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GWAS: genome-wide association study 

MAF: minor allele frequency 

OGTT: oral glucose tolerance test 

RAF: risk allele frequency 

RMR: resting metabolic rate 

SNP: single nucleotide polymorphism 
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Abstract  

Pima Indians living in Arizona suffer from a high prevalence of obesity, and we have previously 

shown that a relatively lower energy expenditure (EE) predicts weight and fat mass gain in this 

population. Energy expenditure (EE) is a familial trait (heritability=0.52); therefore, in the current 

study, we aimed to identify genetic variants that affect EE and thereby influence BMI and body 

fatness in Pima Indians.  

Genotypic data from 491,265 variants were analyzed for association with resting metabolic rate 

(RMR) and 24-h EE assessed in a whole-room calorimeter in 507 and 419 Pima Indians, 

respectively. Variants associated with both measures of EE were analyzed for association with 

maximum BMI and percent body fat (PFAT) in 5870 and 912 Pima Indians, respectively.   

Rs11014566 nominally associated with both measures of EE and both measures of adiposity in 

Pima Indians, where the G-allele (frequency: Pima Indians=0.60, Europeans<0.01) associated with 

lower 24-h EE (β=−33 kcal/day per copy), lower RMR (β=−31 kcal/day), higher BMI (β=+0.6 

kg/m2) and higher PFAT (β=+0.9%). However, the association of rs11014566 with BMI did not 

directionally replicate when assessed in other ethnic groups. Rs11014566 tags rs144895904, which 

affected promoter function in an in vitro luciferase assay. These variants map to GPR158, which is 

highly expressed in the brain and interacts with two other genes (RGS7 and CACNA1B) known to 

affect obesity in knock-out mice.  

Our results suggest that common ethnic-specific variation in GPR158 may influence EE; however, 

its role in weight gain remains controversial since it either had no association with BMI, or associated 

with BMI but in the opposite direction, in other ethnic groups.   
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INTRODUCTION 

Obesity often aggregates in families. Household members typically share lifestyle factors including 

food choices, daily habits, and cultural views which may affect body weight; however, studies in 

twins reared apart have provided evidence that approximately ⅔ of the variability of BMI is 

attributable solely to genetics (1; 2). BMI is influenced by both energy intake and energy expenditure 

(EE). In Pima Indians living in Arizona we have shown that a relatively low EE predicts increases in 

body weight (3-5) and fat mass (4) over time; however, this inverse relationship is not observed in all 

populations (6-8) whereas a positive relationship has been reported in an African population (9). EE 

varies by age and sex, but its largest determinant is body size and composition, particularly fat free 

mass (FFM) as an indicator of the metabolically active tissue, which accounts for ~80% of the 

variance in resting metabolic rate (RMR) and 24-h EE (10). However, in addition to age, sex and 

body composition, twin studies have also demonstrated that genetics contributes to the inter-

individual variance in EE (11; 12). Taken together, these prior studies indicate that genetics has a 

small but measurable effect on EE, and in Pima Indians a lower EE predicts weight gain. Therefore, 

identification of genetic variants that influence EE may uncover new metabolic pathways that affect 

body weight/fatness. The aim of the current study is to estimate the heritable portion of EE and BMI 

in a family-based sample of Pima Indians, and then perform a genome-wide analysis of variants in 

non-diabetic Pima Indians to identify genetic variation that associates with EE and BMI/body fatness 

in a fashion consistent with the putative mechanistic relationship (e.g., low EE and high BMI).   

RESEARCH DESIGN AND METHODS 

Population-based subjects with outpatient longitudinal measures of BMI  

The study subjects reside in an American Indian community near Phoenix, Arizona, where most 

individuals are of Pima Indian heritage. From 1965 to 2007, volunteers from this community 

participated in a longitudinal study of type 2 diabetes where anyone age ≥5 years was invited for 
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biennial health examinations (13). Subjects were asked to fast prior to these exams, and glucose 

tolerance was assessed by a 75g oral glucose tolerance test (OGTT). Height and weight were also 

measured to calculate BMI. Data on maximum BMI, defined as the highest BMI recorded at a 

medical exam when the subject was ≥15 years of age and was determined to be free from diabetes 

according to ADA diagnostic criteria (14), was available for 5870 subjects (Table 1). Among these 

subjects, 2920 were full-heritage Pima Indian (defined as 8/8th Pima Indian heritage by self-report), 

and the remaining 2950 were mixed-heritage, on average, 6/8th American Indian (typically 4/8th Pima 

Indian and an additional 2/8th from other related tribes). Before participation, volunteers were fully 

informed of the nature and purpose of the studies, and written informed consent was obtained. The 

protocols were approved by the Institutional Review Board of the National Institute of Diabetes and 

Digestive and Kidney Diseases. 

Inpatient subjects with measures of body composition and EE 

Among the community members from the longitudinal study, a subset of 917 adults, who were 

confirmed to be non-diabetic by the OGTT, also participated in inpatient studies in our Clinical 

Research Center and had undergone detailed measures of body composition. Among these inpatient 

volunteers, 509 also underwent a measurement of RMR by a ventilated hood system and 419 

underwent a 24-h session in a whole-room indirect calorimeter (352 subjects underwent both 

measures of RMR and 24-h EE during the same admission). 

