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Abstract

A short summary devoted to the origin and the development of the AN method, as well as its relationship with the
simplified spherical harmonics (SPN), is given. Attempts have been made to derive the AN partial differential equations
and the related interface and boundary conditions as much as possible from first principles. The theory developed
in previous works is extended to many energy groups and includes a rigorous treatment of the linearly anisotropic
scattering. It is shown that also in this extended framework the AN differential equations can be transformed into a
set of boundary integral equations that can be given a partial current form. This allows for a natural application of
the response matrix method, a technique that is particularly suitable for application to large multiregion systems. The
calculation procedures have been implemented into a computer code (BERM-AN). Solutions of a 2D and 3D cartesian
coordinates multigroup criticality problems, with different AN approximations, are compared with those obtained by
well assessed reference codes such as DORT, TORT and MCNP.

Keywords: Simplified spherical harmonics, Boundary Element Method, 3D multigroup criticality problems,
Linearly anisotropic scattering

1. Introduction

The AN method was proposed in a paper by Coppa and Ravetto (1982) with the purpose of obtaining accurate
solutions of one-velocity problems in homogeneous, convex bodies surrounded by a vacuum or a perfectly absorbing
medium. It was based on approximating the kernel of the integral transport equation by a sum of diffusion-type
kernels, a long lasting idea of neutron physics (see e.g. Stewart and Zweifel (1958)), which was exploited in the
above paper not only in order to replace the integral Peierls equation by an equation system analogous to the usual
multigroup diffusion systems (with up-scattering), but also to work out void boundary conditions that could take into
account the curvature and, possibly, the existence of singular points (edges and vertices) of the boundary surface. This
resulted into a non-local boundary condition that is strictly connected with the boundary integral equation technique
for solving the diffusion-like AN equation themselves. A different derivation based on the even-parity of the SN

equations, is also sketched in the same paper. The AN equations, which were first developed under the assumption
of isotropic scattering, were then extended to the linearly anisotropic scattering, starting from the correspondingly
extended integral transport equations (Coppa et al., 1983). It was also shown that, for a homogeneous finite body, the
AN solution converges to the exact transport solution as the order N tends to infinity. This result was completed by
the proof that, under the above condition, the AN method is equivalent to the odd-order spherical harmonics method
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P2N−1, (Coppa et al., 1982). At the same time it was realized that, in order that the equivalence statement may hold,
only the total cross section is required to be constant, while the absorption cross section may be arbitrarily varying
over the system.

The necessity of giving a full account of the AN theory and its connection with the boundary integral equation
method became then evident and this task was accomplished in Ciolini et al. (2002) (see also Colombo et al. (1988)).
In this paper (as well as in further papers) the problems for which the total cross section is constant are shortly called
”constant sigma”, or ”Cσ” problems. The class of the Cσ problems, although very restricted, is highly privileged
and, from a practical point of view, the solutions obtained by the AN method for the non-Cσ problems were always
found to be less accurate. All such previous studies were performed in a complete independence of the SPN theory.
The merging of the AN and SP2N−1 methods came just with the last paper, where it was recognized that, at least in
the case of the isotropic scattering, the AN equations are a diagonalized form of the SP2N−1 equations. The proof is
general and does not require any restriction as regards the space dependence of the cross sections (including the total
cross section). As a consequence, for the Cσ problems with isotropic scattering not only the AN , but also the SP2N−1
method is equivalent to the P2N−1 method (a direct equivalence proof can be also found in Ciolini et al. (2002)). On
the contrary, for the general class of the non-Cσ problems a recourse to Gelbard’s ad hoc assumptions (Gelbard, 1960,
1961, 1962) appears to be unavoidable.

However, although the asymptotic analysis by Larsen et al. (1993, 1996), Larsen (2011) and by Pomraning (1993)
has now provided a firm basis for the SPN theory, attempts to introduce procedures that are free from some of the
severe limitations there involved, not only as regards the absorption cross section, but even as regards the assumption
of a nearly uniform total cross section, have been pursued in the past (Spinrad and Altaç, 1990), and also at present
(Coppa et al., 2011). Such attempts are, however, outside the domain of interest of this paper.

The present paper contains the recent developments of the AN method. It has been preceded by a preliminary
short publication (Giusti et al., 2010) in the N = 2 case and by another paper (Giusti and Montagnini, 2012) in
which the boundary element-response matrix (BERM) technique is applied to the classical SP3 equations. It should
be observed that the genuine AN equations can now be presented as a particular case of the ”canonical SPN” equations
(Larsen et al., 1993, 1996) which have been derived in a form that allows for a scattering of an arbitrarily high order
of anisotropy (thus, instead of AN or AN-SP2N−1, as in past works, one could say ”canonical SPN”). However, owing
to its strong relationship with the BEM approach, the AN method has some specific features and a more appropriate
name should be perhaps ”AN boundary-element response-matrix method”. In the rest of the paper we shall use the
name AN , without further specifications, only for brevity.

Sect. 2 aims at extending previous works on the AN method to many energy groups and a linearly anisotropic
scattering, here dealt with in a completely rigorous way (the previous multigroup treatment in Giusti and Montagnini
(2012) is only approximate, being based on the assumption of a balance between the (anisotropic) down and up
scattering events, (Bell and Glasstone, 1970; Beckert and Grundmann, 2008)). The present rigorous treatment leads
to a non negligible improvement of the accuracy (sect. 5). The continuity conditions accompanying the AN partial
differential equations are also discussed in this section. The AN boundary integral equations (BIE’s) are obtained, in
their classical form, in sect. 3, while sect. 4 deals with the transformation of the previous boundary integral equations
into a partial current form that is particularly suitable for the response matrix technique. This section deals also with
the boundary conditions to be used in such a context and points out one important choice of the method, namely that
only interface conditions are considered, the no-entry conditions being treated as interface conditions with a perfectly
absorbing medium. Sect. 5 reports a 2D and 3D numerical example. Although the theory is general and includes
therefore the problems in which an external source is present, the numerical applications have been worked out only
for criticality problems. Conclusions are drawn in sect. 6.

2. The multigroup AN differential equations for linearly anisotropic scattering and their interface conditions.

The derivation of the AN differential equations as developed by Coppa and Ravetto (1982) and Ciolini et al.
(2002) according to a discrete ordinate arguments is here extended to multigroup problems, in which the scattering is
linearly anisotropic. As anticipated in the Introduction, the treatment of the scattering does not involve any simplifying
assumptions.
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The integrodifferential transport equation in plane geometry, with the assumption of a linearly anisotropic scatter-
ing and isotropic sources, is, for G energy groups, as follows

µ
∂ϕg

∂x
(x, µ) + σg (x)ϕg (x, µ) = qg (x, µ) (g = 1, . . . ,G) , (1)

with standard notations. Namely, ϕg (x, µ) is the g-group angular flux, σg (x) the g-group macroscopic total cross
section, while

qg (x, µ) =

G∑
g′=1

∫ 1

−1

[
1
2
σ0gg′ (x) +

3
2
µµ′σ1gg′ (x)

]
ϕg′

(
x, µ′

)
dµ′ +

1
2

sg (x) (2)

is the g-group angular emission density. Here, σ0gg′ (x) and σ1gg′ (x) denote the first two Legendre moments of the
differential scattering cross section from group g′ to group g and sg (x) the source, which includes the fission source
and the (possibly existing) external source sext

g (x), both terms being assumed to be isotropic:

sg (x) =
1
k
χg

G∑
g′=1

νσ f g′ (x)
∫ 1

−1
ϕg′

(
x, µ′

)
dµ′ + sext

g (x) . (3)

Moreover, χg denotes the fission-spectrum fraction, νσ f g (x) the fission cross section times the average number of
secondaries and k the multiplication factor.

Let µα, wα be the points and weights of the Gauss-Legendre quadrature formula of order 2N on the [−1, 1] interval.
The discrete ordinate S2N approximation of Eqs. (1) and (2) is as follows

µα
dϕ+α,g

dx
(x) + σg (x)ϕ+α,g (x) = q+α,g (x)

−µα
dϕ−α,g

dx
(x) + σg (x)ϕ−α,g (x) = q−α,g (x) (α = 1, . . . ,N; g = 1, . . . ,G) , (4)

the sign ± in ϕ±α,g being chosen according to the direction of the neutron ray with respect to the x-axis. The discrete
form of the emission density, Eq. (2), in which the expression of the sg (x) source is also discretized, is

q±α,g (x) =
1
2

G∑
g′=1

σ0gg′ (x)
N∑
β=1

wβ

[
ϕ+β,g′ (x) + ϕ−β,g′ (x)

]
±

3
2
µα

G∑
g′=1

σ1gg′ (x)
N∑
β=1

wβµβ
[
ϕ+β,g′ (x) − ϕ−β,g′ (x)

]
+

1
2
χg

k

G∑
g′=1

νσ f g′ (x)
N∑
β=1

wβ

[
ϕ+β,g′ (x) + ϕ−β,g′ (x)

]
+

1
2

sext
g (x) . (5)

Summing and subtracting Eqs. (4) and setting

φα,g (x) = ϕ+α,g (x) + ϕ−α,g (x) , jα,g (x) = ϕ+α,g (x) − ϕ−α,g (x) , (6)

the multigroup even-odd S2N equations are obtained:

µα
d jα,g
dx

(x) + σg (x) φα,g (x) =

G∑
g′=1

[
σ0gg′ (x) +

χg

k
νσ f g′ (x)

]

·

N∑
β=1

wβφβ,g′ (x) + sext
g (x)

µα
dφα,g

dx
(x) + σg (x) jα,g (x) = 3µα

G∑
g′=1

σ1gg′ (x)
N∑
β=1

wβµβ jβ,g′ (x)

(α = 1, . . . ,N; g = 1, . . . ,G) . (7)
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By introducing the further quantities Φg (x) =
∑N
β=1 wβφβ,g (x) and Jg (x) =

∑N
β=1 wβµβ jβ,g (x), which are immediately

recognized as the angle-integrated flux and current, respectively, the above equations can be written as follows

µα
d jα,g
dx

(x) + σg (x) φα,g (x) =

G∑
g′=1

[
σ0gg′ (x) +

χg

k
νσ f g′ (x)

]
Φg′ (x) + sext

g (x)

µα
dφα,g

dx
(x) + σg (x) jα,g (x) = 3µα

G∑
g′=1

σ1gg′ (x) Jg′ (x) (α = 1, . . . ,N; g = 1, . . . ,G) . (8)

According to Gelbard’s basic postulates of the simplified spherical harmonics method the scalar quantities jα,g (x) are
replaced by the vectors jα,g (r) and the d/dx derivative by the divergence operator, when applied to a vector, and by
the gradient operator when applied to a scalar function of the space variable r. Then, Eqs. (8) are replaced by the
following ones

µα∇ · jα,g (r) + σg (r) φα,g (r) =

G∑
g′=1

[
σ0gg′ (r) +

χg

k
νσ f g′ (r)

]
Φg′ (r) + sext

g (r)

µα∇φα,g (r) + σg (r) jα,g (r) = 3µα
G∑

g′=1

σ1gg′ (r) Jg′ (r)

(α = 1, . . . ,N; g = 1, . . . ,G) , (9)

where

Φg (r) =

N∑
β=1

wβφβ,g (r) , (10)

Jg (r) =

N∑
β=1

wβµβjβ,g (r) . (11)

From the second Eq. (9) we get

jα,g (r) = −
1

σg (r)

µα∇φα,g (r) − 3µα
G∑

g′=1

σ1gg′ (r) Jg′ (r)

 . (12)

Substitution into the first equation then yields

∇ ·

[
µ2
α

σg (r)
∇φα,g (r)

]
− σg (r) φα,g (r) +

G∑
g′=1

[
σ0gg′ (r) +

χg

k
νσ f g′ (r)

]
Φg′ (r)

− 3∇ ·

 µ2
α

σg (r)

G∑
g′=1

σ1gg′ (r) Jg′ (r)

 + sext
g (r) = 0

(α = 1, . . . ,N; g = 1, . . . ,G) . (13)

Using again Eq. (12) and taking account of Eq. (11), other than of the identity
∑N
β=1 wβµ

2
β = 1/3, it is readily shown

that

Jg (r) −
1

σg (r)

G∑
g′=1

σ1gg′ (r) Jg′ (r) = −
1

σg (r)

N∑
β=1

wβµ
2
β∇φβ,g (r) , (14)
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Eqs. (13) and (14), together with Eq. (10), are the multigroup AN differential equations for a linearly anisotropic
scattering.

