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ABSTRACT   

 

 

Shared genetic vulnerability between schizophrenia (SCZ) and bipolar disorder (BP) was 

demonstrated, but the genetic underpinnings of specific symptom domains are unclear. This 

study investigated which genes and gene sets may modulate specific psychopathological 

domains and if genome-wide significant loci previously asso- ciated with SCZ or BP may play 

a role. 

Genome-wide data were available in patients with SCZ (n = 226) or BP (n = 228). 

Phenotypes under in- vestigation were depressive and positive symptoms severity, suicidal 

ideation, onset age and substance use disorder comorbidity. Genome-wide analyses were 

performed at gene and gene set level, while 148 genome- wide significant loci previously 

associated with SCZ and/or BP were investigated. Each sample was analyzed separately then a 

meta-analysis was performed. 

SH3GL2 and CLVS1 genes were associated with suicidal ideation in SCZ (p = 5.62e-08 

and 0.01, respec- tively), the former also in the meta-analysis (p = .01). SHC4 gene was 

associated with depressive symptoms severity in BP (p = .003). A gene set involved in 

cellular differentiation (GO:0048661) was associated with substance disorder comorbidity in 

the meta-analysis (p = .03). Individual loci previously associated with SCZ or BP did not 

modulate the phenotypes of interest. 

This study provided confirmatory and new findings. SH3GL2 (endophilin A1) showed a 

role in suicidal ideation that may be due to its relevance to the glutamate system. SHC4 

regulates BDNF-induced MAPK acti- vation and was previously associated with depression. 

CLVS1 is involved in lysosome maturation and was for the first time associated with a 

psychiatric trait. GO:0048661 may mediate the risk of substance disorder through an effect on 

neurodevelopment/neuroplasticity. 
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1. Introduction 

 
Schizophrenia (SCZ) and bipolar disorder (BP) are major psychiatric diseases associated with 

substantial morbidity and mortality as well as personal and societal costs (Chong et al., 2016; 

Ferrari et al., 2016). The heritability of both these disorders is very high: 81% for SCZ (Sullivan 

et al., 2003) and 85% for BP (McGuffin et al., 2003). Multiple lines of evidence  indicate  shared  

neurobiological  alterations  and  genetic 

 

vulnerability across SCZ spectrum and psychotic BP (Cardno and Owen, 2014; Clementz et al., 

2016; Forstner et al., 2017; Ivleva et al., 2008; Schulze et al., 2014). The Psychiatric Genomics 

Consortium (PGC) es- timated a 68% genetic correlation between BP and SCZ using genome- 

wide SNPs (single nucleotide polymorphisms). However, the genes in- volved in this etiological 

overlap remain largely unknown. These findings have thus blurred the boundaries of classic 

nosography and established   the   importance   of   investigating   psychopathological 

 

 

dimensions that cut across different psychiatric diseases (Lee et al., 2013). 

Despite the genetic variants shared between SCZ and BP are largely unknown, PGC identified 

108 and 30 independent loci showing genome-wide association with SCZ and BP, respectively, 

thanks to large case-control samples (Schizophrenia Working Group of the Psychiatric Genomics 

Consortium, 2014; Stahl et al., 2017). These loci were asso- ciated with broad diagnosis, but the 

specific psychopathological di- mensions they may modulate are unknown. PGC also found 

10 in- dependent loci underlying both diseases at a genome-wide significance level, but few 

information is available on the specific loci or genes in- volved (Cross-Disorder Group of the 

Psychiatric Genomics Consortium, 2013; Ruderfer et al., 2014). Symptom overlap between SCZ 

and BP occurs in several areas: positive, negative, manic and depressive symptoms (Pearlson, 

2015; Peitl et al., 2017). Few studies examined the shared genetic factors that may be involved, 

suggesting a significant overlap between a BP polygenic risk score and the clinical dimension of 

mania in SCZ (Ruderfer et al., 2014) and a higher burden of SCZ risk alleles in psychotic BP 

(Allardyce et al., 2018; Leonenko et al., 2018). Other clinical features are relevant because they 

are associated with poorer outcome, though not specific of SCZ and BP solely, and they 

include suicidal ideation (Chesney et al., 2014), substance use disorder comorbidity (Messer et 

al., 2017; Thoma and Daum, 2013; Vandaele and Janak, 2017) and age at disease onset 

(Immonen et al., 2017; Joslyn et al., 2016). 

