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Abstract— In this paper, a novel resource allocation (RA)
strategy is designed for the downlink of orthogonal frequency
division multiple access (OFDMA) networks employing practical
modulation and coding under quality of service constraints
and retransmission techniques. Compared with previous works,
two basic concepts are combined together, namely, i) taking
the goodput (GP) as performance metric, and ii) ensuring
maximum fairness among users. The resulting RA maximizes
thus the GP of the worst user, optimizing subcarrier allocation
(SA), per-subcarrier power allocation (PA), and adaptation of
modulation and coding (AMC) of the active users, yielding
a nonlinear nonconvex mixed optimization problem (OP). The
intrinsic demanding difficulty of the OP is tackled by iteratively
and optimally solving the AMC, PA and SA subproblems,
devoting special care to the demanding nonlinear combinatorial
SA-OP. First, the optimal (yet computationally complex) solution
is found by applying the branch&bound method to the optimal
SA solution found in the relaxed domain, and accordingly, it is
taken as benchmark. Then, an innovative suboptimal yet efficient
solution based on the metaheuristic ant colony optimization
(ACO) framework is derived. The proposed RA strategy is
corroborated by comprehensive simulations, showing improved
performance even at the cost of affordable numerical complexity.

Index Terms— Orthogonal frequency division multiple access
(OFDMA), bit-interleaved coded modulation, automatic repeat
request (ARQ), goodput, resource allocation, max-min optimiza-
tion problem, ant colony optimization.

I. INTRODUCTION

Due to its high spectral efficiency, flexibility and capability

of coping with harsh multipath fading, the orthogonal fre-

quency division multiple access (OFDMA) is actually iden-

tified as a strong player for both current standardized 4G and

beyond-4G high data rate wireless packet networks [1], [2],

[3]. In order to fully exploit the potential of OFDMA in the

downlink multiuser scenario, however, the base station (BS)

must choose the best configuration of transmission parameters

(TPs) by way of a properly designed resource allocation (RA)

strategy, in accordance with the channel state information
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(CSI) and the quality of service (QoS) each user requires [4].

In this context, by virtue of the independent fading suffered by

the users placed in different locations, the multiuser diversity

takes a significant role in that, when a subcarrier of a given

user deeply fades, it may be instead in good conditions for a

different user [5]. Hence, for each packet to transmit, the BS

can dynamically perform [1], [4]: i) subcarrier allocation (SA)

to users, and for each user ii) power allocation (PA) across

the subcarriers, combined with iii) adaptive modulation and

coding (AMC). The total result is that the data rate conveyed

by the subcarriers with better conditions can be increased

through a suitable mix of power levels, modulation order and

coding rate, thus optimizing the overall usage of the available

resources.

Prior Works. The literature about RA for the downlink of

OFDMA dates back to the works based on minimizing the

overall transmit power consumption while maintaining the

user data rate requirement [6], or alternatively, maximizing

the data rate achieved by all the users subject to the total

BS transmit power constraint [7]. The problem of possible

unfair resource assignment to users with poor CSI is avoided

resorting to proportional fairness [8] or maximum fairness

[9], [10]. The previous works are then extended to a two-hop

relaying scheme [11] and the downlink of coordinated multi-

cell OFDMA scenarios [12]. Worth of being pointed out, [8]-

[12] follow an information-theoretic approach, i.e., they adopt

the user sum-rate as performance metric, thereby assuming

unpractical infinite-length Gaussian codebooks.

Conversely, whenever discrete modulation formats and prac-

tical coding schemes, such as bit interleaved coded modulation

(BICM) [13], are employed (on top of them) along with

automatic repeat request (ARQ) retransmission mechanism

to delivery error-free packets [14] (as typically required in

data, broadcast and video streaming applications), the story

is quite different. The conventional sum-rate metric is no

longer meaningful in that the penalty of packet errors is not

accounted for, and so, a different approach is called for. A

more appropriate utility function capable of trading off the

data rate achieved at physical (PHY) layer against the error

rate suffered at data link (DL) layer, indeed, is embodied by

the goodput (GP) metric, which is defined as the number of

error-free payload bits delivered to the user by unit of time, or

equivalently, the offered layer 3 data rate [15]. This explains

the reason why the design of cross-layer RA strategies via the

optimization of a GP-based utility function is gaining more

and more interest, as shown in the sequel.

A considerable effort is first made in [16]-[17], although



2

such works incur into a few restrictions or drawbacks: i) a

high-SNR approximation of the subcarrier packet error rate

(PER) is employed whereas the packets of each user are

conveyed by a single subcarrier, thus underusing the potentials

of multiuser diversity [16], [18]; ii) the BS transmits a single

packet across all the subcarriers within each slot packet inter-

val [19]; iii) while the users’ outage probability is constrained

to a target level, the objective to be optimized depends on

the scheduled rates over the subcarriers and users [20], [21];

iv) in the amplify-and-forward relay-assisted OFDMA network

proposed in [17], the potential of multiuser diversity is fully

exploited only on condition that the number of the relays

grows (impractically) faster than the number of users. v) the

penalty induced by the packet errors is captured by using the

outage probability (a quantity depending on the instantaneous

mutual information) included within the definition of the GP

expression adopted in [19]-[17]; vi) in all works, the available

resources are assigned while starving those users with poor

quality channel conditions and boosting the good ones.

At the other side, the cross-layer RA scheme proposed

in [22] optimizes the sum of the users’ GP achieved per

transmitted frame, incorporating fairness among users. Herein,

assuming perfect CSI at the BS, the GP expression is heuristi-

cally modeled as a function of the per-subchannel PER, which

in turn is approximated, for a given user, as the average

of the uncoded bit error rate (BER) across the assigned

subcarriers. The search for the optimal subchannel, modula-

tion and power allocation maximizing the GP metric turns

out to be computationally involved, the corresponding OP

being a nonlinear mixed integer programming (IP) problem.

Nevertheless, applying the decomposition theory reduces the

complexity without introducing an appreciable performance

loss. In order to simplify the corresponding OP, however, in

[22]: i) hard-decision Viterbi decoding is assumed; ii) the

available subcarriers are evenly grouped in a number of sub-

channels, and consequently, subchannel, instead of subcarrier,

allocation is performed; iii) proportional fairness cares about

the performance of the worst user without any optimization;

iv) the GP is modeleld by an “ad-hoc” expression depending

on a given approximation of the BER function; v) the coding

rate adopted within the transmitted packet is not optimized but

a-priori chosen; vi) to decouple the original OP, the total power

constraint is relaxed, by equally distributing the power among

the subchannels instead of optimizing the power distribution

among the subcarriers.

Rationale and Contributions. This paper deals with a cross-

layer RA scheme for the downlink of a BIC-OFDMA network

employing ARQ retransmission, under the QoS constraint on

the users’ PER and assuming ideal CSI at the BS. The idea

behind the proposed scheme is to maximize the minimum

among users’ GP, so guaranteeing maximum fairness among

users, via the optimal choice of the AMC, SA and PA

strategies. So doing, the restrictions on the subcarrier and

power allocation made in [22] are avoided. In view of the

following key features, our proposal comes out to be more

competitive when compared to the existing literature.

1) Two pivotal concepts are properly combined together: i)

taking the expected GP, or EGP1, performance metric

as objective function, and ii) ensuring maximum fair-

ness among users. Hence, dissimilarly from [22], our

approach, referred to in the sequel as “max-min GP”,

or MMG for short, consists in searching for the optimal

TPs configuration, i.e., SA to users, PA and modulation

to subcarriers, and coding rate, in such a way that the

EGP of the worst performing user is maximized at each

ARQ round.

2) With the aim of building a computationally reasonable

RA scheme, the actual GP, or AGP2 is estimated ex-

ploiting a manageable expression of the EGP metric. The

result is obtained by resorting to the κESM performance

prediction model recently derived in [23] and success-

fully applied in [24] for single-user BIC-OFDM links.

The rationale of such an approach consists in an in-

depth characterization of the log-likelihood ratio (LLR)

metrics required by the soft Viterbi decoder, thanks to

which the received SNRs over the subcarriers are simply

and accurately mapped into a closed-form scalar, the so-

called effective SNR (ESNR); see Sect. III-A for more

details.

3) The MMG results a nonlinear nonconvex OP with

mixed integer- and real-valued variables, and accord-

ingly, searching for its global optimum solution is in-

herently prohibitive. Nevertheless, the rationale of the

viable approach we pursue is to subdivide the original

OP into three subproblems, i.e, the AMC-OP, PA-OP

and SA-OP. Then, the conventional iterative coordinate

ascent method (CAM) is applied [25], wherein at a given

iteration each subproblem is optimally and consecutively

solved at affordable complexity.

4) While the AMC-OP is easily solved via exhaustive

search and the PA-OP is handled by the conventional La-

grangian dual decomposition (LDD) theory [26], the SA-

OP is a demanding NP-hard nonlinear IP problem. Two

solving algorithms, however, help us skipping the above

issue. One is optimal yet with high complexity: first,

the SA-OP is relaxed in a continous domain, solved,

and then, optimally brought to the discrete domain by

means of the branch and bound (B&B) algorithm [27].

As a consequence, it will be used for performance

benchmark only. The second one, instead, works as

an efficient accuracy-versus-complexity tradeoff: it is

motivated by the metaheuristic ant colony optimization

(ACO) framework [28], which has been contemplated in

[29] in a very preliminary form for a cognitive OFDMA

system.