Following admission to the Clinical Research Center, subjects were given a standard weight-

maintaining diet (50% carbohydrates, 30% fats and 20% proteins) for three days before any metabolic 

test was performed (15; 16). Subjects were weighed daily and food intake was adjusted to maintain 

body weight within ±1% of the weight measured the second day of admission. Percent body fat 

(PFAT), fat mass (FM) and fat free mass (FFM) were estimated by underwater weighing until August 

1993 and thereafter by total body dual energy X-ray absorptiometry (DPX-1; Lunar Radiation Corp., 
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Madison, WI, USA). A conversion equation was used to make measurements of body composition 

comparable between the two methods (17).  

RMR was measured upon awakening after an overnight fast using a respiratory hood system, as 

previously described (18). After 10 min of acclimation to the plastic hood, subject’s EE was 

calculated every 5 min using the equations of Lusk (19) and RMR was calculated as the average EE 

over 40 minutes while the subject was instructed to stay awake and motionless, and then extrapolated 

to 24 hours.  

Twenty-four hour EE and substrate oxidation were measured in a whole-room calorimeter 

(respiratory chamber), as previously described (10). The volunteers entered the chamber at 08:00 and 

remained in the chamber for 23 hours and 15 min. The rate of EE was measured continuously, 

calculated for each 15-min interval, averaged and then extrapolated to the 24-h interval (24-h EE). 

Four meals were provided at 08:00, 11:00, 16:00, and 19:00 and the total energy content was 

calculated using previously described equations (20). Spontaneous physical activity (SPA) was 

detected by radar sensors and expressed as the percentage of time over the 15-min interval in which 

activity was detected (21). The EE in the inactive awake state (EE0 activity) was calculated as the 

intercept of the regression line between EE and SPA between 11:00 and 01:00 (22). Sleeping 

metabolic rate (SMR) was defined as the average EE of all 15-min nightly periods between 01:00 and 

05:00 AM during which SPA was less than 1.5% (23). The “awake and fed” thermogenesis (AFT) 

was calculated as the difference between EE0 activity and SMR (23).  

Genotypic data for genome-wide association analysis 

Genotypes for association analyses were generated using a custom Pima Indian Axiom genome-wide 

array (Affymetrix, Santa Clara, CA) in 7701 Pima Indian samples. This array was designed to capture 

common variation (minor allele frequency, MAF ≥0.05, or ≥0.01 for coding variants) detected in 

whole-genome sequence (WGS) data of 266 full-heritage Pima Indians from different nuclear 

families. We estimated that genotypes for the 491,265 array markers that passed quality control 
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metrics (i.e., call rate ≥90%, discrepant rate ≤2 pairs among 100 blind duplicate pairs, and lack of 

deviation from Hardy-Weinberg equilibrium with a p>10−4) tag 92% of the 4.9M common variants 

with a MAF ≥0.05 detected in the genomes of full-heritage Pima Indians (tag defined as r2 ≥0.85 

within 300 kb).  

Functional analysis of GRP158 variants  

DNA fragments containing each allele homozygous at rs11014566, rs144895904, rs34673593 and 

rs16925884 were PCR amplified (rs11014566, primers forward 5’-

ACAGGTACCATTTGTGTTAACGGCTAGA-3’ and reverse 5’-

TCACTCGAGGTATAAACAATTTTGCCAT-3’; rs144895904, forward 5’-

ATAGGTACCAGAGATAACCGCTGTTCA-3 and reverse 5’-

TCACTCGAGAGGCACAAATTACATAAC-3’; rs16925884/rs34673593, forward 5’-

ACGGTACCTACTATTTGTTGTGAG-3’ and reverse 5’-

AGCTCGAGATATAAATGAATGAATTG-3’). The amplicons were inserted at KpnI and XhoI sites 

(underlined, respectively) upstream of the pGL3-Promoter firefly luciferase reporter vector 

(Promega, Madison, WI, USA). DNA constructs were sequenced to confirm the nucleotide variants. 

Murine N-42 hypothalamus cell line (Cellutions Biosystems, Inc., Burlington, ON, Canada) was 

maintained in DMEM medium supplemented with 10% FBS, 1% penicillin-streptomycin (ATCC) at 

37°C, 5% CO2 and 95% air atmosphere. One µg of DNA construct and 125 ng of pGL4-Renilla 

luciferase reporter vector (Promega, Madison, WI, USA) were transiently transfected into the cells 

with Lipofectamine LTX (Invitrogen, Life Technologies, Carlsbad, CA). At 48 hours post-

transfection, cells were harvested and a dual-luciferase reporter assay was performed using a standard 

protocol (Promega, Madison, WI, USA). Three separate transfections were conducted and each 

transfection was repeated two to three times (total=8) and data were averaged. Firefly luciferase 

activity was normalized to Renilla luciferase activity and further normalized to pGL3-Promoter 

luciferase activity.  