Single loci identified by adequately powered genome-wide asso- ciation studies (GWAS) are 

of undoubted value, but SNPs do no act as single units, they interact among each other, within the 

same gene and across different genes. Gene and gene-set analyses are statistical methods for 

analyzing multiple genetic markers simultaneously to de- termine their joint effect. These 

methods provide higher power than single-variant analysis, because they study the aggregated 

effect of variants in genes or pathways and they reduce the number of performed tests (~20,000 

genes are known in the human genome, while tens of million SNPs) (de Leeuw et al., 2015). 

Gene-set analysis can also pro- vide insights into the functional and biological mechanisms 

underlying the pathogenesis of a trait. 
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Given the still largely unknown genetic factors involved, the present study aimed to investigate 

the genetic basis of psychopathological di- mensions shared between SCZ and BP. We analyzed 

single variants using a candidate approach that included genome-wide significant loci associated 

with SCZ and/or BP by the PGC (Cross-Disorder Group of the Psychiatric Genomics Consortium, 

2013; Ruderfer et al., 2014; Schizophrenia Working Group of the Psychiatric Genomics 

Consortium, 2014; Stahl et al., 2017) since the strong evidence supporting a role of these loci 

but their unclear contribution in modulating specific psy- chopathological domains. In addition, 

we studied the role of genes and gene-sets (pathways and functional categories) with a genome-

wide approach, but particular attention was directed toward genes and gene- sets including the 

cited genome-wide significant loci. 

 

2. Materials and methods 
 

2.1. Samples 

 

For all samples ethical approval was obtained from local research ethics committees. The 

clinical-demographic characteristics of the samples are described in Table 1. 

 

2.1.1. SCZ Sample 

Patients were recruited at two sites in Italy: 111 patients in Bologna (“Maggiore” Hospital, SCZ 

sample I) and 115 patients in Rome (“San Filippo Neri” Hospital or psychiatric inpatient facility 

(RSA) “San Raffaele Villa dei Fiori”, SCZ sample II), for a total of 226 patients. 

For the former cohort, patients were enrolled at the moment of admittance to the Psychiatric 

inpatient Unit. Inclusion criteria were age 

from 18 to 75 and a diagnosis of schizophrenia according to the DSM- IV-TR criteria confirmed 

using the Mini International Neuropsychiatric Interview (MINI) (Sheehan et al., 1998). Patients 

were included if they needed to start or to change antipsychotic treatment because of an acute 

psychotic relapse. Exclusion criteria were severe/unstable med- ical conditions, cognitive 

impairment that would interfere with the ability to participate in the study, pregnancy or breast-

feeding. Clinical and demographic characteristics of patients were assessed at inclusion in the 

study, psychotic symptoms and depressive symptoms were as- sessed using the Positive and 

Negative Syndrome Scale (PANSS) (Peralta and Cuesta, 1994) and the Hamilton Depression 

Rating Scale 21 items (HAMD-21) (Hamilton, 1980), respectively. 

For the second cohort, included subjects were inpatients with a di- agnosis of schizophrenia 

(DSM-IV-TR criteria) who were recruited be- tween 2011 and 2012. All patients ranged between 

45 and 55 years of age and were of Italian origin. Subject were included if they gave in- formed 

consent, had sufficient Italian language skills to complete the study measures and were not 

considered at risk of injurious behaviors toward themselves and others. Clinical-demographic 

characteristics were collected at inclusion in the study, psychotic symptoms were as- sessed 

using the PANSS (Peralta and Cuesta, 1994). 

 

2.1.2. BP Sample 

Patients were recruited at one site in Italy and one site in Spain: 79 patients in Bologna 

(“Maggiore” Hospital, BP sample I) and 149 pa- tients in Barcelona (Hospital Clinic of Barcelona, 

BP sample II), for a total of 228 patients. 