5) For the sake of simplicity, the MMG-OP is formulated

assuming ideal CSI at the BS and the absence of any

form of maximum ratio combing (MRC) at the receiver.

It can be proved, however, that the MMG-RA can easily

take care of the above issues by properly modifying

the expression of the κESM prediction model only. So

1The EGP is defined as the statistical expectation of the GP, evaluated over
the TPs at the BS transmitter.

2The AGP is defined as the actual GP metric measured through numerical
simulations over realistic wireless environments.
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doing, we get a RA strategy that is based on the same

solving structure, even exhibiting the advantage of better

performance and robustness while ensuring maximum

fairness among the active users.

6) Comprehensive simulations over realistic propagation

scenarios support our analytical findings. Due the lack

in the literature of similar RAs addressing the topics of

our interest, we adopt as for performance benchmark

the heuristic RA algorithm formulated in Sect. VI-D,

which is employed to initialize the CAM procedure as

well. Although the MMG-based RA originally requires

an unfeasible computational load, a suitable mix of mod-

eling and OP design enables a viable scheme supplying

notable performance improvements over non adaptive

strategies.

Organization. Section II describes the BIC-OFDMA system

model and Sect. III formulates the MMG-OP. In Sections IV

and V, the methods to solve the PA- and AMC-OPs and the

SA-OP are outlined, respectively, while the simulation results

are discussed in Sect. VI. Finally, some concluding remarks

are drawn in Sect. VII.

Notations. Matrices are in upper case bold while column vec-

tors are in lower case bold, [·]T is the transpose of a matrix or

a vector, × is the Cartesian product, calligraphic mathematical

symbols, e.g., A, represent sets, |A| is the cardinality of A,

A(i) is the ith element of A, AN ∆
= A×A× · · · × A

︸ ︷︷ ︸

N

is the

Cartesian power of order N , ‖a‖ ∆
=
√
aTa is the ℓ2-norm of

a, f ◦ g represents the composition of functions f and g, the

gradient of the function F (x) evaluated in x, with x,x ∈ R
N ,

is identified as ∇xF (x), ⌈x⌉ is the nearest greater integer to

x, x(i) is the value of the variable x at the iteration i, [x]ba
means x if a < x < b, x = a (x = b) if x < a (x > b),
[x]Dx

is the component-wise projection of the elements of x

over the set Dx, and Ex{·} is the statistical expectation with

respect to (w.r.t.) the random variable (RV) x.

II. SYSTEM MODEL

We consider the downlink from a BS to Q user receivers

(also called network load) with indexes in Q ∆
= {1, · · · , Q},

employing the BIC-OFDMA signaling format. The Q BS-

to-user links share the band B which is divided into N
subcarriers indexed by the elements of N ∆

= {1, · · · , N}.
Each packet of user q ∈ Q coming from the upper layers

of the stack (typically, an Internet Protocol packet or layer-

3 control signaling message), with length N
(u)
q = N

(h)
q +

N
(p)
q + N

(CRC)
q , i.e., comprising the header, payload and

cyclic redundancy check (CRC) bits, respectively, is encoded

using a linear coding scheme with mother code r̄0. At the ℓth
ARQ protocol round3 (PR), with ℓ ∈ L ∆

= {1, · · · , L}, the

encoded bits are first punctured according to the coding rate

rℓ,q ∈ Dr
∆
= {r̃0, · · · , r̃max} assigned to the user q, thereby

obtaining N
(c)
ℓ,q

∆
= N

(u)
q /rℓ,q punctured encoded bits. Then,

3At a given transmission time, the ARQ mechanisms of the Q users may
be at different number of PRs, meaning thus that the PR index ℓ depends on
the user index q. To ease notation, however, in the following we will drop
such a dependence.

they are randomly processed by the bit-level interleaver in

accordance with the BICM scheme.

Let us designate at PR ℓ ∈ L: i) the SA vector with aℓ,q
∆
=

[aℓ,q,1, · · · , aℓ,q,N ]T ∈ DN
a , where Da

∆
= {aℓ,q,n | aℓ,q,n ∈

{0, 1}, ∀n ∈ N , ∀q ∈ Q, ∀ℓ ∈ L}, aℓ,q,n being the indicator

function for the subcarrier n, i.e., aℓ,q,n = 1 if subcarrier n is

assigned to user q, and zero otherwise, so that
∑

q∈Q aℓ,q,n ≤
1, ∀n ∈ N , thus meaning that each subcarrier is assigned at

most to one user at a time; ii) the number of bits loaded4

by user q on each of its subcarriers with mℓ,q ∈ Dm
∆
=

{2, · · · ,mmax}.
The punctured and interleaved bits obtained above are

grouped into mℓ,q-tuples, which are one-to-one mapped to

the sequence {sℓ,q,i}, 1 ≤ i ≤
⌈

N
(c)
ℓ,q /mℓ,q

⌉

, of unit-energy

symbols belonging to a 2mℓ,q -QAM constellation. Thus, at the

generic OFDM symbol, the N
(s)
ℓ,q

∆
=

∑

n∈N aℓ,q,n positions of

xℓ
∆
= [xℓ,1, · · · , xℓ,N ]T having indexes n ∈ Nℓ,q

∆
= {n ∈

N | aℓ,q,n = 1, ∀q ∈ Q, ∀ℓ ∈ L}, such that
⋃

q∈QNℓ,q ⊆ N ,

∀ℓ ∈ L, are loaded with one block of consecutive modulation

symbols read from {sℓ,q,i}, properly scaled by
√
pℓ,n (chosen

according to the adopted PA strategy), where pℓ,n ∈ Dp
∆
=

{pℓ,n ∈ R | 0 ≤ pℓ,n ≤ P, ∀n ∈ N , ∀ℓ ∈ L} is the fraction of

the total power P available at the BS, such that
∑

n∈N pℓ,n ≤
P . Eventually, the scaled modulation symbols corresponding

to the Q active users are transmitted using the OFDM format

over a frequency-selective block-fading channel.

At the receiver, after cyclic prefix removal and FFT pro-

cessing, the signal sample received at round ℓ on subcarrier n
assigned to user q results as

zℓ,q,n = aℓ,q,n
√
pℓ,nhℓ,q,nxℓ,n + wℓ,q,n,

∀n ∈ Nℓ,q, ∀q ∈ Q, ∀ℓ ∈ L, (1)

where hℓ,q,n is the complex-valued multipath channel coeffi-

cient related to the link connecting the BS to the qth user,

whereas wℓ,q,n is the noise component, which is modeled

as a zero-mean complex-valued Gaussian-distributed RV with

variance σ2
ℓ,q,n. From (1), the signal-to-noise-ratios (SNRs)

over the channels relevant to the subcarriers assigned to user

q are collected by γℓ,q
∆
= [γℓ,q,1, · · · , γℓ,q,N ]T , where γℓ,q,n

∆
=

pℓ,n
|hℓ,q,n|2
σ2
ℓ,q,n

, ∀n ∈ Nℓ,q, and without loss of generality

(w.l.g.) γℓ,q,n
∆
= 0, ∀n /∈ Nℓ,q, ∀q ∈ Q and ∀ℓ ∈ L.

III. RESOURCE ALLOCATION BASED ON MAX-MIN

GOODPUT OPTIMIZATION

In this section, we first derive the EGP metric for the ARQ-

based BIC-OFDMA system outlined in Sect. II. Then, we

formulate the MMG-OP, which optimizes the EGP objective

function under a number of given constraints.

4In the current work, for simplicity, the same modulation format is assumed
for all the subcarriers assigned to each user, that is to say, mℓ,q is independent
of the subcarrier index n; see further comments in Sect. IV-B. Nevertheless,
in the proposed RA strategy, the frequency diversity effect is exploited
concerning the SA to users and PA across the subcarriers.



4

Fig. 1. Example of ARQ-based multiuser system with retry limit L = 4.

A. The Expected Goodput Objective Function

The lack of a reliable knowledge about the channel co-

efficients hℓ,q
∆
= [hℓ,q,1 · · · , hℓ,q,N ]T for all users and in

the future PRs prevents the BS from the joint optimization,

at the beginning of each packet transmission, of the TPs

τ ℓ,q
∆
= {pℓ, aℓ,q,mℓ,q, rℓ,q}, ∀ℓ ∈ L and ∀q ∈ Q, where

pℓ
∆
= [pℓ,1, · · · , pℓ,N ]T ∈ DN

p ; as for the definition about

the TPs, see Sect. II. Hence, inspired by the works [18] and

[24] (though proposed in different contexts), an alternative

yet effective route is pursued, which consists of a per-round

optimization, as sketched in Fig. 1. The idea is quite simple: at

PR ℓ we adapt the TPs τ ℓ,q to the current channel conditions

regardless of the future channel evolution, till the packet is

successfully decoded or the PR retry limit L is reached. Based

upon a lower bound (LB) of the EGP metric, as derived

in Appendix A, the objective function is expressed by the

following formula

ζℓ,q(τ ℓ,q |hℓ,q)
∆
=

N
(p)
q

N
(u)
q

rℓ,q mℓ,q

∑

n∈N
aℓ,q,n

[
1− Γrℓ,q(τ ℓ,q|hℓ,q)

]
, (2)

where Γrℓ,q (τ ℓ,q |hℓ,q) is the packet error probability (PER)

of user q at PR ℓ when the TPs vector τ ℓ,q is used over the

(known) channel response hℓ,q. Eq. (2), indeed, results as the

number of information bits correctly received per packet by

each user at each PR, referred to in the sequel as EGP.

