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Abstract

Two groups are virtually isomorphic if they can be obtained one from the other via
a finite number of steps, where each step consists in taking a finite extension or a
finite index subgroup. Virtually isomorphic groups are always quasi-isometric, and
a group Γ is quasi-isometrically rigid if every group quasi-isometric to Γ is virtu-
ally isomorphic to Γ. In this survey we describe quasi-isometric rigidity results for
fundamental groups of manifolds which can be decomposed into geometric pieces.
After stating by now classical results on lattices in semisimple Lie groups, we focus
on the class of fundamental groups of 3-manifolds, and describe the behaviour of
quasi-isometries with respect to the Milnor-Kneser prime decomposition (follow-
ing Papasoglu and Whyte) and with respect to the JSJ decomposition (following
Kapovich and Leeb). We also discuss quasi-isometric rigidity results for fundamen-
tal groups of higher dimensional graph manifolds, that were recently defined by
Lafont, Sisto and the author. Our main tools are the study of geometric group
actions and quasi-actions on Riemannian manifolds and on trees of spaces, via the
analysis of the induced actions on asymptotic cones.
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1 Introduction

The study of finitely generated groups up to quasi-isometry is a broad and very
active research area which links group theory to geometric topology. As stated,
the task of classifying groups up to quasi-isometry is certainly too ambitious.
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Nevertheless, when restricting to classes of groups coming from specific algebraic
or geometric contexts, several astonishing results have been obtained in the last
three decades. In this survey we will go through some of them, paying a partic-
ular attention to the case of fundamental groups of manifolds obtained by gluing
“geometric” pieces.

Once a symmetric finite set S of generators for a group Γ has been fixed, one
can construct a graph having as vertices the elements of Γ, in such a way that
two vertices are connected by an edge whenever the corresponding elements of the
group are obtained one from the other by right multiplication by a generator. The
resulting graph CS(Γ) is the Cayley graph of Γ (with respect to S). Its small-scale
structure depends on the choice of the set of generators S, but the quasi-isometry
class of CS(Γ) is actually independent of S, so the quasi-isometry class of the group
Γ is well defined (see Section 2 for the definition of quasi-isometry and for further
details). It is natural to ask which algebraic and/or geometric properties of the
group Γ may be encoded by the quasi-isometry class of its Cayley graphs. Another
way to phrase the same question is the following: if Γ,Γ′ are quasi-isometric groups,
what sort of properties must Γ share with Γ′? Surprisingly enough, it turns out
that the (apparently quite loose) relation of being quasi-isometric implies many
other relations which may look much finer at first glance (see the paragraph after
Definition 1.1 and Subsection 1.1 for a list of many results in this spirit).

In this paper, we will mainly focus on the particular case of fundamental groups
of manifolds which decompose into specific geometric pieces. For the sake of sim-
plicity, henceforth we confine ourselves to the case of orientable manifolds. In di-
mension 3 the picture is particularly well understood. The now proved Thurston
geometrization conjecture implies that every closed (i.e. compact without bound-
ary) 3-manifold M can be canonically decomposed into locally homogeneous Rie-
mannian manifolds. Namely, Milnor–Kneser prime decomposition Theorem [65]
implies that M can first be cut along spheres into summands M1, . . . ,Mk such that
each Mi (after filling the resulting boundary spheres with disks) is either homeo-
morphic to S2 × S1 or is irreducible, meaning that every 2-sphere in it bounds a
3-ball. Then, every irreducible manifold admits a canonical decomposition along
a finite family of disjoint tori, named JSJ decomposition after Jaco–Shalen and
Johansson [49, 50, 51, 60], such that every component obtained by cutting along
the tori is either Seifert fibered or hyperbolic. A quite vague but natural question
is then the following: can quasi-isometries detect the canonical decomposition of
3-manifolds? And what can one say in higher dimensions? The main aim of this
paper is to survey the work done by many mathematicians in order to provide
answers to these questions.

Before going on, let us first describe some phenomenon that quasi-isometries
cannot detect. It readily follows from the definition that every finite group is quasi-
isometric to the trivial group, but even more is true. Following [19], we say that two
groups Γ1,Γ2 are virtually isomorphic if there exist finite index subgroups Hi < Γi
and finite normal subgroups Fi / Hi, i = 1, 2, such that H1/F1 is isomorphic to
H2/F2. It is an exercise to check that virtual isomorphism is indeed an equivalence
relation. In fact, it is the smallest equivalence relation for which any group is
equivalent to any of its finite index subgroups, and any group is equivalent to any
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of its finite extensions, where we recall that Γ is a finite extension of Γ′ if it fits
into an exact sequence of the form

1 −→ F −→ Γ −→ Γ′ −→ 1 ,

where F is finite. It is not difficult to show that virtually isomorphic groups are
quasi-isometric (see Remark 2.2). On the other hand, being virtually isomorphic
is a very strict condition, so there is no reason why quasi-isometric groups should
be virtually isomorphic in general. The following definition singles out those situ-
ations where quasi-isometry implies virtual isomorphism.

Definition 1.1. A group Γ is quasi-isometrically rigid (or QI-rigid for short) if
any group quasi-isometric to Γ is in fact virtually isomorphic to Γ. A collection
of groups C is quasi-isometrically rigid (or QI-rigid for short) if any group quasi-
isometric to a group in C is virtually isomorphic to (possibly another) group in
C.

We are not giving here the most complete list of groups or of classes of groups
that are (or that are not) quasi-isometrically rigid (the interested reader is ad-
dressed e.g. to [52] or to [19, Chapter 23]). However, it is maybe worth men-
tioning at least some results that can help the reader to put the subject of this
survey in a more general context. Some important properties of groups are imme-
diately checked to be preserved by quasi-isometries (this is the case, for example,
for amenability). Moreover, many algebraic properties are preserved by quasi-
isometries. For example, free groups are QI-rigid [90, 21] (and this fact is closely
related to our discussion of the invariance of the prime decomposition under quasi-
isometries in Appendix A), as well as nilpotent groups [40] and abelian groups [73].
On the contrary, the class of solvable groups is not QI-rigid [24]. Also algorithmic
properties of groups are often visible to quasi-isometries: for example, the class of
finitely presented groups with solvable word problem is QI-rigid (in fact, the class
of finitely presented groups is QI-rigid, and the growth type of the Dehn function
of a finitely presented group is a quasi-isometry invariant – see e.g. the nice survey
by Bridson [7]).

1.1 QI-rigidity of lattices in semisimple Lie groups

In this survey we are mainly interested in quasi-isometric rigidity of fundamen-
tal groups of manifolds with specific geometric properties. At least in the case
of locally symmetric spaces (which are in some sense the most regular manifolds,
hence the most natural spaces to first deal with) the subject is now completely
understood, thanks to the contribution of several mathematicians. The general
strategy that leads to the complete classification up to quasi-isometry of lattices
in semisimple Lie groups applies also to the case we are interested in, so we briefly
discuss it here. First of all, the fundamental Milnor-Švarc Lemma (see Proposi-
tion 2.1) asserts that the fundamental group of any closed Riemannian manifold
is quasi-isometric to the universal covering of the manifold. Therefore, uniform
lattices in the same semisimple Lie group G are quasi-isometric, since they are all
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quasi-isometric to the symmetric space X associated to G. Moreover, the classi-
fication of groups quasi-isometric to such lattices coincides with the classification
of groups quasi-isometric to X. Now, whenever a group Γ is quasi-isometric to a
geodesic space X, it is possible to construct a geometric quasi-action of Γ on X by
quasi-isometries (see Proposition 2.4). In order to show quasi-isometric rigidity of
uniform lattices in G, one would like to turn this quasi-action into a genuine action
by isometries. Having shown this, one is then provided with a homomorphism of
Γ into G, and it is routine to show that such a homomorphism has a finite kernel
and a discrete image. In the case when X has higher rank, QI-rigidity then holds
because every quasi-isometry stays at bounded distance from an isometry [58, 28].
The same is true also for every quaternionic hyperbolic space of dimension at
least two [74], while in the case of real or complex hyperbolic spaces there ex-
ist plenty of quasi-isometries which are not at finite distance from any isometry.
In the real hyperbolic case, as already Gromov pointed out [41], Sullivan’s and
Tukia’s results on uniformly quasi-conformal groups [94, 91] imply that, in dimen-
sion strictly bigger than 2, every group quasi-action by uniform quasi-isometries
is just the perturbation of a genuine isometric action. This concludes the proof of
QI-rigidity for the class of uniform lattices in G = Isom(Hn), n ≥ 3 (see also [11]).
The complex hyperbolic case is settled thanks to an analogous argument due to
Chow [13]. Finally, QI-rigidity also holds for surface groups (i.e. for uniform lat-
tices in G = Isom(H2)) thanks to a substantially different proof obtained from
the combination of results by Tukia [95], Gabai [38] and Casson–Jungreis [12].
Summarizing, we have the following:

Theorem 1.2. Let G be a semisimple Lie group. Then the class of irreducible
uniform lattices in G is QI-rigid.

In the 3-dimensional hyperbolic context, something can be said also on the
much larger class of discrete subgroups of Isom(H3) = PSL(2,C): in fact, a re-
cent result of Häıssinsky establishes QI-rigidity for the class of convex cocompact
Kleinian groups [46].

Since every uniform lattice in G is quasi-isometric to the associated symmetric
space X, a single uniform lattice is usually very far from being QI-rigid. Sur-
prisingly enough, much more can be said when dealing with non-uniform lattices.
In fact, a non-uniform lattice Γ in G is quasi-isometric to the complement in the
corresponding symmetric space X of an equivariant collection of horoballs. Such
a space is much more rigid than X itself, and this fact can be exploited to show
the following:

Theorem 1.3 ([82, 83, 28, 27]). Let G be a semisimple Lie group distinct from
SL(2,R). Then every non-uniform lattice in G is QI-rigid.

The fact that patterns inside X (such as the previously mentioned collection
of horoballs) can be of use in proving rigidity of maps will clearly emerge in the
discussion of quasi-isometric rigidity of fundamental groups of manifolds with dis-
tinguished submanifolds (such as the tori of the JSJ-decomposition of irreducible
3-manifolds, or the tori separating the pieces of higher dimensional graph mani-
folds introduced in [36]).
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For a detailed survey on QI-rigidity of lattices in semisimple Lie groups we
refer the reader to [31].

1.2 Quasi-isometric invariance of the prime decomposition

Let us recall that every manifold will be assumed to be orientable throughout the
paper. A 3-manifold M is prime if it does not admit any non-trivial decomposition
as a connected sum (a connected sum is trivial if one of its summands is the 3-
sphere S3), and it is irreducible if every 2-sphere embedded in M bounds an
embedded 3-ball. Every irreducible manifold is prime, and the only prime manifold
which is not irreducible is S2 × S1. As mentioned above, every closed 3-manifold
M admits a canonical decomposition M = M1# . . .#Mk into a finite number
of prime summands. Of course we have π1(M) = π1(M1) ∗ . . . ∗ π1(Mk), and
on the other hand the (proved) Kneser conjecture asserts that every splitting of
the fundamental group of a closed 3-manifold as a free product is induced by a
splitting of the manifold as a connected sum (see e.g. [47, Theorem 7.1]). As a
consequence, the study of the quasi-isometry invariance of the prime decomposition
boils down to the study of the behaviour of quasi-isometries with respect to free
decompositions of groups, a task that has been completely addressed by Papasoglu
and Whyte in [77].