Statistical analysis 
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The variances in 24-h EE and maximum BMI attributable to family membership were estimated in 

families with at least two siblings by mixed models analysis and quantified by the root-mean-square 

deviation (RMSD) and by the intraclass correlation coefficient (ICC). Heritability was estimated in a 

linear mixed model from a random effect that utilized the empirical genetic relatedness matrix (see 

below). Linear mixed effects analysis using the maximum likelihood method was conducted to assess 

association of genotypes with 24-h EE, RMR, maximum BMI and PFAT with covariates of age, sex, 

body composition measures (FM and FFM, only for 24-h EE and RMR analyses), SPA (only for 24-

h EE analysis), birth year (only for BMI analysis) and the first 5 genetic principal components 

calculated from 19,991 variants randomly selected from 200-kb windows across the genome (1 

variant per window). Genotype was included as a fixed effect and analyzed as a numeric variable 

representing 0, 1, or 2 copies of a given allele (additive model) and effects were expressed per allele 

copy. Missing genotypes were imputed using WGS data of 266 full-heritage Pima Indians. The 

models were fitted using a variance components covariance structure to account for genetic 

relatedness among individuals. The genetic relatedness matrix was estimated as the proportion of the 

genome shared identical by descent between each pair of individuals who had been genotyped (a total 

of 29,648,850 pairs). Genomic segments shared identical by descent were identified with the fastIBD 

function of Beagle package (24) using 482,616 autosomal markers with MAF>0.05. Mixed models 

were fit using the SOLAR package (25). Values of BMI were log-transformed before analysis to 

approximate a Gaussian distribution. Linkage disequilibrium was determined using the Haploview 

program (version 4.2, Broad Institute, Cambridge, MA, USA). Tag variants were selected based on 

the sequence data of 266 Pima genomes using the Tagger algorithm (Haploview) with a pair-wise 

r2≥0.85 taken as indicative of redundancy. The statistical difference in mean luciferase activity 

detected in the functional study was analyzed by Student’s unpaired t-test. 

To estimate the statistical power to detect a physiologically meaningful effect of a common genetic 

variant on 24-h EE that meets genome-wide statistical significance, we estimated power for a sample 

size of 419 unrelated individuals, a 2-sided alpha=5×10−8, a clinically significant effect size β =−50 
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kcal/day per risk allele copy, and a residual SD=143 kcal/day (after adjustment for age, sex, FM, 

FFM and SPA, Table 1). Using these parameters, we estimated the power to be 0.03 or 0.38 to detect 

a risk allele frequency (RAF, defined for the allele associated with lower EE) of 0.15 or 0.50, 

respectively. To reduce the chance of spurious findings (type 1 error) without undue reliance on a 

single EE measure in a setting of low statistical power, we selected variants with consistent evidence 

of association in two separate EE assessments, namely, 24-h EE and RMR, where each p-value was 

<0.01 and the direction of risk was consistent (i.e., the risk allele associated with lower 24-h EE being 

associated with lower RMR). Variants meeting these criteria were then analyzed for association with 

BMI and PFAT.  

Replication Cohort 

Replication of selected variants for their association with standardized values of BMI was done in 

non-diabetic individuals of the Slim Initiative in Genomic Medicine for the Americas (SIGMA) 

consortium (26) after adjustment for age, sex and first two genetic principal components. This 

replication sample consisted in four Studies from Mexico or Mexicans living in the US comprising a 

total of 4,364 non diabetic individuals. All participants provided informed consent for conducting this 

study. Their respective local ethics committees approved all contributing studies. 

RESULTS 

Estimates of familial effect on 24-h EE and BMI in Pima Indians 

In 248 siblings from 98 Pima Indian families, family membership explained 41% of variance in 

unadjusted 24-h EE (RMSD=250 kcal/day, p<0.001). After adjustment for subject’s age, sex, FM, 

FFM and SPA, family membership was still an independent determinant of 24-h EE (RMSD=77 

kcal/day, p<0.001), accounting for 34% of the unexplained variance in 24-h EE (Figure 1A). In 3298 

siblings from 1131 Pima Indian families, family membership was the largest determinant of 

maximum BMI, accounting for ⅓ of BMI variance among individuals (RMSD=4.4 kg/m2, p<0.001, 
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Figure 1B). Inclusion of age, sex, birth year and Pima heritage did not alter the estimate of family 

variance and slightly increased the explained variance of maximum BMI from 30% to 36% (p<0.001). 

Heritability of 24-h EE and maximum BMI was 0.52 (95% CI: 0.20-0.80, p=1.5×10−3
, adjusted for 

age, sex, FM, FFM, SPA and first 5 principal components) and 0.55 (95% CI: 0.51-0.60, 

p=8.2×10−148, adjusted for age, sex, birth year and first 5 principal components), respectively. 

Association analysis for two independent measures of EE  

The results of the genome-wide association analyses for 24-h EE and RMR are shown in Figure 2. 

The lists of variants with p<0.01 for each EE measure are reported in Supplemental Tables 1 and 2 

(effect size for 24-h EE and RMR ranging from −96 to −21 kcal/day and from −132 to −25 kcal/day, 

respectively). As anticipated, no variant achieved genome-wide statistical significance (p<5×10−8) 

with either EE measure. However, 138 variants had nominal (p<0.01), directionally consistent 

associations with both 24-h EE and RMR (Supplemental Table 3).  