The problem to solve now is the way the PER is eval-

uated when practical modulation and coding schemes are

employed in presence of frequency-selective channels. To-

ward this end, we resort to the effective SNR mapping

(ESN) technique [30]. This method considers an equivalent

binary coded system working over additive white Gaussian

noise (AWGN) channel and experiencing the effective SNR

(ESNR) γ̄ℓ,q, which maps the received SNRs γℓ,q (see the

ending of Sect. II) and the TPs τ ℓ,q in such a way that

Γrℓ,q (τ ℓ,q |hℓ,q) = Φrℓ,q [γ̄ℓ,q(τ ℓ,q |hℓ,q)], where Φrℓ,q(·) is

a monotonically decreasing and convex function in the range

of interest, obtainable either in closed-form or by simulation.

Due to its accuracy and the simple mapping function,

we specifically choose the κESM model formulated in [23].

Thus, upon fixing the PR index ℓ, dropping for simplicity the

dependence of the various quantities on it, and observing that

the OFDMA system is nothing but a set of Q independent

and frequency-orthogonal OFDM users, the κESM ESNR

corresponding to user q can be written as

γ̄q(τ q |hq)

∆
= − log

{∑

n∈N aq,nΩq,n(p,mq |hq)

mq

∑

i∈N aq,i

}

, ∀q ∈ Q, (3)

with Ωq,n(p,mq |hq)
∆
=

∑
√
2mq/2

µ=1 αq,µe
−pnβq,µ

|hq,n|2

σ2
q,n , where

αq,µ
∆
= ηq(µ)/2

mq−1, βq,µ
∆
= [µd

(min)
q /2]2, and ηq(µ) denotes

the number of QAM symbols at distance µd
(min)
q from the

nearest neighbor in the complementary subset5, both ηq(µ) and

d
(min)
q depending on the modulation order only; see [23] for

further details. Thus, the BS evaluates γ̄q , ∀q ∈ Q, and enters

it in the look-up table which returns the values of the PER

Φrℓ,q , for the selected coding rate, obtained by simulation.

B. Formulation of the Max-Min Goodput based Resource

Allocation Problem

In view of Sect. III-A, the RA problem that maximizes

the minimum among the user EGPs, we called in Sect. I as

MMG for short, can be formulated as follows.

Definition 1 (MMG-OP): Assuming that the transmitter has

perfect knowledge of the current CSI h
∆
= [hT

1 ,h
T
2 , · · · ,hT

Q]
T

of all the users at each PR, the MMG-OP results as

τ
⋆ = argmax

τ∈Dτ

ξ(τ |h)

s.t.
∑

n∈N pn ≤ P, (a)
∑

q∈Q aq,n ≤ 1, ∀n ∈ N , (b)

Φrq [γ̄q(τ q |hq)] ≤ Υq, ∀q ∈ Q, (c)

(4)

with the objective function being expressed by

ξ(τ |h) = min
q∈Q
{ζq(τ q |hq)} , (5)

where

ζq(τ q |hq) =
N

(p)
q

N
(u)
q

rq mq

∑

n∈N
aq,n

{
1− Φrq [γ̄q(τ q |hq)]

}

(6)

is obtained from EGP (2) after exploiting the κESM

performance model, τ
⋆ is the optimal solution with

τ
∆
= {τ 1, · · · , τQ} ∈ Dτ

∆
= DN

p × DNQ
a × DQ

m × DQ
r ,

γ̄q(τ q |hq) is given by (3) and Υq is the QoS threshold

below which the PER of user q has to be kept.

A few remarks are now in order.

1) The novelty of the formulation of the EGP (6) for

our system, when compared to the literature, has to be

properly emphasized. In a nutshell, the PER under a

frequency-selective channel has been obtained resorting

to the accurate κESM model proposed in [23], and not

through a simple average of the BER per subcarrier.

The key factor relies on the in-depth characterization

of the LLR metrics at the input of the soft decoder, thus

5The complementary subset of a symbol x ∈ X -QAM having the bit b at
the kth label position is the subset of the constellation symbols having the
bit b′ at the kth label position, with b′ being the complementary of b.
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obtaining a simple and accurate mapping of the received

SNRs over the subcarriers into a closed-form scalar.

2) The MMG-OP is a constrained nonlinear nonconvex

OP with mixed integer- and real-valued variables. As a

consequence, assembling an efficient numerical method

to find the global optimum is de facto very demanding,

whereas resorting to a naive exhaustive search is quite

prohibitive [31, Ch. 6]. More in detail: i) the binary

variables aq,n, ∀q ∈ Q and ∀n ∈ N , make the prob-

lem (4) have a combinatorial complexity exponentially

increasing with NQ; ii) the objective function (5) is not

concave, implying thus that multiple local optima may

exist; iii) a feasible solution may not occur, since there

may not be a TPs combination that simultaneously sat-

isfies all the constraints; iv) the “no-solution” condition

could be pragmatically relaxed by dropping the packets

violating the constraints, or even blocking the corre-

sponding users for a given time interval. Concluding,

an affordable numerical algorithm is called for, which

will be the focus of the next two sections.

IV. ITERATIVE SOLUTION OF THE MMG-OP

The rationale to solve the MMG-OP introduced in Sect. III-

B relies on the “divide et impera” concept, i.e., subdividing

the main problem into the AMC, PA and SA subproblems, and

then, efficiently solving each of them. Specifically, in Sect. IV-

A, the solving algorithm of the MMG-OP based on the CAM

procedure has been formalized. In Sect. IV-B and IV-C, we

tackle the solution of the AMC- and PA-OP, respectively, while

Sect. V deals with the SA-OP. In the sequel, for notational

simplicity, we further drop the dependence of the quantities

of interest on the CSI h, that is assumed to be known to the

transmitter at each PR.

A. Outline of the Solution Algorithm to the MMG-OP

The search for a solution to the MMG-OP is based on

the CAM algorithm [25]. The rationale consists in iteratively

optimizing the objective function ξ(τ ) w.r.t. only a subset y of

the TPs, while keeping the remaining ones, identified as τ−y,

fixed to the values found at the previous iteration. Denoting

with a(i)
∆
= [a

(i)
1

T
, · · · , a(i)Q

T
]T , m(i) ∆

= [m
(i)
1 , · · · ,m(i)

Q ]T ,

and r(i)
∆
= [r

(i)
1 , · · · , r(i)Q ]T the SA, bit and coding rate vectors

at the ith iteration, respectively, and assuming that the three

subproblems are tackled according to a given succession, the

MMG-OP is solved by the pseudo-code illustrated in Tab. I,

returning:

i) for the AMC-OP, {m(i+1), r(i+1)}, given τ
(i)
−{m,r}

∆
=

{p(i), a(i)};
ii) for the PA-OP, p(i+1), given τ

(i)
−p

∆
= {a(i),m(i+1), r(i+1)};

iii) for the SA-OP, a(i+1), given τ
(i)
−a

∆
=

{p(i+1),m(i+1), r(i+1)}.
The following features can be pointed out: i) since the

AMC-, PA- and SA-OP are optimally solved, each iteration

yields a nondecreasing value of the objective function; ii) the

algorithm ends when either it converges to a local optimum

within the accuracy interval ǫ or reaches the maximum number

of iterations ICAM, returning in both cases the solution τ
⋆; iii)

in order to improve the chances to converge to a “good” local

optimum among all possible ones, the algorithm has to be

properly initialized by finding a suitable τ
(0) and the three

subproblems must be solved according the best performing

succession, as shown in Sect. VI; iv) the overall computational

complexity is linear in ICAM, whereas the complexity of a

single iteration is given by that of the algorithms solving the

three subproblems, as discussed at the end of their relevant

sections. From now on, for notational simplicity, we will

drop w.l.g. the dependence of iteration index i of the CAM

algorithm from the quantities of interest.

B. Solution to the AMC-OP

The AMC-OP, which is solved by the optimal bit and

coding rate vectors {m⋆, r⋆}, with m⋆ ∆
= [m⋆

1, · · · ,m⋆
Q]

T

and r⋆
∆
= [r⋆1 , · · · , r⋆Q]T , can be stated as follows.

Definition 2 (AMC-OP): Given τ−{m,r}, the MMG-OP (4)

reduces to

{m⋆, r⋆} = argmax
{m,r}∈DQ

m×DQ
r

ξ(m, r)

s.t. Φrq [γ̄q(mq)] ≤ Υq, ∀q ∈ Q. (a)

(7)

Given the finite cardinality of the domain Dmr
∆
= Dm × Dr,

the AMC-OP6 is solved through the “worst case” exhaustive

method summarized in Tab. II. Each iteration checks if there

exists a pair of modulation and coding format that increases

the lowest EGP while satisfying the QoS constraint (7.a).

Iterations go on until the user with the worst EGP cannot

improve its performance anymore, thus concluding the search.

Concerning the complexity of the solution to the AMC-OP, it

can be verified that it is linear in the size |Dmr| times the

required number of iterations, which in turn (from simulation

results not shown due limitation of pages) shows at most

6Concerning the choice of adopting uniform bit loading (BL) for each user,
we observe that the assumption can be removed by applying, for instance,
the efficient BL algorithm proposed in [32] without modifying the proposed
CAM-based approach. Hence, since this topic does not add any additional
novelty, in the current work we will focus on uniform BL only.