It is not true that the quasi-isometry type of the fundamental group recongnizes
whether a manifold is prime, since π1(S2 × S1) = Z and π1(P3(R)#P3(R)) =
Z o Z2 are obviously virtually isomorphic (however, Theorem 1.4 implies that
irreducibility is detected by the quasi-isometry class of the fundamental group).
Moreover, if Γ1,Γ2 contain at least three elements and F is virtually cyclic, then
Γ1∗Γ2∗F is quasi-isometric to Γ1∗Γ2 [77], so quasi-isometries cannot see in general
all the pieces of the prime decomposition of a manifold. However, the following
result shows that quasi-invariance of the prime decomposition with respect to
quasi-isometries holds as strongly as the just mentioned examples allow. For the
sake of convenience, let us say that a prime manifold is big if its fundamental
group is not virtually cyclic (in particular, it is infinite).

Theorem 1.4. Let M,M ′ be closed orientable 3-manifolds. Then π1(M) is quasi-
isometric to π1(M ′) if and only if one of the following mutually exclusive conditions
holds:

1. Both M and M ′ are prime with finite fundamental group.

2. Both M and M ′ are irreducible with infinite quasi-isometric fundamental
groups.

3. M and M ′ belong to the set {S2 × S1,P3(R)#P3(R)}.

4. both M and M ′ are not prime and distinct from P3(R)#P3(R); moreover, if
N is a big piece in the prime decomposition of M , then there exists a big piece
N ′ in the prime decomposition of M ′ such that π1(N) is quasi-isometric to
π1(N ′), and vice versa.
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In the spirit of Definition 1.1, one may also ask what can be said about groups
which are quasi-isometric to the fundamental group of a closed 3-manifold. The
following holds:

Theorem 1.5. Let M be a closed non-prime 3-manifold distinct from P3(R)#P3(R),
and let Γ be a finitely generated group. Then Γ is quasi-isometric to π1(M) if and
only if the following conditions hold: Γ has infinitely many ends, and splits as
the fundamental group of a graph of groups with finite edge groups such that the
set of quasi-isometry types of one-ended vertex groups coincides with the set of
quasi-isometry types of big summands in the prime decomposition of M .

Theorems 1.4 and 1.5 readily descend from [77]. Nevertheless, since apparently
they are not available in an explicit form elsewhere, we will provide a quick proof
of them in the appendix. By Theorems 1.4 and 1.5, the problem of classifying
fundamental groups of 3-manifolds up to quasi-isometry is now reduced to the
study of irreducible ones.

1.3 QI-rigidity of the eight 3-dimensional geometries

As already mentioned, the now proved Thurston’s geometrization conjecture states
that every closed irreducible 3-manifold decomposes along a finite family of disjoint
π1-injective tori (and Klein bottles) into a finite collection of manifolds each of
which admits a complete finite-volume locally homogeneous Riemannian metric
(henceforth, such a manifold will be said to be geometric). Strictly speaking,
this decomposition (which will be called geometric form now on) is not exactly
the same as the classical JSJ decomposition of the manifold, the only differences
being the following ones:

1. If M is a closed manifold locally isometric to Sol (see below), then the
geometric decomposition of M is trivial. On the other hand, M either is a
torus bundle over S1, or it is obtained by gluing along their toric boundaries
two twisted orientable I-bundles over the Klein bottle. In the first case, the
JSJ decomposition of M is obtained by cutting along a fiber of the bundle,
in the second one it is obtained by cutting along the torus that lies between
the I-bundles.

2. If M is not as in (1), then each torus of the JSJ decomposition which bounds
a twisted orientable I-bundle over a Klein bottle is replaced in the geometric
decomposition by the core Klein bottle of the bundle.

In fact, neither (the internal part of) the twisted orientable I-bundle over the Klein
bottle nor S1 × S1 × (0, 1) supports a locally homogeneous Riemannian metric
of finite volume. The geometric decomposition is still canonical (i.e. preserved
by homeomorphisms) and cuts the manifolds into geometric pieces in the sense
described above.

Up to equivalence, there exist exactly eight homogeneous Riemannian 3-manifolds
which admit a finite-volume quotient: the constant curvature spaces S3,R3,H3,

the product spaces S2×R, H2×R, and the 3-dimensional Lie groups S̃L2 = S̃L2(R),
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Sol, Nil [93, 84] (the equivalence that needs to be taken into account is not quite
the relation of being homothetic, because a single Lie group may admit several
non-homothetic left-invariant metrics, and we don’t want to consider the same Lie
group endowed with two non-homotetic metrics as two distinct geometries). We
will call these spaces “geometries” or “models”. We will say that a manifold is ge-
ometric if it admits a complete finite-volume Riemannian metric locally isometric
to one of the eight models just introduced (with the exception of P3(R)#P3(R)
and of S2 × S1, every geometric manifold is automatically irreducible). It is well

known that, with the exception of H2×R that is quasi-isometric to S̃L2, the eight
3-dimensional geometries are pairwise not quasi-isometric (see Proposition 3.10).
Together with the Milnor–Švarc Lemma, this information is sufficient to classify ir-
reducible 3-manifolds with trivial geometric decomposition, up to quasi-isometries
of their fundamental groups:

Proposition 1.6. Let M1,M2 be closed irreducible 3-manifolds, and suppose that
Mi admits a locally homogeneous Riemannian metric locally isometric to Xi, where
Xi is one of the eight geometries described above. Then π1(M1) is quasi-isometric

to π1(M2) if and only if either X1 = X2 or X1, X2 ∈ {S̃L2,H2 × R}.

Together with the fact that a uniform lattice in Isom+(S̃L2) cannot be iso-
morphic to a uniform lattice in Isom+(H2 × R), Proposition 1.6 implies that the
geometry of a single closed irreducible manifold with trivial geometric decomposi-
tion is uniquely determined by its fundamental group.

We have already seen that the class of fundamental groups of closed hyperbolic
3-manifolds is QI-rigid. The following result extends quasi-isometric rigidity to the
remaining seven 3-dimensional geometries.

Theorem 1.7. Let X be any of the eight 3-dimensional geometries, and let Γ be a
group quasi-isometric to the fundamental group of a closed manifold modeled on X.

If X 6= H2×R and X 6= S̃L2(R), then Γ is virtually isomorphic to the fundamental

group of a closed manifold modeled on X. If X = H2 ×R or X = S̃L2(R), then Γ
is virtually isomorphic to the fundamental group of a closed manifold modeled on

H2 × R or on S̃L2(R).

Proof. The cases of S3 and of S2 × R are obvious due to the quasi-isometric

rigidity of cyclic groups. The case of H2×R and S̃L2(R) is due to Rieffel [79] (see
also [59]), while quasi-isometric rigidity of abelian groups follows from [40, 73].
The case of Sol is settled in [29]. Finally, quasi-isometric rigidity of Nil may
be proved as follows. Let Γ be quasi-isometric to Nil. Quasi-isometric rigidity
of nilpotent groups [40] implies that Γ is virtually nilpotent. Since every finitely
generated nilpotent group is linear, by the Selberg Lemma we may suppose, up
to virtual isomorphism, that Γ is nilpotent and torsion-free. The Malcev closure
G of Γ is a simply connected nilpotent Lie group in which Γ embeds as a uniform
lattice [78]. Being quasi-isometric, the groups Γ, G and Nil must have equivalent
growth functions. Now results of Guivarc’h [45] imply that the growth of Nil is
polynomial of degree 4, and that the only simply connected nilpotent Lie groups
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with polynomial growth of degree 4 are Nil and R4. In order to conclude it is
now sufficient to observe that the case G = R4 cannot hold, since otherwise the
Heisenberg group (which is a uniform lattice in Nil) would be quasi-isometric to
Z4, whence virtually abelian.

1.4 Quasi-isometric invariance of the JSJ decomposition

Let M be a closed irreducible 3-manifold. We are now interested in the case when
the decomposition of M is not trivial. In this case we say that the manifold is
non-geometric (because indeed it does not support any complete finite-volume
locally homogeneous metric), and all the pieces resulting from cutting along the
tori and the Klein bottles of the geometric decomposition are the internal parts
of compact irreducible 3-manifolds bounded by tori. As it is customary in the
literature, we will often identify the concrete pieces of the decomposition (which
are open) with their natural compactifications obtained by adding some boundary
tori. The possibilities for the geometry of these pieces are much more restricted
than in the closed case: the only geometries that admit non-compact finite-volume
quotients (whose compactification is) bounded by tori are H3, S̃L2 and H2 × R.
Moreover, if the internal part of a compact irreducible 3-manifold bounded by tori
can be modeled on S̃L2, then it can be modeled also on H2 × R, and vice versa
(while as in the closed case, complete finite-volume hyperbolic manifolds cannot
support a metric locally isometric to H2 × R). Pieces modeled on H2 × R admit
a foliation by circles, and are called Seifert fibered (or simply Seifert). They are
finitely covered (as foliated manifolds) by manifolds of the form Σ× S1 (endowed
with the obvious foliation by circles), where Σ is a punctured surface of finite type
with negative Euler characteristic. The first question that comes to mind is then
whether quasi-isometries of the fundamental group can detect the presence or the
absence of hyperbolic pieces and/or of Seifert fibered pieces. This question was
answered in the positive by Kapovich and Leeb in [55]. Before stating their result,
let us recall that, if N ⊆M is a piece of the geometric decomposition of M , then
the inclusion N ↪→M induces an injective map on fundamental groups. Therefore,
π1(N) may be identified with (the conjugacy class of) a subgroup of π1(M), and
this fact will be always tacitly understood in the sequel. Kapovich and Leeb first
proved that quasi-isometries recognize the presence of Seifert fibered pieces [53],
and then they improved their result as follows:

Theorem 1.8 ([55]). Let M,M ′ be closed irreducible 3-manifolds, let f : π1(M)→
π1(M ′) be a quasi-isometry, and let N ⊆M be a piece of the geometric decomposi-
tion of M . Then there exists a piece N ′ of the geometric decomposition of M ′ such
that f(π1(N)) stays at bounded Hausdorff distance from (a conjugate of) π1(N ′).
Moreover, f |π1(N) is at finite distance from a quasi-isometry between π1(N) and
π1(N ′).

In particular, the set of quasi-isometry types of the fundamental groups of the
pieces of an irreducible manifold is a quasi-isometry invariant of the fundamental
group of the manifold. Since Seifert manifolds with non-empty boundary and
cusped hyperbolic 3-manifolds cannot have quasi-isometric fundamental groups
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(see Corollary 3.7), it readily follows that the presence of a hyperbolic and/or a
Seifert piece is a quasi-isometry invariant of the fundamental group (another proof
of the fact that quasi-isometries detect the presence of a hyperbolic piece was given
by Gersten [39], who showed that M contains a hyperbolic piece if and only if the
divergence of π1(M) is exponential).

Regarding quasi-isometric rigidity, in the same paper Kapovich and Leeb proved
the following:

Theorem 1.9 ([55]). The class of fundamental groups of closed non-geometric
irreducible 3-manifolds is QI-rigid.

Theorems 1.8 and 1.9 will be the main object of this survey. Following Kapovich
and Leeb, we will make an extensive use of asymptotic cones, a very useful quasi-
isometry invariant of geodesic spaces introduced by Gromov and studied by a
number of mathematicians in the last decades. Nowadays, asymptotic cones of
groups themselves are the subject of an independent research field. We will intro-
duce them and briefly describe their properties in Section 3.

