of the market for knowledge on the one hand, and those deriving
from the public good nature and the externalities stemming from knowledge production on the
other, in this paper we aim at gaining further insights by focusing only on the second type of
problems. We thus construct a stylized model in which the standard monopolistic exploitation
problem is ruled out.

Our study builds on Weitzman’s (1998) recombinant growth model, reformulated in a con-
tinuous time version by Tsur and Zemel (2007), which has the advantage with respect to other
approaches of neatly describing the spillovers that characterize knowledge advances. In this
framework it is assumed that the knowledge stock is endowed with some natural direct germi-
native property, which implies that when new research results are matched with old ones, then
“hybrid seeds” capable of supporting further developments are produced. The combinatorial
nature of knowledge accumulation in Weitzman’s model represents a highly stylized but explicit
description of the way in which externalities arise, in a vein that can be traced back either to
natural Darwinian processes of evolution, or to social phenomena such as encounters, matchings
and personal interactions that support knowledge growth. Weitzman’s model, however, refers
to a pure accumulation process in which knowledge production is centralized and governed by
a social planner. We maintain the basic recombinant framework, but, differently from Weitz-
man (1998) in which the amount of resources allocated to knowledge production is exogenously
given and from Tsur and Zemel (2007) in which this is entirely determined by a benevolent
social planner, we explicitly introduce a decentralized system for knowledge production under
the protection of patents. We assume that a benevolent government drives knowledge advances
by immediately buying the patents on useful ideas newly produced by innovative firms which
in turn exploit already available ideas. The government then releases new ideas for free, such
that they can be exploited by the firms producing final consumption goods and also give rise to
new seeds. Such a stylized institutional setting3 is substantially different from what generally
considered in the traditional R&D-based endogenous growth models. Its attractiveness with
respect to more standard and simple alternatives (such as the abolition of the IPRs system and

1Public funding in various forms does play today an important and not substitutable role in stimulating
innovations, as it stably counts for at least one third of gross domestic R&D expenditures in many developed
economies, US included (OECD [2016]).

2Besides the direct cost increase connected with the higher price of knowledge monopolized inputs (Scotch-
mer [1991]) there is an indirect one connected with transaction costs incurred for searching, contracting and
buying the licenses for all the dispersed fragments of proprietary knowledge needed as inputs. When there
are complementary inputs an adverse outcome, the so called ‘tragedy of anticommons’ can arise (Heller and
Eisenberg [1998], Ziedonis [2004]).

3Note that such a setting seems to be consistent with some experiences documented by economic history.
In fact, governments have actually sometimes bought patents, and proposals have been advanced for adopting
systematically such an approach. On this issue see for example p. 528 in Shavell and van Ypersele (2001).
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the direct subsidization of research) rests on the activation of a transparent free-entry market
for the production of new knowledge. The role of patents as a way of encouraging disclosure of
inventions (as an alternative to trade secrecy) has often been stressed in the literature (Deni-
colò and Franzoni, 2004). In our framework disclosure would be immediate, while the role of
the public sector would be confined to the collection of resources and to the organization of
the IPRs system, while the potential drawbacks associated with bureaucratic interventions in
productive activities would be avoided.

As in Weitzman we assume that knowledge behaves as a homogeneous good when transferred
to the final goods production; while it must be new and distinguishable when patented. The
buyer, i.e., the benevolent government, behaves as a price taker in the knowledge market.
Hence, the drawbacks caused by standard forms of monopolistic exploitation of IPRs cannot
arise, since there is competition between suppliers and no monopsonistic exploitation by the
government. However, the appropriability of knowledge via IPRs still involves inefficiencies,
because the equilibrium price in the market for knowledge turns out to be distorted due to the
presence of externalities pertaining to the seeds formation. Moreover, innovative firms selling
IPRs to the government at equilibrium market prices enjoy rents, as they privately appropriate
the benefits stemming from the seeds process. Rents, however, attract potential challengers of
the IPRs, and thus in order to prevent them new knowledge producers must waste resources
in legal and administrative expenditures. However, the power of the germinative property of
knowledge implies that asymptotically economies with this IPRs system converge to a socially
efficient outcome in terms of growth. We show that, in order to increase welfare, the government
can resort in the transitory period to a tax-subsidy scheme for correcting the equilibrium market
price. A subsidy financed by taxation on the rents of the IPRs owners or the limitation of rent
appropriability granted by IPRs can redress the aforementioned drawbacks. Our results thus
show the relevance of corrective government interventions (via taxation/subsidy schemes or
modifications of the IPRs owner entitlements), which turn out to be desirable even within a
scenario that rules out the most commonly recognized potential problems raised by the IPRs
system. Moreover, our results provide motivations for taxing rents from IPRs, a policy option
that seems relevant in practice but which does not fit well into the standard endogenous growth
approach.

The paper proceeds as follows. In Section 2 we introduce our model specification featuring a
decentralized market for knowledge production based on a basic IPRs system and the possibility
of government intervention to contain inefficiencies by applying a certain tax-subsidy scheme.
In Section 3 we discuss short and long-run equilibria, showing that if certain conditions are met
the economy converges towards an asymptotic balanced growth path along which the growth
rate is not affected by the government policy, while the transition equilibrium depends on the
policy parameter. Section 4 presents our model’s specification which allows us to discuss and
analyze in more depth the transitional dynamics. Section 5 contains our quantitative results:
we basically show here that an active government intervention is beneficial, as welfare increases
with the policy parameter. Section 6 comments on the policy implications of our model and
presents concluding remarks. All mathematical proofs and a description of the numerical
techniques employed are postponed in Appendices A and B, respectively.

2 The Model

Our model is a Ramsey-type model of growth with endogenous creation of knowledge according
to a recombinant process. As we focus mainly on the effects of knowledge-related policies on
growth patterns and welfare, for the sake of simplicity we assume that the only durable good is
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the stock of knowledge A; in other words, there is no (physical) capital accumulation and the
only asset in the economy is represented by knowledge.

The economy is composed by households, firms and the government. Households receive
a wage for the labor supplied to the production sector, pay a lump-sum tax and purchase a
consumption good. Moreover, they socially interact and combine the stock of existing ideas with
the newly produced ones, thus producing seed ideas for free. There are two types of firms: one
producing the final consumption good and one performing knowledge creation activities. The
government collects taxes from households and invests the proceeds into knowledge creation;
moreover, it resorts to a tax-subsidy scheme applied to the latter type of firms in order to correct
the inefficiencies generated by a basic IPRs system, as will be explained in the following.

2.1 Recombinant Knowledge Creation

As in the Tsur and Zemel (2007) continuous time version of Weitzman (1998) model, the new
knowledge production function is defined as

Ȧ (t) = H (t) η

[

J (t)

H (t)

]

, (1)

where Ȧ (t) denotes the time derivative of the stock of knowledge A (t), J(t) the amount of
resources employed in knowledge production, H (t) the number of hybrid seed ideas, and η (·)
is the probability of obtaining a successful idea from each hybridization (matching) satisfying
the following assumption, as in Weitzman (1998).

A. 1 The success probability function η : R+ → [0, 1] is independent of time and is such that
η′ (x) > 0, η′′ (x) < 0, η (0) = 0 and limx→∞ η (x) ≤ 1; moreover, it will be assumed that
η′ (0) ≡ limx→0+ η

′ (x) < +∞ and η′′ (0) ≡ limx→0+ η
′′ (x) > −∞.

Note also that (1) can be interpreted as a standard production function from inputs to out-
put, characterized by homogeneity of degree one and thus constant returns to scale. According
to this widely used point of view—that we will adopt in the sequel—aggregate knowledge cre-
ation is presented as a deterministic process, even if, of course, there may be idiosyncratic
uncertainty.

The necessary smoothness assumption required in a continuous-time setting implies that
Ȧ (t) has the same value both while looking forward to the new output—equation (1)—and
while looking backward, i.e., to the formation of seed ideas, given by

H (t) = C ′

m [A (t)] Ȧ (t) , (2)

where C ′

m (A) denotes the derivative of the number of different combinations of m elements as
a function of the stock4 A (Tsur and Zemel [2007], Privileggi [2010; 2011]); that is, within this
approach both the seed production in (2) and the production of new ideas in (1) are referred
(as a limit) to the same time instant. Hence, when (2) is substituted into (1), it turns out that
the law of motion of knowledge at every instant is

Ȧ (t) =
J (t)

ϕ [A (t)]
, (3)

4Specifically: Cm (A) = A!/ [m! (A−m)!]. For example, C2 (A) = A (A− 1) /2.
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where

ϕ (A) = C ′

m (A) η−1

[

1

C ′

m (A)

]

(4)

is the expected unit cost of knowledge production as a function of the stock of knowledge A,
converging to the constant 1/η′ (0) as A → ∞; note that 1/η′ (0) is strictly positive under
Assumption A.1.

In the following we focus on a decentralized framework, where a benevolent regulator decides
how many resources to convey to buying new knowledge on the market. The seed ideas available
at time t, defined by (2), arise out of an externality associated with the process of knowledge
creation, and do not command any specific compensation. The R&D industry thus exploits H
for free and combines it with J to produce new knowledge Ȧ.