CAM-based solution algorithm to the MMG-OP

Input: ǫ, ICAM, τ 0

Initialize: i = 0, τ (0) = τ 0

Repeat

Solve AMC-OP: {m(i+1), r(i+1)}

= argmax
{m,r}∈D

Q
m×D

Q
r

ξ(m, r | τ
(i)
−{m,r}

)

Solve PA-OP: p(i+1) = argmax
p∈DN

p

ξ(p | τ
(i)
−p)

Solve SA-OP: a(i+1) = argmax
a∈D

NQ
a

ξ(a | τ
(i)
−a)

Set i = i+ 1

Update τ
(i) with {p(i), a(i),m(i), r(i)}

Until
∥

∥ξ(τ (i))− ξ(τ (i−1))
∥

∥ < ǫ Or i = ICAM

Output: τ⋆ = τ
(i)

TABLE I
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the same order of magnitude of the number of users besides

scaling with it.

C. Solution to the PA-OP

The PA-OP returning the optimal power distribution

p⋆ ∆
= [p⋆1, · · · , p⋆N ]T across the N subcarriers can be

formulated as follows.

Proposition 1 (PA-OP): Given τ−p and defining from (4.c)

υq
∆
= Φ−1

rq (Υq), ∀q ∈ Q, the MMG-OP can be rearranged into

the convex OP

min
t,p∈DN

p

−t

s.t.
∑

n∈N pn − P ≤ 0, (a)
t− ζq(p) ≤ 0, ∀q ∈ Q, (b)
υq − γq(p) ≤ 0, ∀q ∈ Q. (c)

(8)

Proof: Exploiting (3), for a given τ−p, the normalized

EGP in (6) results as ζq(p)/ζ
(0)
q = 1 − Φrq {− log[z(p)]},

where z(p)
∆
=

1

Ω
(0)
q

∑

n∈N aq,nΩq,n(pn), with ζ
(0)
q

∆
=

N
(p)
q

N
(u)
q

rq mq

∑

n∈N aq,n and Ω
(0)
q

∆
= mq

∑

n∈N aq,n depend-

ing on τ−p only. Since i) both − log(·) and Φrq (·) are convex

and non-increasing functions, and ii) z(p) is convex according

to the expression of Ωq,n(pn), due to the composition rule

of convexity [26], it can be argued that ζq(p) is a concave

function of p. Thus, the objective function (5) is concave as

well, being the minimum among a set of concave functions.

Upon observing that, given τ−p, the p-dependent constraints

(4.a) and (4.c) are convex, the maximization of (5) over a

convex set results as a convex OP. Therefore, as shown in [12],

the PA-OP can be equivalently reformulated into its epigraph

form (8).

In view of the nonlinear nature of (8), the optimal solution

p⋆ can be found applying the LDD theory [26], i.e., by

solving the dual OP associated to the primal problem (8), as

illustrated in the following proposition.

Proposition 2 (Solution to the PA-OP based on the LDD):

Let us introduce the Lagrangian multipliers θ, ωq

and φq , ∀q ∈ Q, associated to the constrains

Solution algorithm to the AMC-OP

Input: τ−{m,r}, {m0, r0}

Initialize: k = 1, u(0) = 0, τ = τ−{m,r}, {m, r} = {m0, r0}

Start: Set u(k) = argmin
q∈Q

ζq(mq , rq), Q = Q\{u(k)}

If u(k) 6= u(k−1)

For i = 1 : |Dmr|
If ζ

u(k) (Dmr(i)) > ζ
u(k) (mu(k) , ru(k) ) And (7.a) holds

Set {m
u(k) , ru(k)} = Dmr(i)

If ζ
u(k) (Dmr(i)) > min

q∈Q
{ζq(mq , rq)}

Set k = k + 1
Go to Start:

End If

End If

End For
End if

Output: {m⋆, r⋆} = {m, r}

TABLE II

(8.a), (8.b) and (8.c), respectively. Then, after

stacking them into the (2Q + 1)-sized vector

Θ
∆
= [θ, ω1, · · · , ωQ, φ1, · · · , φQ]

T
and defining d(p)

∆
=

[∑

n∈N pn − P,−ζ1(p), · · · ,−ζQ(p), υ1 − γ1(p), · · · ,
υQ − γQ(p)

]T
, the dual function of the PA-OP (8) results as

g(Θ) = inf
p∈DN

p

{ΘTd(p)}, (9)

where the feasible set for the dual variables Θ is defined as

DΘ
∆
= Dθ × DQ

φ × [DQ
ω ∩ Dω̄], with Dθ

∆
= {θ ∈ R | θ ≥ 0, },

Dφ
∆
= {φq ∈ R |φq ≥ 0, ∀q ∈ Q}, Dω

∆
= {ωq ∈ R |ωq ≥

0, ∀q ∈ Q}, and Dω̄
∆
= {ωq ∈ R | ∑q∈Q ωq = 1}. The

optimal Θ⋆ is thus obtained by solving the dual OP

Θ⋆ = argmax
Θ∈DΘ

g(Θ), (10)

and consequently, the optimal solution of the primal OP results

as p⋆ = p(Θ⋆), p(Θ) being the optimal solution to (9) for a

given Θ.

Proof: Since the objective function and constraints in

(8) are continuously differentiable and convex, the Karush-

Kuhn-Tucker (KKT) conditions are necessary and sufficient

for primal-dual optimality [26]. Therefore, strong duality ex-

ists, i.e., the difference between the optimal primal and dual

objectives (duality gap) is zero. From (8), the dual function

can be written as

G(Θ)
∆
= inf

p∈DN
p ,t










∑

q∈Q
ωq − 1



 · t+ΘTd(p)






. (11)

Since the infimum of t is −∞ unless it is multiplied by an

identically null coefficient, then
∑

q∈Q ωq−1 = 0 follows, and

so, the dual function turns into (9), where the dual variables Θ

belong to the feasible set DΘ defined above. Hence, solving

the dual OP (10) provides the optimal Θ⋆, and in view of the

strong duality, also the optimal solution p⋆ = p(Θ⋆) of the

original PA-OP, where p(Θ)
∆
= argmin

p∈DN
p

{ΘTd(p)}.

The numerical procedure to solve the PA-OP is summarized

in Tab. III, where ǫ, Imax and Θ0 denote the desired accuracy,

the maximum number of iterations and the initialization value

for Θ, respectively. About this LDD-based approach, it can

be remarked that: i) due to the convexity of the PA-OP, any

local optimum is globally optimal as well; ii) the proposed

method has a worst case convergence of O(1/ǫ2) [33]; iii)

since the solution Θ⋆ to (10) does not exist in closed-form,

a viable algorithm consists in iteratively updating Θ via the

sub-gradient algorithm with step-size δ [25] (see Appendix

B for further details), whereas the search for p(Θ) can be

performed via conventional optimization algorithms like the

steepest descent or the ellipsoid methods [26].

V. SOLUTION TO THE SA-OP

Herein, we focus on the solution to the SA-OP, which is by

far the most demanding one when compared with the solution

algorithms to the AMC-OP and PA-OP discussed in Sects.

IV-B and IV-C, respectively.
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Solution algorithm to the PA-OP

Input: δ, ǫ, Imax, τ−p, Θ0

Initialize: i = 0, τ = τ−p, Θ(0) = Θ0

Repeat

p(Θ(i)) = argmin
p∈DN

p

{Θ(i)Td(p)}

Θ(i+1) =
[

Θ(i) + δ∇Θg(Θ(i))
]

DΘ

Set i = i+ 1

Until

∥

∥

∥
p(Θ(i))− p(Θ(i−1))

∥

∥

∥
< ǫ Or i = Imax

Output: p⋆ = p(Θ(i))

TABLE III

A. Formulation of the SA-OP and Outline of the Solution

Algorithm

The SA-OP, whose solution consists of the SA vector

a⋆
∆
= [a⋆1

T , · · · , a⋆QT ]T , with a⋆q
∆
= [a⋆q,1, · · · , a⋆q,N ]T ,

∀q ∈ Q, can be defined by the following proposition.

Definition 3 (SA-OP): Given τ−a, the MMG-OP (4) turns

out

a⋆ = argmax
a∈DNQ

a

{

min
q∈Q

ζq(aq)

}

s.t.
∑

q∈Q aq,n ≤ 1, ∀n ∈ N , (a)

γq(aq) ≥ υq, ∀q ∈ Q. (b)

(12)

From (12), it is apparent that the SA-OP is an NP-hard

nonlinear IP problem with NQ binary optimization variables,

i.e., the entries of a
∆
= [aT1 , · · · , aTQ]T ∈ DNQ

a . In light of

the extreme difficulty involved in searching for the optimal

solution a⋆, two different approaches are proposed as follows.

1) Relaxed SA-OP combined with the B&B algorithm.

1.a) In Sect. V-B.1, the SA-OP is converted in its re-

laxed version, termed RSA-OP, where the binary

optimization variables aq,n ∈ Da are replaced

by the continuous ones ăq,n ∈ Dă
∆
= {ăq,n ∈

R | ăq,n ∈ [0, 1], ∀n ∈ N , ∀q ∈ Q}, Accord-

ingly, ă
∆
= [ăT1 , · · · , ăTQ]T ∈ DNQ

ă and ăq
∆
=

[ăq,1, · · · , ăq,N ]T ∈ DN
ă , ∀q ∈ Q, take the place of

a ∈ DNQ
a and aq ∈ DN

a , respectively. Interesting to

note, despite its apparently harsh structure, it will be

proved that the the RSA-OP is a convex OP, whose

solution yields an upper bound (UB) for the optimal

value of the objective function in (12).