The following result by Behrstock and Neumann shows that Theorem 1.8 may
be strengthened in the case of graph manifolds, i.e. of irreducible 3-manifolds whose
geometric decomposition is not trivial and does not contain any hyperbolic piece.

Theorem 1.10 ([4]). Let M,M ′ be closed non-geometric graph manifolds. Then
π1(M) is quasi-isometric to π1(M ′).

Another big progress towards the classification of quasi-isometry types of non-
geometric irreducible 3-manifolds has been done in a subsequent paper by Behr-
stock and Neumann [5], where the case when at least one of the hyperbolic pieces
of the decomposition is not arithmetic is completely addressed. Since their results
cannot be properly stated without introducing a bit of terminology, and since our
attention in this paper will be primarily concentrated on Theorems 1.8 and 1.9
above, we address the reader to [5] for the precise statements.

Before jumping into the realm of higher dimensional manifolds, let us stress
the fact that all the theorems stated in this subsection make an essential use of the
geometry supported by the pieces in which an irreducible manifold decomposes.
While in the case of the prime decomposition of 3-manifolds the fact that quasi-
isometries recognize summands can be deduced from more general facts regarding
the quasi-isometry classification of free products, no general theorem on amalga-
mated products is known which can be exploited to show that quasi-isometries also
detect the pieces of the geometric decomposition of irreducible 3-manifolds. Dur-
ing the last 25 years the notion of JSJ decomposition has been extended from the
case of (fundamental groups of) irreducible 3-manifolds to the context of finitely
presented groups. The JSJ decomposition was first defined by Sela for torsion-
free word-hyperbolic groups [87]. After Bowditch developed the theory for general
word-hyperbolic groups [6], other notions of JSJ decomposition were introduced
by Rips and Sela [80], Dunwoody and Sageev [23], Scott and Swarup [85], and
Fujiwara and Papasoglu [37] in the general context of finitely presented groups.
However, uniqueness of such decompositions up to isomorphism is already deli-
cate (see e.g. Forester [33] and Guirardel and Levitt [44]), and no quasi-isometry



10 R. Frigerio

invariance result may be directly applied to the case we are interested in. More-
over, in many versions of the theory the outcome of the decomposition is a graph
of groups with two-ended (i.e. infinite virtually cyclic) subgroups as edge groups,
rather than rank-2 free abelian edge groups like in the classical case. We refer the
reader e.g. to [75, 76, 66, 67] for some approaches to quasi-isometry invariance of
decompositions of groups as amalgamated products.

1.5 A glimpse to the higher-dimensional case

In dimension greater than three generic manifolds do not admit decompositions
into pieces with controlled geometry. Therefore, in order to study to what extent
quasi-isometries capture the geometry of the pieces of a manifold obtained by glu-
ing “geometric pieces” one first needs to define the appropriate class of objects
to work with. For example, Nguyen Phan defined in [68, 69] classes of manifolds
obtained by gluing non-positively curved finite-volume locally symmetric spaces
with cusps removed. In the cited papers, Nguyen Phan proved (smooth) rigidity
results for manifolds obtained this way. In the context of non-positively curved
manifolds, Leeb and Scott defined a canonical decomposition along embedded flat
manifolds which is meant to generalize to higher dimensions the JSJ decomposi-
tion of irreducible 3-manifolds [62]. A different class of manifolds, called higher
dimensional graph manifolds, was defined by Lafont, Sisto and the author in [36]
as follows.

Definition 1.11. A compact smooth n-manifold M , n ≥ 3, is a higher dimen-
sional graph manifold (or HDG manifold for short) if it can be constructed in the
following way:

1. For every i = 1, . . . , r, take a complete finite-volume non-compact hyperbolic
ni-manifold Ni with toric cusps, where 3 ≤ ni ≤ n.

2. Denote by N i the manifold obtained by “truncating the cusps” of Ni, i.e. by
removing from Ni a horospherical neighbourhood of each cusp.

3. Take the product Vi = N i × Tn−ni , where T k = (S1)k is the k-dimensional
torus.

4. Fix a pairing of some boundary components of the Vi’s and glue the paired
boundary components via diffeomorphisms, so as to obtain a connected man-
ifold of dimension n.

Observe that ∂M is either empty or consists of tori. The submanifolds V1, . . . , Vr
are the pieces of M . The manifold N i is the base of Vi, while every subset of the
form {∗} × Tn−ni ⊆ Vi is a fiber of Vi. The boundary tori which are identified
together are the internal walls of M (so any two distinct pieces in M are separated
by a collection of internal walls), while the components of ∂M are the boundary
walls of M .

Therefore, HDG manifolds can be decomposed into pieces, each of which sup-
ports a finite-volume product metric locally modeled on some Hk ×Rn−k (k ≥ 3).



Quasi-isometric rigidity of piecewise geometric manifolds 11

Remark 1.12. In the original definition of HDG manifold the gluing diffeomor-
phisms between the paired tori are required to be affine with respect to the canon-
ical affine structure that is defined on the boundary components of the pieces.
Without this restriction, no smooth rigidity could hold for HDG manifolds. Nev-
ertheless, the quasi-isometric rigidity results we are investigating here are not
affected by allowing generic diffeomorphisms as gluing maps.

Probably the easiest (and somewhat less interesting) examples of HDG mani-
folds are the so-called purely hyperbolic HDG manifolds, i.e. those HDG manifolds
whose pieces are all just truncated hyperbolic manifolds. Such manifolds enjoy ad-
ditional nice properties, that are of great help in understanding their geometry: for
example, they support non-positively curved Riemannian metrics (at least when
the gluings are affine), and their fundamental groups are relatively hyperbolic [36].
Examples of purely hyperbolic HDG manifolds include both the classical “double”
of a finite volume hyperbolic manifold with toric cusps, as well as twisted doubles
of such manifolds (in the sense of Aravinda and Farrell [2]).

A number of rigidity results (like smooth rigidity à la Mostow within the class
of HDG manifolds obtained via affine gluings and topological rigidity à la Farrell–
Jones within the class of aspherical manifolds) are proved in [36] for generic HDG
manifolds. In order to get quasi-isometric rigidity, however, a further assumption
is needed, which ensures that the (fundamental group of) each piece is undistorted
in the fundamental group of the manifold. Let M be an HDG graph manifold,
and V +, V − a pair of adjacent (not necessarily distinct) pieces of M . We say that
the two pieces have transverse fibers along the common internal wall T provided
that, under the gluing diffeomorphism ψ : T+ → T− of the paired boundary tori
corresponding to T , the image of the fiber subgroup of π1(T+) under ψ∗ intersects
the fiber subgroup of π1(T−) only in {0}.

Definition 1.13. A HDG manifold is irreducible if every pair of adjacent pieces
has transverse fibers along every common internal wall.

In the case of 1-dimensional fibers (and when restricting only to affine gluings
between the pieces), an HDG graph manifold is irreducible if and only if the S1-
bundle structure on each piece cannot be extended to the union of adjacent pieces,
a phenomemon which always occurs in 3-dimensional graph manifolds built up by
products of hyperbolic surfaces times S1. This suggests that irreducible HDG
manifolds should provide a closer analogue to 3-dimensional graph manifolds than
generic HDG manifolds.

Every purely hyperbolic HDG manifold is irreducible. However, the class of
irreducible HDG manifolds is much richer than the class of purely hyperbolic ones:
for example, in each dimension n ≥ 4, there exist infinitely many irreducible HDG
n-manifolds which do not support any locally CAT(0) metric, in contrast with
the fact that every purely hyperbolic HDG manifold (obtained via affine gluings)
supports a non-positively curved Riemannian metric.

In this paper we will be mainly concerned with the behaviour of the fun-
damental groups of HDG manifolds with respect to quasi-isometries. Using the
technology of asymptotic cones (together with other tools, of course), in Section 6
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we will sketch the proof of the following results, which are taken from [36]. The
following result provides a higher-dimensional analogue of Theorem 1.8:

Theorem 1.14. Let M1, M2 be a pair of irreducible HDG manifolds, and Γi =
π1(Mi) their respective fundamental groups. Let Λ1 ≤ Γ1 be a subgroup conjugate
to the fundamental group of a piece in M1, and ϕ : : Γ1 → Γ2 be a quasi-isometry.
Then, the set ϕ(Λ1) is within finite Hausdorff distance from a conjugate of Λ2 ≤
Γ2, where Λ2 is the fundamental group of a piece in M2.

The previous theorem ensures that quasi-isometries map fundamental groups of
the pieces to fundamental groups of the pieces (up to a finite error). Then the next
goal is to understand the behavior of groups quasi-isometric to the fundamental
group of a single piece.

Theorem 1.15. Let N be a complete finite-volume hyperbolic m-manifold, m ≥ 3,
and let Γ be a finitely generated group quasi-isometric to π1(N)×Zd, d ≥ 0. Then
there exist a finite-index subgroup Γ′ of Γ, a finite-sheeted covering N ′ of N , a
group ∆ and a finite group F such that the following short exact sequences hold:

1 // Zd
j

// Γ′ // ∆ // 1,

1 // F // ∆ // π1(N ′) // 1.

Moreover, j(Zd) is contained in the center of Γ′. In other words, Γ′ is a central
extension by Zd of a finite extension of π1(N ′).

In the case of purely hyperbolic pieces, Theorem 1.15 reduces to Schwartz’s re-
sults on the quasi-isometric rigidity of non-uniform lattices in the group of isome-
tries of real hyperbolic space [82]. The analogous result in the case where N is
closed hyperbolic has been proved by Kleiner and Leeb [59].

Once Theorems 1.14 and 1.15 are established, it is not difficult to put the pieces
together to obtain the following:

Theorem 1.16. Let M be an irreducible HDG n-manifold obtained by gluing
the pieces Vi = N i × T di , i = 1, . . . , k. Let Γ be a group quasi-isometric to
π1(M). Then either Γ itself or a subgroup of Γ of index two is isomorphic to the
fundamental group of a graph of groups satisfying the following conditions:

• every edge group contains Zn−1 as a subgroup of finite index;

• for every vertex group Γv there exist i ∈ {1, . . . , k}, a finite-sheeted cover-
ing N ′ of Ni and a finite-index subgroup Γ′v of Γv that fits into the exact
sequences

1 // Zdi
j

// Γ′v // ∆ // 1,

1 // F // ∆ // π1(N ′) // 1,

where F is a finite group, and j(Zdi) is contained in the center of Γ′v.
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1.6 Plan of the paper

In Section 2 we recall the definition of quasi-isometries, we briefly discuss the
fundamental Milnor-Švarc Lemma and we state a well-known characterization of
quasi-isometry among groups based on the notion of quasi-action. In Section 3
we introduce asymptotic cones, and we discuss an asymptotic characterization of
(relatively) hyperbolic groups due to Druţu and Sapir that will prove useful in the
subsequent sections. Being the fundamental groups of manifolds which decompose
into pieces, the groups we are interested in are quasi-isometric to trees of spaces,
that are introduced in Section 4, where their asymptotic cones are also carefully
analyzed. We come back from homeomorphisms between asymptotic cones to
quasi-isometries of the original spaces in Section 5, where we give the proofs of
Theorems 1.8 and 1.14. QI-rigidity of the classes of fundamental groups of irre-
ducible non-geometric 3-manifolds and of irreducible HDG manifolds is discussed
in Section 6. In Section 7 we collect some open questions. Finally, the appendix
is devoted to the description of the behaviour of quasi-isometries with respect to
free decompositions of groups as exhaustively illustrated in [77], and to the proofs
of Theorems 1.4 and 1.5.
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2 Quasi-isometries and quasi-actions

Let (X, d), (Y, d′) be metric spaces and k ≥ 1, c ≥ 0 be real numbers. A (not
necessarily continuous) map f : X → Y is a (k, c)-quasi-isometric embedding if for
every p, q ∈ X the following inequalities hold:

d(p, q)

k
− c ≤ d′(f(p), f(q)) ≤ k · d(p, q) + c.