2.2 Households

To further simplify the analysis, we abstract from population growth and the population size is
normalized to unity. We adopt the standard assumption that all households have an increasing
and concave utility function, u′ (c) > 0, u′′ (c) < 0 where c is consumption. A social planner
chooses consumption in order to maximize social welfare, that is the infinite discounted sum of
utilities, with a rate of time preference denoted by ρ > 0. As we shall show, all the firms operate
in competitive markets and thus their profits are zero. Moreover, as the new knowledge is being
purchased by the government and released for free in the economy, there is no possession of
the only asset (knowledge) by households and, in turn, no asset accumulation. Hence, they
face only an instantaneous constraint: c (t) ≤ w (t)−G (t), where w (t) is the wage households
receive for supplying labor and G (t) denotes the lump-sum tax they pay to the government.

2.3 F -firms

In the final consumption good sector firms (F -firms) are competitive and operate in a standard
neoclassical framework: at each instant F -firm i employs a composite intermediate good, Xi,
and knowledge-augmented labor to produce a composite consumption good according to a
constant returns to scale production function, Yi = F (Xi, ALi), taking as given the labor
wage, w, and the stock of knowledge, A, which is supplied by the government for free. Because
they all use the same technology and face the same market conditions, they also employ the
same intermediate good/labor ratio; hence the subscript i can be dropped and per capita output
turns out to be y = Y/L = F (x,A) /L, where x = X/L. Moreover, as F (·, ·) shows constant
return to scale, all identical F -firms pay the production factors (the intermediate good x and
labor) their marginal cost (the numeraire and the wage w respectively) and earn zero profit.
Recalling the assumption that L (t) ≡ 1 for all t, it is convenient to rewrite the aggregate output
as

Y = Af
( x

A

)

, (5)

where f (·) = F (·, 1) is increasing and concave.
It is assumed that new knowledge can be directly transferred to production of final goods

(through, e.g., organizational and process innovations), while such transfer implies a rescaling
to take into account the effectiveness in terms of output augmentation (Weitzman [1998], p.
344), as will be clarified later on. The possibility of supplying directly knowledge contents to
F -firms seems realistic because nowadays patents refer more and more to procedures, routines,
marketing models, etc., i.e., to dematerialized contents that F -firms can directly implement in
their activity (Chantrel et al. [2012], Marchese and Privileggi (2017)).
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2.4 R&D-firms and the Innovations’ Market Equilibrium

There is a large number n of firms creating new knowledge (R&D-firms) which exploit the
recombinant technology described in (1), and there is free entry in the market. The government
buys immediately newly patented knowledge and releases it for free. While on the demand side
the government is a monopsonist, it is assumed that it is benevolent and behaves as a price-
taker. Seed ideas H arise for free as a result of the externality generated by the knowledge
creation process, in which the new knowledge Ȧ released by the government is combined with
the already existing knowledge stock A (t) according to (2).5 While new knowledge is a public
good (it is non-rival when used in the production of either final goods or new seeds), seeds are
rival, that is, no new knowledge could be produced by processing the same seeds again. The
free availability of seeds in a market with free entry might entail a tragedy of the commons.
The IPRs system helps in avoiding this, since it assigns the property right on each specific
bit of new knowledge to the patent holder, and each patented bit of knowledge can be traced
back to a specific subset of seeds (while instead in the case of commons a homogeneous good is
produced and the latter cannot be traced back to a specific part of the pool). However, as the
IPRs system only indirectly supports the de-facto private appropriation of the seeds that led
to an invention, the owner of a patent is exposed to frequent controversies. R&D-firms must
thus bear the fixed (instantaneous) cost µi to deter potential challengers.6

Each R&D-firm i takes the price of new knowledge ψ as given, and, in order to obtain a
patentable result Ȧi, aims at exploiting a share H̄i = H/n of the available seeds. It takes H̄i as
exogenously determined and given. That is, each R&D-firm does not anticipate that its own
research activity and that of the other firms will expand H according to equation (2). Since
seeds are available for free, the firm’s i instantaneous profit is given by

πi = ψȦi − Ji − µi,

where µi is a fixed cost it bears to prevent legal challenges. In view of (1), each R&D-firm
profit can be rewritten as

πi (Ji) = ψH̄iη
(

Ji/H̄i

)

− Ji − µi. (6)

Strict concavity of η (·) and the fact that η (·) ≤ 1 [that is, ψH̄iη
(

Ji/H̄i

)

is bounded from
above by ψH̄i, which is independent of Ji] dictated by the smoothness assumption A.1 are
enough for (6) to have a unique (interior) maximum J∗

i provided that π′

i (0) = ψη′ (0)− 1 > 0,
that is, whenever

ψ > 1/η′ (0) . (7)

We shall see that condition (7) is always satisfied under Assumption A.1 (see Proposition 2
below). Then, FOC on (6) with respect to Ji yields the optimal amount of physical resources
that the firm chooses to employ in knowledge production for given H̄i seed ideas and price ψ:

J∗

i = H̄i (η
′)
−1

(1/ψ) , (8)

5The formation of seed ideas may also be interpreted as arising from costless social interactions. The
innovation (Ramello [2005; 2011] and economic history (Rosenberg [1976], Ceruzzi [2003]) literature stress that
knowledge may be the results of also non-market mechanisms. This might explain why the stock of knowledge
(specifically, seed ideas) may rise autonomously, providing thus some foundation for the discussed externality
generated by the knowledge creation process.

6A large literature stresses that actually the IPR system entails huge administrative and legal costs (see,
e.g., Scotchmer [2004] and Cremers et al. [2016], and the references quoted therein). Moreover it has been
observed that incumbent patent holders are sometimes dissipating profits for endorsing preemptive strategies
or for accumulating costly patent portfolios used as ‘bargaining chips’ (see, e.g., Gilbert and Newbery [1982],
Hall and Ziedonis[2001]). For a model of economic growth à la Romer (1990) that internalizes the enforcement
cost of patents see Eicher and Garćıa-Peñalosa (2008).
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where (η′)−1 denotes the inverse of the derivative of the probability η, which clearly exists as
η′ (·) is decreasing.

To study the R&D sector as a whole, note that, as long as the number of identical R&D-firms
is n, the total amount of resources they use is

J∗ = nJ∗

i , (9)

where J∗

i is given by (8). Moreover, in equilibrium the whole amount of seeds must also be
used, and the firms expectations must turn out to be true, that is:

H(Ȧ, A) = nH̄i

must hold, where H(Ȧ, A) represents the whole amount of seeds available in the economy. Since,
however, each firm ignores the externalities in terms of seed formation stemming from its own
and from the other firms’ new knowledge production, it turns out that each firm underestimates
the J marginal product, that is, it ignores the (strictly positive) term

(∂/∂Hi) [ψHiη (Ji/Hı̀)]
(

∂Hi/∂Ȧ
)(

∂Ȧ/∂J
)

in its decision on J . Hence there is an allocative

inefficiency as too little J is used. On the other hand, there is no productive inefficiency, since
the recombinant process implies that the amount of seeds H(Ȧ, A)/n adapts to the amount J∗

i

of resources actually employed in production. That is, as long as, e.g., J∗

i turns out to be a
half of the amount a benevolent dictator would choose, also H̄i is a half. Hence, production
occurs under constant returns to scale and each firm locates on the same expansion path as
under an allocative efficient solution, even on a point nearer to the origin. We can thus focus
on a representative firm delivering the whole new knowledge production and using an amount
of resource J∗ = nJ∗

i and H(Ȧ, A) = nH̄i. To describe the equilibrium of the economy as a
whole, even if new knowledge Ȧ is sold in discrete amounts covered by patents, for simplicity
we treat the whole industry output, Ȧ, as a continuous function of time.

By plugging J∗ as in (9) into (1) we get the new knowledge level that the representative
firm is willing to supply in our economy, as determined by its input choice:

Ȧ = Hη
[

(η′)
−1

(1/ψ)
]

. (10)

In order to explicitly compute ψ, we equate the representative R&D-firm’s expected revenues to
the amount of resources, G, paid by the regulator for purchasing the newly created knowledge:

G = ψȦ. (11)

Substituting ψ as in (11) into (10) yields

Ȧ = Hη
[

(η′)
−1

(

Ȧ/G
)]

,

which, after replacing H as in (2), leads to

Ȧ = Gη′
{

η−1 [1/C ′

m (A)]
}

. (12)

In view of (11), (12) can be rewritten as

Ȧ =
G

ψ (A)
, (13)
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where ψ

ψ (A) =
1

η′ {η−1 [1/C ′

m (A)]}
=

(

η−1
)

′

[

1

C ′

m (A)

]

(14)

provides an explicit formula for the expected price of knowledge production as a function of
the stock of knowledge A paid by the regulator to R&D-firms. As already mentioned earlier,
note that the price of knowledge as in (14) is an equilibrium price arising from the matching
of knowledge demand (from the government) and supply (by R&D firms).

The law of motion defined by (13) is directly comparable to that defined by (3) for the
first-best economy. Our first result is at the root of the differences between the centralized and
the decentralized economy.

Proposition 1

(i) For any given (finite) stock of knowledge, A, the price of knowledge production for the
economy with decentralized R&D production, ψ (A) defined in (14), is always larger than
the cost ϕ (A) defined in (4) borne by the social planner in the first-best economy:

ψ (A) > ϕ (A) for all A <∞. (15)

(ii) However, when knowledge becomes abundant they converge to the same value:

lim
A→∞

ψ (A) = lim
A→∞

ϕ (A) =
1

η′ (0)
. (16)

Proposition 1 states that, while the price of knowledge production in a decentralized R&D
economy is always larger than the cost borne by the social planner in the first-best economy,
as the stock of knowledge gets larger and larger, both converge to the same value. For an
intuition about this result note that in this economy there is an allocative inefficiency, implying
a too small supply, since the R&D-firms, by taking H as given, underestimate the marginal
product of factor J , and thus use a too small amount of it, while still producing at the unit
cost ϕ (A). Since the regulator’s demand has unit elasticity to price, a supply smaller than
the efficient one entails a larger equilibrium price. As H becomes abundant, however, the
underestimation is fading out and thus the price ψ (A) converges to the unit cost ϕ (A).