An equivalent second order form for the AN equations is obtained by substituting Jg (r), as given by Eq. (14), into
Eq. (13). Namely, introducing the GxG matrix E with elements

Egg′ (r) = δgg′ −
σ1gg′ (r)
σg (r)

(15)

and the inverse matrix F = E−1, with elements Fgg′ (r), we get

Jg (r) = −

G∑
g′=1

Fgg′ (r)
σg′ (r)

N∑
β=1

wβµ
2
β∇φβ,g′ (r) . (16)

This allows to write Eqs. (13) as follows

∇ ·

 µ2
α

σg (r)

∇φα,g (r) + 3
G∑

g′=1

σ1gg′ (r)
N∑
β=1

wβµ
2
β

G∑
g′′=1

Fg′g′′ (r)
σg′′ (r)

∇φβ,g′′ (r)




− σg (r) φα,g (r) +

G∑
g′=1

[
σ0gg′ (r) +

χg

k
νσ f g′

] N∑
β=1

wβφβ,g′ (r) + sext
g (r) = 0. (17)

Setting

Hgg′′ (r) = 3
G∑

g′=1

σ1gg′
Fg′g′′ (r)
σg′′ (r)

, (18)

then changing g′′ into g′ in the elements of the H matrix so calculated, we obtain

∇ ·

 µ2
α

σg (r)

∇φα,g (r) +

G∑
g′=1

Hgg′ (r)
N∑
β=1

wβµ
2
β∇φβ,g′ (r)


 − σg (r) φα,g (r)

+

G∑
g′=1

[
σ0gg′ (r) +

χg

k
νσ f g′ (r)

] N∑
β=1

wβφβ,g′ (r) + sext
g (r) = 0 (19)

and, finally,

∇ ·

N∑
β=1

G∑
g′=1

Dαβ,gg′ (r)∇φβ,g′ (r) −
N∑
β=1

G∑
g′=1

Σαβ,gg′ (r) φβ,g′ (r) + sext
g (r) = 0

(α = 1, . . . ,N; g = 1, . . . ,G) , (20)

where the following notations have been used:

Dαβ,gg′ (r) =
µ2
α

σg (r)

[
δαβδgg′ + wβµ

2
βHgg′ (r)

]
(21)

Σαβ,gg′ (r) = σg (r) δαβδgg′ − wβ

[
σ0gg′ (r) +

χg

k
νσ f g′ (r)

]
. (22)

(the multiplication factor k in Σαβ,gg′ is understood and, if an external source is present, is set equal to 1).
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The compact notation of Eq.(21) allows to introduce the following vectors

Ĵα,g (r) = −

N∑
β=1

G∑
g′=1

Dαβ,gg′ (r)∇φβ,g′ (r) , (23)

which will be of much use in the rest of the paper.
If the system is made of Z homogeneous regions, V i (i = 1, . . . ,Z), the above coefficients are constant inside

each region (so that they can be written Di
αβ,gg′ etc.). Moreover, the indices α, g, β, g′ can be unified, according to

the scheme α, g → γ, β, g′ → γ′, so that the matrix with the elements φα,g is rearranged (by columns) as a vector[
φ1,1, . . . , φ1,G, φ2,1, . . . , φ2,G, . . . , φN,1, . . . , φN,G

]
or, shortly, a vector with components φγ with γ = 1, . . . ,NG. A

similar reduction being made for the matrices of the coefficients and the source, the i-th region Eqs. (20) can be
written as follows

−

NG∑
γ′=1

Di
γγ′∇

2φi
γ′ (r) +

NG∑
γ′=1

Σi
γγ′φ

i
γ′ (r) = sext

γ (r) (γ = 1, . . . ,NG) . (24)

Eqs. (24) have the formal structure of a system of multigroup diffusion equations with upscattering, in which a tenso-
rial definition of the leakage term has been introduced.

The diffusion-like features of these equations suggest to give the AN moments some more appealing names. No
matter if the single index or the double index notation has been chosen, we may call the φγ or φα,g quantities ”AN

fluxes” and the vectors Ĵγ (rS ) =
∑NG
γ′=1 Dγγ′ (r)∇φγ′ (r) (or Ĵα,g (r)) as expressed by Eq. (23), ”AN current vectors”.

It is to be noted that, even if these names derive from a formal similitude, the quantities φγ (φα,g) and Ĵγ (Ĵα,g)
have a direct link with the corresponding basic physical quantities of the method. Namely, Eq. (10) shows that
the Legendre-weighted sum of the φα,g’s gives the (AN approximated) g-group physical flux Φg (r). As regards the
Ĵα,g (r)’s, using Eqs. (23) and the definition of Dαβ,gg′ it is seen that Eq. (19) coincides with the first of Eqs. (9), so that
we can identify Ĵα,g (r) with µαjα,g (r). Thus, Eq. (11) can be written as follows

Jg (r) =

N∑
α=1

wαĴα,g (r) (25)

which means that the Legendre-weighted sum of the Ĵα,g (r)’s gives the (AN approximated) g-group physical current
vector Jg (r). Otherwise stated, the Ĵα,g (r) vectors can be seen as the components of Jg (r) in an expansion of the
latter vectors in terms of the AN moments. Owing to this relation we are allowed to suppress the hat and simply write
Jα,g (r).

Although the γ-indexed quantities allow the calculations to be, in general, quite handy, a better understanding
of some aspects of the AN theory is obtainable if a distinct rôle for the indexes α and g is maintained, as shown by
the above argument concerning the α sums and, even more, the problem of continuity of the AN fluxes and normal
currents in presence of a discontinuity of the cross sections.

We take a step backwards. In plane geometry, the S2N angular fluxes ϕ±α,g (x), Eq. (4), are absolutely continuous
(as integral functions (Royden, 1988; Titchmarsh, 1975)) and therefore continuous, as is, in general transport, the
angular flux along the trajectory of the neutrons. As a consequence, the functions φα,g (x) and jα,g (x), Eqs. (6), are
also continuous and this holds for the Legendre sums that define Φg (x) and Jg (x), too. The three dimensional AN

equations, however, as well as the SPN equations, cannot be derived from the transport equation in a direct way,
if exception is made for the Cσ problems, in which an alternative derivation from the integral transport equation,
independent of Gelbard’s assumptions, is possible (Coppa and Ravetto (1982), Coppa et al. (1983) and Ciolini et al.
(2002)). Therefore, physical intuition is not expected to give more than some heuristic help, when dealing with such
properties as the continuity of the AN (and the SPN) moments at the interface, S say, between two regions, V I and
V II , which have different total cross sections. However, in the vicinity of a smooth interface the behaviour of each
φα,g (r) should be essentially dependent on the normal coordinate to the surface, say x, and to a much lesser extent
on the remaining local coordinates, say y and z, which are tangential to the surface. This nearly one-dimensional,
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Figure 1: Geometrical setting for the interface conditions of the Jα (r) vectors.

quasi-planar dependence on the space variables allows to assimilate the 3D AN-fluxes φα,g (r) to the 1D fluxes φα,g (x)
of the plane geometry case and extend therefore the continuity property of the latter functions to the general φα,g (r)
(similar arguments are encountered in the classical SPN theory, see e.g. Pomraning (1993)). We conclude that the
condition of continuity

φI
α,g (rS ) = φII

α,g (rS ) (α = 1, . . . ,N; g = 1, . . . ,G) (26)

can be reasonably assumed to be valid for the AN fluxes at a smooth point rS of the interface between any two adjacent
regions V I , V II .

On the contrary, the interface conditions for the Jα,g (r) vectors, can be rigorously derived from the differential
equations themselves. Let ∆Ŝ be an arbitrary, smooth part of the interface, say Ŝ , between V I and V II and let ∆Ŝ I ,
∆Ŝ II be two pieces of surface parallel to ∆Ŝ , at a distance ε from it and such that ∆Ŝ I is belonging to V I and ∆Ŝ II to
V II . Considering the cylinder ∆V with bases ∆Ŝ I and ∆Ŝ II , let ∆L be its lateral surface (Fig. 1). Finally, let nI

S and
nII

S be the outward normal to ∆Ŝ I , respectively ∆Ŝ II ; more generally, let nS denote the outward normal at any point
of the boundary ∂ (∆V) of ∆V , so that, in particular, nS = nI

S if rS ∈ ∆Ŝ I and nS = nII
S if rS ∈ ∆Ŝ II . An integration of

Eq. (20) over ∆V then gives∫
∆V
∇ · Jα,g (r) dV +

∫
∆V

Uα,g (r) dV = 0 (α = 1, . . . ,N; g = 1, . . . ,G) , (27)

where

Uα,g (r) =

N∑
β=1

G∑
g′=1

Σαβ,gg′ (r) φβ,g′ (r) − sext
g (r) . (28)

Assuming that the measure of ∆V is O (ε) (Fig. 1), the integral involving Uα,g is also O (ε), by virtue of the bound-
edness of Σαβ,gg′ (r), φβ,g′ (r) and sext

g (r). The remaining integral gives, after an application of the divergence theorem
and the introduction of the normal components of the Jα,g’s vectors,∫
∂(∆V)

Jα,g (rS ) · nS dS =

∫
∆Ŝ II

JII
nS ,αg

(
rS + εnII

S

)
dS

+

∫
∆Ŝ I

JI
nS ,αg

(
rS + εnI

S

)
dS + O(ε) , (29)

where the O(ε) term is now referring to the contribution of the lateral surface, ∆L, of ∆V . Taking the limit as ε→0 in
both integrals of Eq. (27) we conclude, owing to the arbitrariness of ∆Ŝ and therefore of ∆Ŝ I and ∆Ŝ II ,

JII
nS ,αg

(
rS + εnII

S

)
+ JI

nS ,αg

(
rS + εnI

S

)
→ 0 (30)
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or also, since nII
S = −nI

S = nS and using simpler notations

JI
nS ,αg (rS ) = JII

nS ,αg (rS ) (α = 1, . . . ,N; g = 1, . . . ,G) , (31)

an equation that establishes the continuity of the (net) normal AN currents JnS ,αg at the interface, thus completing,
together with Eqs. (26), the set of the interface conditions to be used with the AN differential equations.

Remark 1. The continuity of the normal AN currents has been here directly derived from the AN differential
equations, thus ensuring, in full generality, the consistency of these interface conditions with the AN equations them-
selves. As we have already observed, this is not true for the continuity conditions of the AN fluxes, which need being
supported by an argument of physical nature. It must be recalled, however, that for the more restricted class of the
Cσ systems with isotropic scattering both relations of continuity, Eqs. ( 26) and (31), can be derived in a rigorous
way as simple regularity properties of the AN solutions (Ciolini et al., 2002). In Appendix C we give an extension
of this proof to Cσ systems with a linearly anisotropic scattering. In such a proof we shall limit ourselves to show
the interface continuity of the AN fluxes, since the argument concerning the normal currents has been autonomously
treated above.

We feel therefore ourselves legitimate to conclude that the classical continuity conditions, Eqs. (26) and (31), can
be adopted for the AN fluxes and normal currents at the interface between two adjacent regions.

Of the other types of conditions, the reflection conditions are obvious (one must simply impose the vanishing of
the AN normal currents). The void (no-entry) boundary conditions, however, deserve a special discussion, which will
be developed in sect. 4.

Remark 2. The continuity of the physical g-group fluxes and normal currents, Φg and JnS ,g, is an obvious conse-
quence of Eqs. (10) and (25).

3. The classical version of the AN boundary integral equations

Differently from the arguments of the previous section, the passage from the differential to the boundary integral
form of the AN equations can be more easily developed in an abstract way, without making reference to the physical
meaning of the involved quantities. Accordingly, the single-index notation (as in Eqs. (24)) will be preferred.