Association analysis for two measures of body adiposity 

The 138 variants that associated with both 24-h EE and RMR in a directionally consistent manner 

were further analyzed for association with maximum BMI (defined as the highest BMI recorded at a 

longitudinal outpatient exam) in a population-based sample of 5870 individuals, and with PFAT in a 

917 subjects who had undergone metabolic testing as inpatients. While seven variants had an allele 

that associated with a reduced EE and were nominally associated with higher maximum BMI (Table 

2) and five variants had an allele that associated with reduced EE and higher PFAT, only the variant 

with the strongest association with maximum BMI (rs11014566 in GPR158, p=4.7×10−4) also 

associated with increased PFAT (p=2.9×10−3).  

The G allele at rs11014566 (frequency in full-heritage Pima Indians=0.60) associated with a lower 

24-h EE (β=−33 kcal/day, 95% CI: −54 to −12, Figure 3B) and a lower RMR (β=−31 kcal/day, 95% 

CI: −55 to −7, Figure 3C). Compared with subjects homozygous for the A-allele, subjects carrying 
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two copies of the G-allele had lower EE over the course of 24 hours inside the metabolic chamber 

(∆=−2.6 kcal/h, p=7.7×10−3) and this was more evident in the sleeping state (Figure 3A). 

Accordingly, SNP rs11014566 was associated with sleeping EE (β=−24 kcal/day, p=1.4×10−2, Figure 

3D) but not with AFT (p=0.59, Figure 3E) or SPA (p=0.59). In the larger population-based sample 

of 5870 Pima Indians, the G-allele also associated with a higher maximum BMI (β =+1.7%≈0.6 kg/m2 

per copy, 95% CI: 0.7 to 2.6, p=4.7×10−4, Figure 4A), and this association was observed both in the 

2920 individuals who were full-heritage Pima Indians (β=+1.4%, p=2.7×10−2, Figure 4B) and in the 

2950 individuals who were mixed-heritage American Indians (β=+2.0%, p=3.4×10−3, Figure 4C) in 

this population. This variant also associated with PFAT in 917 subjects with body composition 

measures (β=+0.9%, 95% CI: 0.3 to 1.5, p=2.9×10−3, Figure 4D) with no difference between sexes 

(p=0.39). Specifically, the G-allele was associated with higher FM (β=+2.4 kg, p=2.5×10−4 adjusted 

for age, sex and height, Figure 4E) and, to a lesser extent, with higher FFM (β=+1.3 kg, p=1.7×10−2, 

Figure 4F). 

Analysis of additional variation at the GPR158 locus  

Analyses of WGS data from 266 full-heritage Pima Indians showed that rs11014566 tags (r2>0.85) 

three other variants: rs144895904 (C/T, frequency T=0.61, r2=0.99), rs34673593 (−/AT, frequency 

AT=0.57, r2=0.87), and rs16925884 (C/T, frequency T=0.60, r2=0.91), all in intron 4 of GPR158. 

Analysis of 74 tagging variants with a MAF≥0.05 across the GPR158 gene (50 kb flanking each side, 

chr10:25,414,290-25,941,157) determined that rs11014566 (and its 3 tags) had the strongest 

association with maximum BMI, and conditional analyses demonstrated no variant in this region 

associated with maximum BMI after conditioning on rs11014566 (all conditioned p>0.05).  

The BMI risk alleles for rs11014566 and its tags show large differences among our data and 

populations in the 1000 Genomes Project (1000G). For example, in our data the G-allele at 

rs11014566 attains the highest frequency of 0.60 in full-heritage Pima Indians, 0.48 in mixed-heritage 
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American Indians, while in the 1000G its frequency was 0.23 in Americans, 0.11 in Africans and 

<0.01 in Europeans (Figure 5).  

Replication analysis in SIGMA 

Since no other datasets exist with genotypic data on individuals with measures of EE, we sought to 

replicate our modest association with BMI in the SIGMA consortium. In the BMI meta-analysis of 

the SIGMA consortium including 4364 non-diabetic Mexican individuals (mean±SD, age: 57.9±8.4 

yr, BMI: 27.5±4.2 kg/m2, 1755 males), the BMI-risk alleles at both rs11014566 (β=−0.05 SD units 

per copy of the G-allele, frequency=0.27, p=0.04) and rs144895904 (β=−0.05 SD units per copy of 

the T-allele, frequency=0.28, p=0.01) were associated with lower BMI in this cohort. Similar results 

were obtained in sensitivity analyses including only subjects with a BMI greater than the median 

value of this cohort (=27 kg/m2) or including only obese subjects with a BMI>30 kg/m2 (data not 

shown). 

In vitro functional analyses of GPR158 variants  

To determine whether rs11014566 in GPR158 and the three variants tagged by rs11014566 had a 

functional impact on promoter activity, these variants were analyzed in an in vitro luciferase reporter 

assay. DNA regions containing either the risk or the non-risk allele for each variant were PCR 

amplified. Due to the proximity of rs16925884 (chr10:25,740,897) and rs34673593 

(chr10:25,741,140), single PCR products containing either the risk alleles or the non-risk alleles for 

both variants were amplified. The effect of the cloned GPR158 variants on promoter activity was 

assessed in a murine hypothalamus cell line, since GPR158 is endogenously expressed in human 

hypothalamus at high levels (Supplemental Figure 1). The largest difference in luciferase activity was 

observed when comparing constructs which differed for alleles at rs144895904 (Figure 6), where the 

BMI risk allele T had on average 48% higher activity as compared to the non-risk allele C 
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(mean±SEM, 1.21±0.09 vs. 0.82±0.07, p=0.004).  There was no significant difference in luciferase 

activity between alleles at rs11014566 (p=0.52) or rs16925884/rs34673593 (p=0.74). 