Moreover, a (k, c)-quasi-isometric embedding f is a (k, c)-quasi-isometry if there
exists a (k, c)-quasi-isometric embedding g : Y → X such that d′(f(g(y)), y) ≤ c,
d(g(f(x)), x) ≤ c for every x ∈ X, y ∈ Y . Such a map g is called a quasi-inverse
of f . It is easily seen that a (k, c)-quasi-isometric embedding f : X → Y is a
(k′, c′)-quasi-isometry for some k′ ≥ 1, c′ ≥ 0 if and only if its image is r-dense
for some r ≥ 0, i.e. if every point in Y is at distance at most r from some point in
f(X) (and in this case k′, c′ only depend on k, c, r).

In the introduction we recalled the definition of Cayley graph of a group with
respect to a finite set of generators, and it is immediate to check that different
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finite sets of generators for the same group define quasi-isometric Cayley graphs, so
that every finitely generated group is endowed with a metric which is well defined
up to quasi-isometry. For later reference we recall that left translations induce a
well-defined isometric action of every group on any of its Cayley graphs.

The following fundamental result relates the quasi-isometry type of a group to
the quasi-isometry type of a metric space on which the group acts geometrically.
A metric space X is geodesic if every two points in it can be joined by a geodesic,
i.e. an isometric embedding of a closed interval. An isometric action Γ×X → X
of a group Γ on a metric space X is proper if for every bounded subset K ⊆ X
the set {g ∈ Γ | g ·K ∩K 6= ∅} is finite, and cobounded if there exists a bounded
subset Y ⊆ X such that Γ · Y = X (or, equivalently, if one or equivalently every
orbit of Γ in X is r-dense for some r > 0, which may depend on the orbit). An
isometric action is geometric if it is proper and cobounded.

Theorem 2.1 (Milnor-Švarc Lemma). Suppose Γ acts geometrically on a geodesic
space X. Then Γ is finitely generated and quasi-isometric to X, a quasi-isometry
being given by the map

ψ : Γ→ X, ψ(γ) = γ(x0),

where x0 ∈ X is any basepoint.

A proof of this result can be found e.g. in [8, Chapter I.8.19]. As a corol-
lary, if M is a compact Riemannian manifold with Riemannian universal covering
M̃ , then the fundamental group of M is quasi-isometric to M̃ . Another interest-
ing consequence of the Milnor-Švarc Lemma is the fact that virtual isomorphism
implies quasi-isometry:

Remark 2.2. Suppose that the groups Γ,Γ′ are such that there exists a short
exact sequence

1 // F // Γ
ϕ

// Γ′′ // 1 ,

where F is finite and Γ′′ is a finite index subgroup of Γ′, and let X be any Cayley
graph of Γ′. Then every γ ∈ Γ isometrically acts on X via the left translation
by ϕ(γ). This action is cocompact because Γ′′ has finite index in Γ′, and proper
because F is finite. By the Milnor-Švarc Lemma, this implies that Γ is quasi-
isometric to Γ′.

Thanks to the Milnor-Švarc Lemma, two groups acting geometrically on the
same proper geodesic space are quasi-isometric. The converse implication does
not hold: namely, there are examples of quasi-isometric groups that do not share
any geometric model, i.e. for which there exist no geodesic space on which both
groups can act geometrically. In fact, it is proved in [66] that, if p, q are distinct
odd primes, then the groups Γ = Zp ∗ Zq and Γ′ = Zp ∗ Zp are quasi-isometric
(since they are virtually isomorphic to the free group on two generators) but do
not share any geometric model. Things get easier if one weakens the notion of
action into the one of quasi-action:
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Definition 2.3. Suppose (X, d) is a geodesic metric space, let QI(X) be the set of
quasi-isometries of X into itself, and let Γ be a group. For k ≥ 1, a k-quasi-action
of Γ on X is a map h : Γ→ QI(X) such that the following conditions hold:

1. h(γ) is a (k, k)-quasi-isometry with k-dense image for every γ ∈ Γ;

2. d(h(1)(x), x) ≤ k for every x ∈ X;

3. the composition h(γ1) ◦ h(γ2) is at distance bounded by k from the quasi-
isometry h(γ1γ2), i.e.

d
(
h(γ1γ2)(x), h(γ1)(h(γ2)(x))

)
≤ k for every x ∈ X, γ1, γ2 ∈ Γ.

A k-quasi-action h as above is cobounded if one orbit of Γ in X is k′-dense for some
k′ > 0 (or, equivalently, if every orbit of Γ in X is k′-dense, for a maybe bigger
k′), and proper if for every bounded subset K ⊆ X the set {g ∈ Γ | g ·K ∩K 6= ∅}
is finite. A quasi-action is geometric if it is cobounded and proper.

Throughout the whole paper, by an abuse of notation, when h is a quasi-action
as above we do not distinguish between γ and h(γ).

We have already observed that the property that the group Γ be quasi-isometric
to X is not sufficient to guarantee that Γ acts geometrically on X. On the contrary,
we can ask for geometric quasi -actions:

Proposition 2.4. Let ϕ : Γ → X be a quasi-isometry between a group and a
geodesic metric space with quasi-inverse ψ : X → Γ. Then the formula

h(γ)(x) = ϕ(γ · ψ(x)) for every x ∈ X

defines a geometric quasi-action h(γ) : X → X.

Proof. The fact that h is indeed a quasi-action readily follows from the fact that
left translations are isometries of Γ. Properness and coboundedness of h are easily
checked.

The usual proof of the Milnor-Švarc’s Lemma may easily be adapted to the
context of quasi-actions to yield the following:

Lemma 2.5 ([36], Lemma 1.4). Let X be a geodesic space with basepoint x0,
and let Γ be a group. Let h : Γ → QI(X) be a geometric quasi-action of Γ on X.
Then Γ is finitely generated and the map ϕ : Γ→ X defined by ϕ(γ) = γ(x0) is a
quasi-isometry.

Corollary 2.6. Let Γ,Γ′ be finitely generated groups. Then Γ is quasi-isometric
to Γ′ if and only if there exists a geodesic metric space X such that both Γ and Γ′

geometrically quasi-act on X.

Proof. The “if” implication follows from Lemma 2.5. On the other hand, if Γ
is quasi-isometric to Γ′ and X is a fixed Cayley graph for Γ′, then Γ geometri-
cally quasi-acts on X by Proposition 2.4, and Γ′ geometrically acts on X ′ by left
translations.
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3 Asymptotic cones

Roughly speaking, the asymptotic cone of a metric space gives a picture of the
metric space as “seen from infinitely far away”. It was introduced by Gromov
in [40], and formally defined in [96]. Being uninfluenced by finite errors, the
asymptotic cone is a quasi-isometry invariant, and turns discrete objects into con-
tinuous spaces. Citing Gromov, “This space [the Cayley graph of a group Γ] may
appear boring and uneventful to a geometer’s eye since it is discrete and the tra-
ditional local (e.g. topological and infinitesimal) machinery does not run in Γ. To
regain the geometric perspective one has to change his/her position and move the
observation point far away from Γ. Then the metric in Γ seen from the distance d
becomes the original distance divided by d and for d→∞ the points in Γ coalesce
into a connected continuous solid unity which occupies the visual horizon without
any gaps or holes and fills our geometer’s hearth with joy” [43].

Gromov himself provided a characterization of word hyperbolicity in terms of
asymptotic cones [42, 43] (see also [16] and [30]). Also relative hyperbolic groups
admit a neat (and very useful) characterization via asymptotic cones [20]. It
may be worth mentioning that, while having nice metric properties (e.g., asymp-
totic cones of Cayley graphs of groups are complete, homogeneous and geodesic),
asymptotic cones are quite wild from the topological point of view. They are of-
ten not locally compact (for example, a group is virtually nilpotent if and only
if all its asymptotic cones are locally compact [40, 16] if and only if one of its
asymptotic cone is locally compact [81, 48, 89]), and their homotopy type can be
quite complicated: Gromov himself [43] conjectured that the fundamental group
of any asymptotic cone of any group either is simply connected, or has an un-
countable fundamental group. While this conjecture eventually turned out to be
false in general [72], usually non-simply connected asymptotic cones of groups are
rather complicated: Erschler and Osin showed that every countable group is a
subgroup of the fundamental group of an asymptotic cone of a finitely generated
group [26] (this result was then sharpened in [20], where it is shown that, for every
countable group G, there exists an asymptotic cone of a finitely generated group
whose fundamental group is the free product of uncountably many copies of G).
Moreover, Gromov’s conjectural dichotomy was proved to hold in several cases
(see e.g. [57, 14] for results in this direction).

Let us recall the definition of asymptotic cone of a space. A filter on N is a set
ω ⊆ P(N) satisfying the following conditions:

1. ∅ /∈ ω;

2. A,B ∈ ω =⇒ A ∩B ∈ ω;

3. A ∈ ω, B ⊇ A =⇒ B ∈ ω.

For example, the set of complements of finite subsets of N is a filter on N, known
as the Fréchet filter on N.

A filter ω is an ultrafilter if for every A ⊆ N we have either A ∈ ω or Ac ∈ ω,
where Ac := N \ A. For example, fixing an element a ∈ N, we can take the
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associated principal ultrafilter to consist of all subsets of N which contain a. An
ultrafilter is non-principal if it does not contain any finite subset of N.

It is readily seen that a filter is an ultrafilter if and only if it is maximal with
respect to inclusion. Moreover, an easy application of Zorn’s Lemma shows that
any filter is contained in a maximal one. Thus, non-principal ultrafilters exist (just
take any maximal filter containing the Fréchet filter).

From this point on, let us fix a non-principal ultrafilter ω on N. As usual, we
say that a statement Pi depending on i ∈ N holds ω-a.e. if the set of indices such
that Pi holds belongs to ω. If X is a topological space, and (xi) ⊆ X is a sequence
in X, we say that ω-limxi = x∞ if xi ∈ U ω-a.e. for every neighbourhood U
of x∞. When X is Hausdorff, an ω-limit of a sequence, if it exists, is unique.
Moreover, any sequence in any compact space admits an ω-limit. For example,
any sequence (ai) in [0,+∞] admits a unique ω-limit.

Now let (Xi, xi, di), i ∈ N, be a sequence of pointed metric spaces. Let C be
the set of sequences (yi), yi ∈ Xi, such that ω-lim di(xi, yi) < +∞, and consider
the following equivalence relation on C:

(yi) ∼ (zi) ⇐⇒ ω- lim di(yi, zi) = 0.

We set ω-lim(Xi, xi, di) = C/∼, and we endow ω-lim(Xi, xi, di) with the well-
defined distance given by dω

(
[(yi)], [(zi)]

)
= ω-lim di(yi, zi). The pointed metric

space (ω-lim(Xi, xi, di), dω) is called the ω-limit of the pointed metric spaces Xi.
Let (X, d) be a metric space, (xi) ⊆ X a sequence of base-points, and (ri) ⊂ R+

a sequence of rescaling factors diverging to infinity. We introduce the notation
(Xω((xi), (ri)), dω) := ω-lim(Xi, xi, d/ri).