Proposition 2 Condition (7) always holds under Assumption A.1; moreover, the wedge be-
tween the revenue and the variable cost of the representative R&D-firm turns out to be

[ψ (A)− ϕ (A)] Ȧ, (17)

so that, by Proposition 1 (i), is strictly positive for all A <∞.

Proposition 2 implies that the R&D-firms obtain a positive rent thanks to the externality
they enjoy. Thus, the basic unwanted effects of an IPRs system are: i) from the distributive
point of view, the private appropriation by the IPR holder of a rent pertaining to a public good,
i.e., new knowledge items and ii) a price of new knowledge larger than its marginal social cost,
as the positive externalities generated by the new knowledge production translate into a private
rent. Proposition 1 (ii) states that these drawbacks tend to fade away in mature economies,
where the stock H is at any rate already abundant. Poor countries aiming at starting a growth
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process anew, instead, are likely to find the IPR system more costly. This implies that the
IPRs system raises problems not only in terms of efficiency, but also of equity.7

In view of Proposition 2, the free entry condition for the R&D market implies that, after
taking into account the total fixed cost for legal expenses, µ = nµi, the representative R&D-firm
has zero profit,

π (A) = [ψ (A)− ϕ (A)] Ȧ− µ = 0,

that is, the market is in equilibrium and no further entry occurs as long as the firms’ rent is fully
“burned down” to finance the preventive fixed cost µ aimed at discouraging legal challenges.8

We can thus summarize the main features of the R&D market equilibrium as follows:

(i) supply of new knowledge is made by n identical firms who maximize profit by choosing the
amount of resources J for processing an amount H/n of freely available seeds that they
take as exogenously given;

(ii) as each firm ignores the external effects of new knowledge production on the seeds’ avail-
ability, it employs too few resources J , whose amount thus results scaled down with
respect to an allocative efficient solution;

(iii) thanks to the recombinant process, also the number of seeds used by each firm turns out
to be scaled down by the same factor and thus production occurs under constant returns
to scale, on the same expansion path that would be chosen under an efficient solution;

(iv) the allocative inefficiency implies an undersupply of knowledge and, as demand has unitary
elasticity, the new knowledge price is larger than that (equal to the cost) one can account
for under a benevolent planner’s solution;

(v) R&D firms, which produce at the same cost as under the benevolent planner’s solution,
enjoy a rent which, however, in equilibrium under free entry is fully dissipated into a fixed
cost to prevent challenges to the IPRs.

2.5 Government

In our stylized framework the government levies lump-sum taxes on households in order to
buy and then to distribute for free across the economy newly produced ideas, maintaining a
balanced budget at any point in time. Additionally, the government can correct the market
failure arising in the innovative sector and restore optimality. The government basically resorts
to a tax-subsidy scheme in order to improve efficiency; as the problem is that the price of the
private provision of knowledge via IPRs is larger than the social cost, the corrective intervention
should consist in a subsidy to the knowledge production, financed through a non distortionary
tax on the rent of the R&D-firms.9

7Ramello (2008) notes that, because of indivisibility characterizing the knowledge production, there is a
unique link between efficiency and equity, and the intensity of appropriation via IPRs can thus negatively affect
both at the same time.

8For the sake of simplicity we model the zero profit condition as deterministic, while the model’s results would
not change if we assume that the zero profit condition holds at aggregate level, under idiosyncratic uncertainty
about the occurrence and the result of disputes.

9Note that our economy presents two inefficiencies (a public good and an externality), so that two policy
instruments (the tax on households and the tax-subsidy mechanism on R&D-firms) are needed in order to restore
optimality as in standard theory of economic policy (Tinbergen rule). The peculiarity of such inefficiencies is
related to the double nature of knowledge, as input (seeds generate an externality) and output (the recombinant
process generates new knowledge, a public good).
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More specifically, as long as the government aims at implementing the efficient knowledge
production that would arise under centralization, Ȧ = J/ϕ (A) as defined in (3), it should
increase its own demand—with respect to the level that the latter would take given G < J ,
i.e., the R&D financing under decentralization according to (11) and the price ψ (A)—so that

G+ d

ψ (A)
=

J

ϕ (A)
= Ȧ, (18)

where d is the subsidy needed to correct the market failure. Assuming that the government
can levy taxes directly on R&D-firms’ rents at a rate 0 ≤ τ ≤ 1, according to (17) we can
set 10 d = τ [ψ (A)− ϕ (A)] Ȧ, so that, by (18), G + d = G + τ [ψ (A)− ϕ (A)] Ȧ = ψ (A) Ȧ,
which immediately yields the law of motion of knowledge that will specify our version of the
recombinant growth model:

Ȧ =
G

φτ (A)
, (19)

where
φτ (A) = τϕ (A) + (1− τ)ψ (A) , (20)

with ϕ (A) and ψ (A) defined in (4) and (14) respectively.
If the government, by setting τ = 1, were able to fully expropriate the R&D-firms’ rents, the

same first-best knowledge growth path observed under centralization would be reached through
a redistributive process based on the tax-subsidy scheme. While in principle this would fully fix
the efficiency problem, such implementation is generally not possible because it requires an exact
assessment and expropriation of the firm’s rent, a task generally deemed outside the reach of
the government in a decentralized economy, where asymmetry of information characterizes the
relationship between the government and the private sector. On the other hand, τ = 0 implies
fully decentralized, inefficient knowledge production where, however, the rent appropriation by
the patent holder is maximal.

The main focus of this paper is on partial implementations of such a scheme. Specifically, we
aim at studying how the economy as a whole reacts to different values of the parameter 0 ≤
τ ≤ 1, which is assumed to be constant over time, in terms of long-run equilibria and transition
time-path trajectories of the main variables involved, like stock of knowledge, output and
consumption, their growth rates and welfare. Since different tax policies (different τ) are
associated with different degrees of private rent appropriability in the research market (different
1 − τ), by studying the impact on growth and welfare of different tax policies we also analyze
their relationship with the degree of rent appropriability. In the proceeding of the paper we
will refer to different tax regimes (or alternatively different appropriability regimes) rather
than different IPRs policy regimes, in order to stress that the notion of policy and the type of
IPRs system we are considering are substantially different from those traditionally studied in
literature.

3 Equilibria and Endogenous Growth

Given the policy parameter 0 ≤ τ ≤ 1, in general equilibrium all markets clear and our
economy can be summarized via a welfare maximization problem where the social planner
chooses the optimal amount G to be employed for buying new knowledge and the optimal level

10Note that, in order to be non distortionary, the tax should be levied as a share of pure rents. As long as
the latter are cut by taxation, the fixed cost born by firms, aimed at discouraging those who might contend
their IPRs – which previously where assumed to exhaust profits – can be cut accordingly.
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of consumption c in order to maximize the representative household lifetime utility, subject to
the resource constraint

c (t) +G (t) +X (t) = Y (t) , (21)

given the law of motion of knowledge in (19) and the initial condition A (0) = A0. Recalling that
the intermediate goodX is priced at the numeraire and that f (·) in (5) has invertible first order
derivative, the planner first maximizes net output, Y (t) − X (t) =
A (t) f [X (t) /A (t)] − X (t), with respect to X (t), obtaining the optimal amount of inter-
mediate good X∗ (t) = (f ′)−1 (1)A (t) which, after replacing it into (21), yields the net output
Y (t)−X (t) = A (t) f

[

(f ′)−1 (1)
]

− (f ′)−1 (1)A (t), that is,

Y (t)−X (t) = δA (t) , with δ ≡ f
[

(f ′)
−1

(1)
]

− (f ′)
−1

(1) . (22)

In other words, the optimal net output turns out to be linear in A and the ratio X∗/A is
constant through time: X∗/A ≡ (f ′)−1 (1).