DISCUSSION 

The current study was conducted in a geographically confined population of Pima Indians and, among 

these community members, we estimated that family membership accounts for approximately ⅓ of 

BMI variance among siblings from different families. Siblings share, on average, half of their genes; 

therefore, nearly approximately 60% of BMI variance in this Pima Indian population is genetically 

determined, as confirmed by our empirical heritability estimate (h2=0.55). This estimate is consistent 

with that reported in other ethnic groups (27) as well as prior studies in twins (1; 2; 28), which 

similarly estimated that 60% of the variability in BMI among individuals of a given population living 

in the same environment is genetically determined and potentially ascribable to the additive effects 

of genetic variants. We furthered showed in Pima Indians that 24-h EE, a determinant of BMI in this 

population, is also an inherited characteristic (h2=0.52). After adjustment for differences in body 

composition, family membership accounted for 34% of the variance in 24-h EE among siblings from 

different families, which is consistent with previous calculations done in much smaller cohorts of 

Pima Indians (3; 18).  

Given that BMI, body fat (29) and EE (3; 18) are genetically determined, and body weight and FM 

gain in Pima Indians is at least partially attributable to a relatively lower EE (3; 4; 23), we sought to 

identify genetic variants that influence body fatness and BMI in adulthood via a modest but life-long 

effect on EE. We performed a genome-wide association study (GWAS) for EE utilizing genotypic 

data from our custom Pima Indian-specific array. Although our sample of 419 Pima Indians with 

measures of 24-h EE and genotypes represents one of the largest existing samples, it was nonetheless 

underpowered to detect the modest effect sizes typically observed in GWAS at genome-wide 

statistical significance (p=5×10−8). Therefore, rather than rely solely on statistical significance to 

discern true from false positives, we prioritized variants that showed physiologically supportive 
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associations with reduced EE (assessed by separate measurements of 24-h EE and RMR) and 

increased body adiposity (assessed by independent measurements of BMI and body fatness). This 

strategy led us to identify common variation in the GPR158 gene that satisfied these criteria. 

Specifically, despite higher FFM (+2.6 kg) which would generally confer higher EE due to the well 

documented positive association with FFM (10), Pima individuals carrying two copies of the G-allele 

at rs11014566 in GPR158 had instead on average roughly a 70-kcal deficit in daily EE (of which 48 

kcals were ascribable solely to sleeping EE) and approximately 5 kg more FM and a BMI increase of 

1.2 kg/m2 as compared to subjects homozygous for the A-allele. The effect of rs11014566 on BMI in 

Pima Indians (1.2 kg/m2 difference between individuals homozygous for the risk vs. non-risk allele, 

RAF=0.60) is comparable to the effects exerted by other variants near well-established obesity genes 

including rs8050136 in FTO (1.6 kg/m2, RAF≈0.15) (30), rs74861148 near MC4R (1.36 kg/m2, 

RAF≈0.15) (31) and rs2025804 in LEPR (1.0-1.9 kg/m2, RAF≈0.70) (32) in this same population. 

Similarly, the effect of rs11014566 in GPR158 on 24-h EE (−33 kcal/day per allele copy) is 

comparable to that of rs11208654 in LEPR (−28 kcal/day, Supplemental Table 1), which tags 

rs2025804 previously shown to affect 24-h EE in Pima Indians (32). 

Given our low statistical power due to the modest sample size, our GWAS results for EE must be 

interpreted with caution. Nevertheless, the high heritability of 24-h EE in the Pima Indian population 

increases the likelihood that variants exerting true effects on EE could be uncovered using a GWAS 

strategy. To identify true from false positives among variants that did not achieve genome-wide 

significance, we considered variants that showed directional consistency for their associations with 

two independent assessments of EE, including precise and reproducible measures obtained at rest 

while fasting (18) and over 24 hours during energy balance (10), assuming that true genetic 

associations with EE will display weak but consistent results in both settings.  

Although the strength of our study is that it provides the first genome-wide screen for genetic variants 

that affect EE, it also has a major weakness in that there are no other genetic databases available for 
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EE to directly assess replication. Since EE has a modest but measurable effect on weight gain in Pima 

Indians (4), and in Pima Indians variants in GPR158 nominally associated with adiposity, we sought 

replication for the association of GPR158 with BMI, as a surrogate of EE, in other ethnic groups.  