Definition 3.1. The metric space
(
Xω

(
(xi), (ri)

)
, dω
)

is the asymptotic cone of
X with respect to the ultrafilter ω, the basepoints (xi) and the rescaling factors
(ri). For conciseness, we will occasionally just write Xω

(
(xi), (ri)

)
for the asymp-

totic cone, the distance being implicitly understood to be dω, or even Xω when
basepoints and rescaling factors are fixed.

If ω is fixed and (ai) ⊆ R is any sequence, we say that (ai) is o(ri) (resp. O(ri))
if ω-lim ai/ri = 0 (resp. ω-lim |ai|/ri < ∞). Let (xi) ⊆ X, (ri) ⊆ R be fixed
sequences of basepoints and rescaling factors, and set Xω = (Xω((xi), (ri)), dω).
Sequences of subsets in X give rise to subsets of Xω: if for every i ∈ N we are
given a subset ∅ 6= Ai ⊆ X, we set

ω- limAi = {[(pi)] ∈ Xω | pi ∈ Ai for every i ∈ N}.

It is easily seen that for any choice of the Ai’s, the set ω-limAi is closed in Xω.
Moreover, ω-limAi 6= ∅ if and only if the sequence (d(xi, Ai)) is O(ri).

It is usually quite difficult to describe asymptotic cones of spaces. Nevertheless,
in some cases the situation is clear: for example, if the metric of X is homogeneous
and scale-invariant (meaning that (X, d) is isometric to (X, d/r) for every r > 0)
then every asymptotic cone of X is isometric to X (this is the case e.g. for X =
Rn). We will see below that also asymptotic cones of hyperbolic spaces are easily
understood.
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3.1 Asymptotic cones and quasi-isometries

Quasi-isometries are just maps that are bi-Lipschitz up to a finite error. Therefore,
it is not surprising that they asymptotically define bi-Lipschitz homeomorphisms.
In fact, it is an easy exercise to check that, once a non-principal ultrafilter ω is fixed,
if (Xi, xi, di) (Yi, yi, d

′
i), i ∈ N are pointed metric spaces, (ri) ⊂ R is a sequence

of rescaling factors, and fi : Xi → Yi are (ki, ci)-quasi-isometries such that k = ω-
lim ki <∞, ci = o(ri) and d′i(fi(yi), xi) = O(ri), then the formula [(pi)] 7→ [fi(pi)]
provides a well-defined k-bi-Lipschitz embedding fω : ω-lim(Xi, xi, di/ri) → ω −
lim(Yi, yi, d

′
i/ri).

As a corollary, quasi-homogeneous spaces (i.e. metric spaces whose isometry
group admits r-dense orbits for some r > 0) have homogeneous asymptotic cones,
whose isometry type does not depend on the choice of basepoints. Moreover, quasi-
isometric metric spaces have bi-Lipschitz homeomorphic asymptotic cones. In
particular, quasi-isometric groups have homogeneous bi-Lipschitz homeomorphic
asymptotic cones.

Actually, the last sentence of the previous paragraph should be stated more
precisely as follows: once a non-principal ultrafilter and a sequence of rescaling
factors are fixed, any quasi-isometry between two groups induces a bi-Lipschitz
homeomorphism between their asymptotic cones. Here and in what follows we
will not focus on the dependence of asymptotic cones on the choice of ultrafilters
and rescaling factors. In fact, in many applications (and in all the arguments
described in this paper) the role played by such choices is very limited (but see
the proof of Theorem 5.1). Let us just mention here that, answering to a question
of Gromov [42], Thomas and Velickovic exhibited a finitely generated group with
two non-homeomorphic asymptotic cones [92] (the first finitely presented example
of such a phenomenon is due to Ol’shanskii and Sapir [71]).

3.2 Asymptotic cones of (relatively) hyperbolic groups

Recall that a geodesic metric space X is δ-hyperbolic, where δ is a non-negative
constant, if every side of every geodesic triangle in X is contained in the δ-
neighbourhood of the union of the other two sides (in this case one says that
the triangle is δ-thin). A space is Gromov hyperbolic (or hyperbolic, for short)
if it is δ-hyperbolic for some δ ≥ 0. A fundamental (and not completely trivial)
fact is that being hyperbolic is a quasi-isometry invariant, so it makes sense to
speak of hyperbolic groups. A real tree is a 0-hyperbolic geodesic metric space.
Simplicial trees are real trees, but many wilder examples of real trees can be easily
constructed (and naturally arise as asymptotic cones of groups!).

Every pinched negatively curved simply connected Riemannian manifold is hy-
perbolic, so by the Milnor-Švarc Lemma the fundamental group of every compact
negatively curved Riemannian manifold is hyperbolic. In fact, such groups were
probably the motivating examples that lead Gromov to the definition of hyperbol-
icity. Of course, by dividing the metric by a factor rn we can turn a δ-hyperbolic
space into a δ/rn-hyperbolic space, and this implies that any asymptotic cone of a
hyperbolic space is a real tree (after one proves that geodesics in Xω are ω-limits
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of geodesics in X: this is false for generic geodesic spaces, and true if X is hyper-
bolic). More precisely, if Γ is a non-virtually cyclic hyperbolic group, then every
asymptotic cone of Γ is a homogeneous real tree each point of which is a branching
point with uncountably many branches. In particular, all the asymptotic cones of
all non-virtually cyclic hyperbolic groups are pairwise isometric [25].

As we mentioned above, being asymptotically 0-hyperbolic indeed character-
izes hyperbolic spaces: if every asymptotic cone of X is a real tree, then X is
hyperbolic [42, 43, 16, 30]. This implies, for example, the non-trivial fact that if
every triangle of diameter D in X is δ(D)-thin, where δ(D) grows sublinearly with
respect to D, then X is hyperbolic (so δ is bounded). It is maybe worth mention-
ing that indeed one needs all the asymptotic cones of X to be real trees in order
to get hyperbolicity of X: groups having at least one asymptotic cone which is a
real tree are known as lacunary hyperbolic, and were studied in [71]; note however
that a result of Gromov [42] ensures that a finitely presented lacunary hyperbolic
group is indeed hyperbolic.

Just as hyperbolic groups generalize fundamental groups of negatively curved
compact manifolds, the notion of relatively hyperbolic group was introduced by
Gromov to extend the class of fundamental groups of pinched negatively curved
complete manifolds of finite volume (see e.g. the fundamental paper of Farb [32]).
Here we will define relative hyperbolic groups by means of a later asymptotic
characterization which is due to Druţu and Sapir [20]. If X is a set, then we
denote by |X| the cardinality of X.

Definition 3.2. A geodesic metric space X is said to be tree-graded with respect
to a collection of closed subsets {Pi}i∈I , called pieces, if

1.
⋃
Pi = X,

2. |Pi ∩ Pj | ≤ 1 if i 6= j,

3. any simple geodesic triangle in X is contained in a single piece.

In fact, it is proved in [20, Lemma 2.15] that if A is a path-connected subset
of a tree-graded space Y and A has no cut-points, then A is contained in a piece.
In order to avoid trivialities, we will always assume that no piece is equal to the
whole tree-graded space.

Definition 3.3. A geodesic metric space X is asymptotically tree-graded with
respect to a collection of subsets A = {Hi}i∈I if the following conditions hold:

1. for each choice of basepoints (xi) ⊆ X and rescaling factors (ri), the associ-
ated asymptotic cone Xω = Xω((xi), (ri)) is tree-graded with respect to the
collection of subsets P = {ω-limHi(n) |Hi(n) ∈ A}, and

2. if ω-limHi(n) = ω-limHj(n), where i(n), j(n) ∈ I, then i(n) = j(n) ω-a.e.

We are now ready to give the definition of relatively hyperbolic group.

Definition 3.4. Let Γ be a group and let {H1, . . . ,Hk} be a finite collection of
proper infinite subgroups of Γ. Then Γ is hyperbolic relative to {H1, . . . ,Hk} if
it is asymptotically tree-graded with respect to the family of all left cosets of the
Hi’s. If this is the case, the Hi’s are called peripheral subgroups of Γ.
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In some sense, the asymptotic cone of a relatively hyperbolic group is obtained
from a real tree by blowing up points into pieces where the non-tree-like behaviour
is concentrated.

Definition 3.4 implies that a group admitting an asymptotic cone without
cut-points cannot be relatively hyperbolic (such a group is said to be uncon-
stricted) [20]. In fact, the following stronger result holds:

Proposition 3.5 ([20, 3]). If Γ is unconstricted, then every (k, c)-quasi-isometric
embedding of Γ into a relatively hyperbolic group lies in a D-neighbourhood of a
coset of a peripheral subgroup, where D only depends on k, c (and on the geometry
of the relatively hyperbolic group).

Recall that the geometric pieces of the manifolds we are interested in (i.e. irre-
ducible 3-manifolds and HDG manifolds) each consists of the product of a cusped
hyperbolic manifold N with a torus (where the cusped manifold may be just a
surface in the case of pieces modeled on H2 ×R, and the torus may be reduced to
a circle or to a point). The fundamental groups of cusped hyperbolic manifolds
are hyperbolic relative to the cusp subgroups (see e.g. [32] for a much more general
result dealing with variable negative curvature). As usual, in order to better un-
derstand the geometry of the group one would like to make use of the Milnor-Švarc
Lemma, and to this aim we need to replace our cusped n-manifold N with the
one obtained by truncating the cusps, which will be denoted by N . The universal
covering of N is the complement in hyperbolic space of an equivariant collection of
disjoint horoballs whose union is just the preimage of the cusps under the universal
covering map Hn → N . Such a space B is usually called a neutered space, and
will be always endowed with the path metric induced by its Riemannian structure.
Its boundary is given by an equivariant collection of disjoint horospheres, each of
which is totally geodesic (in a metric sense) and flat. Now the quasi-isometry
provided by the Milnor-Švarc Lemma sends each coset of a peripheral subgroups
of π1(N) into a component of ∂B (this is true as stated if N has one cusp and
the basepoint of B is chosen on ∂B, and true only up to finite errors otherwise).
Together with the invariance of asymptotic cones with respect to quasi-isometries,
we may conclude that B is asymptotically tree–graded with respect to the family
of the connected components of ∂B.

We recall that an n-flat is a totally geodesic embedded subspace isometric
to Rn, and that whenever X,Y are metric spaces we understand that X × Y is
endowed with the induced `2-metric (which coincides with the usual product metric
in the case of Riemannian manifolds). Since the asymptotic cone of a product is
the product of the asymptotic cones of the factors, the following result summarizes
the previous discussion:

Proposition 3.6. Let M = N × (S1)k, where N is a complete finite volume
hyperbolic n-manifold with cusps removed and (S1)k is a flat k-dimensional torus,
let X be the metric universal covering of M and let Xω be any asymptotic cone
of X. Then Xω is isometric to Y × Rk, where Y is a tree-graded space and every
piece of Y is an (n− 1)-flat. In particular, if dimN = 2, then Xω is isometric to
the product of a real tree with Rk.
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The last sentence of the previous proposition can be explained in two ways. If
dimN = 2, then π1(N) is free, whence hyperbolic. On the other hand, π1(N) is
also hyperbolic relative to the peripheral subgroups, which are isomorphic to Z,
so its asymptotic cone is tree-graded with pieces isometric to lines; and it is easy
to see that a tree-graded space with pieces that are real trees is itself a real tree.