Let V be a region of a general neutron diffusing system. It is assumed that V is convex and with a piecewise
smooth boundary surface S . Let, moreover,

(u, v) =

Γ∑
γ=1

∫
V

uγ (r) vγ (r) dV (32)

be the scalar product of any two vectors u (r) = [u1 (r) , . . . , uΓ (r)]T and v (r) = [v1 (r) , . . . , vΓ (r)]T with Γ = NG
components. Let, finally, Lγγ′ be the following ΓxΓ matrix

Lγγ′ = −∇ · Dγγ′∇ + Σγγ′ (33)

which allows to rewrite Eqs. (24) as follows

Γ∑
γ′=1

Lγγ′φγ′ = sext
γ (γ = 1, . . . ,Γ) (34)

or, in a self-evident compact form, Lφ = sext. The weak form of the latter expression is (Lφ,φ∗) =
(
sext,φ∗

)
or, in

terms of the components,

Γ∑
γ=1

∫
V

Γ∑
γ′=1

Lγγ′φγ′φ∗γ dV =

Γ∑
γ=1

∫
V

sext
γ φ∗γ dV, (35)
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where φ∗ is an arbitrary vector (sufficiently smooth as regards its space dependence). Let us now consider a single
integral

∫
V Lγγ′φγ′φ∗γ dV . An application of the Green identity states that, if f (r), g(r), k(r) are three functions that

admit all the partial derivatives that are necessary, then∫
V

[
(∇ · k∇ f ) g − f (∇ · k∇g)

]
dV =

∫
S

[(
k
∂ f
∂nS

)
g − f

(
k
∂g
∂nS

)]
dS . (36)

Namely, since for any vector v (r) =
[
vx (r) , vy (r) , vz (r)

]T
we have ∇ · (gv) = g∇ · v + ∇g · v, by setting v = k∇ f we

obtain

∇ · (gk∇ f ) = g∇ · (k∇ f ) + ∇g · (k∇ f ) =
[
∇ · (k∇ f )

]
g + k∇ f · ∇g (37)

and, similarly,

∇ · ( f k∇g) =
[
∇ · (k∇g)

]
f + k∇g · ∇ f . (38)

Thus∫
V

[
(∇ · k∇ f ) g − (∇ · k∇g) f

]
dV =

∫
V

[
∇ · (gk∇ f ) − ∇ · ( f k∇g)

]
dV

=

∫
S

[
gk∇ f · nS − f k∇g · nS

]
dS

=

∫
S

[
gk

∂ f
∂nS
− f k

∂g
∂nS

]
dS , (39)

where the divergence theorem has been applied to the vectors v1 = gk∇ f and v2 = f k∇g. Eq. (36) then follows.
Concerning the integral

∫
V Lγγ′φγ′φ∗γ dV we get, by deleting the opposite terms involving Σγγ′ and applying the

above identity,∫
V

(
Lγγ′φγ′

)
φ∗γ dV −

∫
V
φγ′

(
Lγγ′φ∗γ

)
dV =

−

∫
V

[
∇ ·

(
Dγγ′∇φγ′

)
φ∗γ − φγ′∇ ·

(
Dγγ′∇φ

∗
γ

)]
dV

= −

∫
S

[(
Dγγ′

∂φγ′

∂nS

)
φ∗γ − φγ′

(
Dγγ′

∂φ∗γ

∂nS

)]
dS . (40)

Then, Eq. (35) can be written as follows∫
V

Γ∑
γ,γ′=1

φγ′Lγγ′φ∗γ dV −
∫

S

Γ∑
γ,γ′=1

[(
Dγγ′

∂φγ′

∂nS

)
φ∗γ

−φγ′

(
Dγγ′

∂φ∗γ

∂nS

)]
dS =

∫
V

Γ∑
γ=1

sext
γ φ∗γ dV. (41)

It is convenient to introduce the (formal) adjoint of the matrix differential operator L:

L∗ = −∇ · D∗∇ + Σ∗ (42)

where L∗γγ′ = Lγ′γ, D∗γγ′ = Dγ′γ, Σ∗γγ′ = Σγ′γ. Eq. (41) takes the following form∫
V

Γ∑
γ′=1

φγ′
Γ∑
γ=1

L∗γ′γφ
∗
γ dV −

∫
S

 Γ∑
γ=1

φ∗γ

 Γ∑
γ′=1

Dγγ′
∂φγ′

∂nS


−

Γ∑
γ′=1

 Γ∑
γ=1

D∗γ′γ
∂φ∗γ

∂nS

 φγ′
 dS =

∫
V

Γ∑
γ=1

sext
γ φ∗γ dV. (43)

9



A procedure that has been used for diffusion and AN problems in the case of a diagonal D (Colombo et al. (1988),
Temesvari and Makai (1992), Ciolini et al. (2002)) will be now extended to a full D matrix.

Let us consider the following non-homogeneous differential systems

L∗φ̃(ν) = δ (r − r0) e(ν) (ν = 1, . . . ,Γ) , (44)

where e(1) = [1, 0, . . . , 0]T , e(2) = [0, 1, . . . , 0]T , . . ., e(Γ) = [0, 0, . . . , 1]T or, in terms of the components

Γ∑
γ=1

L∗γ′γφ̃
(ν)
γ = δ (r − r0) δγ′ν

(
γ′, ν = 1, . . . ,Γ

)
(45)

and let φ̃(ν) be a solution of the ν-th system. Namely, φ̃(ν) is such that, for each ν, (i) the Γ-ple of functions φ̃(ν)
γ (r)

satisfies the equations of the ν-th system (45), (ii) the vectors φ̃(ν) (r) =
[
φ̃(ν)

1 (r) , φ̃(ν)
2 (r) , . . . , φ̃(ν)

Γ
(r)

]T
are linearly

independent (see Appendix A). It is also useful to have more complete notations for the φ̃(ν) vectors and their φ̃(ν)
γ

components, namely φ̃(ν)(r0, r) and φ̃(ν)
γ (r0, r), respectively, in order to have an explicit indication of the point where

the source is located. The functions φ∗γ in Eq. (43) are then replaced by the functions φ̃(ν)
γ (r0, r), which will be given

the name of fundamental solutions (or Green functions). Owing to Eq. (45), the first integral on the l.h.s. of Eq. (43)
yields∫

V

Γ∑
γ′=1

φγ′
Γ∑
γ=1

L∗γ′γφ̃
(ν)
γ dV =

∫
V

Γ∑
γ′=1

φγ′δγ′νδ (r − r0) dV

=

∫
V
φν (r) δ (r − r0) dV

= c (r0) φν (r0) (ν = 1, . . . ,Γ) , (46)

where, by the properties of the delta function, c (r0) is equal to 1, 0, 1/2 according to r0 is inside V , outside V or
coincides with a smooth point of the boundary surface, S (if r0 is not a smooth point, i.e. it is a vertex, or is belonging
to an edge, then c (r0) = Ω/4π, Ω being the angle of aperture of the tangent cone at r0). With these positions and
replacing the couple r0, r by r, r′S Eq. (43) takes the following form

c (r) φν (r) −
∫

S


Γ∑
γ=1

φ̃(ν)
γ

(
r, r′S

) Γ∑
γ′=1

Dγγ′
(
r′S

) ∂φγ′
∂n′S

(
r′S

)
−

Γ∑
γ′=1

 Γ∑
γ=1

D∗γ′γ
(
r′S

) ∂φ̃(ν)
γ

∂n′S

(
r, r′S

) φγ′ (r′S )
 dS ′

=

∫
V

Γ∑
γ=1

φ̃(ν)
γ

(
r, r′

)
sext
γ

(
r′
)

dV ′ (ν = 1, . . . ,Γ) . (47)

Let us now consider the normal components of the vectors Jγ at a point of the boundary surface, JnS ,γ:

JnS ,γ (rS ) = Jγ (rS ) · nS = −

Γ∑
γ′=1

Dγγ′ (rS )
∂φγ′

∂nS
(rS ) . (48)

and let, moreover,

J̃(ν)
nS ,γ

(
r, r′S

)
=

Γ∑
γ′=1

D∗γ′γ
(
r′S

) ∂φ̃(ν)
γ′

∂n′S

(
r, r′S

)
. (49)
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Eqs. (47) can be written as follows

c (r) φν (r) +

Γ∑
γ=1

∫
S

[
φ̃(ν)
γ

(
r, r′S

)
Jn′S ,γ

(
r′S

)
+ J̃(ν)

n′S ,γ
(
r, r′S

)
φγ

(
r′S

)]
dS ′

=

Γ∑
γ=1

∫
V
φ̃(ν)
γ

(
rS , r′

)
sext
γ

(
r′
)

dV ′ (ν = 1, . . . ,Γ) , (50)

a relation that allows to determine the φν (r) moments (i.e. the AN fluxes) at any point r ∈ V , provided the values of
these moments and their normal derivatives (and therefore the JnS ,γ’s) are known at the points of the boundary. Taking
r = rS , Eq. (50) becomes a system of boundary integral equations (BIE):

c (rS ) φν (rS ) +

Γ∑
γ=1

∫
S

[
φ̃(ν)
γ

(
rS , r′S

)
Jn′S ,γ

(
r′S

)
+ J̃(ν)

n′S ,γ
(
rS , r′S

)
φγ

(
r′S

)]
dS ′

=

Γ∑
γ=1

∫
V
φ̃(ν)
γ

(
rS , r′

)
sext
γ

(
r′
)

dV ′ (ν = 1, . . . ,N) . (51)

We shall call these BIE’s the classical form of the AN boundary integral equations. If the functions JnS ,γ (rS ) are
assigned at the boundary, by solving this system the boundary values of the moments φγ (rS ) are also obtained and
the substitution of both the φγ (rS ) and the JnS ,γ (rS ) functions into Eq. (50) yields the moments φν (r) and therefore
the physical flux Φ (r) at any r ∈ V . Alternatively, if the φγ (rS ) are assigned at the boundary (which corresponds
to Dirichlet-type conditions, as opposed to the previous Neumann-type conditions) then Eqs. (51) are to be solved
with respect to the JnS ,γ (rS ) (as integral equations of the first kind) and the solution of the problem follows, as
before. Now, solving the Γ partial differential systems in Eq. (45) with general, space dependent coefficients Dγγ′ and
Σγγ′ would make the present method quite cumbersome or even completely unsuitable. A simplifying assumption is
therefore necessary. Thus, we assume that the general neutron diffusing system is an array of homogeneous regions, an
assumption that is fortunately fulfilled, sometimes also at different scales, by the architecture of most nuclear reactors.
Eq. (45) can be rewritten as follows

−

Γ∑
γ=1

D∗γ′γ∇
2
r φ̃

(ν)
γ (r0, r) +

Γ∑
γ=1

Σ∗γ′γφ̃
(ν)
γ (r0, r) = δ (r − r0) δγ′ν

(
γ′ = 1, . . . ,Γ

)
, (52)

with ν = 1, . . . ,Γ. The solutions of the above differential systems (where the physical parameters are referred to
a specific region) are now sought on the whole R3 space, with a vanishing condition at infinity or, if necessary,
a Sommerfeld radiation condition. The solution procedure is sketched in Appendix A, where it is shown that the
kernels φ̃ν are linear combinations of diffusion-like Green functions.

Once the kernels φ̃(ν)
γ and J̃(ν)

γ of the boundary integral equations describing a single region have been determined,
one can tackle the problem of two (or more) interacting regions, each of which with its own cross sections. It will
suffice to consider only two regions V I and V II , of which V I is finite and convex and V II is the complement of V I with
respect to R3. Let S be the interface between V I and V II . Eqs. (51) are then written for the two regions:

cI(rS ) φI
ν (rS ) +

Γ∑
γ=1

∫
S

[
φ̃I(ν)
γ

(
rS , r′S

)
JI

nI
S
′,γ

(
r′S

)
+ J̃I(ν)

nI
S
′,γ

(
rS , r′S

)
φI
γ

(
r′S

)]
dS ′

=

Γ∑
γ=1

∫
V
φ̃I(ν)
γ

(
rS , r′

)
sI
γ

(
r′
)

dV ′ (53)
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cII(rS ) φII
ν (rS ) +

Γ∑
γ=1

∫
S

[
φ̃II(ν)
γ

(
rS , r′S

)
JII

nII
S
′,γ

(
r′S

)
+ J̃II(ν)

nII
S
′,γ

(
rS , r′S

)
φII
γ

(
r′S

)]
dS ′

=

Γ∑
γ=1

∫
V
φ̃II(ν)
γ

(
rS , r′

)
sII
γ

(
r′
)

dV ′ (ν = 1, . . . ,Γ) , (54)

with obvious notations. Elimination of φII
ν (rS ) and JII

nII
S ,ν

(rS ) by means of the interface conditions φI
ν (rS ) = φII

ν (rS )

and JI
nI

S ,ν
(rS ) = −JII

nII
S ,ν

(rS ), with nII
S = −nI

S (see Eq. (26) and (30) or (31)), allows to obtain a system of two

integral equations for the remaining unknowns φI
ν (rS ) and JI

nI
S ,ν

(rS ), which can be solved by a numerical method.
The procedure can be immediately generalized to more regions.