The G allele at rs11014566, which predicts lower EE and higher FM and BMI, has a frequency of 

0.60 in full-heritage Pima Indians, which is higher than the frequency for this allele observed among 

any of the 1000G populations. Notably, this allele is uncommon in Europeans (MAF<0.01) and thus 

its assessment for association with BMI in the GIANT (Genetic Investigation of ANthropometric 

Traits) consortium (43) is not optimal. Therefore, we assessed association with BMI in datasets 

collected from Asians (44) and Africans (45) and Hispanics (26). Rs11014566 did not associate with 

BMI in Asians or Africans (personal communications); however, modest associations with BMI were 

observed in the SIGMA meta-analysis of BMI whose Hispanic population more closely resembles 

the Pima Indians from an environmental perspective, although from a genetic perspective the 

frequency of the G (rs11014566) and T (rs144895904) alleles are 0.27 and 0.28 in Hispanics as 

compared to 0.60 in Pima Indians. However, in the SIGMA sample, the direction of the association 

with BMI was opposite to that observed in the Pima Indians (β=−0.05 SD units per copy of the G-

allele at rs11014566, p=0.04) and (β=−0.05 SD units per copy of the T-allele at rs144895904, 

p=0.01).  Given that a relationship between EE and BMI has not been shown in the SIGMA sample, 

while metabolic studies in other ethnic groups have reported no relationship (6-8) and even a positive 

relationship between EE and future weight gain (9), as opposed to the inverse association observed 

in American Indians (3-5), it is unclear whether an association with BMI in the opposite direction 

indicates that this SNP has no role in EE (i.e., our result is a false positive) or whether it indicates the 

complexity of feedback loops between EE and food consumption (33-35), where an imbalance 

predicts either weight gain or weight loss, among individuals with different body habitus and living 

in different environments. As additional data for genotype and EE become available in other 

populations, meta-analyses may be helpful to assess the extent to which our findings transfer to other 

populations and to boost power to detect additional variants.  
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The GWAS lead SNP rs11014566 maps to an intron of the GPR158 gene that encodes the G protein-

coupled receptor 158, a transmembrane protein highly expressed in brain cells. Our tissue expression 

profiling confirmed that GPR158 is highly expressed in the brain. In vitro functional analysis of 

rs11014566 and three variants tagged by rs11014566 (rs144895904, rs16925884 and rs34673593) in 

murine hypothalamic cells showed that intronic SNP rs144895904 had a statistically significant effect 

on promoter activity. Human GPR158 is involved in neurotransmitter signaling and regulation of 

neuronal excitability (36; 37). Although there is no direct evidence that human GPR158 is involved 

in the pathophysiology of obesity, a previous study of mouse Gpr158 has demonstrated its role in the 

regulation of energy balance (38). GPR158 binds to the regulator of G-protein signaling 7 (RGS7) in 

the nervous system (39; 40). RGS7-deficient mice are protected from obesity (41) and previous 

studies have provided evidence that RGS7 may constitute an obesity locus in humans (42; 43). In 

addition to RGS7, GPR158 also binds to an N-type voltage-gated calcium channel (CACNA1B) in 

the rat brain (44). Homozygous CACNA1B-deficient mice gain less weight during 8 weeks of high-

fat diet despite similar food intake of wild-type mice (45), implying a compensatory increase in EE 

that may mitigate weight gain during high-fat feeding. Since GPR158, RGS7 and CACNA1B are all 

expressed in the central nervous system, as are the well-established human obesity genes FTO, MC4R, 

and TMEM18 (46), one could speculate that they too exert an effect on hypothalamic signaling to 

regulate energy balance. However, additional mechanistic studies are needed to clarify the 

physiologic pathway whereby GPR158 may affect EE and obesity in humans.  

In conclusion, analysis of genotypes from a custom Pima Indian array identified a novel genetic locus 

in GPR158 affecting EE and predisposing Pima Indians to weight gain. The frequency of the risk 

allele is higher in Pima Indians as compared to other populations studied as part of the 1000G, and 

the risk allele demonstrated increased promoter activity in in vitro experiments. Results of this study 

support the hypothesis that Pima Indians may carry some genetic variants affecting EE that are 

enriched in this particular ethnic group; however, the effect of these variants on higher rates of weight 

gain remains controversial since an association with BMI was only observed in Pima Indians. We 
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propose that studies of GPR158, as well as other EE-associated genes which will be identified in the 

future, may shed light into the pathophysiologic mechanisms that affect EE which could eventually 

lead to prevention and/or possible treatments of human obesity. 
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TABLES 

Table 1. Anthropometric and metabolic measures of the study groups.  