1.b) The optimal solution of the SA-OP (12) is then

obtained in Sect. V-B.2 by mapping the relaxed

solution of the RSA-OP back to the original discrete

domain DNQ
a via the B&B algorithm [27].

2) ACO-based SA-OP.

In Sect. V-C, an alternative yet more affordable

method to solve (12) is formulated exploiting the ACO

framework, which enables an efficient accuracy-versus-

complexity tradeoff.

B. Relaxed SA-OP Combined with the B&B Algorithm

1. The relaxed SA-OP

In order to obtain the relaxed version of the SA-OP, let us

reformulate the EGP of user q in (2) by substituting aq,n ∈ Da

with ăq,n ∈ Dă, thus obtaining

ζq(ăq) = ςq
∑

n∈N
ăq,n

[

1−Ψq

(
1

mq
·
∑

n∈N Ωq,năq,n
∑

i∈N ăq,i

)]

,

(13)

where ςq
∆
= N

(p)
q rqmq/N

(u)
q and Ψq

∆
= Φrq ◦ (− log). Note

that the continuous variables ăq,n play in: i) two unweighed

sums, one multiplying the content of the square brackets and

the other at the denominator of the argument of Ψq; ii) a

weighed sum at the numerator of the argument of Ψq . Such

remarks pave the way to the following proposition.

Proposition 3 (LB of the EGP and Related Properties):

Upon defining the slack variables sq > 0, ∀q ∈ Q, the

(non-strict) inequality

ζ̃q(ăq, sq)
∆
= ςqsq

[

1−Ψq

(
1

mq
·
∑

n∈N Ωq,năq,n

sq

)]

≤ ζq(ăq) (14)

holds whenever

sq ≤
∑

n∈N
ăq,n, (15)

with the following properties:

P1) ζ̃q(ăq, sq) is a monotone nondecreasing function of sq;

P2) ζ̃q(ăq, sq) under constraint (15) defines a LB of ζq(ăq) in

the continuous domain;

P3) when sq =
∑

n∈N ăq,n, (14) holds with the equality, i.e.,

ζ̃q(ăq, sq) = ζq(ăq);
P4) ζ̃q(ăq, sq) is jointly concave w.r.t. (ăq, sq);
P5) maximizing min

q∈Q
{ζ̃q(ăq , sq)} over ă and sq , q ∈ Q, yields

a unique optimal SA solution that coincides with the one that

also maximizes min
q∈Q
{ζq(ăq)} over ă.

Proof: Given ăq , P1 is easily proved by evaluating the

sign of the first order derivative of ζ̃q(ăq, sq) w.r.t. sq , while

P2 and P3 directly follow from (15).

Concerning P4, let us first observe that Ψq(ăq)
∆
= 1 −

Ψq(
1

mq

∑

n∈N Ωq,năq,n) is concave in ăq , in that the function

composition Ψq is convex due to the rule of composition of

convex functions [26]. Then, since sq > 0, it comes out that

ζ̃q(ăq, sq) = ςqsqΨq(ăq/sq) (up to the immaterial factor ςq) is

the perspective function of Ψq(ăq). As a consequence, since

the perspective of a concave function is still concave [27], P4

follows.

As for P5, denoting with q̄
∆
= argmin

q∈Q
{ζ̃q(ăq , sq)}

and Ds
∆
= {sq ∈ R

+ | sq ≤ ∑

n∈N ăq,n, ∀q ∈
Q}, then max

ăq̄∈DN
ă
, sq̄∈Ds

{ζ̃q̄(ăq̄ , sq̄)} = ζ̃q̄(ă
⋆
q̄ , s

⋆
q̄), since

there exists an unique optimal solution due to P4,

with s⋆q̄ =
∑

n∈N ă⋆q̄,n due to P1. Thus, exploiting

P3 yields ζ̃q̄(ă
⋆
q̄ ,
∑

n∈N ă⋆q̄,n) = ζq̄(ă
⋆
q̄), and eventually,

max
ăq̄∈DN

ă , sq̄∈Ds

{ζ̃q̄(ăq̄, sq̄)} = max
ăq̄∈DN

ă

{ζq̄(ăq̄)}.

The above results lead to the formulation of the RSA-OP.
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Definition 4 (RSA-OP): Given τ−a and assuming ă ∈
DNQ

ă along with s
∆
= [s1, · · · , sQ]T as optimization variables,

the RSA-OP can be written as

{ă⋆, s⋆} = argmax
ă∈DNQ

ă , s

{min
q∈Q

ζ̃q(ăq , sq)}

s.t.
∑

q∈Q ăq,n ≤ 1, ∀n ∈ N , (a)

sq −
∑

n∈N ăq,n ≤ 0, ∀q ∈ Q, (b)
∑

n∈N (Ωq,n −mqe−υq)ăq,n ≤ 0, ∀q ∈ Q, (c)
(16)

where ă⋆
∆
= [ă⋆1

T , · · · , ă⋆QT ]T with ă⋆q
∆
= [ă⋆q,1, · · · , ă⋆q,N ]T ,

s⋆
∆
= [s⋆1, · · · , s⋆Q]T , (16.c) corresponds to the constraint

(4.c) expressed as a function of the elements of ăq , with

υq = Φ−1
rq (Υq), q ∈ Q, as defined at the beginning of Sec.

IV-C.

The problem we are left now is how to find the optimal

solution ă⋆ solving (16). Bearing in mind that the objec-

tive function is jointly concave w.r.t. (ăq, sq) (property P4),

a CAM-based algorithm can be applied running iteratively

between the two concave subproblems RSA-OP.1 and RSA-

OP.2, as summarized in Tab. V-B. As for RSA-OP.1, given

ăq , ζ̃q(ăq, sq) is a monotonically nondecreasing function of sq
(property P1), and therefore, the optimal solution at iteration

(j + 1) is simply s
(j+1)
q =

∑

n∈N ă
(j)
q,n. The subproblem

RSA-OP.2, instead, can be solved applying the LDD method,

similarly to what done for the PA-OP in Sect. IV-C. In view

of the properties P1-P5, it is guaranteed that the proposed

numerical procedure to solve the RSA-OP converges to the

global optimum [25], whereas its overall complexity is given

by that of the LDD solution to the RSA-OP.2 times the number

of required iterations.

2. The B&B-based solution to the SA-OP

The next (and final) step to solve the SA-OP consists in

starting from the solution ă⋆ to the RSA-OP over the con-

tinuous domain DNQ
ă and coming back to the solution a⋆

in the original discrete domain DNQ
a by means of the B&B

algorithm. Exploiting the fact that ă⋆ provides an UB for

the optimal value of the objective function in (12) (since the

optimization is made over the larger set DNQ
ă ), the B&B-

based search algorithm relies on iteratively building a graph,

each node of which is associated to:

• a set A ⊂ DNQ
ă , whose elements, say ă, are the possible

intermediate solutions to the SA-OP having entries ăq,n,

that can be either quantized to {0, 1} or continuous

CAM-based algorithm for the RSA-OP

Input: ǫ, JCAM, τ−a, ă0

Initialize: j = 0, τ = τ−a, ă(0) = ă0

Repeat

Solve RSA-OP.1: s(j+1) = argmax
s

{

min
q∈Q

ζ̃q(ă
(j)
q , sq)

}

s.t. (16.b)

Solve RSA-OP.2: ă(j+1) = argmax
ă∈D

NQ
ă

{

min
q∈Q

ζ̃q(ăq , s
(j+1)
q )

}

s.t. (16.a)-(16.c)
Set j = j + 1

Until ||s(j) − s(j−1)|| < ǫ Or j = JCAM

Output: ă⋆ = ă(j)

variables in [0, 1];
• the UB ξUB(A) of the optimal value ξ⋆ of the EGP given

by (5), found by solving the RSA-OP when adopting ă ∈
A;

• the LB ξLB(A) of ξ⋆, obtained by rounding to the nearest

integer the entries of the solution of the UB problem.

Let us give a brief outline about how the B&B can be

applied; for additional details see [27]. Denote with Ik the set

collecting the sets Ak associated to all the nodes at iteration k,

and with Uk and Lk the best UB and LB, respectively, found

till then. The graph begins with a single node corresponding

to I0 = {DNQ
ă }, meaning that all the NQ subcarrier indexes

are allowed to take continuous values in [0, 1]. The generic

kth iteration, k ≥ 1, is made up of the following four steps.

S1) Branching. The set Ā ∈ Ik is chosen as the one having

the lowest UB ξUB(Ā). Then, two child nodes, say Ā1 and

Ā0, are generated from Ā according to the following rule: for

Ā1, the continuous variable ăq̄,n̄, q̄ ∈ Q and n̄ ∈ N , taking

the value closest to 1/2 is set to 1, while due to the OFDMA

orthogonality principle, ăq,n̄, ∀q ∈ Q with q 6= q̄, are replaced

with 0; for Ā0, we set ăq̄,n̄ = 0. Correspondingly, Ik+1 is

built by removing Ā from Ik and adding Ā0 and Ā1 into the

updated set.

S2) Bounding. The UBs and LBs for Ā0 and Ā1

are evaluated, and then, the best bounds are updated

as Uk+1 = min{Uk, ξUB(Ā0), ξUB(Ā1)} and Lk+1 =
min{Lk, ξLB(Ā0), ξLB(Ā1)}.
S3) Pruning. The sets A ∈ Ik+1 such that ξUB(A) < Lk+1

are pruned, i.e., they are removed from Ik+1 along with the

corresponding nodes.