4. The partial current boundary integral form of the AN equations and their interface conditions

Let us consider the classical boundary integral equation system for a single homogeneous region V , Eqs. (51), and
introduce the following kernels

J̃(ν)±
nS ,γ

(
rS , r′S

)
=

1
4
φ̃(ν)
γ

(
rS , r′S

)
∓

1
2

J̃(ν)
nS ,γ

(
rS , r′S

)
, (55)

where, reciprocally,

φ̃(ν)
γ

(
rS , r′S

)
= 2

[
J̃(ν)+

nS ,γ

(
rS , r′S

)
+ J̃(ν)−

nS ,γ

(
rS , r′S

)]
(56)

J̃(ν)
nS ,γ

(
rS , r′S

)
= J̃(ν)−

nS ,γ

(
rS , r′S

)
− J̃(ν)+

nS ,γ

(
rS , r′S

)
. (57)

We proceed in a similar way with the unknowns φγ (rS ) and JnS ,γ (rS ) of Eqs. (51). Namely, we set

J±nS ,γ
(rS ) =

1
4
φγ (rS ) ±

1
2

JnS ,γ (rS ) (58)

and, reciprocally,

φγ (rS ) = 2
[
J+

nS ,γ
(rS ) + J−nS ,γ

(rS )
]

(59)

JnS ,γ (rS ) = J+
nS ,γ

(rS ) − J−nS ,γ
(rS ) . (60)

Substitution into Eqs. (51) leads to the following BIE system in terms of the J±nS ,γ
(rS ):

1
2

c (rS ) J+
nS ,ν

(rS ) +

Γ∑
γ=1

∫
S

J̃(ν)+
n′S ,γ

(
rS , r′S

)
J+

n′S ,γ
(
r′S

)
dS ′

= −
1
2

c (rS ) J−nS ,ν
(rS ) +

Γ∑
γ=1

∫
S

J̃(ν)−
n′S ,γ

(
rS , r′S

)
J−n′S ,γ

(
r′S

)
dS ′

+
1
4

∫
V
φ̃(ν)
γ

(
rS , r′

)
sγ

(
r′
)

dV ′ (ν = 1, . . . ,Γ) . (61)
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The following iterative process is then applied:

1
2

c (rS ) (n+1)J+
nS ,ν

(rS ) +

Γ∑
γ=1

∫
S

J̃(ν)+
n′S ,γ

(
rS , r′S

) (n+1)J+
n′S ,γ

(
r′S

)
dS ′

= −
1
2

c (rS ) (n)J−nS ,ν
(rS )

+

Γ∑
γ=1

∫
S

J̃(ν)−
n′S ,γ

(
rS , r′S

) (n)J−n′S ,γ
(
r′S

)
dS ′

+
1
4

∫
V
φ̃(ν)
γ

(
rS , r′

)
sext
γ

(
r′
)

dV ′ (ν = 1, . . . ,Γ) . (62)

The motivation of this process is transparent, provided we look at the J±nS ,ν
’s as if they were true partial currents: if

the partial currents entering V , (n)J−nS ,ν
(rS )’s are known, then the r.h.s. of Eqs. (62) is known and the integral equation

system can be solved with respect to the outgoing partial currents (n+1)J+
nS ,ν

(rS )’s. The above intuitive approach needs,
however, some more analysis.

We recall that, for a system constituted of only two regions V I , V II , as at the end of sect.3, the transport process
is described, according to the classical AN boundary integral version, by Eqs. (53) and (54), coupled via the interface
conditions φI

ν (rS ) = φII
ν (rS ) and JI

nI
S ,ν

(rS ) = −JII
nII

S ,ν
(rS ), with nII

S = −nI
S . In the partial current version, the integral

equation for the V I region is

1
2

cI (rS ) JI+
nS ,ν

(rS ) +

Γ∑
γ=1

∫
S

J̃I(ν)+
n′S ,γ

(
rS , r′S

)
JI+

n′S ,γ
(
r′S

)
dS ′

= −
1
2

cI (rS ) JI−
nS ,ν

(rS ) +

Γ∑
γ=1

∫
S

J̃I(ν)−
n′S ,γ

(
rS , r′S

)
JI−

n′S ,γ
(
r′S

)
dS ′

+
1
4

∫
V
φ̃I(ν)
γ

(
rS , r′

)
sI,ext
γ

(
r′
)

dV ′ (ν = 1, . . . ,Γ) . (63)

while a similar equation holds for the V II region. As it concerns the interface conditions that are appropriate for the
partial currents we have, according to Eqs. (58) the following (abstract) definition

JI±
nI

S ,ν
(rS ) =

1
4
φI
ν (rS ) ±

1
2

JI
nI

S ,ν
(rS ) (rS ∈ S ) (64)

while a similar relation is written, with nI
S replaced by nII

S = −nI
S , if the point rS is seen as a limit point of V II .

However, we can retain the unit vector nI
S , provided the ± signs are replaced by ∓. Thus, if the continuity of the φν’s

and the JnS ,ν’s is also taken into account, we have

JII±
nI

S ,ν
(rS ) =

1
4
φII
ν (rS ) ∓

1
2

JII
nI

S ,ν
(rS )

=
1
4
φI
ν (rS ) ∓

1
2

JI
nI

S ,ν
(rS ) (65)

which amounts to say, by comparison with Eqs. (64) and putting nI
S = nS ,

JII±
nS ,ν

(rS ) = JI∓
nS ,ν

(rS ) (66)

as may be expected from an intuitive point of view.
It is to be remarked that Eqs. (66) have been derived from the continuity relations for φν and JnS ,ν at the S interface

by means of algebraic manipulations. No physical meaning has been given to the new quantities J±nS ,ν
. The only

consequence to be drawn is, however, an important one, namely that, since there is an obvious one-to-one mapping
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Figure 2: The error with respect to the MCNP reference calculation of the flux, Φ (x), in the multiplying layer, as calculated with the AN method
for N = 8, by using both the interface conditions with a purely absorbing medium and Marshak-like void conditions.

connecting the φν, JnS ,ν and the J±nS ,ν
variables, Eqs. (66) are equivalent to Eqs. (26) and (31), so that if the solution of a

problem satisfies a set of continuity conditions, it must satisfy the other set as well. The classical and the partial current
AN approaches are therefore completely equivalent as regards both the BIE system by which they are expressed and
the interface conditions that are connecting the nearby regions. Even for a general, multiregion system, Eqs. (66)
represent the interface conditions to be used within the partial current framework, in particular when applying the
iterative solution procedure. Moreover (and this is the other main point of the method) only the interface conditions
are considered and, as anticipated in the Introduction, even the void conditions are replaced by interface conditions
with a supplementary, purely absorbing medium. The expedience of this procedure has been the subject of discussions
since the early days of reactor physics and we would not insist any more on the argument. In order to appreciate the
accuracy of our own application we limit ourselves to show a simple example, namely the following two-region, one-
velocity criticality problem. A multiplying layer, 0 ≤ x ≤ a, where a = 20.0 cm, with cross sections σ = 1.5 cm−1,
σ0 = 1.35 cm−1, σ1 = 0.3375 cm−1 and with νσ f = 0.18 cm−1, is considered. A reflection condition holds at x = 0,
while at x = a the multiplying layer is followed by a purely absorbing layer, with the same total cross section and the
same thickness of 20.0 cm, which ensures in practice the vanishing of the flux at its right boundary. This two-region
problem has been solved in the AN approximation and also, after removal of the absorbing layer, by using the simple
Marshak-like approximation J−n,ν (a) = 0 for ν = 1, . . . ,N, with N ranging from 2 to 8. Fig. 2 shows the physical flux
Φ(x) for 0 ≤ x ≤ a, as obtained by the two-region calculation, and that obtained by eliminating the absorbing layer
and applying the Marshak-like void conditions at x = a. A suitable one-group MCNP calculation with the same cross
sections is used as reference. While the full two-region calculation shows an excellent agreement with MCNP, the use
of the Mashak-like conditions shows a considerable error when approaching the boundary. Since the fluxes in Fig. 2
are average values on the computational intervals (0.25 cm), in order to get a better comparison we have reported in
Table 1 the value of the multiplication constant, k, and that of the net physical current at x = a (which obviously
coincides with the outgoing partial current in the MCNP and Marshak cases).

The introduction of the absorbing medium implies that the calculations must include an additional region, which
should be in principle of an infinite extent, since it is the complement of the system with respect to R3. However, it
is sufficient, practically, to add an absorbing shell with a thickness of a few mean free paths, at the outer boundary of
which the flux is expected to be small enough so as to allow the Marshak conditions to be applied without any harm
for the accuracy of the calculation. Sometimes the reflector itself can be a reasonable substitute of the outer shell.
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Table 1: Multiplication constant, k, and net current, J, at the free boundary of the multiplying layer
obtained both with Marshak-like void conditions (VC) and interface conditions (IC) with a fully ab-
sorbing medium, are compared with reference values obtained by the MCNP calculation.

MCNP (ref.) A2 A3 A4 A5 A6 A7 A8

k 1.18681a ∆k (pcm) VC 26 29 30 30 30 30 30
IC 0 1 2 2 2 2 2

J 0.17537b ∆J (%) VC -1.69 -1.91 -2.00 -2.02 -2.02 -2.05 -2.06
IC 0.25 0.18 0.15 0.14 0.13 0.13 0.12

a With an estimated standard deviation of 0.00004.
b With an estimated relative error of 0.04%.

5. Numerical applications

The present paper has been focused on the aspects that are specific of the AN method. A key point of the nu-
merical procedure, namely the actual solution of the AN partial current BIE’s holding for each homogeneous region,
V i, in which the general system is subdivided has not insofar been considered. However, this argument has been
thoroughly discussed, for criticality problems in the diffusion approximation, in Cossa et al. (2010) (see also Giusti
and Montagnini (2012), in which the procedure has been extended to SP3). Here we limit ourselves to a very short
sketch. The J±nS ,ν

(rS ) partial currents are expanded into Legendre polynomials (in the space variables) on each face of
any V i region of the system (a prism with a rectangular base) and a similar Legendre expansion is performed for the
kernels, so that the integral equations are transformed into an algebraic linear system for the coefficients of the partial
current expansions. As the kernels are sums of many diffusion-like kernels (the fundamental functions) what is to be
done is to evaluate the Legendre expansions of the latter kernels with respect to the rS , r′S variables, which implies,
considering the different faces of V i, to calculate many fourfold integrals, a heavy task which is alleviated, however,
by the use of suitable recursion formulas (for details the reader is deferred to Cossa et al. (2010)). The procedure ends
with the evaluation of the response matrix, which gives the Legendre moments of the outcoming partial currents as
induced by the incoming ones. This concludes the first level (or ”cell level”) part of the calculation. The second level
(or ”general system level”) relies on the application of the classical response matrix approach and is also discussed in
the above paper. For the criticality problems, actually the only ones that have been considered in that paper, as well
as in the present one, the multiplication factor, k, is updated at any step of such a second level.

The numerical examples in this paper are all referring to the xyz geometry, too. The solution method, developed
according to the iteration process based on the interface partial currents and the response matrix technique, has been
implemented into a computer code called BERM-AN. All the calculations for the numerical examples reported in this
section have been performed on a Linux based PC with an Intel R© i7-860 CPU and 8 Gb of RAM. The executable
BERM-AN file has been obtained compiling the Fortran source files, which implement the method described in this
paper, with the Intel R© Fortran Compiler, version 11.1. Moreover, in order to better exploit the multithread character-
istics of the CPU, many Fortran routines take advantage of the easy parallelization offered by the OpenMPTMFortran
compiler directives.

With this method, according to Cossa et al. (2010), a multi-node critical problem is reduced to the solution of a
homogeneous linear system in terms of the outward nodal partial currents that are here collectively symbolized with
the vector J+. The following iterative scheme (actually the classical power method) is adopted:

(n+1)J+ = Θ (k) (n)J+. (67)

For a fixed value of k, Eq. (67) is iterated until the parameter

(n+1)α (k) =

√〈(n+1)J+, (n+1)J+
〉〈(n)J+, (n)J+

〉 (68)

differs from that evaluated at the previous iteration by less than a specified value, εα. Since α (k) turns out to be a
monotonic function of k, once its value at the n-th iteration is known, a new value for the (n+1)-th iteration is estimated
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Figure 3: The geometry of the 2D, one energy group benchmark problem proposed by Hebért (dimensions are in cm).