For the former cohort, the same inclusion and exclusion criteria described for the SCZ 
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Bologna sample were applied, except for diag- nosis (patients had a diagnosis of BP type I or II 

according to DSM-IV-TR criteria and confirmed using the MINI) (Sheehan et al., 1998) and 

treatment (patients needed to start or change mood stabilizing treat- ment because of an acute 

phase of disease). The PANSS and HAMD-21 scales were used to assess psychotic and 

depressive symptoms, re- spectively. 

For the Spanish cohort, out-patients were enrolled in a naturalistic cohort study, consecutively 

admitted to the out-patient Bipolar Disorders Unit. Inclusion criteria were a diagnosis of Bipolar 

Disorder (type I or II) according to DSM-IV-TR criteria and age of 18 years or older. The 

current and lifetime diagnoses of psychiatric disorders were formulated by independent senior 

psychiatrists (diagnostic con- cordance: Kappa = 0.80) according to DSM-IV-TR clinical criteria 

and confirmed through the semi-structured interviews for Axis I disorders according to DSM-

IV-TR criteria (SCID I) (First et al., 2002). Clinical- demographic characteristics were collected at 

inclusion and depressive symptoms were measured using the HAMD-17 scale. 

 

2.2. Phenotypes 

 

Five psychopathological dimensions or disease severity indicators were considered (Table 1): 

depressive and psychotic positive symptoms, suicidal ideation, age at disease onset and substance 

use disorder. 

 

2.2.1. Depressive symptoms severity 

In the SCZ sample and BP Barcelona sample, severity of depressive symptoms was evaluated 

using the following items of the HAMD-17 scale (Hamilton, 1980): ‘depressed mood’ (HAMD-1), 

‘feelings of guilt’ (HAMD-2), ‘work and interest’ (HAMD-7), ‘retardation’ (HAMD-8), ‘anxiety-

psychic’ (HAMD-10) and ‘somatic symptoms-general’ (HAMD- 

13) items. These constitute a selection of scale items with the highest internal, interrater and retest 

reliability, measuring the core set of de- pressive symptoms (Bagby et al., 2004; Bech et al., 1975). 

In the Italian BP sample a comparable phenotype was calculated using the sum of the following 

PANSS items (Peralta and Cuesta, 1994): ‘anxiety’ (G2), ‘de- pression’ (G6), ‘motor retardation’ 

(G7) items and  three  independent items  collected  in  the  sample  –  ‘excessive  self-reproach’,  

‘loss  of 

 

 

pleasure’, ‘loss of energy/tiredness’, each recorded as continuous vari- ables (0–3 points). The 

resulting measures were standardized to make them comparable among samples. 

 

2.2.2. Positive symptoms severity 

In the SCZ sample and the Italian BP sample the severity of positive symptoms was evaluated 

using the following PANSS (Peralta and Cuesta, 1994) items: ‘delusions’ (P1) and 

‘hallucinatory behaviour’ (P3). For the Barcelona BP sample a comparable phenotype was derived 

using two equivalent independent items – ‘delusions’ and ‘hallucina- tions’, both recorded as 

continuous variables (0–2 points). The resulting measures were standardized to make them 

comparable among samples. 

 

2.2.3. Suicidal ideation 

In the Italian SCZ and BP samples, patients were considered having suicidal ideation if scoring 
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at least 3 on HAMD-17 (Hamilton, 1980) ‘suicide’ (HAMD-3) item. In the other samples 

suicidal ideation was recorded as binary variable. 

 

2.2.4. Onset age 

Patients were differentiated between either early-onset or not-early- onset, depending on 

whether disease onset occurred at/before age 20 or later. Early disease onset is a predictor of 

poorer outcome and the early- onset group has typically been found to have an  upper-bound  of 

18–22 years. We set the cut-off at 20 years consistently with the ma- jority of prior research 

(Immonen et al., 2017; Joslyn et al., 2016). 