Therefore, the resource constraint (21) becomes G (t) = δA (t) − c (t), which, in view of
(19), allows to state the social planner problem as

V (A0) = max
[c(t)]∞t=0

∫

∞

0

e−ρtu [c (t)] dt (23)

subject to







Ȧ (t) =
δA (t)− c (t)

φτ [A (t)]
A (0) = A0

(24)

plus the usual non-negativity constraints. The stock of knowledge A (t) is the state variable
and consumption c (t) is the control. Denoting by λ (t) the costate variable associated with
the unique dynamic constraint in (24) and dropping the time argument for simplicity, the
current-value Hamiltonian associated to (23) is

H (A, c, λ) = u (c) + λ
δA (t)− c (t)

φτ [A (t)]
. (25)

Unfortunately, the Hamiltonian in (25) turns out not to be concave and multiple equilibria
can arise. Specifically, two regimes can occur: 1) a stagnating equilibrium in which all net
output Y (t)−X (t) = δA (t) is consumed at each instant t, defined by a constant consumption
c̄ (t) ≡ δA0, so that no investment is made in piling up new knowledge, G (t) ≡ 0, corresponding
to zero growth, Ȧ (t) /A (t) = Ẏ (t) /Y (t) = ċ (t) /c (t) ≡ 0; and 2) an equilibrium envisaging
sustained growth—i.e. Ȧ (t) /A (t) > 0, Ẏ (t) /Y (t) > 0, ċ (t) /c (t) > 0—possibly converging
to an asymptotic balanced growth path (ABGP). To focus on the latter we compute necessary
conditions on (25):

u′ (c) =
λ

φτ (A)
(26)

λ̇ = ρλ− λ
δφτ (A)− (δA− c)φ′

τ (A)

[φτ (A)]
2 (27)

lim
t→+∞

e−ρtλ (t)A (t) = 0, (28)

where (28) is the transversality condition. Differentiating (26) with respect to time we get

λ̇

λ
=
φ′

τ (A) Ȧ

φτ (A)
− εu (c)

ċ

c
, (29)
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where εu (c) = −u′ (c) / [u′′ (c) c] is the inverse of the intertemporal elasticity of substitution.
Coupling (29) with (27), using the dynamic constraint in (24) and rearranging terms we obtain
the following instantaneous consumption growth rate:

γ (t) =
ċ (t)

c (t)
=

1

εu [c (t)]

{

δ

φτ [A (t)]
− ρ

}

. (30)

As φτ [A (t)] changes over time (possibly, εu [c (t)] as well), (30) implies the presence of
transition dynamics. In the next proposition we focus on an ABGP equilibrium. To this aim,
note that, by Proposition 1(ii) and the definition of knowledge unit cost in (20), the latter
converges to a constant value as A → +∞; therefore, for A becoming larger and larger as
time elapses, according to (16) limt→+∞ φτ [A (t)] = 1/η′ (0), where η′ (0) denotes the slope
of the probability function η (·) when zero resources are employed for matching ideas in the
recombinant process (see Assumption A.1), that is, the efficiency of the first dollar spent in
R&D activities. Thus, if we also assume that asymptotically the intertemporal elasticity of
substitution becomes constant, limt→+∞ [1/εu (c)] = 1/σ, σ > 0, we immediately obtain the
following characterization.

Proposition 3 Assume that limt→+∞ [1/εu (c)] = 1/σ, σ > 0. Then, for any tax policy pa-
rameter value 0 ≤ τ ≤ 1, if the initial stock of knowledge, A0, is sufficiently large, that is,
A0 ≥ Ask

τ , where the value Ask
τ depends on the tax parameter τ , and the following conditions

are satisfied,
(1− σ) δη′ (0) < ρ < δη′ (0) , (31)

then

(i) the economy admits a unique ABGP along which knowledge, output, and consumption all
grow at the same asymptotic growth rate given by

γ∗ =
ċ

c
=
Ȧ

A
=
Ẏ

Y
=
δη′ (0)− ρ

σ
; (32)

(ii) the ABGP equilibrium characterized by (32) is Pareto optimal;

(iii) the optimal consumption along the ABGP equilibrium is a constant fraction (or a multiple)
of the stock of knowledge; that is, asymptotically the optimal policy is linear in A:

c∗ (A) =
1

σ

[

(σ − 1) δ +
ρ

η′ (0)

]

A. (33)

Provided that some technical conditions are met, Proposition 3 establishes that the economy
in the long-run converges to an ABGP along which knowledge, output, and consumption all
grow at the same constant rate given by (32), and with constant income share devoted to
consumption according to (33).11 In order for the ABGP to be well defined we need that the
initial stock of ideas, A0, is large enough,

12 the asymptotic inverse elasticity of substitution, σ,
is large enough, and households are patient enough with respect to the technology employed
in final production, δ, jointly with the efficiency of the Weitzman recombinant mechanism
generating new knowledge when little resources are employed in matching hybrid ideas, η′ (0).

11See Palivos et al. (1997) for the existence of BGP and ABGP equilibria.
12The initial amount of knowledge A0 behaves like a Skiba-type point, Ask

τ , selecting between the two types
of equilibria mentioned above: if Ask

τ
< Ask

τ
the economy is doomed to stagnation forever, while when A0 ≥ Ask

τ

the economy asymptotically converges to sustained growth at the constant rate given by (32).
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Remark 1 Along the ABGP, the condition for growth (31), the long-run economic growth rate
in (32) and the optimal policy (33) turn out to be completely independent of the tax policy pa-
rameter τ ; only the eventual Skiba-type point Ask

τ depends on τ . Therefore, the growth behavior
of the economy in the long run is not affected by whether new knowledge is being produced in
a centralized manner or under decentralization by means of IPRs (with or without corrective
tax-subsidy interventions), reaching always a first-best equilibrium.

The above Remark 1 clearly states that the ABGP outcome is completely independent
upon the adopted tax (and thus appropriability) regime. However, according to (30), the
determined degree of tax intervention (thus the determined degree of rent appropriability) does
affect the transitional dynamics and therefore the level of social welfare. In order to understand
how welfare is related to different tax regimes, we need to analyze how the whole transitional
dynamic path is affected by the tax parameter.

4 Model Specification and Transition Dynamics

Following Privileggi (2010; 2011; 2015), in the sequel we shall assume that only pairs of ideas
can be matched and that the probability of success is described by a hyperbolic function.

A. 2 m = 2 and the success probability function is given by

η (x) = βx/ (βx+ 1) , β > 0. (34)

It is immediately seen that η (·) as defined in (34) satisfies Assumption A.1 with η′ (0) = β
and η′′ (0) = −2β2. Parameter β provides a measure of the ‘degree of efficiency ’ of the Weitzman
matching process: the larger β the higher the probability of obtaining a new successful idea
out of each (pairwise) matching of seed ideas. For m = 2, C ′

2 (A) = (2A− 1) /2 and from (34)
we get η−1 (x) = x/ [β (1− x)]; using these into (4) and (14) we get

ϕ (A) =
1

β

(

2A− 1

2A− 3

)

=
1

β

(

1 +
2

2A− 3

)

(35)

ψ (A) =
1

β

(

2A− 1

2A− 3

)2

=
1

β

(

1 +
2

2A− 3

)2

, (36)

which, when substituted in (20), yield the following expression for the unit cost of knowledge
production:

φτ (A) = ϕ (A) [(1− τ) βϕ (A) + τ ] =
(2A− 1) (2A− 2τ − 1)

β (2A− 3)2
, (37)

defined for A > 3/2 and 0 ≤ τ ≤ 1. Note that, thanks to (36), the first equality in (37) defines
φτ (A) as a function of the unit cost ϕ (A) introduced in (4). It is immediately seen that, for
each given τ , φτ (A) is decreasing in A, while Proposition 1 implies that ψ (A) ≥ φτ (A) > ϕ (A)
for all A > 3/2 and all 0 ≤ τ ≤ 1, and limA→∞ φτ (A) = limA→∞ ϕ (A) = 1/η′ (0) = 1/β > 0.

A. 3 Output is produced according to a Cobb-Douglas technology:

y (t) = F [X (t) , A (t)] = θ [X (t)]α [A (t)]1−α , θ > 0, 0 < α < 1, (38)

depending on an intermediate good, X (t), and knowledge-augmented labor, A (t)L (t), for
L (t) ≡ 1.
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In assuming decreasing returns to each factor taken alone we follow Weitzman (1998) and
Tsur and Zemel (2007), thus departing from the standard approach which excludes decreasing
returns to scale to knowledge.13 Weitzman (1998, p. 344) notes that knowledge used as input
in the production of final goods should be measured in units of “effective augmentation” of the
output. The quantification of the available stock of knowledge thus might be different from that
relevant from the point of view of the recombination process. Making the assumption of de-
creasing returns to scale to knowledge in production while using a unique scale of measurement
of knowledge is thus equivalent to assuming that the suitable scale for the use in production
should keep into account some loss of effectiveness, due, e.g., to coordination difficulties, partial
substitution of previously used results, etc.

Each output producing F -firm maximizes instantaneous profit by purchasing the interme-
diate good X and hiring labor L from the households, taking as given the price of X , which
equals 1 as it is the numeraire, the labor wage w and the stock of knowledge A. Since F -firms
act competitively, their profits are zero.

Aggregate output can be rewritten as

y (t) = θ [X (t)]α [A (t)]1−α = A (t) θ

[

X (t)

A (t)

]α

, (39)

that is, in view of (5), f (x) = θxα. Using (39) it is immediately seen that (f ′)−1 (x) =

(θα)1/(1−α) x1/(α−1), so that (f ′)−1 (1) = (θα)1/(1−α) ≡ X (t) /A (t) for all t ≥ 0, and

δ ≡ f
[

(f ′)
−1

(1)
]

− (f ′)
−1

(1) = θ (θα)α/(1−α) − (θα)1/(1−α) = (1− α) θ1/(1−α)αα/(1−α),

which, according to (22), yields the optimal net aggregate output

Y (t)−X (t) = δA (t) = (1− α) θ1/(1−α)αα/(1−α)A (t) .