Corollary 3.7. Let M1,M2 be a Seifert 3-manifold with non-empty boundary and
a non-compact complete finite-volume hyperbolic 3-manifold, respectively. Then
π1(M1) is not quasi-isometric to π1(M2).

Proof. By Proposition 3.6, it is sufficient to observe that the product of a real
tree with the real line does not contain cut-points, while any tree-graded space
does.

Of course free abelian groups are unconstricted, so Proposition 3.5 (together
with the Milnor-Švarc Lemma) readily implies the following:

Proposition 3.8. Let B ⊆ Hn be an n-dimensional neutered space as above.
Then the image of any (k, c)-quasi-isometric embedding of Rn−1 into B lies in the
D-neighbourhood of a component of ∂B, where D only depends on (k, c) (and on
the geometry of B).

Proposition 3.8 was first proved by Schwartz in [82], where it provided one of
the key steps in the proof of the quasi-isometric rigidity of non-uniform lattices in
the isometry group of real hyperbolic n-space, n ≥ 3. In fact, Proposition 3.8 im-
plies that any quasi-isometry f : B → B′ between neutered spaces must coarsely
send ∂B into ∂B′. As a consequence, the map f can be extended to a quasi-
isometry f of the whole of Hn. An additional argument exploiting the fact that
f sends an equivariant family of horospheres into another equivariant family of
horospheres and involving a fine analysis of the trace of f on ∂Hn allows to con-
clude that f is uniformly close to an isometry g. Then it is not difficult to show
that g almost conjugates the isometry group of B into the isometry group of B′,
so that these isometry groups (which are virtually isomorphic to the fundamental
groups of any compact quotient of B,B′, respectively) are virtually isomorphic
(see the discussion in Subsection 6.1). This argument should somewhat clarify the
statement we made in the introduction, according to which the existence of pat-
terns with a distinguished geometric behaviour in a space X usually imposes some
rigidity on geometric maps of X into itself. In the case just described the pattern is
given by a family of flats, whose intrinsic geometry already make them detectable
in the hyperbolic context where they lie. In other situations the single objects of
the pattern do not enjoy peculiar intrinsic features. This is the case, for example,
for the boundary components of the universal covering of a compact hyperbolic
n-manifold with geodesic boundary. Such boundary components are themselves
hyperbolic hyperplanes in Hn (in particular, their asymptotic cones are not un-
constricted), so in order to prove that they are recognized by quasi-isometries one
cannot rely on general results on relatively hyperbolic groups. Nevertheless, the
general strategy described by Schwartz still applies to get quasi-isometric rigid-
ity [34], once one replaces Proposition 3.5 with an argument making use of a
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suitable notion of coarse separation. Such a notion was also at the hearth of
Schwartz’s original argument for Proposition 3.8.

Schwartz’s strategy to prove QI-rigidity of non-uniform lattices may be in fact
pursued also in the more general context of relatively hyperbolic groups. In fact,
building on Proposition 3.5 it is possible to show that, if Γ is hyperbolic relative
to {H1, . . . ,Hk}, where each Hi is unconstricted, and Γ′ is quasi-isometric to
Γ, then also Γ′ is hyperbolic relative to a finite collection of subgroups each of
which is quasi-isometric to one of the Hi’s [20, 3]. In fact, the hypothesis on the
peripheral subgroups of Γ being unconstricted may be weakened into the request
that each Hi be not relatively hyperbolic with respect to any finite collection of
proper subgroups. However, this is not sufficient to conclude that the class of
relatively hyperbolic groups is quasi-isometrically rigid, since there exist relatively
hyperbolic groups that have no list of peripheral subgroups composed uniquely
of non-relatively hyperbolic groups (indeed, the inaccessible group constructed by
Dunwoody [22] is also an example of such a relatively hyperbolic group, see [3]; see
the appendix for a brief discussion of (in)accessibility of groups). Nevertheless, it
eventually turns out that the whole class of relatively hyperbolic groups is QI-rigid:

Theorem 3.9 ([18]). The Γ be a group hyperbolic relative to a family of sub-
groups {H1, . . . ,Hk}, and let Γ′ be a group quasi-isometric to Γ. Then Γ′ is
hyperbolic relative to a family {H ′1, . . . ,H ′s} of subgroups, where each H ′i can be
quasi-isometrically embedded in Hj for some j = j(i).

Before concluding the section, let us come back to what asymptotic cones
can and cannot distinguish. We have already seen that the asymptotic cones of
hyperbolic groups are all quasi-isometric to each other, so they cannot be exploited
to distinguish non-quasi-isometric hyperbolic groups. However, asymptotic cones
can tell apart the quasi-isometry classes of the eight 3-dimensional geometries:

Proposition 3.10. With the exception of the case of H2 × R and S̃L2, the eight
3-dimensional geometries can be distinguished by looking at their asymptotic cones.
In particular, with the exception of the case of H2×R and S̃L2, distinct geometries
are not quasi-isometric.

Proof. Every asymptotic cone of the sphere is a point. The Euclidean 3-space
and Nil are the unique geometries such that each of their asymptotic cones is
unbounded and locally compact. Moreover, both these spaces admit a nontrivial
1-parameter group of non-isometric similarities, so they are isometric to their
asymptotic cones. However, it is not diffult to show that R3 is not bi-Lipschitz
equivalent to Nil (in fact, one can directly prove that they are not even quasi-
isometric, since they have different growth rates). Every asymptotic cone of S2×R,
of H3 and of H2 × R is isometric to the real line, to the homogeneous real tree
T with uncountably many branches at every point, and to the product T × R,
respectively. In particular, they are all simply connected and pairwise non-bi-
Lipschitz equivalent. Finally, Sol is the unique 3-dimensional geometry admitting
non-simply connected asymptotic cones [9].
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4 Trees of spaces and their asymptotic cones

Let now M be either an irreducible non-geometric 3-manifold, or an irreducible
n-dimensional HDG manifold, n ≥ 3. For the sake of simplicity, in the case when
M is not an HDG manifold, henceforth we will assume that M is closed. It follows
by the very definitions that M decomposes into pieces of the form N × T k, where
N is a truncated hyperbolic manifold and T k is a k-dimensional torus. Moreover,
dimN ≥ 3 unless dimM = 3, while k may be any non-negative integer. We put
on M a Riemannian metric (in the 3-dimensional case, we will carefully choose
one later), and we denote by X the Riemannian universal covering of M . The
decomposition of M into pieces lifts to a decomposition of X into chambers. Since
the fundamental group of each piece injects into π1(M), every chamber is the
universal covering of a geometric piece of M . Chambers are adjacent along walls,
where a wall is the lift to X of a torus (or Klein bottle) of the decomposition of M .
This decomposition of X can be encoded by a graph T whose vertices (resp. edges)
correspond to chambers (resp. walls), and the edge corresponding to the wall W
joins the vertices corresponding to the chambers adjacent to W . Moreover, each
chamber is foliated by fibers, which are just the lifts to X of the fibers of the pieces
of M (where fibers of a purely hyperbolic piece are understood to be points). Since
X is simply connected, the graph T is a (simplicial, non-locally finite) tree. In fact,
the decomposition of M into pieces realizes π1(M) as the fundamental group of a
graph of groups having the fundamental groups of the pieces as vertex groups and
the fundamental pieces of the splitting tori (or Klein bottles) as edge groups. The
tree T is exactly the Bass-Serre tree associated to this graph of groups (see [88, 86]
for the definition and the topological interpretation of the fundamental group of a
graph of groups).

By the Milnor-Švarc Lemma, Theorems 1.8 and 1.14 are immediate conse-
quences of the following:

Theorem 4.1. Let M,M ′ be either irreducible non-geometric graph manifolds or
irreducible HDG manifolds, and denote by X,X ′ the universal coverings of M,M ′

respectively. Let also f : X → X ′ be a quasi-isometry. Then for every chamber C
of X there exists a chamber C ′ of X ′ such that f(C) lies within finite Hausdorff
distance from C ′ (as a consequence, C is quasi-isometric to C ′). Moreover, f
preserves the structures of X,X ′ as trees of spaces, i.e. it induces an isomorphism
between the trees encoding the decomposition of X,X ′ into chambers and walls.

We would like to study the coarse geometry of X starting from what we know
about the coarse geometry of its chambers. This strategy can be more easily pur-
sued provided that chambers are quasi-isometrically embedded in X. We first
observe that, if the manifold M carries a Riemannian metric of non-positive cur-
vature, then by the Flat Torus Theorem (see e.g. [8]) the decomposition of M into
pieces can be realized geometrically by cutting along totally geodesic embedded
flat tori (and Klein bottles in the 3-dimensional case). This readily implies that
walls and chambers (endowed with their intrinsic path metric) are isometrically
embedded in X. Now it turns out that non-geometric irreducible 3-manifolds
“generically” admit metrics of non-positive curvature: namely, this is true for ev-
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ery manifold containing at least one hyperbolic piece [61], while it can fail for
graph manifolds (Buyalo and Svetlov [10] have a complete criterion for deciding
whether or not a 3-dimensional graph manifold supports a non-positively curved
Riemannian metric). Nevertheless, it is proved in [56] that for every non-geometric
irreducible 3-manifold M , there exists a non-positively curved non-geometric ir-
reducible 3-manifold M ′ such that the universal covers X of M and X ′ of M ′

are bi-Lipschitz homeomorphic by a homeomorphism which preserves their struc-
tures as trees of spaces (in particular, walls and chambers are quasi-isometrically
embedded in X). In fact, thanks to this result it is not restrictive (with respect
to our purposes) to consider only non-positively curved non-geometric irreducible
3-manifolds.

In the higher dimensional case it is not possible to require non-positive cur-
vature. Indeed, it is easy to construct HDG manifolds whose fundamental group
cannot be quasi-isometric to the fundamental group of any non-positively curved
closed Riemannian manifold [36, Remark 2.23]. At least from the coarse geometric
point of view, things get a bit better when restricting to irreducible manifolds:

Theorem 4.2 (Theorem 0.16 in [36]). Suppose that M is an irreducible HDG man-
ifold with universal covering X. Then walls and chambers are quasi-isometrically
embedded in X.

Nevertheless, it is possible to construct irreducible HDG manifolds which do
not support any non-positively curved metric [36, Theorem 0.20]. It is still an
open question whether the fundamental group of every irreducible HDG mani-
fold is quasi-isometric to the fundamental group of a non-positively curved HDG
manifold.

4.1 Irreducible 3-manifolds versus HDG manifolds

If C is any chamber of the tree of spaces X introduced above, then the walls of C
are r-dense in C. Using this fact, it is easy to realize that the key step in the proof
of Theorem 4.1 consists in showing that quasi-isometries must preserve walls. In
the case of irreducible HDG n-manifolds, using that the codimension of the fibers
is big enough one can show that walls are the unique (n − 1)-dimensional quasi-
isometrically embedded copies of Rn−1 in X (see Theorem 5.1), and this provides
the key step towards Theorem 4.1 in that case. On the contrary, chambers corre-
sponding to Seifert pieces of irreducible 3-manifolds contain a lot of 2-dimensional
flats coming from the lifts to X of the product of closed simple geodesics in the
2-dimensional base with the S1-fiber. As a consequence, some more work is needed
to provide a quasi-isometric characterization of walls. On the positive side, in the
3-dimensional case one can use the peculiar features of non-positive curvature,
that are not available in higher dimensions.