Table 2: Cross section for the 2D, one energy group benchmark
problem proposed by Hebért.

Mixture Σ (cm-1) Σs0 (cm-1) Σs1(cm-1) νΣ f (cm-1)

1 0.025 0.013 0.0 0.0155
2 0.025 0.024 0.006 0.0
3 0.075 0.0 0.0 0.0

by the Newton’s chord method. The calculation is stopped when the new value of k differs from the previous one by
less than a specified value, εk.

For comparison purposes the numerical examples here presented have also been solved by means of the well
known discrete ordinates codes DORT and TORT (Rhoades and Simpson, 1997), in the 2D and 3D cases, respectively.
A rather high angular quadrature (S16) has always been used. In the first example, a further comparison with the Monte
Carlo code MCNP, version 5 (X-5 Monte Carlo Team, 2003), was also performed.

Finally, it has to be noted that the computing times reported for each numerical example are to be compared with
caution, since for DORT and TORT only a sequential version of the executable file was available.

5.1. Example 1: A 2D, one energy group, benchmark problem
This problem, although not representative of a real situation, is designed in order to magnify the transport and

anisotropic effects (Hébert, 2010). Three regions are characterizing the problem. A square homogeneous core
(160×160 cm2) is surrounded by a reflector. In its turn, the reflector is surrounded by a perfectly absorbing medium,
on the external surface of which a vacuum boundary condition is finally applied (a Marshak condition will suffice),
see Fig. 3. Differently from DORT, which is a 2D computational code, BERM-AN and MCNP are 3D codes and the
geometry of the problem had to be modified. For BERM-AN, a finite height along the z-axis has been considered and
boundary reflective conditions applied on the surfaces orthogonal to this axis. For MCNP the geometry was instead
considered as infinite along the z-axis direction.

Table 2 shows the cross sections of the three different materials of this problem.
A suitable one-group cross section library has been produced in order to provide MCNP with the same cross

sections reported in Table 2. In particular the linearly anisotropic Legendre representation of the scattering, f (µ), has
been converted into a histogram probability density function (PDF) with 1000 steps of equal area. It has been shown
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Table 3: The multiplication constant k for the 2D, one energy
group with linearly anisotropic scattering benchmark problem.

Code N L k ∆k CPU time
(pcm) (s)

MCNP (ref.) 0.99233a − 4210.0
DORT S16

b 0.99226 -7 19.7
BERM-ANc 2 3 0.99115 -118 1.4

2 4 0.99115 -118 2.8
3 3 0.99216 -17 2.6
3 4 0.99217 -16 4.9
4 3 0.99237 4 4.1
4 4 0.99237 4 8.2
5 3 0.99245 12 6.2
5 4 0.99245 12 12.9
6 3 0.99249 16 8.5
6 4 0.99249 16 17.2
7 3 0.99251 18 11.4
7 4 0.99252 19 25.1
8 3 0.99253 20 15.3
8 4 0.99253 20 34.1

a With an estimated standard deviation of 0.00003.
b With meshes of 2.0×2.0 cm2.
c With a computational cell size of 10.0×10.0×10.0 cm3.

that, by this approach, MCNP can match analytical solutions within statistics. To estimate the reference value of the
multiplication constant k a total number of 2500 active cycles, each one of 250000 particles, has been used for the
MCNP calculation. The MCNP multiplication constant k so calculated has been taken as reference.

In the case of the DORT calculation a spatial mesh of 2.0×2.0 cm2 was deemed adequate, since it produced a
multiplication constant, k, that was stable, at the pcm level, in comparison to that obtained with finer meshes. To
terminate the calculation, a convergence criterion of 10−5 for the eigenvalue and of 10−4 for the fission source and the
pointwise flux was adopted.

Finally, for the BERM-AN calculations the iteration over α and k were stopped when an accuracy εα and εk of
10−7 and 10−6, respectively, was achieved. If not differently stated, the above convergence criteria for both DORT and
BERM-AN have been used for all the other problems reported hereafter.

The multiplication constant k was calculated by BERM-AN, for N from 2 to 8, by expanding the partial currents
on each nodal face into Legendre polynomials up to the L-th order, with L=3 and 4. Results are compared in Table 3
with the values obtained by MCNP and DORT.

The agreement between DORT and MCNP is very good (they differ by only 7 pcm), which is not surprising, if
account is taken of the high order of angular quadrature used. As it concerns the results of BERM-AN, it appears that
an increase of the order of the Legendre expansion from L = 3 to L = 4 yields at the most a difference of 1 pcm on
k. Moreover, limiting the calculation at L = 3 allows a reduction of the computing time between 30 and 45%. The
error of the BERM-AN results towards the MCNP reference value of k is -118 pcm for N =2 and reaches a minimum
(4 pcm) for N = 4. A further increase of the order N, however, produces an increase, although moderate, of the error
(up to 20 pcm for N = 8). In some way, this is a kind of numerical confirmation of the fact that, being the AN (as
well as the SPN) equations intrinsically approximate, there exists an optimal order N (which is unfortunately problem
dependent and not known a priori) that produces the best solution in terms of accuracy (see also McClarren (2011)).

Finally, it is worth note that the values obtained with the present method in the A2 and A3 approximations match
almost exactly (within 1 pcm) those obtained by Hebért in the SP3 and SP5 approximations, using a Raviart-Thomas
finite element method with a polynomial basis of second degree (Hébert, 2010). Indeed an expected result, thanks
again to the essential equivalence AN-SP2N−1.

This problem has been solved also by means of the BERM-SP3 code (Giusti and Montagnini, 2012). Owing to
the fact that it is a one-speed problem, the anisotropic scattering is treated correctly by the latter code, too. Thus the
numerical results coincide which those obtained by the present BERM-AN calculation for N = 2 and have not been
reported.
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Figure 4: Horizontal cross section of the 3D reactor core loaded with mixed-oxide fuel assemblies.
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Figure 5: Vertical cross section of the 3D reactor core loaded with mixed-oxide fuel assemblies (dimensions are in cm). In the studied configuration
the control rods are inserted 2/3 of the way into the inner UO2 fuel assembly and 1/3 of the way into the two MOX fuel assemblies (hatched region).
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Table 4: The multiplication constant k for a 3D reactor core loaded
with mixed-oxide fuel assemblies.

Code N L k ∆k CPU time
(pcm) (m)

TORT S16
a (ref.) 1.04566 − 1944

BERM-ANb 2 3 1.04417 -149 56
2 4 1.04420 -146 73
3 3 1.04444 -122 120
3 4 1.04448 -118 161
4 3 1.04452 -114 221
4 4 1.04455 -111 300

BERM-SP3b 3 1.04893 327 56
4 1.04896 330 80

a With mesh size of 0.315×0.315×0.595 cm3.
b With a computational cell size of 1.26×1.26×7.14 cm3.

5.2. Example 2: A 3D reactor core loaded with mixed-oxide fuel assemblies

The reference geometry of this example is that of a well known 3D benchmark problem (Smith et al., 2005). As
shown in Fig. 4, it represents a small reactor core surrounded by a water reflector and made of 16 fuel assemblies (a
quarter core symmetry is present) half of which are loaded with mixed-oxide fuel rods. Each fuel assembly is a 17×17
array of square pin cells with side of 1.26 cm. A vacuum boundary condition is applied on the external surface of the
reflector. Moreover, in order to reduce the computational burden, a (non-realistic) axial symmetry is also assumed.
Fig. 5 shows the vertical section of 1/8 of the core and the boundary conditions that have to be applied. The position
of the control rods is that referred in the benchmark specification as Rodded B configuration, i.e. they are inserted by
2/3 of the way into the inner UO2 assembly and by 1/3 of the way into both MOX assemblies, as indicated by the
hatched region in Fig. 5.

Although the original benchmark was devised in order to test deterministic transport methods and codes on realistic
problems without any spatial homogenization, we have preferred, considering the approximate nature of AN , to deal
with homogenized pin cells. Thus, new sets of neutron cross sections with eight energy groups and linearly anisotropic
scattering have been specially produced for all the types of pin cells of the problem by means of suitable calculations
performed with the SCALE6 code (ORNL, 2009). The complete sets of cross sections for this modified benchmark
problem are reported in Appendix C. These cross sections have been adopted by all the computational codes here
used.

Unfortunately, for the present example, values of the average cosine of the scattering angle, µ̄, larger than 1/3
prevented the exact implementation into a histogram probability density function (PDF) of the linearly anisotropic
Legendre representation of the scattering function, f (µ) = (1 + 3µ̄µ) /2 (here µ is the cosine of the scattering angle).
As previously reported (Brown and Barnett, 2006), if µ̄ > 1/3, the Legendre representation of the scattering can be
converted into a histogram PDF only making some approximation to avoid the negative values of f (µ) that cannot
be handled by a stochastic code as MCNP. We were therefore compelled to make use of a different code in order to
perform the comparison and our choice was to use TORT.

Thus, the reference results have been obtained with the TORT code, using a S16 angular quadrature and a spatial
mesh size of 0.315×0.315×0.595 cm3. The size of the computational cells in the case of the BERM-AN calculations
was coincident, on the xy plane, with the pin cell dimensions while along the z-axis a height of 1.42 cm was considered.
Other than with BERM-AN, this problem had also been solved with the code BERM-SP3 (Giusti and Montagnini,
2012) using the same spatial discretization adopted for BERM-AN.

The values of the multiplication constant, k, obtained with BERM-AN, in the N approximation order from 2 to
4 (the maximum approximation order was limited, in this case, by the memory available on the computer) and with
BERM-SP3, in both cases for L=3 and 4, are compared in Table 4 with the reference value obtained with TORT.
Also in this case, for a fixed value of the approximation, N, the value of k for L=3 does not differ for more than a
few pcm from the value obtained with L=4, while the reduction of the computing time for L=3 amounts to about
25%. The discrepancy between the BERM-AN values of k and that of reference ranges from -149 pcm (for N=2 and
L=3) to -111 pcm (for N=4 and L=4). It is interesting to note that the absolute value of the discrepancy between the
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Table 5: 3D reactor core loaded with mixed-oxide fuel assemblies: axially-
integrated fission power in the homogenized fuel cells along the two main di-
agonals of the 4 fuel assemblies. Reference values obtained by TORT, normal-
ized with respect to the average fission power over the whole reactor core, are
compared with those obtained by BERM-AN, for N=2, and BERM-SP3. For the
latter codes only the relative error with respect to the TORT value is shown.

UO2 diagonal MOX diagonal
TORT S16 BERM-A2 BERM-SP3 TORT S16 BERM-A2 BERM-SP3

0.47903 0.82% -2.01% 2.06741 0.19% 1.22%
0.47518 0.04% -2.65% 1.56299 0.54% 1.98%
0.46208 -0.25% -2.89% 1.35895 0.29% 1.66%
0.45684 -0.47% -2.93% 1.65839 -0.06% 0.96%
0.51709 -0.69% -2.94% 1.65262 -0.01% 0.78%
0.56839 -0.69% -2.82% 1.63121 0.10% 0.78%
0.63440 -0.84% -2.71% 1.64288 0.03% 0.55%
0.65150 -0.97% -2.72% 1.68301 -0.15% 0.26%
0.70799 -0.96% -2.41% 1.75747 -0.34% -0.19%
0.80903 -0.63% -1.66% 1.53980 -0.22% -0.39%
0.79865 -0.01% -0.79% 1.69792 -0.10% -0.47%
0.68044 0.12% -0.49% 1.64675 -0.22% -0.69%
0.68525 0.25% -0.30% 1.64675 -0.22% -0.69%
0.82723 0.42% -0.24% 1.69792 -0.10% -0.47%
0.92358 0.26% -0.57% 1.53980 -0.22% -0.39%
0.92309 0.20% -0.96% 1.75747 -0.34% -0.19%
0.73255 0.21% -1.04% 1.68302 -0.15% 0.26%
0.62911 0.22% -1.02% 1.64289 0.03% 0.55%
0.47954 0.42% -0.84% 1.63122 0.10% 0.78%
0.41441 0.46% -0.74% 1.65263 -0.01% 0.78%
0.30087 0.45% -0.69% 1.65840 -0.06% 0.96%
0.21300 0.47% -0.68% 1.35895 0.29% 1.66%
0.20789 0.36% -0.97% 1.56300 0.54% 1.98%
0.26832 0.22% -1.52% 2.06741 0.19% 1.22%

BERM-SP3 value of k and the reference is quite remarkable, namely 330 pcm (L=4), i.e. more than twice than the
discrepancy shown by the value of k calculated by BERM-AN for N=2. This is most probably not a consequence
of the different theoretical formalism of A2 with respect to SP3, but of the simplified treatment of the anisotropic
scattering implemented into BERM-SP3, where, according to Bell and Glasstone (1970), an approximate balance, for
each energy group, between the in-scattered and out-scattered neutrons is assumed. Such an approximation, however,
is not made by the method described in the present paper and implemented into the BERM-AN code, where the
treatment of the linearly anisotropic scattering is rigorous.