A. 4 The instantaneous utility function is CIES,

u (c) =
c1−σ − 1

1− σ
, σ > 0. (40)

As in Tsur and Zemel (2007), Privileggi (2010; 2011; 2015) and Privileggi and Marsiglio
(2014), under Assumptions A.2–4 two optimal regimes are possible:

1. zero R&D, G (t) = δA (t) − c (t) ≡ 0, implying a constant optimal consumption level
given by c̄ (t) ≡ δA0 which immediately puts the economy on the steady state (A0, δA0) =
(A0, (1− α) θ1/(1−α)αα/(1−α)A0) in the (A, c) space, and yields a social welfare given by

V̄ (A0) =

∫

∞

0

c̄ (t)1−σ − 1

1− σ
e−ρt dt =

(δA0)
1−σ − 1

1− σ

∫

∞

0

e−ρt dt

=

[

(1− α) θ1/(1−α)αα/(1−α)A0

]1−σ
− 1

(1− σ) ρ
; (41)

13The standard argument relies on the concept of replicability: to double the copies of a design you may need
to double all the factors but you do not need to double the design. The idea is that once the right to use a
certain blueprint or idea has been obtained (through purchase or for free), such a blueprint can be used in all
the production sites.
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2. under the assumptions of Proposition 3, namely (1− σ)β (1− α) θ1/(1−α)αα/(1−α) < ρ <
β (1− α) θ1/(1−α)αα/(1−α), an optimal path satisfying the dynamic constraint in (24) and
the equation (30):























Ȧ =

[

(1− α) θ1/(1−α)αα/(1−α)A− c
]

β (2A− 3)2

(2A− 1) (2A− 2τ − 1)

ċ =
1

σ

[

(1− α) θ1/(1−α)αα/(1−α)β (2A− 3)2

(2A− 1) (2A− 2τ − 1)
− ρ

]

c

(42)

envisaging growth as time elapses and eventually leading to an ABGP characterized by
the (common, constant) growth rate (32) independent of parameter τ :

γ∗ =
ċ

c
=
Ȧ

A
=
Ẏ

Y
=
δβ − ρ

σ
.

In order to study how a given economy reacts to different tax policies (different values of
0 ≤ τ ≤ 1, assumed to be constant over time) we perform comparative dynamics by changing
the value of parameter τ while keeping constant all other parameters’ values. Specifically, we
aim at 1) studying if and how the Skiba-type point Ask

τ changes for different τ -values and 2)
comparing social welfare under different tax regimes.

Because the system of ODEs in (42) cannot be solved in closed form, in order to evaluate
social welfare in the latter scenario described above we rely on a numerical approach aimed at
estimating the whole optimal time-path trajectories of the stock of knowledge, A (t), and the
optimal consumption, that in the sequel will be denoted by c̃ (t) to emphasize that it is the
(approximated) solution of (42). The results of such simulation show that it is not obvious
at all to make inferences on social welfare only by looking at time-path trajectories, as, due
to time discounting, higher values of τ , which squeeze consumption in early stages to boost it
later thanks to faster knowledge accumulation, may well fail to deliver higher levels of welfare.
Hence, in order to assess the role of the tax policy τ a reliable estimate of social welfare is
needed, a task which the whole next section is dedicated to.

5 Simulations and Welfare Analysis

The technical details of the whole numerical analysis preformed in this section, based on a
time elimination approach (Mulligan and Sala–i–Martin [1991]) are reported in Appendix B.
We assume the following values for the fundamental parameters in our economy, which are
common in the macroeconomic literature (see, e.g., Mulligan and Sala-i-Martin [1993]):

ρ = 0.04, α = 0.33, θ = 1, σ = 2, β = 0.20. (43)

Our goal is to perform comparative dynamics analysis under eleven different values of the policy
parameter, 0 ≤ τ ≤ 1, which are assumed to be constant over time. Specifically, we consider

τ = 0, 0.1, 0.2, . . . , 0.9, 1. (44)

It is worth to remind that in terms of rent appropriability by R&D-firms via IPRs, τ = 0
supplies to the right holder the maximal degree, while the other values indicate progressively
decreasing appropriability levels, reaching a minimum when τ = 1, corresponding to the first-
best solution as in this case new knowledge is being supplied exactly at its cost ϕ (A) defined
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in (4). According to Proposition 3, the long-run balanced growth occurs at the same constant
growth rate given by (32):14

γ∗ =
Ȧ

A
=
ẏ

y
=
ċ

c
=
δβ − ρ

σ
= 0.0188. (45)

Figure 1 shows in the (A, c) space the linear asymptotic policy defined by
c∗ (A) = (1/σ) [(σ − 1) δ + ρ/β]A = 0.2940A (the line on the bottom of the graph) and all the
eleven transitory optimal policies c̃τ (A) approaching c∗ (A) from above, for τ = 0, 0.1, . . . , 1,
where the initial stock of knowledge A0 = 4.0107, common to all policy parameters τ , is the
minimum value that allows the numerical method described in Appendix B to work. It is
clearly seen that all such policies are monotonically decreasing in τ : specifically, for each fixed
A value, smaller optimal consumption values c̃τ (A) correspond to larger τ -values, with c̃τ=0 (A)
being the graph on top and c̃τ=1 (A) being the graph on the bottom of the nonlinear curves,
above the linear asymptotic policy c∗ (A). In the figure only a small range, [4.0107, 6], of values
of knowledge close to the lower bound needed to support growth is emphasized, where differ-
ences among optimal policies are more notable; for larger values of A the monotonicity in τ is
preserved, with all policies graphs slowly converging toward the linear asymptotic policy c∗ (A)
from above.

A

c

A0 = 4.0107 5 6

1.2

1.4

1.6

1.8

2

c∗ (A)

c̃τ=0 (A)

c̃τ=1 (A)

Figure 1: the linear asymptotic policy c∗ (A) and all eleven transitory policies under the
tax-subsidy regimes τ = 0, 0.1, . . . , 1.

Figure 2(a) plots the whole time-path trajectories of A (t) which confirm their monotonicity
property with respect to τ : larger τ -values imply a faster accumulation of knowledge in time.
Similarly, Figure 2(b) clearly shows that the total output dynamics are just a (constant) frac-
tion of the A (t) dynamics. Figures 2(c) and 2(d) report the optimal consumption time-path
trajectories: Figure 2(c) shows that, for t sufficiently large, the consumption time-path trajec-
tories follow a pattern similar to that of the stock of knowledge A (t), being larger at the same
instant t for larger τ -values. However, in early instants the opposite occurs: larger τ -values are
associated to smaller consumption levels, as it is evident in Figure 2(d) for t < 30.

14Recall that, from Assumption A.2, η′ (0) = β. Note also that the parameter values we have chosen imply a
growth rate of around 1.88% in (45), which is very close to that in Acemoglu and Akcigit (2012).
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Figure 2: optimal time-path trajectories, (a) A (t), (b) y (t), (c) c̃ (t), and (d) again c̃ (t) at earlier
instants, under the eleven tax-subsidy regimes, τ = 0, 0.1, . . . , 1.

From Figure 2(d) it is not clear what the effect of the different tax policies on welfare
may be, as in early times larger τ -values envisage smaller consumption, only to catch up and
rapidly overcome later on. As a matter of fact, trajectories determined by larger τ -values may
fail to deliver a welfare higher than that yielded under smaller τ -values regimes if discounting
assigns less weight to later consumption than that assigned to early consumption. Figures
3(a) and 3(b) clear any doubt on this by showing the social welfare V̄ (A) correspondent to a
stagnating economy and the social welfare Vτ (A) for τ = 0, τ = 0.5 and τ = 1 as functions
of any initial stock of knowledge A ≥ A0, where the latter is being calculated using formula
(55) in Appendix B. Especially in Figure 3(b), where a shorter range of A values close to
the lower bound A0 = 4.0107 is considered, it is apparent that once again a monotonicity
pattern with respect to τ is confirmed: for all A ≥ 4.0107 on one hand all τ regimes (including
τ = 0) characterizing convergence toward sustained growth dominate the stagnating economy
represented by V̄ (A), while on the other hand larger τ -values generate larger welfare values for
each initial knowledge stock A. As the graphs of all social welfare functions in the sustained
growth scenario lie quite close to each other, in Figures 3(a) and 3(b) we plot only three of
them, corresponding to τ = 0, τ = 0.5 and τ = 1; however this result is robust, as it can
be checked that τj > τi implies Vτi (A) > Vτj (A) for any pair τi, τj such that τi > τj and for
all A ≥ 4.0107. More specifically, Table 1 reports the welfare values in stagnation and in the
eleven τ -regimes considered at the initial common knowledge stock A0 = 4.0107.
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Figure 3: (a) value functions estimations, V̄ (A) in stagnation and Vτ (A) toward sustained growth
along the ABGP, for τ = 0, τ = 0.5 and τ = 1, of problem (23) for the parameters’ values in (43),

(b) same value functions for values of A closer to A0 = 4.0107.

τ Toward Social welfare
0 stagnation 8.938175
0 ABGP 8.938178
0.1 ABGP 8.955999
0.2 ABGP 8.987932
0.3 ABGP 9.030416
0.4 ABGP 9.082202
0.5 ABGP 9.142614
0.6 ABGP 9.211234
0.7 ABGP 9.287792
0.8 ABGP 9.372105
0.9 ABGP 9.464056
1 ABGP 9.563570

Table 1: social welfare in a stagnating economy and in all tax regimes, τ = 0, 0.1, . . . , 1, toward
sustained growth for the initial knowledge endowment A0 = 4.0107.

Note that in the first two rows of Table 1 the social welfare of a purely decentralized economy
(τ = 0) choosing to live forever in stagnation turns out to be very close to that yielded by
the same economy when the social planner opts for sustained growth eventually reaching the
ABGP. This suggests that the lack of a corrective public intervention risks of undermining the
incentives to start the recombinant process.