4.2 Asymptotic cones of trees of spaces

Let M be either a 3-dimensional irreducible non-geometric 3-manifold or an irre-
ducible HDG manifold. For the sake of simplicity, in the first case we also assume
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that M is closed, and endowed with a non-positively curved metric (see the pre-
vious section). We have seen that the universal covering of M decomposes as a
tree of spaces into chambers separated by walls. Moreover, chambers and walls
are quasi-isometrically embedded in X (and even isometrically embedded when
dimM = 3).

Let ω be a fixed non-principal ultrafilter on N, let (xi) ⊆ X, (ri) ⊆ R be fixed
sequences of basepoints and rescaling factors, and set Xω = (Xω, (xi), (ri)).

Definition 4.3. An ω-chamber (resp. ω-wall, ω-fiber) in Xω is a subset Yω ⊆ Xω

of the form Yω = ω- limY i, where each Y i ⊆ X is a chamber (resp. a wall, a
fiber). An ω-wall Wω = ω- limWi is a boundary (resp. internal) ω-wall if Wi is a
boundary (resp. internal) wall ω-a.e.

The decomposition of a tree-graded space into its chambers induces a decom-
position of Xω into its ω-chambers. Indeed, since a constant k exists such that
each point of X has distance at most k from some wall, every point of Xω lies
in some ω-wall. Recall that, in a tree-graded space, subspaces homeomorphic to
Euclidean spaces of dimension bigger than one (which do not have cut-points) are
contained in pieces. We would like to prove that a similar phenomenon occurs in
our context, and this is indeed the case when dealing with HDG manifolds. In
fact, in that case ω-walls can be characterized as the only subspaces of Xω which
are bi-Lipschitz homeomorphic to Rn−1, where n = dimM (see Proposition 4.11).
As a consequence, every bi-Lipschitz homeomorphism of Xω preserves the de-
composition of Xω into ω-walls. Together with an argument which allows us to
recover quasi-isometries of the original spaces from bi-Lipschitz homeomorphisms
of asymptotic cones, this will imply Theorem 4.1 in the case of HDG manifolds.
As anticipated above, extra work is needed in the case of 3-manifolds, where the
presence of Seifert pieces implies the existence of 2-dimensional flats in Xω that
are not ω-walls.

We begin by collecting some facts that will prove useful for the proof of Theo-
rem 4.1. Henceforth we denote by n ≥ 3 the dimension of M (and of its unviersal
covering X). Being a quasi-isometric embedding, the inclusion of any chamber
in X induces a bi-Lipschitz embedding of the asymptotic cone of the chamber
into Xω. Therefore, from Proposition 3.6 we deduce that for any ω-chamber Cω
there exists a bi-Lipschitz homeomorphism ϕ : Cω → Y × Rl, where Y is a tree-
graded space whose pieces are bi-Lipschitz homeomorphic to Rn−l−1, such that
the following conditions hold:

1. For every p ∈ Y , the subset ϕ−1({p} × Rl) is an ω-fiber of Xω.

2. For every piece P of Y , the set ϕ−1(P × Rl) is an ω-wall of Xω.

In particular, every ω-wall of X is bi-Lipschitz homeomorphic to Rn−1, and every
ω-fiber of X is bi-Lipschitz homeomorphic to Rh for some h ≤ n− 2 (h ≤ n− 3 if
M is an HDG manifold). A fiber of Cω is an ω-fiber of Xω of the form described
in item (1) above. A wall of Cω is an ω-wall of Xω of the form described in item
(2) above. If Wω is a wall of Cω, then we also say that Cω is adjacent to Wω.
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Definition 4.4. Let Wω = ω- limWi be an ω-wall. A side S(Wω) of Wω is a
subset S(Wω) ⊆ Xω which is defined as follows. For every i, let Ωi be a connected
component of X \Wi. Then

S(Wω) = (ω- lim Ωi) \Wω .

An internal wall has exactly two sides S(Wω), S′(Wω) and is adjacent to exactly
two ω-chambers Cω, C ′ω. Up to reordering them, we also have S(Wω) ∩ C ′ω =
S′(Wω) ∩ Cω = ∅, Cω \Wω ⊆ S(Wω) and C ′ω \Wω ⊆ S′(Wω). Moreover, any
Lipschitz path joining points contained in distinct sides of Wω must pass through
Wω.

Definition 4.5. A subset A ⊆ Xω is essentially separated by an internal ω-wall
Wω ⊆ Xω if A intersects both sides of Wω.

Proposition 4.6. Let A ⊆ Xω be a subset which is not essentially separated by
any ω-wall. Then A is contained in an ω-chamber.

Proof. In the 3-dimensional case, this is Lemma 3.4 in Kapovich and Leeb’s pa-
per [55]. Their proof applies verbatim also to the case of irreducible HDG manifolds
(thus providing a positive answer to the problem posed at page 122 in [36]).

As already mentioned in the introduction, a key ingredient for the analysis of
the geometry of Xω (or of X) is the understanding of which subspaces separate
(or coarsely separate) some relevant subsets of Xω (or of X). Let S(Wω) be a
side of Wω, and let Cω be the unique ω-chamber of Xω which intersects S(Wω)
and is adjacent to Wω. A fiber of Wω associated to S(Wω) is a fiber of Cω that is
contained in Wω. The following observation follows from the fact that the gluings
defining our manifold M are transverse, and it is crucial to our purposes:

Lemma 4.7. Let S+(Wω) and S−(Wω) be the sides of the internal ω-wall Wω,
and let F+

ω , F−ω be fibers of Wω associated respectively to S+(Wω), S−(Wω). Then
|F+
ω ∩ F−ω | ≤ 1.

If P, P ′ are distinct pieces of a tree-graded space Y , then there exist p ∈ P ,
p′ ∈ P ′ such that, for any continuous path γ : [0, 1] → Y with γ(0) ∈ P and
γ(1) ∈ P ′, we have p, p′ ∈ Im γ (see e.g. [36, Lemma 8.8]). Since ω-chambers
are (bi-Lipschitz homeomorphic to) products of tree-graded spaces with Euclidean
factors, this immediately implies that, if Wω and W ′ω are distinct ω-walls of the
ω-chamber Cω, then there exists an ω-fiber Fω ⊆ Wω of Cω such that every
continuous path in Cω joining a point in Wω with a point in W ′ω has to pass
through Fω. With some work it is possible to extend this result to pairs of ω-walls
which are not contained in the same ω-chamber:

Lemma 4.8 (Lemma 8.24 in [36]). Let Wω,W
′
ω be distinct ω-walls, and let S(Wω)

be the side of Wω containing W ′ω \Wω. Then there exists an ω-fiber Fω of Wω

such that

1. Fω is associated to S(Wω), and
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2. every Lipschitz path joining a point in W ′ω with a point in Wω passes through
Fω.

As every point inXω is contained in an ω-wall, Lemma 4.8 implies the following:

Corollary 4.9. Let Wω be an ω-wall, let p ∈ Xω \Wω, and let S(Wω) be the side
of Wω containing p. Then there exists an ω-fiber Fω of Wω associated to S(Wω)
such that every Lipschitz path joining p with Wω passes through Fω.

4.3 A characterization of bi-Lipschitz flats in higher dimen-
sion

Throughout this subsection we assume that n = dimM ≥ 4. As already mentioned
in Subsection 4.1, in this case the fact that fibers have higher codimension allows
us to provide an easy characterization of ω-walls.

A bi-Lipschitz m-flat in Xω is the image of a bi-Lipschitz embedding f : Rm →
Xω. This section is aimed at proving that ω-walls are the only bi-Lipschitz (n−1)-
flats in Xω. We say that a metric space is L.-p.-connected if any two points in it
may be joined by a Lipschitz path. The following lemma provides a fundamental
step towards the desired characterization of ω-walls, so we give a complete proof
of it. It breaks down in the 3-dimensional case.

Lemma 4.10. Let A ⊆ Xω be a bi-Lipschitz (n− 1)-flat. Then for every ω-fiber
Fω the set A \ Fω is L.-p.-connected.

Proof. Let f : Rn−1 → Cω be a bi-Lipschitz embedding such that f(Rn−1) = A,
and let l ≤ n − 3 be such that Fω is bi-Lipschitz homeomorphic to Rl. The set
f−1(Fω) is a closed subset of Rn−1 which is bi-Lipschitz homeomorphic to a subset
of Rl. But it is known that the complements of two homeomorphic closed subsets
of Rn−1 have the same singular homology (see e.g. [15]), so Rn−1 \ f−1(Fω) is
path-connected. It is immediate to check that any two points in a connected open
subset of Rn−1 are joined by a piecewise linear path, so Rn−1 \ f−1(Fω) is L.-p.-
connected. The conclusion follows from the fact that f takes Lipschitz paths into
Lipschitz paths.

Let now A ⊆ Xω be a bi-Lipschitz (n− 1)-flat. We first observe that A is not
essentially separated by any ω-wall of Xω. In fact, if this were not the case, then
there would exist an ω-wall Wω and points p, q ∈ A on opposite sides of Wω. Then
the fiber Fω of Wω such that every path joining p with Wω passes through Fω
(see Corollary 4.9) would disconnect A, against Lemma 4.10. By Proposition 4.6
we can then suppose that A is contained in an ω-chamber Cω. Recall that Cω is
homeomorphic to a product Y ×Rl, where Y is a tree-graded space and l ≤ n− 3.
Lemma 4.10 implies that the projection of A onto Y does not have cut-points, so
it is contained in a piece of Y . This is equivalent to saying that A is contained in
an ω-wall of Cω, so it is actually equal to such an ω-wall by invariance of domain.
We have thus proved the following:

Proposition 4.11. Let A be a bi-Lipschitz (n − 1)-flat in Xω. Then A is an
ω-wall.
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Corollary 4.12. Let M,M ′ be irreducible HDG manifolds with universal cover-
ings X,X ′, and let f : X → X ′ be a quasi-isometry. Then the map fω : Xω → X ′ω
induced by f on the asymptotic cones takes any ω-wall of Xω onto an ω-wall of
X ′ω.

4.4 The 3-dimensional case

We would like to extend Corollary 4.12 to the 3-dimensional case. Let M,M ′

be closed irreducible non-geometric 3-manifolds with universal coverings X,X ′.
We can suppose that M,M ′ are non-positively curved. We will say that an ω-
chamber of the asymptotic cone Xω (or X ′ω) is hyperbolic (resp. Seifert) if it is
the ω-limit of chambers covering a hyperbolic (resp. Seifert) piece of M (or M ′).
Observe that every ω-chamber is either Seifert or hyperbolic. Being bi-Lipschitz
homeomorphic to the product of a real tree with the real line, every Seifert ω-
chamber contains many flats that are not ω-walls, so Proposition 4.11 cannot
hold in this case. Therefore, in order to obtain Corollary 4.12 some additional
arguments are needed, that we briefly outline here. The reader is addressed to [55]
for complete proofs.

We first collect some facts about (bi-Lipschitz) flats in Xω.

1. Any bi-Lipschitz flat contained in an ω-chamber is a flat (this easily follows
from the explicit description of the geometry of the chambers, together with
the basic properties of tree-graded spaces and the fact that, thanks to non-
positive curvature, ω-chambers are isometrically embedded in Xω).

2. Any flat Zω ⊆ Xω must be contained in a single ω-chamber. In fact, other-
wise Zω is essentially separated by an ω-wall Wω. The arguments described
in the previous subsection may be exploited to show that no ω-chamber adja-
cent to Wω can be hyperbolic, i.e. the two ω-chambers adjacent to Wω must
both be Seifert. Moreover, Zω ∩Wω must contain two transversal fibers of
Wω, and this implies that indeed Zω = Wω, a contradiction.