 

2.2.5. Substance use disorder comorbidity 

Substance use disorder comorbidity was investigated through medical records and in clinical 

interviews for alcohol, cannabis, hal- lucinogens, opioids and/or stimulants. The phenotype was 

recorded as binary. 

 

2.3. Genotyping and imputation 

 

Patients were genotyped using the Illumina Infinium PsychArray 24 BeadChip (Illumina, Inc., 

San Diego). Genotypes were imputed using the Haplotype Reference Consortium (HRC version 

r1.1 2016) panel as reference and Minimac3 (Das et al., 2016). 

Pre-imputation quality control was carried out according to the following criteria: 1) 

variants with missing rate ≥ 5%; 2) monomorphic variants; 3) subjects with genotyping rate < 

97%; 4) subjects with gender discrepancies; 5) subjects with abnormal heterozygosity; 6) re- 

lated subjects (identity by descent [IBD]) > 0.1875 (Anderson et al., 2010).  Hardy–Weinberg  

equilibrium  (HWE)  was  not  used  as  an 

exclusion criterion, as departures from HWE are expected in a case-only study. However, since 

violation of HWE may reflect technical artifacts, HWE was tested for a pool of relevant genes. 

Variants within such genes had HWE p > .001, supporting good quality genotyping (Wittke- 

Thompson et al., 2005). 

Post-imputation quality control was performed according to the following criteria: 1) poor 

imputation quality (R2 < 0.30 (Li et al., 2010; Pistis et al., 2015)) and 2) minor allele 

frequency (MAF) < 0.05. 

 

2.4. Statistical analysis 

 

Association analyses were independently conducted in SCZ and BP samples and then a fixed-

effects meta-analysis was performed at SNP, gene and gene-set level. All phenotypes were 

adjusted for age, gender and the first 10 population principal components to correct for popu- 

lation stratification (Patterson et al., 2006). Age and gender were chosen as covariates in line with 

the previous literature (Becker and Hu, 2008; Freeman et al., 2017; Grossman et al., 2006; 

Immonen et al., 2017; Koechl et al., 2012). Age and gender were included as covariates also 

because they showed an effect on the most part of the investigated phenotypes in our samples 

(Supplementary Table 1). The distribution of the first  10 principal  components revealed good  

population homo- geneity. In fact, no subject from the pooled samples lied beyond six 

standard deviations from the mean for each of the first ten principal components (Price et al., 

2006; Wang et al., 2009). 
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2.4.1. Gene and gene-set analysis 

These analyses were performed in SCZ and BP samples and then a meta-analysis was carried 

out using MAGMA (de Leeuw et al., 2015). 

Gene-sets (pathways and functional categories) were downloaded from the GSEA Broad 

Institute database version 6 (Liberzon et al., 2015). MAGMA performs both a self-contained and 

a competitive gene- set analysis, the latter is more conservative since it reflects if genes in a gene 

set are more associated with the outcome than genes outside that gene set, thus the competitive 

method was used. The Bonferroni cor- rection was applied in gene analysis and 10,000 

permutations were run to calculate empirical p values for gene sets. 

 

2.4.2. Analysis of genome-wide significant loci reported by the PGC schizophrenia, bipolar and cross-

disorder working groups 

The variants associated with either or both SCZ and BP (Schizophrenia Working Group of 

the Psychiatric Genomics Consortium, 2014; Stahl et al., 2017; (Cross-Disorder Group of the 

Psychiatric Genomics Consortium, 2013; Ruderfer et al., 2014) were investigated for association 

with the phenotypes of interest using linear 

 

or logistic regression models in SCZ and BP samples and then through a fixed-effects meta-

analysis (Plink version 1.9) (Purcell et al., 2007). The Bonferroni correction was used to account 

for multiple testing on the basis of the number of tested SNPs. 

Given the interest in the identification of possible genes and gene- sets mediating the effect of 

these loci on the phenotypes of interest, genes and gene-sets harboring them were extracted 

from the results of the analysis described in the previous paragraph and reported sepa- rately. 