An even more extreme threat against growth would occur at a Skiba point, i.e., if there was
an original endowment of knowledge such that economies starting below it would reach a larger
welfare by stagnating than by accumulating further knowledge and growing. To study this
case we performed several simulations for different parameters’ values. We found quite hard
to obtain a scenario in which the social welfare in a stagnating economy dominates the social
welfare toward the ABGP, and succeeded only by imposing unrealistic parameter values.15 We

15One of such cases, e.g., requires a very large discount rate ρ = 0.1 , joint with α = 0.5 , θ = 1 , σ = 2 ,
and β = 0.60 , corresponding to a long-run asymptotic growth rate γ∗ = 0.025 ; in this scenario, starting from
an initial stock of knowledge A0 = 5.949 , the welfare yielded by stagnation (equal to 3.276180872 ) overcomes
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cannot, however, rule out the possibility that a Skiba point does exist also in the more realistic
cases we considered, as it might have failed to turn out since out of reach of the numerical
algorithm described in Appendix B; this is possible if the Skiba point occurred at values very
close to the lower bound for the initial knowledge endowment implied by our model specification.
However, since the lower bound in our simulations is not demanding (the recombinant process
can start at a very small original knowledge endowment, i.e., at slightly more than 4 successful
ideas) such a Skiba point, if any, seems unlikely to preclude growth in most circumstances.

To conclude, the approximated values found through the whole procedure discussed so far
lead to the following results:

(i) under all tax regimes, τ = 0, 0.1, . . . , 1, the economy grows along the ABGP in the long-run,
that is, for the parameters’ values chosen in (43) stagnation is always ruled out;

(ii) social welfare is strictly increasing with respect to positive increments of the tax parameter
τ—corresponding to progressively stricter tax regimes, i.e., progressively weaker appro-
priability regimes.

6 Concluding Remarks

While thus far the literature has largely recognized that government intervention is needed to fix
the inefficiencies deriving from the IPRs system, it has mainly focused on the appropriability
of knowledge considering the rights’ structural features (e.g., patent breadth or length; see
Acemoglu and Akcigit [2012], and the literature quoted therein). We contend here that the focus
should be shifted to the rents which the IPRs system gives rise to, and to the corrective role that
taxation can play in improving social welfare. Indeed, taxes can be efficiently levied when rents
are at stake: in the case here investigated this solution is aimed at limiting the appropriability
of rents granted by IPRs. Governments precisely tax profits deriving from IPRs, and patents—
but also trademarks and copyrights—are becoming a more and more fundamental component
of assets of corporations. Taxation in this field, however, is often avoided by multinational
corporations through the resort to various techniques. The registration of patents can, e.g., be
made by a subsidiary operating in a country applying low tax rates. This affiliate then collects
profits from royalties, often paid by other firms belonging to the same corporation which apply
inflated transfer prices in order to shift profits to the low tax country (Karkinsky and Riedel
[2012]). Governments can resort to taxation schemes that close such loopholes, through stricter
rules about the imputation of profits at the corporation’s residence country.16 The recent public
economics literature depicts taxation of capital income (capital in this framework, unlike in our
model, includes IPRs) in a more favorable way than in the past (see, e.g., Diamond and Saez
[2011], or, for a dynamic setting, Aghion et al. [2013]), as part of a strategy for fighting also
other forms of tax avoidance and for improving equity and efficiency.

that of sustained growth when τ = 0 (equal to 3.276180871) by an order of 10−9.
16The CFC (Controlled Foreign Company) rule makes patent income earned by subsidiaries in low tax coun-

tries taxable at the parent location. It aims at preventing erosion of the home country tax base, by denying
the deferral of profit taxation until repatriation. The conditions for rendering the income immediately taxable
for the parent company vary from country to country, and usually refer to the characteristics of the country in
which the controlled company is located (which can, e.g., be included in a black or gray list of likely tax heavens)
or to the type of income. Royalties from patents are often considered taxable as long as they represent passive
income, i.e., they just generate a rent and are not directly used for productive purposes by the controlled firm.
The OECD is intervening in the filed of IPR income taxation through the Base Erosion and Profit Shifting
(BEPS) program (OECD [2013]).
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Among the features that allow the simplified patent system sketched out in this paper to
ensure in the long run a convergence to the same growth pattern as that characterizing a
fully efficient system, there is the fact that the R&D outputs bought by the government are
immediately made available both to the production sector and to the other researchers, so that
the process of knowledge recombination can go on smoothly. The real world differs from the
model in the length of patent protection as it implies in many jurisdictions a delay up to 20 years,
which thus more severely affects the recombinant process than in our stylized framework. Like
in the model, instead, governments are boosting to some extent the demand for R&D through
various forms of financial support. Nonetheless, and somewhat surprisingly, they have by and
large embraced an approach that allows researchers in public universities and laboratories to
patent their results, thus contradicting the quest for a quick and easy dissemination of new
knowledge.

Since the early studies on economic growth, none doubts on the crucial role of technologi-
cal progress and knowledge accumulation in determining the long-run economic performance.
Debated and delicate is instead how knowledge creation should be fostered and what are the
consequences of different policies aiming at supporting innovation. In this paper we introduce
a market mechanism as part of the recombinant knowledge creation, originally proposed by
Weitzman (1998). The government plays a crucial role in our model: it collects taxes from the
final producing sector to finance R&D activities, and relies on a tax-subsidy scheme in order
to correct for the inefficiencies generated by the private appropriation process. We show that
in the long run, the economy converges towards an (asymptotic) balanced growth path, along
which the economic growth rate is independent of the policy parameter, while the IPRs system
and the appropriability policy adopted jointly affect the transitional dynamics and therefore
social welfare. Because transitional dynamics in recombinant growth models are tough objects,
we rely on quantitative methods to perform comparative dynamic analysis. We show that wel-
fare increases with the tax parameter, that is, in the bound on the appropriability via IPRs:
stricter tax (weaker appropriability) regimes yield higher social welfare.

Appendix

A General results

Proof of Proposition 1. i) Using (14) and (4), condition (15) is equivalent to

(

η−1
)

′

[1/C ′

m (A)] > C ′

m (A) η−1 [1/C ′

m (A)] . (46)

Let
x = 1/C ′

m (A) ; (47)

as A <∞ implies C ′

m (A) <∞, x > 0 holds true. Substituting (47) into (46) yields

(

η−1
)

′

(x) >
[

η−1 (x)
]

/x, (48)

which holds true for all x > 0 under Assumption A.1.
ii) Condition (16) follows immediately by noting that

lim
A→∞

ψ (A) = lim
A→∞

(

η−1
)

′

[1/C ′

m (A)] =
(

η−1
)

′

(0) = 1/η′ (0) = lim
A→∞

ϕ (A) , (49)

where the last equality is (5) in Tsur and Zemel (2007).
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Proof of Proposition 2. By Assumption A.1 ψ (A) = (η−1)
′

[1/C ′

m (A)] is decreasing in
A, so that, by (49), ψ (A) > limA→∞ ψ (A) = 1/η′ (0) for all A <∞; hence, (7) holds. Plugging
the optimal effort J∗ as in (9) into (17) yields:

ψ (A) Ȧ− J∗ = ψ (A) Ȧ−H (η′)
−1

[1/ψ (A)]

= ψ (A) Ȧ− C ′

m (A) Ȧ (η′)
−1

[1/ψ (A)]

= ψ (A) Ȧ− C ′

m (A) Ȧ (η′)
−1 {

η′
[

η−1 (1/C ′

m (A))
]}

= ψ (A) Ȧ− C ′

m (A) Ȧ
{

η−1 [1/C ′

m (A)]
}

= [ψ (A)− ϕ (A)] Ȧ,

where in the third equality we used (2), in the fourth we used the first equality in (14), and in
the sixth we used (4). By Proposition 1 (i) [ψ (A)− ϕ (A)] Ȧ > 0 for all A < ∞ when there is
knowledge growth (i.e., a positive amount of new knowledge, Ȧ, is produced and sold to the
regulator).

To prove Proposition 3 we first need the following lemma.

Lemma 1 Under Assumption A.1 ϕ (A) defined in (4) satisfies:

lim
A→∞

ϕ′ (A)A = 0. (50)

Proof. To establish (50) we show that ϕ′ (A) is asymptotically equivalent to k/A2, ϕ′ (A) ∼
k/A2, for A → ∞, where k is some constant, which implies that ϕ′ (A) = o (A) for A → ∞.
Differentiating the RHS in (4) with respect to A we easily get

ϕ′ (A) = C ′′

m (A)

{

η−1

[

1

C ′

m (A)

]

−
1

C ′

m (A)

(

η−1
)

′

[

1

C ′

m (A)

]}

. (51)

From the definition Cm (A) = A!/ [m! (A−m)!] it is straightforward to check that Cm (A) ∼
Am, C ′

m (A) ∼ Am−1, C ′′

m (A) ∼ Am−2, and so on for A→ ∞. Hence, setting x = 1/C ′

m (A) we
have that x→ 0+ as A→ ∞ and we can use the second and first order MacLaurin expansions
of η−1 (x) and (η−1)

′

(x) around 0+ respectively:

η−1 (x) = η−1 (0) +
(

η−1
)

′

(0)x+
1

2

(

η−1
)

′′

(0)x2 + o
(

x2
)

for x→ 0+

(

η−1
)

′

(x) =
(

η−1
)

′

(0) +
(

η−1
)

′′

(0)x+ o (x) for x→ 0+.