 
All Males Females 

Population-based longitudinal outpatient study    

N 5870 2572 3298 

Birth year 1966 ± 16 1967 ± 16 1966 ± 16 

Maximum BMI (kg/m²) 35.2 ± 8.4 33.9 ± 8.1 36.1 ± 8.5 

Age (years) 29.6 ± 11.4 28.9 ± 11.3 30.1 ± 11.4 

Body composition inpatient study    

N 917 506 411 

Age (years) 28.0 ± 8.0 28.1 ± 8.3 28.0 ± 7.6 

Body fat (%) 33.4 ± 8.5 28.4 ± 7.0 39.7 ± 5.7 

Fat mass (kg) 33.0 ± 14.6 29.3 ± 14.0 37.6 ± 13.9 

Fat free mass (kg) 62.5 ± 14.2 68.8 ± 13.4 54.7 ± 10.9 

Height (cm) 166.6 ± 8.4 172.1 ± 6.2 159.9 ± 5.2 

Respiratory chamber inpatient study     

N 419 254 165 

Age (years) 27.8 ± 6.4 27.8 ± 6.6 27.8 ± 6.2 

Body weight (kg) 95.3 ± 22.3 98.6 ± 22.7 90.2 ± 20.7 

BMI (kg/m²) 34.2 ± 7.5 33.4 ± 7.3 35.3 ± 7.7 

Body fat (%) 32.6 ± 8.2 28.7 ± 6.9 38.8 ± 6.0 

Fat mass (kg) 32.0 ± 13.0 29.5 ± 12.9 35.8 ± 12.2 

Fat free mass (kg) 63.3 ± 12.6 69.0 ± 10.9 54.4 ± 9.5 

Fasting plasma glucose concentration (mg/dL) 88.8 ± 10.0 87.3 ± 9.9 91.2 ± 9.7 

2-h plasma glucose concentration (mg/dL) 123.0 ± 30.5 115.8 ± 30.0 134.0 ± 28.0 

24-h EE (kcal/day) 2354 ± 396 2531 ± 347 2083 ± 303 

Adjusted 24-h EE (kcal/day) # 0 ± 142.9 0 ± 147.0 0 ± 136.9 

SPA (%) 7.5 ± 2.5 7.7 ± 2.5 7.1 ± 2.5 

Sleeping EE (kcal/day) 1672 ± 284 1776 ± 271 1513 ± 223 

Adjusted sleeping EE (kcal/day) # 0 ± 135.3 0 ± 144.4 0 ± 120.3 

AFT (kcal/14·hrs) 263 ± 122 288 ± 129 223 ± 99 

Adjusted AFT (kcal/14·hrs) # 0 ± 114.8 0 ± 124.2 0 ± 98.6 
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Ventilated hood inpatient study    

N 509 301 208 

Age (years) 26.9 ± 6.1 26.8 ± 6.4 26.9 ± 5.8 

Body weight (kg) 93.4 ± 23.0 97.3 ± 24.2 87.8 ± 19.9 

BMI (kg/m²) 33.5 ± 7.6 32.9 ± 7.6 34.5 ± 7.4 

Body fat (%) 32.3 ± 8.5 28.2 ± 7.4 38.2 ± 6.4 

Fat mass (kg) 31.2 ± 13.5 28.9 ± 13.9 34.5 ± 12.2 

Fat free mass (kg) 62.2 ± 12.9 68.4 ± 11.6 53.3 ± 8.8 

Fasting plasma glucose concentration (mg/dL) 89.3 ± 10.0 87.4 ± 9.5 92.1 ± 10.0 

2-h plasma glucose concentration (mg/dL) 122.8 ± 30.3 115.7 ± 28.1 132.9 ± 30.5 

RMR (kcal/day) 1758 ± 326 1878 ± 322 1587 ± 247 

Adjusted RMR (kcal/day) # 0 ± 189.6 0 ± 212.4 0 ± 151.4 

Abbreviations: AFT, awake and fed thermogenesis; EE, energy expenditure; RMR: resting 

metabolic rate; SPA, spontaneous physical activity. 

Values in each cell are reported as mean ± SD. 

#: All four EE measures (24-h EE, sleeping EE, AFT and RMR) are adjusted for age, sex, FM, FFM 

by linear regression analysis; 24-h EE and AFT are further adjusted for SPA and for fasting glucose 

levels, respectively.  
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Table 2. Variants associated with lower 24-h EE, lower RMR and higher maximum BMI in American Indians. 

      24-h EE 

(n=419) 

RMR 

(n=509) 

Maximum BMI 

(n=5870) 

Chr. Position Variant ID Gene(s) R/NR 

allele 

RAF β (SE) p β (SE) p β (SE) p 

10 25735858 rs11014566 GPR158 G/A 0.60 −33.0 (10.5) 1.7×10−3 −31.1 (12.1) 9.9×10−3 0.017 (0.005) 4.7×10−4 

21 30662480 --- LINC00189, BACH1 -/AAG 0.30 −30.6 (11.1) 6.0×10−3 −34.5 (13.3) 9.4×10−3 0.014 (0.005) 3.9×10−3 

12 97806525 rs12424131 NEDD1, RMST A/G 0.88 −42.8 (15.5) 5.6×10−3 −55.8 (19.2) 3.6×10−3 0.018 (0.007) 9.9×10−3 

12 97810465 rs17026922 NEDD1, RMST G/A 0.92 −46.8 (17.8) 8.5×10−3 −65.7 (22.6) 3.6×10−3 0.020 (0.008) 1.2×10−2 

14 21113898 rs56069351 OR6S1, ANG T/C 0.25 −33.0 (11.7) 4.9×10−3 −42.1 (14.1) 2.7×10−3 0.012 (0.005) 1.5×10−2 

20 4157857 rs1538072 SMOX G/C 0.77 −35.9 (12.7) 4.6×10−3 −52.1 (15.0) 5.4×10−4 0.012 (0.006) 3.4×10−2 

3 77645020 rs80275771 ROBO2 A/T 0.16 −38.8 (14.8) 8.9×10−3 −45.9 (16.9) 6.7×10−3 0.014 (0.007) 3.9×10−2 

 

Variant position is based on human genome Build 37. Variant identification number (rs#) is based on dbSNP version 141. Risk allele is defined as the allele 

associated with lower 24-h EE, lower RMR and higher maximum BMI. RAF: Risk allele frequency as calculated in full-heritage Pima Indians. SE: Standard Error. 