Finally, Table 5 compares the axially-integrated fission power obtained by TORT for the homogenized fuel cells
along the two main diagonals of the four fuel assemblies with those calculated by BERM-AN, for N=2, and BERM-
SP3. Here again, the BERM-AN results for N = 2 show a better agreement with respect to the reference values than
the BERM-SP3 results. In particular the largest discrepancy is of -0.97% and 0.54% for the UO2 and MOX diagonal,
respectively, in case of BERM-AN while of -2.94% and 1.98% in case of BERM-SP3.

6. Conclusions

A 3D (xyz) multigroup boundary element-response matrix transport code (BERM-AN), which includes a full
treatment of the linearly anisotropic scattering, is presented. The AN approximation method on which this code is
based is essentially a variant of the simplified spherical harmonics method (SPN) and, as such, belongs to the class
of the canonical SPN methods (Larsen, 2011). However, the AN method was originated in a way that is completely
independent of SPN (Coppa and Ravetto, 1982) and despite the essential equivalence of the two methods, some details
suggest that AN still retains its own individuality. One of these, which emerged quite early (Coppa and Ravetto,
1982), is concerning a non-local no-entry condition for the A1 ≡ P1 first moment (the scalar flux) at the boundary of
an isolated, homogeneous body, V say. This condition, after being extended to all the AN moments, can be equivalently
replaced (Ciolini et al., 2002) by more intuitive conditions, in the style of the classical flux and net current continuity of
neutron diffusion, at the interface with a purely absorbing medium that occupies the complement of V with respect to
all space. This approach, the validity of which has been extended, in the case of isotropic scattering, to all the systems
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for which the total cross section is constant (Cσ systems) (Ciolini et al., 2002), holds also in the case of linearly
anisotropic scattering (Coppa et al., 1983; Ciolini et al., 2002) and is here generalized to multigroup problems. Two
remarks are in order. For general (non-Cσ) systems the AN equations have been obtained on the basis of Gelbard’s
approximate assumptions and the interface continuity conditions for the AN currents have been consistently derived
from the AN equations themselves. The interface continuity conditions for the AN fluxes are based instead on a
physical plausibility argument (as it is for the classical SPN approach) and a formal assessment of their validity can
only be found in the asymptotic results by Brantley and Larsen (2000) and Larsen (2011). However, for the Cσ
systems, a proof of the AN flux continuity at an interface where the first order anisotropic scattering moment, σ1,
may have a jump, is still possible, independently of the Gelbard’s assumptions. Thus we have considered that the
AN flux interface conditions were also reasonably well assessed and decided, even for a general non-Cσ system, to
replace the usual no-entry conditions by interface conditions with an absorbing extra region surrounding the original
system. The increased heaviness of the computations has been shown to be quite acceptable. Of course, any finite
element method could be applied to solve a problem of this kind, but the above analysis of the interface conditions
gives indeed a strong suggestion to fully exploit the boundary element method. This suggestion was also followed in
previous papers and, with a greater generality, in the present one. Taking advantage of the fact that the system of the
classical boundary integral equations into which the AN partial differential equations are transformed can be given a
partial current form, an iterative process involving the AN partial currents is set down. A moment projection method
(see Cossa et al. (2010), Giusti and Montagnini (2012) other than the literature therein) is used to numerically solve
the boundary integral equations and determine the response matrix of each region of the system. A coupling matrix is
then introduced in order to perform the final calculations at the level of the whole system, to evaluate (in the case of
criticality problems) the multiplication constant and the overall flux distribution. The numerical examples presented
in sect.5 illustrate the high accuracy of the present method as well as its good computational efficiency.

Appendix A.

The source point r0 in Eq. (52) will be taken as the origin of the reference system and the functions φ̃(ν)
γ (r) simply

denoted by φ̃(ν)
γ (r), with r = |r|, owing to their radial symmetry. It will suffice to consider a single system, for instance

that for ν = 1, so that we have

−

Γ∑
γ=1

D∗γ′γ∇
2
r φ̃

(1)
γ (r) +

Γ∑
γ=1

Σ∗γ′γφ̃
(1)
γ (r) = δ (r) δγ′1,

(
γ′ = 1, . . . ,Γ

)
. (A.1)

Let us first seek for solutions holding on the interval ε ≤ r < ∞, with ε > 0, i.e. excluding the points belonging to a
small sphere of radius ε centred at the point source. Then the right hand side of Eq. (A.1) vanishes and this equation
is replaced by the corresponding homogeneous equation

−

Γ∑
γ=1

D∗γ′γ∇
2
r φ̃

(1)
γ (r) +

Γ∑
γ=1

Σ∗γ′γφ̃
(1)
γ (r) = 0,

(
γ′ = 1, . . . ,Γ

)
. (A.2)

A sum of solutions of the type ξγe−κr/4πr appears to be plausible, with κ real or complex (the factor 1/4π is for
convenience). Substituting into Eq. (A.2) and observing that ∇2

r (e−κr/4πr) = κ2 (e−κr/4πr) the following linear system
for the ξγ’s is obtained

Γ∑
γ=1

(
−κ2D∗γ′γ + Σ∗γ′γ

)
ξγ = 0

(
γ′ = 1, . . . ,Γ

)
. (A.3)

In a compact matrix form we can write(
−κ2D∗ + Σ∗

)
ξ = 0 (A.4)

or even, upon inversion of the D∗ matrix,

Qξ = κ2ξ (A.5)
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where Q = D∗−1Σ∗. Let κ2
h, ξ(h) =

[
ξ1, . . . , ξΓ

]T be the eigenvalues, respectively the eigenvectors (the latters being
assumed to be linearly independent and normalized according to the usual l2 norm) of this eigenvalue problem. The
solutions φ̃γ (r), which are therefore also linearly independent, can be written as follows

φ̃γ (r) =

Γ∑
h=1

ghξ
(h)
γ

e−κhr

4πr
(γ = 1, . . . ,Γ) (A.6)

where the gh coefficients are still to be determined. To do so, the net currents at r = ε are first evaluated

J̃n,γ′ (ε) = −

Γ∑
γ=1

D∗γ′γ

(
dφ̃γ
dr

)
r=ε

=

Γ∑
γ=1

D∗γ′γ
Γ∑

h=1

ghξ
(h)
γ

e−κhε

4πε2 (1 + κhε) . (A.7)

Integration of Eq. (A.1) over the volume of the small sphere surrounding the source, followed by an application of the
divergence theorem, shows that

4πε2 J̃n,γ′ (ε) + O (ε) = δγ′1 (A.8)

where it has been observed that the integrals involving Σ∗γ′γφ̃γ are O (ε). Taking the limit as ε → 0 and using Eq. (A.7)
yields

Γ∑
γ=1

D∗γ′γ
Γ∑

h=1

ghξ
(h)
γ = δγ′1 (A.9)

or, restoring a general ν and setting Aγ′h =
∑Γ
γ=1 D∗γ′γξ

(h)
γ ,

Γ∑
h=1

Aγ′hg(ν)
h = δγ′ν

(
γ′ = 1, . . . ,Γ

)
. (A.10)

Thus, the solution of these non-homogeneous linear systems for each ν = 1, . . . ,Γ gives the coefficients g(ν)
h and

completes the evaluation of the fundamental functions φ̃(ν)
γ :

φ̃(ν)
γ (r0, r) =

Γ∑
h=1

g(ν)
h ξ(h)

γ

e−κh |r−r0 |

4π|r − r0|
(γ = 1, . . . ,Γ; ν = 1, . . . ,Γ) (A.11)

where the point source has been again placed at an arbitrary point r0. A warning is necessary as regards the eigenvalues
of Eq. (A.5), i.e. the ”decay constants” κh. If the scattering is isotropic, it has been proved (Ciolini et al., 2002) that
the parameters κh are all distinct and positive. More complicate problems (anisotropic scattering and multigroup
problems, other than, of course, the problems referring to multiplying systems) may involve complex eigenvalues,
a circumstance that is considered in Cossa et al. (2010) and Saracco et al. (2012); the Q matrix of the first paper
corresponds essentially to minus the Q matrix now introduced and the κ2 eigenvalue is now replacing −B2. The
following conclusions are drawn: (i) if κ2

h > 0, then one must simply take for κh the positive root of κ2
h, (ii) if κ2

h < 0,
then κh = iβh, where βh is the positive root of −κ2

h, (iii) if κ2
h is complex, setting −κ2

h = ζh + iηh one has κh = γh + iβh,

where βh =
(
1/
√

2
) (√

ζ2
h + η2

h + ζh

)1/2
, γh =

(
1/
√

2
) (√

ζ2
h + η2

h − ζh

)1/2
. In the first and third case the fundamental

solutions are exponentially decaying as ρ = |r−r0| tends to infinity, while in the second case the asymptotic behaviour
is only O (1/ρ). However, the Sommerfeld radiation condition, i.e.

lim
ρ→∞

ρ

(
d

dρ
+ iβh

)
e−iβhρ

4πρ
= 0 (A.12)

is fulfilled and the uniqueness of the corresponding fundamental solution still ensured. The determination of the
fundamental solutions is therefore completed.
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Appendix B.

Let the R3 space be occupied by a medium the total cross section of which, σ, is everywhere constant, while the
space dependence of the other cross sections is arbitrary, with the only condition that the neutron scattering vanishes
identically outside a large sphere S 0. Let, moreover, S 1 be another sphere that contains S 0 in its interior. The
trajectory-integrated monokinetic transport equation to be considered is as follows

ψ (r,Ω) =

∫ R1(r,Ω)

0

[
σs

(
r − RΩ,Ω ·Ω′

)
ψ

(
r − RΩ,Ω′

)
dΩ′

+
1

4π
s (r − RΩ)

]
e−σR dR, (B.1)

where ψ (r,Ω) is the angular flux along, σ the total cross section (spatially constant), Ω, σs (r,Ω ·Ω′) the scattering
differential cross section, s (r) the neutron source, also vanishing outside S 0 and assumed to be isotropic, while
R1 (r,Ω) is such that r − R1 (r,Ω)Ω denotes the point where the line r − RΩ intersects the sphere S 1 (and where the
ingoing angular flux is obviously equal to zero). If the scattering is linearly anisotropic we may write

σs
(
r,Ω ·Ω′

)
=

1
4π

[
σ0 (r) + 3σ1 (r)Ω ·Ω′

]
, (B.2)

where σ0, σ1 have the same meaning as in sect.2 (for a one-group setting). After introducing expression (B.2) into
Eq. (B.1) and setting, as customary,

Φ (r) =

∫
4π
ψ (r,Ω) dΩ (B.3)

J (r) =

∫
4π
ψ (r,Ω)Ω dΩ (B.4)

for the scalar flux and the current vector, we can perform the integration on Ω′ and obtain

ψ (r,Ω) =
1

4π

∫ R1(r,Ω)

0
[σ0 (r − RΩ) Φ (r − RΩ)

+3σ1 (r − RΩ)Ω · J (r − RΩ) + s (r,Ω)] e−σR dR. (B.5)

By integrating both sides of this equation on Ω and putting r − RΩ = r′ we can replace, according to the usual
procedure, the dR dΩ integral by a volume integral over V1 (it is also convenient to separate the integrals involving σ0
and σ1), while ψ (r,Ω) reduces to Φ (r) :

Φ (r) =

∫
V1

[
σ0

(
r′
)
Φ

(
r′
)

+ s
(
r′
)] e−σ|r−r′ |

4π|r − r′|2
dV ′

+ 3
∫

V1

σ1
(
r′
)