 

3. Results 
 

5,484,300 SNPs / 226 patients in the SCZ sample and 5,475,874 SNPs / 228 patients in the 

BP sample were available after quality control. The clinical-demographic characteristics of the 

included pa- tients included in the analyses are reported in Table 1. 

 

3.1. Gene analysis 

 

18,761 and 18,818 genes, respectively, were included in the ana- lysis in the SCZ and BP 

samples. Genes showing nominal p < .0001 are reported in Supplementary Table 2, while results 

that survived mul- tiple-testing correction are summarized in Table 2. Manhattan plots for gene-

based not corrected p values  are  available  in  Supplementary Fig. 1. 

In the SCZ sample, SH3GL2 (SH3 Domain Containing GRB2 Like 2) (corrected p = 5.62e-08) 

and CLVS1 (Clavesin 1) (corrected p = .01) were associated with suicidal ideation. No other 

association survived multiple-testing correction. 

In  the  BP  sample,  SHC4  (SHC  Adaptor  Protein  4)  (corrected p = .003) was associated 

with depressive symptoms severity. No other association survived Bonferroni correction. 

In the meta-analysis of the two samples SH3GL2 was still associated with suicidal ideation 

(corrected p = .01), while no other finding was significant after multiple-testing correction. 
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3.2. Gene-set analysis 

 

17,783 gene sets were examined for association with the phenotypes under investigation. In the 

meta-analysis of SCZ and BP samples, sub- stance use disorder comorbidity was associated with 

the Gene Ontology (GO) term GO:0048661 that is involved in positive regulation of cell 

proliferation (permuted comparative p = .03). The gene set “Roversi glioma copy number up”, 

member of the functional group chemical and genetic perturbations, was close to the significance 

threshold for asso- ciation with the same phenotype (permuted comparative p = .09). These 

results are summarized in Table 2. Other gene sets showed cor- rected p > .20. Results with 

nominal p < .0005 are reported in Sup- plementary Table 3. 

3.3. Analysis of genome-wide significant loci reported by the PGC schizophrenia, bipolar and cross-

disorder working groups 

 

The list and characteristics of the available SNPs are reported in Supplementary Table 4. 

No SNP showed association with the phenotypes of interest in the SCZ, BP sample or their 

meta-analysis. The top findings were rs11191454 (AS3MT gene) in the SCZ sample (nominal p 

= .003) and rs2799573 (CACNB2 gene) in the BP sample (nominal p = .003) for association 

with substance use disorder comorbidity. SNPs with nom- inal p < .1 are reported in 

Supplementary Table 5. 

The available SNPs were mapped to the corresponding 71 genes in SCZ and BP samples. The 

significant genes reported in paragraph 3.1 did not include any of these genes. The top genes were 

ITIH3 in the SCZ sample, PACS1 in the BP sample and meta-analysis for association with suicidal 

ideation (nominal p = .004, 0.004 and 0.002, respectively). Gene-based results with p < .05 

are reported in Supplementary Table 6. 

The significant gene set GO:0048661 did not include any of the candidate genes of interest. 

However, the Roversi glioma copy number up included GALNT10 and DGKI candidate genes 

and was close to the significance threshold for association with substance use disorder co- 

morbidity (permuted comparative p = .09). 

 

4. Discussion 
 

This study investigated the genetic factors associated with specific symptom domains and 

clinical features shared between SCZ and BP. The analysis was carried out at SNP, gene and gene-

set level. The possible effect of loci showing genome-wide association with SCZ and BP in 

previous GWAS was also considered (Cross-Disorder Group of the Psychiatric Genomics 

Consortium, 2013; Ruderfer et al., 2014; Schizophrenia Working Group of the Psychiatric Genomics 

Consortium, 2014; Stahl et al., 2017). 

At gene level, SH3GL2 and CLVS1 were associated with suicidal ideation in the SCZ sample, 

and the former result was confirmed in the meta-analysis with BP sample, while  the  SHC4  gene  

was  associated with depressive symptoms in the BP sample but not in the meta-ana- lysis. 