Noting that, by Assumption A.1, η−1 (0) = 0 and both (η−1)
′

(0) and (η−1)
′′

(0) have finite
values we rewrite (51) accordingly:

ϕ′ (A) = C ′′

m (A)

{

(η−1)
′

(0)

C ′

m (A)
+

1

2

(η−1)
′′

(0)

C ′

m (A)2
+ o

[

1

C ′

m (A)2

]

−
(η−1)

′

(0)

C ′

m (A)
−

(η−1)
′′

(0)

C ′

m (A)2
−

1

C ′

m (A)
o

[

1

C ′

m (A)

]}

for A→ ∞

= C ′′

m (A)

{

−
1

2

(η−1)
′′

(0)

C ′

m (A)2
+ o

[

1

C ′

m (A)2

]}

for A→ ∞,
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where in the second equality we simplified common terms and used the properties f (x) o [g (x)] =
o [f (x) g (x)] and o [g (x)] ± o [g (x)] = o [g (x)]. Using the asymptotic equivalences C ′

m (A) ∼
Am−1 and C ′′

m (A) ∼ Am−2 for A→ ∞ we can write

ϕ′ (A) ∼ Am−2

[

−
1

2

(η−1)
′′

(0)

A2(m−2)
+ o

(

1

A2(m−2)

)]

for A→ ∞,

which is equivalent to

ϕ′ (A) ∼
Am−2

A2(m−2)

[

−
1

2

(

η−1
)

′′

(0) + o (1)

]

=
k

A2
for A→ ∞,

where in the last inequality we used the fact that, under Assumption A.1, k = − (1/2) (η−1)
′′

(0)
is a finite number.

Proof of Proposition 3. i) Assume that A0 ≥ Ask
τ . From Proposition 1(ii) and (20) it

is immediately seen that limt→+∞ φτ [A (t)] = limA→∞ ϕ (A) = 1/η′ (0) for every 0 ≤ τ ≤ 1.
Hence, under sustained growth of knowledge—i.e., when limt→∞A (t) = ∞—taking the limit
as t → ∞ on the RHS of (30) yields the RHS of (32). The second inequality in (31) implies
that, according to (32), γ∗ = ċ/c > 0. Differentiating with respect to time ln (Y ), where,
according to (5), Y = Af (X/A), and recalling that from (22) it follows that X/A ≡ (f ′)−1 (1)
is constant, it is immediately seen that Ẏ /Y = Ȧ/A. Dividing the dynamic constraint in (24)
by A one gets

Ȧ

A
=

1

φτ (A)

(

δ −
c

A

)

→ η′ (0)
(

δ −
c

A

)

as A→ ∞, (52)

which implies that Ȧ/A can be constant along the BGP only if the ratio c/A on the RHS is
constant as well, which is possible if and only if Ȧ/A = ċ/c = γ∗.

In order to satisfy the transversality condition (28), λ̇/λ+Ȧ/A < ρmust hold asymptotically.
From (29) we have:

λ̇

λ
+
Ȧ

A
=
φ′

τ (A) Ȧ

φτ (A)
− εu (c)

ċ

c
+
ċ

c
. (53)

Condition (16) and the definition of φτ (A) in (20) imply that φτ (A) ∼ ϕ (A) for large A
values; similarly, φ′

τ (A) ∼ ϕ′ (A) for A→ ∞, or, equivalently, φ′

τ [A (t)] ∼ ϕ′ [A (t)] for t→ ∞.
Moreover, Ȧ (t) ∼ γ∗A (t) for t→ ∞, so that the first term on the RHS in (53) turns out to be
asymptotically equivalent to ϕ′ [A (t)] γ∗A (t) /ϕ [A (t)] for t → ∞. We can thus apply Lemma
1 to obtain

lim
t→∞

φ′

τ [A (t)] Ȧ

φτ [A (t)]
= lim

t→∞

ϕ′ [A (t)] γ∗A (t)

ϕ [A (t)]
= 0,

which, together with the assumption limt→+∞ εu (c) = σ, implies that

lim
t→∞

[

λ̇ (t)

λ (t)
+
Ȧ (t)

A (t)

]

= (1− σ) γ∗ =
1− σ

σ
[δη′ (0)− ρ] .

Hence, the transversality condition (28) is satisfied whenever

1− σ

σ
[δη′ (0)− ρ] < ρ =⇒ (1− σ) δη′ (0) < ρ,

which is the first inequality in (31).
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ii) The property that the ABGP equilibrium characterized by (32) is Pareto optimal is
again a consequence of Proposition 1(ii) and the definition of φτ (A) in (20), which imply that
asymptotically new knowledge is being produced at its (constant) cost limt→+∞ φτ [A (t)] =
limA→∞ ϕ (A) = 1/η′ (0).

iii) Condition (52) implies that, asymptotically,

c

A
= δ −

γ∗

η′ (0)
= δ −

δη′ (0)− ρ

ση′ (0)
,

which, after, some algebra, leads to (33).

B Numerical Methods and Social Welfare Calculation

To numerically estimate the optimal transition trajectories eventually leading to an ABGP
defined by the system of ODEs (42) and thoroughly described in Section 5 we follow closely the
method pursued in Mulligan and Sala-i-Martin (1991). We first consider the policy function
c̃τ (A) as the solution of the unique ODE given by the ratio between the two equations in (42):

c′ (A) =
[δ − ρφτ (A)]

σ [δA− c (A)]
c (A)

=

[

(1− α) θ1/(1−α)αα/(1−α)β (2A− 3)2 − ρ (2A− 1) (2A− 2τ − 1)
]

σ [(1− α) θ1/(1−α)αα/(1−α)A− c (A)]β (2A− 3)2
c (A) . (54)

To estimate the solution of (54) we apply the standard Fehlberg fourth-fifth order Runge-Kutta
method with degree four interpolant available in Maple 2015, using as boundary condition the
consumption value given by the linear asymptotic policy function defined in (33).17 Specifically,
we set a knowledge stock amount deemed sufficiently large to assume that the economy is
already on the ABGP, AT = 100000, so that the optimal policy is given by (33) and the value
c∗ (AT ) = (1/σ) [(σ − 1) δ + ρ/β]AT = 29404.1649 can be safely used as boundary (terminal)
condition. We then set such value as boundary condition in the Runge-Kutta method and
run it backward until a lower bound is found below which the algorithm stops functioning:
A0 = 4.0107 > 3/2 turns out to be such lower bound common to all values τ = 0, 0.1, . . . , 1, i.e.,
we assume that a stock of slightly more than 4 successful ideas is available at the beginning of
our economy’s history. For the parameters’ values in (43) this bound is reached for the smallest
τ -value, τ = 0, corresponding to the maximum rent appropriability by R&D-firms. Hence, all
our optimal policy estimations hold on the range [A0, AT ] = [4.0107, 100000].

Next, the time-path trajectories for the stock of knowledge A (t) are estimated by replacing
the approximated optimal values c̃τ (A) just obtained into the first ODE in (42) so to obtain
ODEs in the only variable A (t) which again can be solved through the Runge-Kutta algorithm
with respect to time t. As initial condition we use A0 = 4.0107 and perform the algorithm up to
a terminal time T after which the procedure stops because it reaches the maximum knowledge
stock considered, AT = 100000. Such upper bound turns out to be reached soonest under
the first-best IPRs policy, τ = 1, for which a time range T = 573.7 is necessary. Time-path

trajectories for total output are computed, according to (39), as y (t) = θ
[

(θα)1/(1−α)
]α

A (t) =

17A thorough discussion on the Runge-Kutta method to approximate the solution of an ODE can be found in
Chapter 10 of Judd (1998). Note, however, that rather than using the asymptotic steady state (or the ABGP)
as boundary condition, Judd adopts a different procedure called “shooting”, which consists in guessing an initial
optimal value c̃ (0) and checking whether the trajectory thus generated converges toward the asymptotic target.
See, e.g., Algorithm 10.3 on p. 357 for the classical Ramsey optimal growth model.
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0.1911A (t), where (θα)α/(1−α) ≡ X (t) /A (t) is the (constant) ratio between net output, X (t),
and the stock of knowledge, A (t). To generate the optimal consumption time-path trajectories
associated to the A (t) dynamics we just evaluate each optimal policy policy c̃τ (A) at A (t),
i.e., we set c̃τ (t) = c̃τ [A (t)] for each instant t ∈ [0, 573.7].

Finally, following Privileggi (2015), social welfare is directly estimated through the HJB
equation for the value function Vτ (A0), considered as a function of the initial stock of knowledge
A0. Note that, to this purpose, only the estimated value of the optimal policy c̃τ (A) solving
(54) at the initial value A0, c̃τ (A0), is required; that is, neither further numeric approximations
of time-path trajectories nor quadrature methods to estimate the integral in (23) on such
trajectories are necessary: the only numerical step involved in the whole analysis is the solution
estimation of (54). To pursue this approach we need to (slightly) further restrict the assumption
on the initial value A0, according to the following proposition.

Proposition 4 Under Assumptions A.2–4 and provided that condition (31) of Proposition 3
holds, namely,(1− σ)β (1− α) θ1/(1−α)αα/(1−α) < ρ < β (1− α) θ1/(1−α)αα/(1−α), if, in addition,
A0 ≥ 1/δ, then the value function of problem (23) subject to (24) as a function of any (initial)
stock of knowledge A0 ≥ 1/δ is given by

Vτ (A0) =
1

ρ

[

c̃τ (A0)
1−σ − 1

1− σ
+
δA0 − c̃τ (A0)

c̃τ (A0)
σ

]

=
1

ρ

[

c̃τ (A0)
1−σ − 1

1− σ
+

(1− α) θ1/(1−α)αα/(1−α)A0 − c̃τ (A0)

c̃τ (A0)
σ

]

, (55)

where c̃τ (A0) is the solution of (54) evaluated at A = A0.