J
(
r′
)
·

r − r′

|r − r′|
e−σ|r−r′ |

4π|r − r′|2
dV ′. (B.6)

Proceeding as in Davison and Sykes (1957), Ch. XVII, we observe that(
r − r′

) e−σ|r−r′ |

4π|r − r′|3
= ∇r′

∫ ∞

|r−r′ |
e−σs ds

s2 = ∇r′

[
1

|r − r′|
E2

(
σ|r − r′|

)]
, (B.7)

where E2 (x) =
∫ ∞

1 e−xtt−2 dt =
∫ 1

0 e−x/µ dµ is the exponential integral of order two. Then, Eq. (B.6) can be written as
follows

Φ (r) =

∫
V1

[
σ0

(
r′
)
Φ

(
r′
)

+ s
(
r′
)] e−σ|r−r′ |

4π|r − r′|2
dV ′

+ 3
∫

V1

σ1
(
r′
)

J
(
r′
)
· ∇r′

[
1

4π|r − r′|
E2

(
σ|r − r′|

)]
dV ′ (B.8)
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or, by Gauss’s theorem,

Φ (r) =

∫
V1

[
σ0

(
r′
)
Φ

(
r′
)

+ s
(
r′
)] e−σ|r−r′ |

4π|r − r′|2
dV ′

− 3
∫

V1

1
4π|r − r′|

E2
(
σ|r − r′|

)
∇r′ ·

[
σ1

(
r′
)

J
(
r′
)]

dV ′

+ 3
∫

S 1

1
4π|r − r′S |

E2
(
σ|r − r′S |

)
σ1

(
r′S

)
J
(
r′S

)
· n′S dS ′. (B.9)

The surface integral (in which n′S denotes the outer normal) is clearly equal to zero, since σ1 = 0 on S 1.
Now we introduce the following AN quadrature formulas, namely

e−σr

4πr2 =
σ

4πr

∫ 1

0
e−σr/µ dµ

µ2 '

N∑
α=1

wα
σe−σr/µα

4πrµ2
α

(B.10)

1
4πr

E2 (σr) =
1

4πr

∫ 1

0
e−σr/µ dµ '

N∑
α=1

wα
e−σr/µα

4πr
, (B.11)

where µα and wα are the points and weights of the 2N Gauss quadrature formula. Setting

φα (r) =

∫
V1

σe−σ|r−r′ |/µα

4πµ2
α|r − r′|

{
σ0

(
r′
)
Φ

(
r′
)

+ s
(
r′
)

−3
µ2
α

σ
∇r′ ·

[
σ1

(
r′
)

J
(
r′
)]}

dV ′ (α = 1, . . . ,N) (B.12)

we see that

Φ (r) =

N∑
α=1

wαφα (r) (B.13)

and, applying the operator
(
µ2
α/σ

)
∇2

r to both sides of Eqs. (B.12) and observing that the function

Φ̃α
(
r, r′

)
=
σe−σ|r−r′ |/µα

4πµ2
α|r − r′|

(B.14)

is the Green function of the diffusion equation for an infinite medium with the point source at r′, i.e.

µ2
α

σ
∇2

r φ̃α − σφ̃α + δ
(
r − r′

)
= 0, (B.15)

it is readily seen that Eqs. (B.12) can be replaced by the following differential equations

µ2
α

σ
∇2

rφα (r) − σφα (r) + σ0 (r) Φ (r) + s (r)

− 3
µ2
α

σ
∇r · [σ1 (r) J (r)] = 0 (α = 1, . . . ,N) (B.16)

which coincide, on account of Eq. (B.13) with the AN differential equations with linearly anisotropic scattering, see
Eqs. (13) in the text, for the monokinetic case with constant total cross section. Note that s source is here comprising
both the fission and the external source. The φα functions can therefore be identified with the AN fluxes considered in
the paper.
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Coming back to Eqs. (B.12) let us arrange them as follows

φα (r) = φ(1)
α (r) + φ(2)

α (r) (B.17)

where

φ(1)
α (r) =

∫
V1

σe−σ|r−r′ |/µα

4πµ2
α|r − r′|

[
σ0

(
r′
)
Φ

(
r′
)

+ s
(
r′
)]

dV ′ (B.18)

φ(2)
α (r) = −3

∫
V1

e−σ|r−r′ |/µα

4π|r − r′|
∇r′ ·

[
σ1

(
r′
)

J
(
r′
)]

dV ′. (B.19)

A theorem of potential theory states that, since the kernel of Eq. (B.18) is O (1/|r − r′|), if the function on which
it applies (the sum in square brackets) is piecewise continuous, or even summable, on V1 (which should be easily
admitted) then φ(1)

α (r) is everywhere continuous, together with its partial derivatives of the first order ((Miranda
(1955, Ch. II), Sternberg and Smith (1961, Ch. V, sect.2), Kellogg (1967, Ch. VI, sect.3)).

It remains to investigate Eqs. (B.19), in particular for the important case in which V1 contains two regions, V I

and V II say, such that σ1 (r), albeit continuous inside each one of them, takes different values, σI
1 (rS ) and σII

1 (rS )
say, when approaching the interface between the two. By applying the same argument as in sect. 2, concerning the
continuity at the interface of the AN currents, we have (see again Fig. (1); notations are the same as the ones used
there):∫

∆V
∇r · [σ1 (r) J (r)] dV =

∫
∆Ŝ II

σ1

(
rS + εnII

S

)
J
(
rS + εnII

S

)
· nII

S dS

+

∫
∆Ŝ I

σ1

(
rS + εnI

S

)
J
(
rS + εnI

S

)
· nI

S dS + O (ε) (B.20)

so that the volume integral on the l.h.s. is equal, in the limit, to∫
∆Ŝ

[
σI

1 (rS ) − σII
1 (rS )

]
JnS (rS ) dS (B.21)

(the continuity of JnS has also been used, Remark 2 of sect. 2) and can be seen as a volume integral containing a
δ-function source laid on ∆Ŝ , the part of the interface that is contained in ∆V:∫

∆V

[
σI

1 (rS + tnS ) − σII
1 (rS + tnS )

]
JnS (rS + tnS ) δ (rS + tnS ) dS dt. (B.22)

In the language of potential theory, the source is expressed by a simple layer surface distribution on ∆Ŝ with the
charge density[
σI

1 (rS ) − σII
1 (rS )

]
JnS (rS ) . (B.23)

The contribution of the discontinuity surface of σ1 (r) to the term φ(2)
α is therefore, in general,

−3
∫

S

e−σ|r−r′S |/µα

4π|r − r′S |
[
σI

1
(
r′S

)
− σII

1
(
r′S

)]
JnS

(
r′S

)
dS ′ (B.24)

and known theorems (Miranda (1955, Ch. II), Sternberg and Smith (1961, Ch. V, sect.4 and 6)) state that this contribu-
tion is continuous across the interface. We conclude that, even for a (finite) number of discontinuity surfaces of σ1 (r),
the term φ(2)

α (r) is continuous and therefore any φα (r) (α = 1, . . . ,N) is continuous at such discontinuity surfaces.
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Appendix C.

The following table shows the eight energy group sets of cross sections, with linearly anisotropic scattering, used
for the eight materials of the example reported in sect. 5.2. These sets have been employed for all the simulations with
the BERM-AN, BERM-SP3 and TORT codes.

Mixture 1: homogenized UO2 fuel cell.
Group

1 2 3 4 5 6 7 8
Σt 2.27699E-01 4.37750E-01 8.48733E-01 1.05439E+00 1.03541E+00 1.05303E+00 1.24254E+00 2.02577E+00
νΣ f 1.18219E-02 6.20591E-04 9.08511E-04 8.22277E-03 9.88891E-03 1.76651E-02 4.87739E-02 1.36604E-01
χ 5.98360E-01 3.50904E-01 5.07305E-02 5.50000E-06 - - - -
Σs0
1 1.37585E-01 7.01417E-02 1.51514E-02 4.79079E-05 6.01237E-07 3.97058E-08 1.07384E-08 7.46715E-13
2 - 3.22109E-01 1.13994E-01 4.30913E-04 5.47422E-06 3.66589E-07 1.78996E-07 2.39359E-08
3 - - 7.38882E-01 1.04247E-01 1.29494E-03 8.67181E-05 4.26854E-05 1.33791E-05
4 - - - 8.58783E-01 1.52764E-01 9.99125E-03 4.91805E-03 1.55289E-03
5 - - - - 6.99407E-01 1.89715E-01 8.86912E-02 2.37434E-02
6 - - - - 8.08106E-04 5.56896E-01 3.92621E-01 8.35331E-02
7 - - - - - 2.16496E-03 8.17938E-01 3.79548E-01
8 - - - - - 5.84950E-21 2.36009E-02 1.88684E+00
Σs1
1 7.13917E-02 2.66555E-02 2.83042E-03 2.35612E-06 1.39797E-07 2.32277E-08 8.86583E-09 -
2 - 1.28387E-01 4.90500E-02 2.12813E-05 6.34947E-07 1.05614E-07 8.86847E-08 1.91086E-08
3 - - 3.51967E-01 4.52757E-02 8.61703E-05 4.03807E-06 2.44987E-06 1.72696E-06
4 - - - 4.43503E-01 6.99653E-02 1.75674E-03 5.23953E-04 9.06730E-05
5 - - - - 3.84973E-01 9.91290E-02 2.50231E-02 1.96935E-03
6 - - - - 3.98603E-04 2.91823E-01 1.63351E-01 4.94307E-03
7 - - - - - 1.04627E-03 3.89107E-01 4.70663E-02
8 - - - - - -3.37653E-21 5.53017E-03 3.82463E-01

Mixture 2: homogenized MOX 4.0% fuel cell.
Group

1 2 3 4 5 6 7 8
Σt 2.26710E-01 4.37766E-01 8.49347E-01 1.06286E+00 1.04976E+00 1.14035E+00 1.55596E+00 2.23436E+00
νΣ f 1.32385E-02 1.77845E-03 1.83466E-03 1.79311E-02 3.38421E-02 3.58921E-02 4.63058E-01 4.28672E-01
χ 5.98360E-01 3.50904E-01 5.07305E-02 5.50000E-06 - - - -
Σs0
1 1.37891E-01 6.87607E-02 1.48734E-02 4.69897E-05 5.89706E-07 3.88883E-08 1.04247E-08 8.18127E-13
2 - 3.21988E-01 1.13781E-01 4.30321E-04 5.46668E-06 3.66085E-07 1.78736E-07 2.38658E-08
3 - - 7.39230E-01 1.04130E-01 1.29351E-03 8.66220E-05 4.26380E-05 1.33641E-05
4 - - - 8.62980E-01 1.51216E-01 9.89371E-03 4.87002E-03 1.53773E-03
5 - - - - 6.99756E-01 1.91377E-01 8.94809E-02 2.39498E-02
6 - - - - 9.20879E-04 5.69768E-01 4.01803E-01 8.55020E-02
7 - - - - - 3.55271E-03 8.98590E-01 3.70567E-01
8 - - - - - 7.34781E-21 2.98049E-02 1.94259E+00
Σs1
1 7.17290E-02 2.60752E-02 2.76721E-03 2.31520E-06 1.37735E-07 2.28260E-08 8.61153E-09 -
2 - 1.28550E-01 4.89637E-02 2.12485E-05 6.34473E-07 1.05540E-07 8.86087E-08 1.90539E-08
3 - - 3.52157E-01 4.52107E-02 8.60573E-05 4.03423E-06 2.44804E-06 1.72577E-06
4 - - - 4.45630E-01 6.91123E-02 1.73518E-03 5.17653E-04 8.97307E-05
5 - - - - 3.85933E-01 1.00105E-01 2.52676E-02 1.98820E-03
6 - - - - 4.54630E-04 3.02211E-01 1.66938E-01 5.05147E-03
7 - - - - - 1.73559E-03 4.44180E-01 4.27903E-02
8 - - - - - -4.23830E-21 7.65897E-03 4.12690E-01