S4) Testing. When the condition Uk+1 − Lk+1 < ǫ holds,

with ǫ denoting the chosen accuracy, the algorithm stops and

returns the discrete optimal solution a⋆ ∈ DNQ
a , i.e., the one

associated to the LB; otherwise, the procedure goes on with

the next iteration starting from S1.

Some remarks are of interest about the solution to the SA-

OP based on the RSA-OP combined with the B&B algo-

rithm: i) the B&B algorithm exhibits a worst-case complexity

equalling that of the demanding exhaustive search over all the

graph nodes; ii) at each node, in order to get the UB, the

RSA-OP has to be solved applying the iterative LDD method;

iii) although the B&B-based solution is ǫ-optimal, as a matter

of fact the price to be paid is a prohibitive complexity, and

as such, in the following, it will be taken as a performance

benchmark only.

C. ACO-based SA-OP

The complexity required to solve the SA-OP (12) via the

method outlined in Sect. V-B actually motivates the need

of formulating a more feasible numerical procedure. The

key idea we pursue to achieve a computationally affordable

yet accurate solution to the SA-OP relies on exploiting the

metaheuristic ACO framework [28], an approach that takes

inspiration from the foraging behavior of some ant species.

As summarized in Appendix C, indeed, biological experiments

carried out in the nineties proved that a particular substance,

the pheromone, is deposited by the ants on the ground to mark
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some favorable paths, which are then followed (preferably)

by the other members of the colony, in order to search for the

minimum distance from the nest to the food source. Differently

from the approach taken in Sect. III-A, our aim here is to

get a PER expression that can fit the ACO framework to

solve the SA-OP at affordable complexity. Toward this end,

let us first approximate the PER in (6) with the negative

exponential Φrq (γ) ≃ e−σrq (γ−γ0,rq ), γ ≥ γ0,rq , ∀q ∈ Q,

where the integer-valued parameters σrq and γ0,rq are found

by minimizing the mean quadratic error (MSE), taking as

reference (in the range of interest for γ) the actual PER

obtained by simulation of the system at hand for all the

available coding rates. Then, plugging the above PER model

into the EGP expression7 (6), we obtain8

χq(aq)
∆
=

N
(p)
q

N
(u)
q

rq

[
∑

n∈N
∆mq,naq,n

]

︸ ︷︷ ︸

λq(aq)

·



1 +

σrq−1
∑

k=1

(
eγ0,rq

mq
·
∑

n∈N Ωq,naq,n
∑

i∈N aq,i

)k




︸ ︷︷ ︸

Λq(aq)

,∀q ∈ Q, (17)

where the terms ∆mq,n
∆
= mq − Ωq,neγ0,rq are independent

of the optimization variable aq .

The following properties can be highlighted:

P6) since Λq(aq) ≥ 1, then χq(aq) > λq(aq), i.e., λq(aq) is

a LB of the approximate EGP (17);

P7) up to immaterial factors, λq(aq) is a weighted sum of the

binary-valued variables aq,n, and so, its optimization consists

in a standard integer linear programming (ILP) problem;

P8) differently from λq(aq), Λq(aq) is instead a nonlinear

function of aq .

The properties P6-P8 combined with the structure of χq(aq)
thus open the way for an effective alternative method to

solve the SA-OP based on the ACO framework, heuristically

handled in two steps:

1) the SA-OP-ELB, which consists in maximizing the

minimum among the LBs λq(aq) of the EGP, or ELBs

for short, thereby returning the solution a⋆ELB;

2) the SA-OP-ACO, where the SA-OP having (17) as

objective function is solved by an iterative algorithm

based on the ACO method starting from a⋆ELB.

Definition 5 (SA-OP-ELB): The SA-OP maximizing the

worst among the ELBs λq(aq) can be formulated as

max
u, a∈DNQ

a

u

s.t.
∑

q∈Q aq,n ≤ 1, ∀n ∈ N , (a)
∑

n∈N aq,n (Ωq,n −mqe
−υq ) ≤ 0, ∀q ∈ Q, (b)

u− λq(aq) ≤ 0, ∀q ∈ Q, (c)
(18)

7The result xi+1 = 1− (1− x)
∑i

k=0 x
k has been used.

8For simplicity, the approximate EGP introduced in the current section,
given by (17), will still be referred to as the EGP metric.

where (18.b) is the QoS constraint (12.b) expressed in terms

of the entries of aq .

The formulation of the ILP-OP (18) derives from both

property P7 and the nature of the constraints. Its solution can

therefore be found by applying conventional ILP optimization

techniques [26].

Definition 6 (SA-OP-ACO): The ACO method is applied by

mapping the SA-OP having the minimum of the EGP (17) as

objective function onto the graph G(V , E) of Fig. 2, where E
is the set of edges and V is the set including N vertices plus

the “vertex 0”, i.e., the one representing the “nest” of the ACO

model.

The sets E and V are related to the SA-OP according to the

following rules.

R1) The N vertices of the graph univocally represent the N
subcarriers.

R2) The set of the edges E ∆
= E1 × · · · × EN , where En ∆

=
{e0,n, e1,n, · · · , eQ,n}, n ∈ N , contains all the possible Q+1
edges connecting vertex n − 1 to vertex n. Consequently, in

a given path connecting vertex 0 to vertex N , the presence of

the edge eq̄,n̄, q̄ ∈ Q and n̄ ∈ N indicates that subcarrier n̄ is

allocated to user q̄, i.e., aq̄,n̄ = 1 and aν,n̄ = 0 ∀ν 6= q̄ ∈ Q.

Conversely, the presence of e0,n̄ means that subcarrier n̄ is

unallocated, i.e., aq,n̄ = 0, ∀q ∈ Q.

R3) At a given iteration out of Nit, all the N vertices are

sequentially visited by Na virtual agents, i.e., the ants of the

ACO model. Each agent independently builds a complete path

by selecting, for each n ∈ N , one edge among those belonging

to En, with probability

πq,n =
ηq,nϕq,n

∑

(k,n)|ek,n∈En
ηk,nϕk,n

, (19)

where ηi,n is the local desirability and ϕi,n the pheromone

relevant to the generic edge ei,n, as defined in Appendix

C. Furthermore, in view of the structure of χq(aq) and the

corresponding graph G, the quantities ηq,n and ϕq,n, are

evaluated according to the following additional rules.

R4) The local desirability is expressed as ηq,n
∆
= [∆mq,n]

+∞
η̄ ,

i.e., as a function of the local quantity ∆mq,n depending only

on the specific user q assigned to the subcarrier n. Further,

ηq,n is forced to be greater or equal than a suitable threshold

η̄, so that all the paths are guaranteed to be explored at least

with a minimum (but no null) probability.

R5) The increment of the pheromone ϕq,n made on the best

path found at the end of the generic iteration is assumed to

be proportional to Λq, i.e., a global quantity depending on

the quality of the overall solution.

SA-OP-ACO Implementation. With reference to the pseudo-

code of the SA-OP-ACO algorithm of Tab. IV, at iteration

i, 1 ≤ i ≤ Nit, the path T (i)
j built by the agent j, 1 ≤ j ≤

Na, one-to-one identifies a possible SA vector, say a
(i)
j . When

iteration i is concluded, in the case the QoS constraint (18.b)

is also satisfied, the algorithm releases the best value χ
(i)
best

of the objective function, the relevant path T (i)
best and solution

a
(i)
best. As for the pheromone, namely, the quantity in the ACO
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model that measures how much promising (or not) is a given

solution, let remark that: i) on each edge, it evaporates as

ϕ
(i)
q,n ← [(1 − ρ)ϕ

(i−1)
q,n ]ϕmax

ϕmin
, ∀q ∈ Q, ∀n ∈ N , ρ being the

evaporation rate, with 0 < ρ < 1; ii) in the case χ
(i)
best > λ⋆

ELB,

with λ⋆
ELB

∆
= max

aq∈DN
a

min
q∈Q

λq(aq), it is reinforced on all the

edges of the best path T (i)
best as ϕ

(i)
q,n ← [ϕ

(i)
q,n + ∆ϕ(i)]ϕmax

ϕmin

∀eq,n ∈ T (i)
best, where ∆ϕ(i) ∆

= δϕχ
(i)
best/λ

⋆
ELB, while ϕmin,

ϕmax and δϕ are proper constants.

A few comments about the novel ACO-based solution to

the SA-OP have to be emphasized: i) the rationale is first to

“wisely” guarantee the maximization of the minimum ELB

via a deterministic algorithm, and then, to iteratively improve

this solution exploiting an intrinsically heuristic algorithm

based on the ACO framework; ii) the thresholds ϕmin and

ϕmax, i.e., the minimum and maximum amount of pheromone

allowed over each edge, respectively, allow the algorithm a

minimum level of exploration over the graph edges in order

to avoid premature ending of the search [28]; iii) the higher

the ratio χ
(i)
best/λ

⋆
ELB, or equivalently, the better the current

overall solution is when compared with that offered by the

deterministic algorithm, the greater the amount of pheromone

released on the edges of the best path; iv) the action of

reinforcement learning made on the path T (i)
best contributes

to make it a bit more “privileged” (i.e., with temporary

higher level of pheromone) among the others, so that at the

subsequent iterations the corresponding edges will be selected

with a slightly higher probability according to (19); v) at the

end of the Nitth iteration, the path T (Nit)
best with the best EGP

value χ
(Nit)
best will give the solution a⋆ = a

(Nit)
best to the SA-

OP (12); vi) the required computational effort is linear in the

number of vertices N , with order O(N + C) [34], with C
depending on both the number of agents Na and the edges

per vertex Q+ 1.