To prove Proposition 4 we first need an ad-hoc verification principle to show that the RHS
in (55) actually is the value function of (23), which is the purpose of the following Lemma 2.
Given a technology set T ⊆ R

2n, consider the standard continuous-time problem

V (x0) = sup

∫

∞

0

e−ρtU [x (t) , ẋ (t)] dt (56)

subject to [x (t) , ẋ (t)] ∈ T for all t ≥ 0 and x (0) = x0,

where ρ > 0 is the discount rate and U (·, ·) is the instantaneous felicity. We shall denote by
x (t; x0) any feasible path starting from x0, namely, satisfying [x (t; x0) , ẋ (t; x0)] ∈ T for all
t ≥ 0. We denote by T (x) the x-section of the set T , i.e., T (x) = {(x, ẋ) ∈ R

2n : (x, ẋ) ∈ T}.

Lemma 2 (A verification principle) Assume that a function w : Rn → R exists such that:

(i) w (x) ≥ 0 for all feasible x;

(ii) w (x) is of class C1 and satisfies the Hamilton-Jacobi-Bellman equation, i.e.,

ρw (x) = max
ẋ∈T (x)

[U (x, ẋ) +∇w (x) · ẋ] ; (57)

(iii) for every initial condition x0 there is a feasible path [x∗ (t; x0) , ẋ
∗ (t; x0)] such that the max

is attained in (57), i.e.,

ρw [x∗ (t; x0)] = U [x∗ (t; x0) , ẋ
∗ (t; x0)] +∇w [x∗ (t0; x0)] · ẋ

∗ (t; x0) (58)

for all t ≥ 0, a.e.;

24



(iv) limt→∞ e−ρtw [x∗ (t; x0)] = 0 for each solution [x∗ (t; x0) , ẋ
∗ (t; x0)] of (58).

Then w (x) is the value function of (56), i.e., V (x) = w (x), and [x∗ (t; x0) , ẋ
∗ (t; x0)] is an

optimal path, i.e., V (x0) =
∫

∞

0
e−ρtU [x∗ (t; x0) , ẋ

∗ (t; x0)] dt.

Proof. Fix x0 and let [x (t) , ẋ (t)] ≡ [x (t; x0) , ẋ (t; x0)] be any feasible path. In view of
(57), at any instant t,

ρw [x (t)] ≥ U [x (t) , ẋ (t)] +∇w [x (t)] · ẋ (t)

⇐⇒ ρw [x (t)]−∇w [x (t)] · ẋ (t) ≥ U [x (t) , ẋ (t)]

⇐⇒ e−ρtρw [x (t)]− e−ρt∇w [x (t)] · ẋ (t) ≥ e−ρtU [x (t) , ẋ (t)]

⇐⇒ −
∂

∂t

{

e−ρtw [x (t)]
}

≥ e−ρtU [x (t) , ẋ (t)] ,

which, integrating both sides, yields

−

∫ T

0

∂

∂t

{

e−ρtw [x (t)]
}

dt ≥

∫ T

0

e−ρtU [x (t) , ẋ (t)] dt

⇐⇒ w [x (0)]− e−ρTw [x (T )] ≥

∫ T

0

e−ρtU [x (t) , ẋ (t)] dt

⇐⇒ w (x0) ≥

∫ T

0

e−ρtU [x (t) , ẋ (t)] dt+e−ρTw [x (T )] .

Taking the limit as t→ ∞ in both sides and using assumption (i) we get

w (x0) ≥

∫

∞

0

e−ρtU [x (t) , ẋ (t)] dt,

which, as [x (t) , ẋ (t)] is arbitrary, implies that w (x0) ≥ V (x0).
Repeating all steps above with a feasible path [x∗ (t) , ẋ∗ (t)] ≡ [x∗ (t; x0) , ẋ

∗ (t; x0)] satisfying
(58) one easily gets to

w (x0) =

∫ T

0

e−ρtU [x∗ (t) , ẋ∗ (t)] dt+e−ρTw [x∗ (T )] ,

which, taking the limit as t→ ∞ in both sides and using assumption (iv), leads to

w (x0) =

∫

∞

0

e−ρtU [x∗ (t) , ẋ∗ (t)] dt ≤ V (x0) ,

where the last inequality holds by definition of value function. Hence, w (x0) = V (x0) and,
clearly, [x∗ (t) , ẋ∗ (t)] is an optimal path.

Proof of Proposition 4. We must show that assumptions (i)–(iv) of Lemma 2 hold for
the function defined in (55), namely,

w (A) =
1

ρ

[

c̃τ (A)
1−σ − 1

1− σ
+
δA− c̃τ (A)

c̃τ (A)
σ

]

,

where δ = β (1− α) θ1/(1−α)αα/(1−α).
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To check (i) it is convenient to rewrite (55) as

w (A) =
1

ρ

(

σc1−σ − 1

1− σ
+
δA

cσ

)

; (59)

taking the derivative with respect to c, yields

∂

∂c
w (A) =

σ

ρcσ

(

1−
δA

c

)

,

which, as c ≤ δA must hold (consumption cannot exceed net output), is clearly non positive,
namely, w (A) is decreasing in consumption. Hence, to show that w (A) ≥ 0 it is sufficient to
check that it is positive for the largest admissible consumption, namely, c = δA (corresponding
to no growth, as no investment in R&D is performed); substituting it into (59) we get

w (A) =
(δA)1−σ − 1

ρ (1− σ)
,

which is clearly non negative whenever δA ≥ 1, that is, A ≥ 1/δ.
Using the resource constraint (21) and (19), the social planner optimal consumption can be

written as c̃τ (A) = δA−G = δA− φτ (A) Ȧ, so that the reduced-form utility as in (56) is:

U
(

A, Ȧ
)

=

[

δA− φτ (A) Ȧ
]1−σ

− 1

1− σ
.

Hence, the RHS in (57) turns out to be

[

δA− φτ (A) Ȧ
]1−σ

− 1

1− σ
+ w′ (A) Ȧ,

which is clearly strictly concave in Ȧ; hence, there is a unique value Ȧ∗ such that

−
[

δA− φτ (A) Ȧ
∗

]

−σ

φτ (A) + w′ (A) = 0 (60)

satisfies the FOC and thus attains the maximum in the RHS of (57). If such value Ȧ∗ exists for

each A (t), then both (ii) and (iii) are satisfied, i.e., there is a feasible path
[

A∗ (t;A0) , Ȧ
∗ (t;A0)

]

such that (58) holds:

ρw [A∗ (t;A0)] = U
[

A∗ (t;A0) , Ȧ
∗ (t;A0)

]

+ w′ [A∗ (t;A0)] · Ȧ
∗ (t;A0) for all t ≥ 0.

To this purpose we now show that the path
[

A∗ (t;A0) , Ȧ
∗ (t;A0)

]

is the trajectory generated

by the optimal policy c̃τ (A), that is, according to the dynamic constraint in (24),

Ȧ∗ (t;A0) =
δA∗ (t;A0)− c̃τ [A

∗ (t;A0)]

φτ [A∗ (t;A0)]
for all t ≥ 0. (61)

Dropping time dependency in (61), we use it to rewrite (60) as

w′ (A) =
φτ (A)

c̃τ (A)
σ , (62)

26



and show that the derivative with respect to A of the RHS in (55) coincides with (62). Specif-
ically:

∂

∂A
w (A) =

1

ρ

{

c̃′τ (A)

c̃τ (A)
σ +

[δ − c̃′τ (A)] c̃τ (A)
σ − σ [δA− c̃τ (A)] c̃τ (A)

σ−1 c̃′τ (A)

c̃τ (A)
2σ

}

,

which, after some algebra, boils down to

∂

∂A
w (A) =

1

ρc̃τ (A)
σ

[

δ − σ
δA− c̃τ (A)

c̃τ (A)
c̃′τ (A)

]

.

Using the definition of the optimal policy c̃τ (A) as the solution of the ODE (54) and replacing
c̃′τ (A) in the above equation accordingly, (62) is immediately obtained and thus w (A) in (55)
fully satisfies (ii) and (iii) of Lemma 2.

Finally, from Proposition 3 we know that asymptotically both the optimal consumption c̃τ
and knowledge A grow at the common constant rate in (32): γ∗ = ċ/c = Ȧ/A = (δβ − ρ) /σ,
that is, c (t) = c̃τ (0) e

γ∗t and A (t) = A0e
γ∗t. Substituting these values in (59) we easily get

w [A (t)] ∼ −
1

ρ (1− σ)
+

1

ρ

[

σc̃τ (0)
1−σ

1− σ
+

δA0

c̃τ (0)
σ

]

e(1−σ)γ∗t for t→ ∞.

Therefore,

lim
t→∞

e−ρtw [A (t)] = lim
t→∞

{

−
e−ρt

ρ (1− σ)
+

1

ρ

[

σc̃τ (0)
1−σ

1− σ
−

1

1− σ
+

δA0

c̃τ (0)
σ

]

e[(1−σ)γ∗
−ρ]t

}

= 0

because, by (32), (1− σ) γ∗ − ρ < 0 is equivalent to

(1− σ)
δβ − ρ

σ
< ρ ⇐⇒ (1− σ) δβ < ρ,

which is the left inequality in (31). Thus, (iv) is satisfied as well and the proof is complete.
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