Beta coefficient (β) is expressed per copy of the risk allele in kcal/day (24-h EE and RMR) and loge(BMI) units. Results are adjusted for age, sex, FM and FFM 

(only for 24-h EE and RMR analyses), SPA (only for 24-h EE), birth year (only for BMI analysis) and the first 5 genetic principal components in a mixed model that 

accounted for genetic relationships among individuals. Variants are sorted by their p-value for the association with maximum BMI. 
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FIGURES 

Figure 1. Familial effects on 24-h EE and maximum BMI in American Indians. 

Individual values of 24-h EE (adjusted for age, sex, FM, FFM and SPA, Panel A) and maximum BMI 

(adjusted for age, sex, birth year and self-reported Pima heritage, Panel B) of family members from 

the American Indian community. Individual siblings are shown as dots while families are depicted as 

vertical rectangles identified by the highest and lowest sibling value. Each family includes at least 

two siblings and families are ranked according to mean value of 24-h EE (Panel A) and BMI (Panel 

B) of siblings, e.g., families with relatively low mean EE/BMI are located on the left side of x-axis. 

Heritability (h2) was estimated in a linear mixed model from a random effect that utilized the 

empirical genetic relatedness matrix estimated as the proportion of the genome shared identical by 

descent between each pair of siblings who had been genotyped. Mixed models for estimating 

heritability included age, sex, birth year (only BMI analysis), FM (only 24-h EE analysis), FFM (only 

24-h EE analysis), SPA (only 24-h EE analysis) and first 5 principal components as fixed effects. The 

intraclass correlation coefficient (ICC) was calculated as the ratio of the variance accounted by family 

membership divided the total variance, and express as the percent of total variance in 24-h EE and 

BMI attributable to family membership after adjustment for covariates.  
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Figure 2. “Manhattan” plots of genome-wide association results for 24-h EE and RMR in 

American Indians. 

The negative base-10 logarithm of the p-value for the association of each genetic variant (n=491265, 

MAF≥0.05) with 24-h EE (Panel A) and RMR (Panel B) after adjustment for age, sex, FM, FFM, 

SPA (only 24-h EE) and the first 5 principal components in a mixed model that accounted for genetic 

relationships among individuals, is plotted against chromosome and position according to Build 37.  
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Figure 3. EE measures by genotypes of SNP rs11014566 in GPR158. 

Average time courses of 24-h EE in the respiratory chamber for subjects carrying AA (closed line) 

and GG (dotted line) genotypes of rs11014566 (Panel A). Values of EE measured every 15 min are 

adjusted for age, sex, FM, FFM, SPA, and accounting for repeated measures using an AR(1) 

covariance structure by mixed model analysis. 

Mean 24-h EE inside the metabolic chamber (Panel B), resting metabolic rate (RMR) assessed by 

ventilated hood system (Panel C), sleeping EE (Panel D) and “awake and fed” thermogenesis (AFT, 

Panel E) by genotypes of rs11014566. All EE measures are adjusted for age, sex, FM, FFM and the 

first 5 principal components in a mixed model that accounted for genetic relationships among 

individuals; 24-h EE and AFT are further adjusted for SPA and fasting glucose levels, respectively. 

Βeta coefficients are expressed per copy of the G allele. Error bars represent mean with 95% 

confidence intervals. 
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Figure 4. Anthropometric measures by genotypes of SNP rs11014566 in GPR158. 

Maximum BMI as derived from the longitudinal data from outpatient visits (Panel A: entire population; B: full-heritage Pima Indians; and C: mixed-

heritage American Indians) and percent body fat (Panel D), fat mass (Panel E) and fat free mass (Panel F) in 917 subjects who had a body composition 

measure in inpatient visits by genotypes of rs11014566. BMI, percent body fat, fat mass and fat free mass values are adjusted for age, sex and the first 

5 principal components in a mixed model that accounted for genetic relationships among individuals. BMI is further adjusted for subject’s birth year 

to account for secular changes in obesity prevalence during the course of the longitudinal study in the Pima Indian community. Fat mass and fat free 

mass are further adjusted for subject’s height. 

Beta coefficients are expressed per copy of the G allele and expressed as percent body fat (PFAT) and as kg (FM and FFM). For maximum BMI, beta 

coefficients are expressed per loge BMI units as percentage and, as an approximation, are converted to kg/m2 units by multiplication with the average 

population BMI (i.e., a beta coefficient of 0.017 is equivalent to 1.7% × 35.2 kg/m2 = 0.60 kg/m2). Error bars represent mean with 95% confidence 

intervals.  
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Figure 5. Frequencies of the G allele at rs11014566 and of the T allele at rs144895904 in 

American Indians and in the 1000 Genomes Project populations. 

Pima: full-heritage Pima Indians; EAS: East Asians; AMR: Americans; AFR: Africans; SAS: South 

Asians; EUR: Europeans. 

Population allele frequencies are based on 1000 Genomes Project Phase 3.   
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Figure 6. In vitro functional analyses of GPR158 variants in murine hypothalamus cells.  

Relative luciferase activity (fold change) was expressed as a ratio of firefly luciferase activity to 

Renilla luciferase activity, and further normalized to pGL3-Promoter luciferase activity. Raw data 

are presented along with mean and 95% confidence intervals. The statistical difference in the 

averaged activity was analyzed by Student’s unpaired t-test. 

 

 