VI. SIMULATION RESULTS

In this section, after comparing the optimal B&B and the

heuristic ACO-based algorithms for the solution to the SA-

OP, we discuss the issues concerning the initialization and

parameter setting of the MMG algorithm, and then, we focus

on the overall performance of the proposed MMG-based RA

(MMG-RA) strategy. To the best of authors’ knowledge, due

to the lack of similar algorithms in the literature addressing the

topic of interest, we will take as performance benchmark a RA

algorithm which is employed to initialize the MMG algorithm

itself, referred to in the sequel as heuristic RA (H-RA) (see

Sect. VI-D).

Fig. 2. ACO graph.

A. System Setup. The BIC-OFDMA system adopts N = 64
subcarriers spanning a bandwidth B = 20MHz. For each

user with index q ∈ Q, the transmitted packet9 is made

up of N
(p)
q = 1024 and N

(CRC)
q = 32 payload and CRC

bits, respectively. The signaling format is based on a 64-

state convolutional code, punctured according to the coding

rate selected from the set Dr = {1/2, 2/3, 3/4, 5/6}, and the

modulation order can be 4-, 16- or 64-QAM, corresponding to

Dm
∆
= {2, 4, 6}, while a multiple-channel stop-and-wait ARQ

scheme is employed with 8 logical channels. The transmit

power available at the BS is P = 34 dBm and the noise

power at the users’ receiver over the bandwidth B is PN =
−100 dBm. Concerning the propagation channel, we assume

the path-loss model compliant with the IEEE 802.16 non-

line-of-sight urban scenario model and a short-term fading

model with ITU pedestrian B power profile. The best fitting

values of the pair (σr; γ0,r) about the PER model of Sect.

V-C are given in Tab. V. Additionally, the GP metrics, each

obtained averaging over 103 independent channel realizations,

are normalized by the ratio B/Q, having thus the meaning of

spectral efficiencies (bit/s/Hz), and are plotted as a function

of the average-symbol-energy-to-noise-spectral-density ratio

Es/N0 of the user specified in the figure. Note that In all

the numerical simulations, the AGP is estimated according

its definition when the users’ packets are transmitted over a

realistic time-variant channel model, while the EGP is only

used (as objective function) at the BS to analytically drive the

selection of the best TM

B. B&B and ACO Algorithms for the SA-OP10. Figure 3 shows

9W.l.g., the header section of the packet has been skipped.

SA-OP-ACO algorithm

Input: Nit, Na, ϕmin, ϕmax, δϕ, ρ, λ∗
ELB

Initialize: ϕ
(0)
q,n, ∀q ∈ Q, ∀n ∈ N

For i = 1 : Nit

For j = 1 : Na

Construct paths T
(i)
j

End For

Evaluate χ
(i)
best, T

(i)
best, a

(i)
best

Pheromone evaporation ϕ
(i)
q,n ← [(1− ρ)ϕ

(i−1)
q,n ]ϕmax

ϕmin
,

∀q ∈ Q, ∀n ∈ N
Update πq,n, ∀q ∈ Q, ∀n ∈ N

If χ
(i)
best > λ∗

ELB
Evaluate ∆ϕ(i)

Pheromone reinforcement ϕ
(i)
q,n ← [ϕ

(i)
q,n +∆ϕ(i)]ϕmax

ϕmin
,

∀eq,n ∈ T
(i)
best

End If

End For

Output: a⋆ = a
(Nit)
best

TABLE IV

r = 1/2 r = 2/3 r = 3/4 r = 5/6
σr 10 7 5 4
γ0,r 0.7198 1.064 1.309 1.633

TABLE V

BEST FITTING VALUES FOR THE PER MODEL IN SECT. V-C.
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Fig. 3. Comparison of B&B and ACO algorithms when solving the SA-OP.

the minimum average EGP obtained by solving the SA-OP

when adopting either the optimal B&B or the ACO algorithm.

We refer to the case of Q = 2 users, with the EGP being

plotted versus the Es/N0 of user 2 with user 1 working at

fixed Es/N0 = 27 dB. Two TPs configurations are chosen,

i.e., {mq, rq} = {2, 1/2} and {mq, rq} = {2, 5/6}, q = 1, 2,

both of them with uniform PA. As for the ACO algorithm,

two settings are employed, namely, Nit = 5 with Na = 5, or

Nit = 10 with Na = 10. Interestingly, the performance of the

ACO operating with Nit = 10, Na = 10 is very close to that

offered by the B&B, in spite of requiring a significant much

lower computational complexity.

C. ACO Parameter Setup. Concerning the tuning of the param-

eters employed by the ACO algorithm, extensive simulations

quantifying the overall performance of the MMG algorithm

suggest that a suitable setting is given by ρ = 0.1, δϕ = 0.1,

ϕmin = 0.1/(N ·Q), ϕmax = 5, Nit = 50 and Na = 50.

D. Initialization of the MMG Algorithm. The TP vector τ 0

required to initialize the MMG algorithm is found by applying

the H-RA procedure, as outlined in the sequel.

1) As for the SA, each user picks up in a round-robin way

the subcarrier with the best channel gain among the ones not

yet allocated. This is in line with the result that the PER is

dominated by the term corresponding to the worst channel

gain [24].

2) The BS transmit power is uniformly distributed over all the

subcarriers. The choice is made for simplicity, yet it reveals

nearly optimal at high SNRs [12].

3) The three AGPs curves in Fig. 4 are obtained by the MMG

algorithm initialized with the SA and PA described in 1) and

2), and {2, 2/3}, {4, 3/4} and {6, 5/6} as modulation and

coding pair {m, r}; it is shown that the configuration {4, 3/4}
gives the best tradeoff between data rate and link reliability

for the whole Es/N0 range on interest. Accordingly, the pair

{4, 3/4} will be chosen as the initial modulation and coding

10The aim of Sects. VI-B and VI-C is to test the effectiveness of the
sub-optimal ACO algorithm against the optimal B&B one, and to tune the
ACO parameter setup, respectively. In these sections, therefore, we focus
on the solution of the SA-OP only, without caring about the AMC and PA
subproblems.
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Fig. 4. AGP and EGP for different initialization pair of {m, r}.

format each user employs on own subcarriers11.

4) In order to find the best succession the CAM-based MMG

algorithm has to follow to solve the SA-OP, PA-OP and

AMC-OP subproblems, we have checked different options, as

illustrated in Tab. VI. As apparent, the AMC-PA-SA sequence

has to be preferred in that it gives the highest percentage

of cases providing the best EGP performance. In conclusion,

let us remark that simulation runs, carried out under various

configurations, demonstrate that (the results are not reported

due to limitation of space) 3-4 CAM iterations are enough to

get the most significant improvement in the minimum EGP

as well as AGP, thereby contributing to keep the overall

complexity of the MMG-RA at affordable levels.

E. Performance of the MMG Algorithm. The average AGP

metrics obtained for Q = 3 users either applying the proposed

MMG-RA or the benchmark H-RA are quantified in Fig. 5

versus the Es/N0 of user 2, while users 1 and 3 are working

at fixed Es/N0 = 27 dB and Es/N0 = 7 dB, respectively. The

results demonstrate that the H-RA (solid marks) can favorably

handle user 2 at high SNRs only, whereas the MMG-RA

makes all the users to experience the same AGP, in line with

the maximum fairness criterion adopted by the OP. Figure 6

addresses a scenario composed of a maximum of Q = 6 users

randomly located within the BS coverage, each operating at a

11For simplicity, the EGP curves for the setups {2, 2/3} and {6, 5/6} have
been not depicted. It is, however, interesting to emphasize that all the EGP
curves of Fig. 4 turn out to be very close to the corresponding AGP ones
obtained by simulations, thus proving the accuracy of the performance model
developed in Sect. III-A.

AMC-PA-SA AMC-SA-PA PA-AMC-SA PA-SA-AMC

45.65% 21.74% 17.39% 15.22%

TABLE VI

SEQUENCES OF ALGORITHMS TO BE SOLVED FOR THE MMG PROBLEM

AND % OF CASES WHERE THEY ACHIEVE THE BEST MIN. EGP.

Es/N0 User 2 (dB) 2.8 5 7.5 10.5 14

QoS Constrained 0.0093 0.0093 0.0084 0.0031 0.001

No QoS Constrained 0.0759 0.0405 0.0205 0.0062 0.001

TABLE VII

PER VS. Es/N0 FOR USER 2 WITH (Υ2 = 10−2) AND WITHOUT PER

QOS CONSTRAINT.
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different Es/N0 (namely, 8.6, 7.5, 10.5, 6.4, 9.8 and 5.9 dB),

evaluated according to the channel model and the path loss. As

expected, the average minimum AGP offered by the MMG-RA

decreases as Q increases, since the same resources have to be

shared by more and more users. Nevertheless, the MMG-RA

algorithm considerably outperforms the H-RA, thus exhibiting

a considerable intrinsic robustness against the network load

Q. Finally, the MMG-RA capability of satisfying the QoS

constraint (4.c) has been corroborated through simulations

performed in various scenarios. A typical result is quantified

in Tab. VII, where the PER of user 2 (user 1 works at Es/N0

= 27 dB) evaluated under the QoS constraint stays all the time

below the adopted threshold level Υ2 = 10−2.