SH3GL2 codes for Endophilin A1, a protein implicated in synaptic vesicle endocytosis that modulates 

intracellular signaling, calcium homeostasis and neurotransmitter release (Martins-De-Sousa et al., 

2009). Specifically, Endophilin A1 regulates glutamate release in neu- rons expressing the 

vesicular glutamate transporter (Weston et  al., 2011). Previous studies suggested that SH3GL2 is 

differentially ex- pressed in the gray matter of prefrontal cortex  in  patients  with  psy- chosis 

compared to controls (Martins-De-Sousa et al., 2009; Prabakaran et al., 2004) and variants of this 
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gene were associated with cognitive functions in psychotic disorders (Lencer et al., 2017). To the 

best of our knowledge, it was  the first  time SH3GL2 gene  was  reported in  con- nection  to  

suicidal  ideation.  This  link  may  be  interpreted  in  the 

 

perspective of SH3GL2 role in glutamatergic neurotransmission that is relevant to suicide. Indeed 

ketamine, a glutamate N-methyl-D-aspartate (NMDA) receptor antagonist, is associated with a 

rapid reduction of suicidal ideation (Murrough et al., 2015). Additionally, variants within 

GRIN2B, which encodes a subunit of the NMDA receptor ion channel, were reported in 

connection to changes in suicidal behavior-related neuropsychological measures (Sokolowski et 

al., 2013). The CLVS1 gene codes for clavesin 1, which, along with clavesin 2, is expressed 

exclusively in neurons and supposedly provides a unique neuron-spe- cific regulation of late 

endosome/lysosome morphology. Since neurons are particularly sensitive to lysosomal 

dysfunction and alterations in lysosomal function are the underlying cause of numerous 

neurode- generative diseases, clavesins may possibly have a role in that respect (Katoh et al., 

2009). The association between the SHC4 gene and de- pressive symptoms severity was in line 

with the previous literature. SHC4 is expressed in neurons and regulates BDNF-induced MAPK 

ac- tivation (You et al., 2010), which has been shown to be a key factor in major depression 

pathophysiology (Duric et al., 2010). Two GWAS identified a variant (rs8023445) on 

chromosome 15 located within the SHC4 gene showing association with major depression 

(Aragam et al., 2011; Sullivan et al., 2009). A recent genome-wide haplotype-based association 

analysis of major depressive disorder found an haplotype approaching genome-wide 

significance located within SHC4 region (Howard et al., 2017). 

At gene-set level, substance use disorder comorbidity was associated with GO:0048661, 

involved in up-regulation of smooth muscle pro- liferation. There is no overlap between genes 

in this gene-set and most prominent genes described in connection to substance abuse disorder 

(Jones and Comer, 2015; Li and Burmeister, 2009). Many members of GO:0048661, however, 

take part in cellular development and differ- entiation, not only in smooth muscle tissue; 

addiction-related genes were shown to be highly enriched in neurodevelopment-related pro- 

cesses (Sun and Zhao, 2010). It is therefore possible that this gene-set may be relevant to 

substance use disorders affecting neurodevelop- ment. Further, GO:0048661 includes CAMK2D 

which is part of a larger family of type 2 Ca2+/calmodulin dependent protein kinase genes that 

are the common link between five proposed addiction-related genetic pathways (Li et al., 

2008). Specifically, CAMK2 kinases have been found to have an important role in mediating 

stimulant-induced do- pamine release (Fog et al., 2006), conditioned place preference (Sakurai et 

al., 2007) and behavioral sensitization (Licata et al., 2004) and to participate in processes 

leading to the development of opioid tolerance and addiction (Tang et al., 2006). 

No significant cross-phenotype genetic associations were detected. Considering suggestive 

signals from gene and gene-set analysis (Supplementary Tables 2 and 3), GO:0044849 was the 

only result with suggestive cross-trait association (depressive and positive symptoms severity in 

SCZ sample, depressive symptoms in the meta-analysis). This gene set takes part into ovulation 

cycle regulation, and this may be linked to the well characterized estrogens' influence on 

depressive (Ryan and Ancelin, 2012) and positive symptoms (Seeman, 2012; Zhu et al., 2018). 