Mixture 3: homogenized MOX 7.0% fuel cell.
Group

1 2 3 4 5 6 7 8
Σt 2.26747E-01 4.37890E-01 8.49880E-01 1.07129E+00 1.06172E+00 1.18230E+00 1.68098E+00 2.40261E+00
νΣ f 1.43938E-02 2.92197E-03 3.12912E-03 2.86879E-02 5.21130E-02 5.94414E-02 6.17905E-01 6.38335E-01
χ 5.98360E-01 3.50904E-01 5.07305E-02 5.50000E-06 - - - -
Σs0
1 1.37937E-01 6.84879E-02 1.48081E-02 4.69377E-05 5.89176E-07 3.88503E-08 1.04078E-08 8.23408E-13
2 - 3.21830E-01 1.13687E-01 4.30067E-04 5.46346E-06 3.65869E-07 1.78625E-07 2.38364E-08
3 - - 7.39418E-01 1.03895E-01 1.29063E-03 8.64297E-05 4.25434E-05 1.33342E-05
4 - - - 8.66880E-01 1.49699E-01 9.79772E-03 4.82276E-03 1.52281E-03
5 - - - - 7.01026E-01 1.92287E-01 8.99250E-02 2.40719E-02
6 - - - - 9.68941E-04 5.76810E-01 4.05630E-01 8.64164E-02
7 - - - - - 3.94087E-03 9.30226E-01 3.76151E-01
8 - - - - - 8.10988E-21 3.35768E-02 2.00165E+00
Σs1
1 7.17830E-02 2.60453E-02 2.76336E-03 2.31152E-06 1.37653E-07 2.28091E-08 8.59807E-09 -
2 - 1.28654E-01 4.89257E-02 2.12346E-05 6.34260E-07 1.05506E-07 8.85757E-08 1.90310E-08
3 - - 3.52307E-01 4.50870E-02 8.58383E-05 4.02637E-06 2.44409E-06 1.72317E-06
4 - - - 4.47840E-01 6.82613E-02 1.71372E-03 5.11380E-04 8.87970E-05
5 - - - - 3.87177E-01 1.00616E-01 2.53988E-02 2.00016E-03
6 - - - - 4.78247E-04 3.07720E-01 1.68508E-01 5.09670E-03
7 - - - - - 1.94199E-03 4.66863E-01 4.26360E-02
8 - - - - - -4.67640E-21 8.99100E-03 4.35117E-01
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Mixture 4: homogenized MOX 8.7% fuel cell.
Group

1 2 3 4 5 6 7 8
Σ f 2.26775E-01 4.37938E-01 8.50151E-01 1.07557E+00 1.06760E+00 1.20288E+00 1.73427E+00 2.48416E+00
νΣ f 1.50477E-02 3.57084E-03 3.86167E-03 3.43218E-02 6.12760E-02 7.21971E-02 6.81908E-01 7.32525E-01
χ 5.98360E-01 3.50904E-01 5.07305E-02 5.50000E-06 - - - -
Σs0
1 1.37951E-01 6.83492E-02 1.47742E-02 4.69207E-05 5.89034E-07 3.88399E-08 1.04028E-08 8.25273E-13
2 - 3.21719E-01 1.13632E-01 4.29923E-04 5.46165E-06 3.65746E-07 1.78562E-07 2.38203E-08
3 - - 7.39494E-01 1.03762E-01 1.28901E-03 8.63206E-05 4.24901E-05 1.33173E-05
4 - - - 8.68788E-01 1.48970E-01 9.75150E-03 4.80002E-03 1.51563E-03
5 - - - - 7.01720E-01 1.92688E-01 9.01247E-02 2.41280E-02
6 - - - - 9.91485E-04 5.80306E-01 4.07442E-01 8.68605E-02
7 - - - - - 4.07013E-03 9.43254E-01 3.80301E-01
8 - - - - - 8.37196E-21 3.51106E-02 2.03399E+00
Σs1
1 7.18070E-02 2.60367E-02 2.76204E-03 2.30997E-06 1.37635E-07 2.28048E-08 8.59413E-09 -
2 - 1.28707E-01 4.89050E-02 2.12268E-05 6.34137E-07 1.05486E-07 8.85557E-08 1.90184E-08
3 - - 3.52390E-01 4.50173E-02 8.57150E-05 4.02193E-06 2.44186E-06 1.72169E-06
4 - - - 4.48943E-01 6.78533E-02 1.70344E-03 5.08377E-04 8.83497E-05
5 - - - - 3.87837E-01 1.00840E-01 2.54568E-02 2.00589E-03
6 - - - - 4.89323E-04 3.10445E-01 1.69264E-01 5.11823E-03
7 - - - - - 2.01528E-03 4.76493E-01 4.29020E-02
8 - - - - - -4.82703E-21 9.54580E-03 4.45713E-01

Mixture 5: fission chamber guide tube cell.
Group

1 2 3 4 5 6 7 8
Σt 7.52979E-02 1.61294E-01 3.46805E-01 4.12538E-01 4.17652E-01 4.36580E-01 5.21727E-01 8.62641E-01
Σs0
1 4.28923E-02 2.63531E-02 5.87679E-03 2.23650E-05 2.83486E-07 1.86967E-08 5.08076E-09 7.88327E-13
2 - 1.08748E-01 5.22870E-02 2.09601E-04 2.66343E-06 1.78361E-07 8.71286E-08 1.18727E-08
3 - - 2.89902E-01 5.59028E-02 7.00608E-04 4.69172E-05 2.30942E-05 7.24469E-06
4 - - - 3.26006E-01 7.73602E-02 5.10285E-03 2.51179E-03 7.93117E-04
5 - - - - 2.76209E-01 8.73557E-02 4.15094E-02 1.10906E-02
6 - - - - 2.85263E-04 2.15108E-01 1.79138E-01 3.88628E-02
7 - - - - - 6.71995E-04 3.22892E-01 1.91956E-01
8 - - - - - - 7.84316E-03 8.37815E-01
Σs1
1 2.28023E-02 1.28927E-02 1.31751E-03 1.07367E-06 6.59030E-08 1.09206E-08 4.19047E-09 -
2 - 5.21333E-02 2.47856E-02 1.03755E-05 3.06708E-07 5.09933E-08 4.28537E-08 9.46310E-09
3 - - 1.62533E-01 2.51534E-02 4.71277E-05 2.15319E-06 1.28726E-06 9.05400E-07
4 - - - 1.97613E-01 3.69473E-02 9.21570E-04 2.74247E-04 4.67327E-05
5 - - - - 1.73599E-01 4.70403E-02 1.17511E-02 9.18660E-04
6 - - - - 1.76790E-04 1.32623E-01 7.71420E-02 2.30380E-03
7 - - - - - 3.85853E-04 1.72240E-01 2.74342E-02
8 - - - - - - 1.72522E-03 1.68001E-01

Mixture 6: control rod guide tube cell.
Group

1 2 3 4 5 6 7 8
Σt 2.18662E-01 4.94064E-01 1.13054E+00 1.38038E+00 1.39800E+00 1.46332E+00 1.76008E+00 2.95009E+00
Σs0
1 1.17021E-01 8.22984E-02 1.87518E-02 7.65941E-05 9.72551E-07 6.40489E-08 1.70885E-08 8.49734E-13
2 - 3.10561E-01 1.82703E-01 7.36525E-04 9.35920E-06 6.26757E-07 3.06104E-07 4.15634E-08
3 - - 9.30529E-01 1.96974E-01 2.47162E-03 1.65515E-04 8.14718E-05 2.55580E-05
4 - - - 1.07757E+00 2.71661E-01 1.79446E-02 8.83292E-03 2.78905E-03
5 - - - - 9.02164E-01 3.06030E-01 1.45784E-01 3.89507E-02
6 - - - - 8.02797E-04 6.88672E-01 6.26596E-01 1.36410E-01
7 - - - - - 2.06845E-03 1.06577E+00 6.71118E-01
8 - - - - - - 2.69064E-02 2.86548E+00
Σs1
1 6.69913E-02 4.39677E-02 4.47490E-03 3.69693E-06 2.27939E-07 3.76707E-08 1.41236E-08 -
2 - 1.61884E-01 8.71617E-02 3.64473E-05 1.07947E-06 1.79490E-07 1.50777E-07 3.31300E-08
3 - - 5.69170E-01 8.88007E-02 1.66235E-04 7.59540E-06 4.54100E-06 3.19411E-06
4 - - - 6.94270E-01 1.30044E-01 3.24058E-03 9.64357E-04 1.64333E-04
5 - - - - 6.08943E-01 1.65435E-01 4.12707E-02 3.22630E-03
6 - - - - 6.20153E-04 4.64410E-01 2.71343E-01 8.08650E-03
7 - - - - - 1.36969E-03 6.01770E-01 9.75193E-02
8 - - - - - - 6.04653E-03 5.87293E-01

Mixture 7: H2O moderator.
Group

1 2 3 4 5 6 7 8
Σt 2.22346E-01 5.12692E-01 1.20902E+00 1.49316E+00 1.51036E+00 1.57803E+00 1.95595E+00 3.22986E+00
Σs0
1 1.13811E-01 8.77528E-02 2.01845E-02 8.51099E-05 1.08150E-06 7.12849E-08 1.90113E-08 -
2 - 3.10405E-01 2.01460E-01 8.13984E-04 1.03436E-05 6.92672E-07 3.38292E-07 4.59312E-08
3 - - 9.87667E-01 2.18275E-01 2.74030E-03 1.83508E-04 9.03289E-05 2.83368E-05
4 - - - 1.15897E+00 3.01031E-01 1.98957E-02 9.79331E-03 3.09231E-03
5 - - - - 9.65398E-01 3.38676E-01 1.61489E-01 4.31229E-02
6 - - - - 7.91944E-04 7.30332E-01 6.92395E-01 1.50933E-01
7 - - - - - 1.34328E-03 1.06218E+00 8.84935E-01
8 - - - - - - 2.64629E-02 3.18390E+00
Σs1
1 6.78860E-02 4.89080E-02 4.97040E-03 4.11047E-06 2.53323E-07 4.19307E-08 1.57199E-08 -
2 - 1.68959E-01 9.64070E-02 4.02820E-05 1.19305E-06 1.98377E-07 1.66636E-07 3.66093E-08
3 - - 6.27467E-01 9.85220E-02 1.84334E-04 8.41863E-06 5.03187E-06 3.53930E-06
4 - - - 7.66353E-01 1.44354E-01 3.59563E-03 1.06995E-03 1.82247E-04
5 - - - - 6.71757E-01 1.83510E-01 4.57363E-02 3.56773E-03
6 - - - - 6.78763E-04 5.11977E-01 3.00691E-01 8.95283E-03
7 - - - - - 9.46170E-04 6.24490E-01 1.46731E-01
8 - - - - - - 5.52627E-03 6.43940E-01
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Mixture 8: control rod cell.
Group

1 2 3 4 5 6 7 8
Σt 2.21681E-01 3.75613E-01 6.98894E-01 1.26353E+00 2.97057E+00 4.35932E+00 5.22241E+00 7.10888E+00
Σs0
1 1.54506E-01 5.47389E-02 6.29418E-03 2.37435E-05 3.01028E-07 1.99257E-08 5.55017E-09 6.63457E-13
2 - 2.93209E-01 7.44156E-02 2.06382E-04 2.62254E-06 1.75622E-07 8.58424E-08 1.14373E-08
3 - - 5.94807E-01 4.16609E-02 4.73849E-04 3.17320E-05 1.56196E-05 4.88589E-06
4 - - - 7.20029E-01 4.60201E-02 2.93580E-03 1.44510E-03 4.56266E-04
5 - - - - 7.11075E-01 1.40561E-01 6.43271E-02 1.77440E-02
6 - - - - 8.73733E-04 5.79805E-01 4.01890E-01 8.37136E-02
7 - - - - - 3.36493E-03 9.11563E-01 3.72228E-01
8 - - - - - - 3.49089E-02 2.14339E+00
Σs1
1 5.28960E-02 6.09550E-03 1.40573E-03 1.13492E-06 6.91170E-08 1.15279E-08 4.57080E-09 -
2 - 8.65707E-02 1.73294E-02 1.01907E-05 3.03866E-07 5.05420E-08 4.25403E-08 9.13010E-09
3 - - 1.85306E-01 1.44084E-02 3.02693E-05 1.52866E-06 9.65417E-07 6.89160E-07
4 - - - 2.85136E-01 1.66946E-02 4.33100E-04 1.31681E-04 2.57321E-05
5 - - - - 3.55183E-01 6.71210E-02 1.76018E-02 1.54465E-03
6 - - - - 5.58200E-04 3.12405E-01 1.59318E-01 4.90437E-03
7 - - - - - 1.83127E-03 4.52033E-01 4.12650E-02
8 - - - - - - 9.22873E-03 4.66303E-01
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