VII. CONCLUDING REMARKS

In this work, the cross-layer design of a novel RA strategy

has been formulated as a nonlinear nonconvex mixed OP

that maximizes the GP of the worst user in the downlink of

an ARQ-based OFDMA system. The CAM method allows

to avoid the prohibitive complexity of the original problem

by decomposing it into the sequence of the AMC, PA and

SA subproblems, each of which is iteratively and optimally

solved. Specific effort has been put in the nonlinear integer

combinatorial SA-OP, by first deriving an optimal yet compu-

tationally complex solution (and so, to be used as benchmark),

and an alternative suboptimal yet efficient one based on the

ACO framework. Numerical simulation results support and

corroborate: i) the analytical findings; ii) the effectiveness of

the ACO-based against the optimal method in solving the

SA-OP; iii) the improved features of the proposed MMG-RA

when compared to other works; iv) the capability of ensuring

maximum fairness among users; v) the optimization of the

BS resources when practical AMC schemes are adopted; vi)

the improvement of the system GP efficiency compared to

heuristic RA strategies.

APPENDIX

A. Evaluation of the Goodput Metric

Given the sequence of the channel coefficients

hℓ+1,q, · · · ,hL,q, the average time required to receive

an error-free packet of the qth user within the L available

PRs results to be the sum of the interval ∆ℓ−1,q spent in the

previous ℓ− 1, 1 ≤ ℓ ≤ L, failed transmissions (failure time)

and the interval (successful time)

Dℓ,q(σℓ,q, · · · ,σL,q)
∆
=

L−ℓ∑

i=0

{[
i∑

v=0

T
(u)
ℓ+v,q

]

·
[
1− Γrℓ+i,q

(σℓ+i,q)
]

i−1∏

j=−1

Γrℓ+j,q
(σℓ+j,q)






(20)

where Γrk,q
(σk,q) denotes the PER of user q at PR k when the

TPs vector τ k,q is used, with Γrℓ−1,q
(σℓ−1,q)

∆
= 1 and σk,q

∆
=

{τ k,q |hk,q}, ℓ ≤ k ≤ L, whereas T
(u)
ℓ,q

∆
=

TBN(u)
q

rℓ,qmℓ,q

∑
n∈N aℓ,q,n

is the interval to transmit a packet of N
(u)
q bits employing at

PR ℓ the TPs τ ℓ,q, TB being the OFDM symbol duration. The

average GP (measured in bits per OFDM symbol) at PR ℓ for

user q can thus be evaluated over M packet transmissions as

Ξ
(M)

ℓ,q =
TBN

(p)
q

1

M

∑M
m=1

[

∆
(m)
ℓ−1,q +Dℓ,q(σ

(m)
ℓ,q , · · · ,σ(m)

L,q )
] ,

(21)

where ∆
(m)
ℓ−1,q and the RV Dℓ,q(σ

(m)
ℓ,q , · · · ,σ(m)

L,q ) denote the

failure time and the average successful time corresponding to

the mth packet, respectively. Hence, the long-term average GP

can be obtained as limM→∞ Ξ
(M)

ℓ,q . Thus, exploiting the law

of large numbers, the denominator of (21) turns into ∆ℓ−1,q+
E{Dℓ,q(σℓ,q, · · · ,σL,q)}, where ∆ℓ−1,q is the average failure

time and E{Dℓ,q(σℓ,q, · · · ,σL,q)} is the expected value, taken

over the future channel coefficients hℓ+1,q, · · · ,hL,q, of the

successful time for delivering a given error-free packet, pro-

vided that L− ℓ+1 PRs are still available. However, since the

expectation E{Dℓ,q} is computationally impractical to evaluate

in closed-form, we resort to the long-term static channel

assumption [15], [24], meaning that the packet is assumed

to experience current channel conditions hℓ,q also during its

possible future retransmissions, i.e., hℓ,q = hℓ+1,q = · · · =
hL,q.

Now, let us introduce the following definition followed by

an useful proposition.
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Definition 7: The sequence xℓ is a Martingale relative to

the class Fℓ of all the relevant past events up to and including

time ℓ, with ℓ ≥ 1, if each xℓ has an expectation and if for

n > ℓ [35]

E {xn |Fℓ } = xℓ. (22)

Proposition 4: The sequence xℓ
∆
= Γrℓ,q (σℓ,q) turns out a

Martingale relative to the class Fℓ
∆
= σℓ,q.

As a consequence, since hℓ,q is currently known and in view

of the above proposition, we can let

E
{
Γrℓ+i,q

(σℓ+i,q)
}
= Γrℓ,q(σℓ,q), 1 ≤ i ≤ L− ℓ. (23)

The following remarks motivate and substantiate this result.

1) The resulting EGP objective function is analytically

simple and does not require side information, e.g., the

estimate of delay spread, Doppler bandwidth and so on,

required for complex channel prediction techniques.

2) This is a well-known assumption, commonly adopted in

the literature; see [36] and [37].

3) As apparent from the numerical results (see for instance

Fig. 4), despite its simplicity, the EGP, provides an

accurate estimate of the AGP over realistic wireless

environments.

By applying the martingale-ness property (23) of Γrℓ,q(σℓ,q)
to (21), we get

E{Dℓ,q(σℓ,q, · · · ,σL,q)} = E{Dℓ,q(σℓ,q)}

= T
(u)
ℓ,q ·

1− Γrℓ,q(σℓ,q)

Γrℓ,q (σℓ,q)

L−ℓ∑

i=0

(i+ 1)
[
Γrℓ,q(σℓ,q)

]i+1
.(24)

After some algebra, (24) can be upper bounded as

E{Dℓ,q(σℓ,q)} ≤
T

(u)
ℓ,q

1− Γrℓ,q (σℓ,q)
, and accordingly, the LB

of the long-term average GP results as

Ξℓ,q(σℓ,q) ≥
[

∆ℓ−1,q

TBN
(p)
q

+
T

(u)
ℓ,q

TBN
(p)
q (1− Γrℓ,q (σℓ,q))

]−1

.

(25)

Summing up, since we are interested to solve the MMG-OP,

the minimum of Ξℓ,q(σℓ,q) in (25) over q ∈ Q coincides with

that of the metric defined in (2) after recalling the definition

of σℓ,q and T
(u)
ℓ,q given above.

B. Subgradient Method for the Dual OP (10)

To maximize g(Θ) in (10), the subgradient method updates

at the step i + 1 the components of the dual variable Θ(i)

produced at the previous step i along the search direction

defined by the gradient ∇Θg(Θ(i)) = d(p)|p=p(Θ(i)), ac-

cording toTab. III. The step size δ is chosen sufficiently

small to allow the algorithm to converge. Denoting with

Xk, 1 ≤ k ≤ |Θ|, then the component of the update

of Θ(i) at the step i + 1, the component-wise projection

results as [Xk]DΘ
= max{0, Xk}, ∀Xk projected over Dθ

or Dφ, whereas [Xk]DΘ
= max{0, Xk + εω}, ∀Xk pro-

jected over Dω ∩ Dω̄, being the scalar εω found by solving
∑

k|Xk∈Dω∩Dω̄

max{0, Xk + εω} = 1 via the bisection method.

C. Ant Colony Optimization Primer

The ACO framework is an efficient tool for solving com-

binatorial OPs (COPs) modeled as P = {S,Ω, f}, where

S is the discrete search space over D decision variables

xi ∈ Xi
∆
= {d(1)i , · · · , d(|Xi|)

i }, 1 ≤ i ≤ D, Ω is the set of

constraints among the D decision variables, and f : S → R
+

is the objective function [28]. The ACO algorithm is applied by

mapping the COP of interest onto the graph G(V , E), where V
and E are the set of vertices and edges, respectively. A feasible

solution, i.e., one consisting of a complete assignment of the

variables xi ∈ Xi while satisfying the set of constraints Ω, is

associated to a path T on the graph, where all the vertices are

connected and each vertex is visited only once. Assuming that

the decision variables correspond to the graph edges, the ACO

solution is found by making Na independent agents explore the

graph for a number Nit of times. At each exploration, the agent

of index a, 1 ≤ a ≤ Na: i) builds a feasible solution starting

from T (a) = ∅ and randomly selecting the initial vertex; ii)

selects with probability πi,j the edge ei,j ∈ Ne, where Ne is

the set of edges connecting the vertices not visited yet, and

then moves from vertex i to vertex j; iii) updates the path

set T (a) ← T (a) ∪ {ei,j} and the edge set Ne ← Ne\{ei,j};
iv) continues until a complete path, i.e., a feasible solution, is

obtained. Upon defining the local desirability ηi,j as a quantity

locally associated to the relevant edge and the pheromone

ϕi,j as depending on the quality of the global solution that

specific edge contributes to, we recall: i) πi,j depends on both

ηi,j and ϕi,j ; ii) at the end of each iteration, the pheromone

evaporates over all the edges at rate ρ, i.e., ϕi,j ← (1−ρ)ϕi,j ;

iii) the agent that has found the best solution Tbest, i.e., the

one returning the best value of the objective function f while

satisfying the constraints, increases the pheromone by ∆ϕ over

the edges ei,j ∈ Tbest; iv) at the end of Nit iterations, a stable

path emerges on the graph, which gives the best solution to

the COP found so far.
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