OXTR (oxytocin receptor), is also a member of this gene set. The oxytocin system is relevant in 

the modulation of social beha- vior and it is dysregulated across various psychiatric diseases and 

symptom domains (Cochran et al., 2013). The cross-trait suggestive effect of GO:0044849 is 
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consistent with the current view that disruption in networks, such as the estrogens and oxytocin 

systems, may account for shared vulnerability across psychiatric traits (Doherty and Owen, 

2014). 

None of the genome-wide significant loci or corresponding genes or gene-sets previously 

associated with SCZ and/or BP was associated with the phenotypes of interest (Cross-Disorder 

Group of the Psychiatric Genomics Consortium, 2013; Ruderfer et al., 2014; Schizophrenia 

Working Group of the Psychiatric Genomics Consortium, 2014; Stahl et al., 2017). Regarding 

gene-sets, the Roversi glioma copy number up, which  includes  the  candidate  genes  GALNT10  

and  DGKI  harboring 

variants previously associated with SCZ (Schizophrenia Working Group of the Psychiatric 

Genomics Consortium, 2014), was close to the sig- nificance threshold for association with 

substance use disorder co- morbidity. Similarly to GO:0048661, this gene-set includes genes 

overseeing cellular development and differentiation, thus its connection on substance use disorder 

may be interpreted under the same light (Sun and Zhao, 2010). None of the individual loci 

analyzed was associated with the phenotypes of interest. The top findings were rs11191454 

(AS3MT gene) in SCZ sample and rs2799573 (CACNB2) in BP sample for association with 

substance use disorder. 

These results should be interpreted in consideration of some lim- itations. Firstly, the 

relatively small sample sizes, which limit the pos- sibility of assessing the impact of candidate 

loci on  the examined phenotypes. For individual variants, our meta-analysis provided a power 

of 0.07 to detect risk alleles with odds ratios (ORs) ~ 1.1, i.e. the mean OR of significant variants 

reported by the PGC, setting the alpha value to 0.05 (two-tailed) and considering MAF = 0.30, 

in line with that of significant variants reported by the PGC. Indeed, the attainment of a power of 

0.80 would require a much large sample size, over 16.400 subjects, and, applying such a power 

threshold to our study population, an OR of 1.8 could be detected for individual variants. 

However, spe- cific symptom domains were considered in our analysis not broad di- agnostic 

categories, thus expected effect sizes do not necessarily cor- respond to those reported by the 

PGC, which by the way includes very heterogenous samples, despite the fact that we could not 

provide direct evidence supporting this hypothesis and our findings should be con- sidered as 

suggestive only. Secondly, there was only partial compar- ability between the samples in terms 

of the phenotype construction, particularly for depressive and positive symptoms severity, and 

other sample characteristics, such as treatment setting. 

In conclusion, our results support and detail previous findings and suggest some new 

associations. A role of SH3GL2, previously char- acterized as relevant to psychosis (Åberg et 

al., 2012; Lencer et al., 2017; Martins-De-Sousa et al., 2009; Prabakaran et al., 2004), was 

hypothesized in suicidal ideation. CLVS was also associated with sui- cidal ideation for the first 

time, this gene is neuron specific but still poorly characterized (Katoh et al., 2009). Our results 

confirmed the effect of SHC4 on depressive symptoms (Aragam et al., 2011; Duric et al., 

2010; Howard et al., 2017; Siddiqui et al., 2009; Sullivan et al., 2003). Lastly, GO:0048661, 

involved in up-regulation of cell pro- liferation, may play a role in the risk of substance abuse 

disorder co- morbidity, possibly through a modulating effect on neurodevelopment and 

Ca2+/calmodulin dependent protein kinases (Sun and Zhao, 2010; Fog et al., 2006; Licata et al., 

2004; Sakurai et al., 2007; Tang et al., 2006). 

Supplementary data to this article can be found online at https:// 

doi.org/10.1016/j.pnpbp.2018.08.023. 
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Table 1 

Clinical-demographic characteristics of the included samples. For each continuous and categorical variables mean ± standard 

deviation and distributions (per- centage) were reported, respectively. BDI=Bipolar disorder type I, BDII=Bipolar disorder type 

II, BDNos=Bipolar disorder not otherwise specified, NA=not available. 

Variable SCZ sample I 

(n=111) 

SCZ sample II 

(n=115) 

SCZ sample total 

(n=226) 

BD sample I 

(n=79) 

BD sample II 

(n=149) 

BD sample total 

(n=228) 

Age 43.03 ± 13.38 48.93 ± 14.27 46.03 ± 14.12 47.30 ± 12.83 48.62 ± 14.03 48.16 ± 13.63 

Gender N (%) 65 M (58.56%), 46 

F 

60 M (52.17%), 55 

F 

125 M (55.31%), 

101 

38 M (48.1%), 

41 

81 M (54.36%), 68 

F 

119 M (52.19%), 

109  (41.44%) (47.83%) F (44.69%) F (51.9%) (45.64%) F (47.81%) 

Ethnicity caucasian/other 107/4 112/3 219/7 75/4 140/9 215/13 

Age at onset 24.73 ± 7.63 (36 22.83 ± 6.66 (15 23.65 ± 7.14 (51 27.99 ± 11.90 

(10 

27.49 ± 10.8 (18 27.66 ± 11.19 (28 

 NA) NA) NA) NA) NA) NA) 

Diagnosis / / / 58 BDI, 11 BDII, 116 BDI, 21 BDII, 

12 

174 BDI, 32 BDII, 22 

    10 BDNos BDNos BDNos 

Depressive symptoms severity 7.70 ± 3.78 (55 

NA) 

10.57 ± 4 (27 NA) Different scales 

were 

7.83 ± 4.83 (19 1.86 ± 2.69 (41 

NA) 

3.99 ± 4.6 (60 NA) 

(before standardization)   used NA)   

Positive symptoms severity 

(before 

7.70 ± 2.77 (14 

NA) 

6.67 ± 2.82 (27 

NA) 

7.21 ± 2.79 (41 

NA) 

4.61 ± 2.50 (61 0.96 ± 0.67 (23 

NA) 

Different scales were 

standardization)    NA)  used 

Suicidal ideation yes/no 14/42 (55 NA) 14/96 (5 NA) 28/138 (60 NA) 22/38 (19 NA) 73/56 (20 NA) 95/94 (39 NA) 

Early onset yes/no 26/49 (36 NA) 45/55 (15 NA) 71/104 (51 NA) 26/43 (10 NA) 48/83 (18 NA) 74/126 (28 NA) 

Substance use disorder yes/no 47/28 (36 NA) 22/74 (19 NA) 69/102 (55 NA) 40/32 (7 NA) 74/55 (20 NA) 114/87 (27 NA) 
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Table 2 

Summary of significant results of gene (a) and gene set analysis (b). CHR=Chromosome; NSNPS=number of SNPs annotated to that 

gene; ZSTAT=the Z-value for each gene; NGENES=the number of genes in the gene set. 

Gene CHR Phenotype Sample NSNPS ZSTAT 
 

P Corrected p 

(a) SH3GL2 
 

 

9 

 

 

Suicidal ideation 

 

 

SCZ 

 

 

1005 

 

 

6.88 

  

 

3.01E-12 

 

 

5.62E-08 

CLVS1 8 Suicidal ideation SCZ 410 4.87  5.56E-07 1.04E-02 

SHC4 15 Depressive symptoms severity BP 339 5.10  1.66E-07 3.13E-03 

SH3GL2 9 Suicidal ideation Meta-analysis 998 4.85  6.25E-07 1.18E-02 

 

SET 

 

Phenotype 

 

Sample 

 

NGENES 

 

BETA 

 

BETA STD 

 

SE 

 

P 

 

Corrected p 

(b) GO:0048661 
 

 

Substance use disorder comorbidity 

 

 

Meta-analysis 

 

 

60 

 

 

0.51 

 

 

0.03 

 

 

0.11 

 

 

1.57E-06 

 

 

3.12E-02 

 

 
 
 
 
 
 
 
 