3. A bi-Lipschitz flat B ⊆ Xω is an ω-wall which is not adjacent to any Seifert
ω-chamber if and only of its intersection with any other bi-Lipschitz flat
in Xω contains at most one point. In fact, if the latter condition is true,
then B cannot be essentially separated by any ω-wall, so it is contained in
an ω-chamber that cannot be Seifert (because otherwise B would intersect
many other flats in more than one point). Conversely, if B is an ω-wall not
adjacent to any Seifert ω-chamber and B′ is a bi-Lipschitz flat intersecting
B, then the closure of any component of B′ \ B intersects B in one point,
which of course cannot disconnect B′. Therefore B′ \ B is connected and
B′ ∩B is one point.

4. If T is a real tree which branches at every point, then the image Ω of any
bi-Lipschitz embedding f : T ×R→ Xω is contained in a Seifert ω-chamber.
In fact, if Wω is an ω-wall such that S±(Wω)∩Ω = Ω± are both non-empty,
then the boundaries l± of Ω± are transversal fibers in Wω. However, their
inverse image under f separate T × R, so they should be parallel lines in
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T × R, and this contradicts the fact that f is bi-Lipschitz. The conclusion
now follows from Proposition 4.6.

These facts imply the following:

Proposition 4.13. Let f : Xω → X ′ω be a bi-Lipschitz homeomorphism. Then:

(i) f maps flats to flats;

(ii) f maps each ω-wall that is not adjacent to a Seifert ω-chamber into an ω-wall
of the same kind;

(iii) f maps any Seifert ω-chamber of Xω into a Seifert ω-chamber of X ′ω.

Proof. By fact (2) above, any flat in Xω is contained in an ω-chamber. Thus
assertion (i) follows from fact (3) for ω-walls adjacent to at least one hyperbolic
ω-chamber and from fact (4) for flats contained in Seifert ω-chambers. Assertions
(ii) and (iii) follow from facts (3) and (4), respectively.

We are now ready to prove the following result, which shows that also in the
3-dimensional case ω-walls and ω-chambers are preserved by bi-Lipschitz homeo-
morphisms:

Corollary 4.14. Let f : Xω → X ′ω be a bi-Lipschitz homeomorphism. Then:

1. f maps any ω-chamber of Xω into an ω-chamber of the same type;

2. f maps ω-walls into ω-walls.

Proof. Since every ω-wall may be expressed as the intersection of adjacent ω-
chambers, (2) readily follows from (1). In order to show (1), since we already
know that Seifert ω-chambers are sent to Seifert ω-chambers (see Proposition 4.13–
(iii)), it is sufficient to prove that any hyperbolic ω-chamber Cω ⊆ Xω is sent to
an ω-chamber of X ′ω (that cannot be Seifert by Proposition 4.13–(iii) applied to
f−1). Suppose by contradiction that f(Cω) is essentially separated by the ω-wall
W ′ω ⊆ X ′ω. We know that Cω is the union of its ω-walls, that every ω-wall lies in
an ω-chamber, and that f takes flats to flats (see Proposition 4.13–(i)), so there
exist flats Z+, Z− ∈ f(Cω) such that Z±∩S±(W ′ω) 6= ∅. Now the bi-Lipschitz flats
f−1(Z±) lie in the hyperbolic ω-chamber Cω, so they are flats, and are essentially
separated by the flat f−1(W ′ω) ⊆ Xω. This provides the desired contradiction,
because two flats in the same hyperbolic ω-chamber cannot be essentially separated
by any other flat.

5 Proof of Theorem 4.1

Let now M,M ′ both be either closed irreducible non-geometric 3-manifolds, or
irreducible n-dimensional HDG manifolds, n ≥ 3. We denote by X,X ′ the Rie-
mannian universal coverings of M,M ′, respectively. In the case when dimM =
dimM ′ = 3, we can (and we do) suppose that X,X ′ are endowed with a non-
positively curved equivariant metric. We also fix a quasi-isometry f : X → X ′.
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We have already observed that Theorems 1.8 and 1.14 reduce to Theorem 4.1,
which asserts that:

1. for every chamber C of X there exists a chamber C ′ of X ′ such that f(C)
lies within finite Hausdorff distance from C ′;

2. f preserves the structures of X,X ′ as trees of spaces.

Our study of bi-Lipschitz homeomorphisms between the asymptotic cones Xω

and X ′ω was mainly aimed at showing that such homeomorphisms must preserve
ω-walls (see Corollaries 4.12 and 4.14). We first show how this fact may be used
to show that f must coarsely preserve walls. The proof of the following result
illustrates a very general strategy to get back from homeomorphisms between
asymptotic cones to quasi-isometries between the original spaces.

Theorem 5.1. There exists β ≥ 0 such that, if W is a wall of X, then f(W ) lies
at Hausdorff distance bounded by β from a wall W ′ ⊆ X ′. Moreover, f stays at
distance bounded by β from a quasi-isometry between W and W ′.

Proof. It is well known that a quasi-isometric embedding between spaces both
quasi-isometric to Rn−1 is itself a quasi-isometry (for example, because otherwise
by taking asymptotic cones with suitably chosen sequences of basepoints and of
rescaling factors, one could construct a non-surjective bi-Lipschitz embedding of
Rn−1 into itself, which cannot exist). Therefore, it is sufficient to show that
there exists a wall W ′ ⊆ X ′ such that f(W ) ⊆ Nβ(W ′), where Nβ denotes the
β-neighbourhood in X ′.

Suppose by contradiction that for each m ∈ N and wall W ′ ⊆ X ′ we have
f(W ) * Nm(W ′). Fix a point p ∈ W . The quasi-isometry f induces a bi-
Lipschitz homeomorphism fω from the asymptotic cone Xω = Xω((p), (m)) to
the asymptotic cone X ′ω(f(p), (m)). By Corollaries 4.12 and 4.14, if Wω is the
ω-limit of the constant sequence of subsets all equal to W , then there is an ω−wall
W ′ω = ω-limW ′m such that fω(Wω) = W ′ω. By hypothesis, for each m there is a
point pm ∈ W with d(f(pm),W ′m) ≥ m. Set rm = d(pm, p). By choosing pm as
close to p as possible, we may assume that no point q such that d(p, q) ≤ rm − 1
satisfies d(f(q),W ′m) ≥ m, so

d(f(q),W ′m) ≤ m+ k + c for every q ∈W s.t. d(p, q) ≤ rm. (1)

Notice that ω-lim rm/m = ∞, because otherwise [(pm)] should belong to Wω,
[f(pm)] should belong to X ′ω((f(p)), (m)), and, since fω(Wω) = W ′ω, we would
have d(f(pm),W ′m) = o(m).

Let us now change basepoints, and consider instead the pair of asymptotic
cones Wω = Wω((pm), (m)) and X ′ω((f(pm)), (m)). The quasi-isometry f induces
a bi-Lipschitz embedding fω between these asymptotic cones (note that fω is not
a restriction of fω, simply because due to the change of basepoints, fω is not
defined on a subset of the domain of fω). Let Am = {q ∈ W | d(q, p) ≤ rm}
and Aω = ω-limAm ⊆ Wω. Since ω-lim rm/m = ∞, it is easy to see that Aω is
bi-Lipschitz homeomorphic to a half-space in Wω. Moreover, by (1) each point



Quasi-isometric rigidity of piecewise geometric manifolds 31

in fω(Aω) is at a distance at most 1 from W
′
ω = ω-limW ′i ⊆ X ′ω((f(pm)), (m))

(as before, observe that the sets W
′
ω and W ′ω live in different spaces). Again by

Corollaries 4.12 and 4.14, we have that fω(Aω) ⊆ fω(Wω) = W ′′ω for some ω−wall

W ′′ω . Moreover, since [(f(pm))] ∈W ′′ω \W
′
ω, we have W

′
ω 6= W ′′ω .

By Lemma 4.8 there exists a fiber Fω ⊆W
′
ω ∩W ′′ω such that every path joining

a point in W ′′ω with a point in W
′
ω has to pass through Fω. Now, if a ∈ fω(Aω) we

have d(a,W
′
ω) ≤ 1, so there exists a geodesic of length at most one joining a ∈W ′′ω

with some point in W
′
ω. Such a geodesic must pass through Fω, so every point of

fω(Aω) must be at a distance at most 1 from Fω. If h : fω(Aω)→ Fω is such that
d(b, h(b)) ≤ 1 for every b ∈ fω(Aω), then h is a (1, 2)-quasi-isometric embedding.
Therefore the map g = h ◦ fω : Aω → Fω is a quasi-isometric embedding. But this
is not possible, since if n− 1 > l there are no quasi-isometric embeddings from a
half space in Rn−1 to Rl (as, taking asymptotic cones, such an embedding would
provide an injective continuous function from an open subset of Rn−1 to Rl). This
completes the proof of the theorem.

We are now left to show that f coarsely preserves chambers and preserves the
structures of X and of X ′ as trees of spaces. We concentrate on the case when
M,M ′ are HDG manifolds, referring the reader to [55] for the case of 3-dimensional
graph manifolds, which requires some more care.

If W ⊆ X is a wall, then we denote by f#(W ) the wall of X ′ which lies at finite
Hausdorff distance from f(W ) (this wall exists by the previous theorem, and it
is obviously unique because distinct walls in X ′ are at infinite Hausdorff distance
from each other). Using the fact that the dimension of the hyperbolic base of each
piece of M is at least 3, it is not difficult to show that, if W1,W2,W3 are walls of
X such that W3 does not separate W1 from W2, then we can connect W1 and W2

by a curve supported outside Nr(W3), where r > 0 is any chosen constant (see
e.g. [36, proof of Proposition 4.13]). If r is sufficiently large, then the image of such
a curve via f may be replaced by a continuous path that connects f#(W1) and
f#(W2) without intersecting f#(W3). This readily implies that f maps walls that
are adjacent to the same chamber (close to) walls that are adjacent to the same
chamber. Together with the fact that the walls of a chamber are r-dense in the
chamber itself for some r > 0, this implies in turn that f must coarsely preserve
chambers. Moreover, f must also preserve the structures of X and of X ′ as trees
of spaces. This concludes the proof of Theorem 4.1, whence of Theorems 1.8
and 1.14.

6 Quasi-isometric rigidity

Theorem 4.1 allows us to understand quite well groups that are quasi-isometric
to fundamental groups of irreducible non-geometric 3-manifolds or of irreducible
HDG manifolds. We begin by studying groups quasi-isometric to fundamental
groups of the pieces. As usual, the case when Seifert pieces are allowed requires
more care, so we first focus on the higher dimensional case.
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6.1 QI-rigidity of higher dimensional pieces

Let N be a complete finite-volume hyperbolic m-manifold, m ≥ 3, and let Γ be
a finitely generated group quasi-isometric to π1(N) × Zd, d ≥ 0. Without loss of
generality, we may assume that the cusps of N are toric.

By definition, the group Γ is quasi-isometric to π1(M), where M = N × T d
is an (obviously irreducible) HDG manifold of dimension n = m + d consisting
of a single piece. The universal covering X of M is isometric to the Riemannian
product B × Rd, where B is a neutered space. The walls of X coincide with the
boundary components of X. As discussed in Section 2, a quasi-isometry between
Γ and π1(M) induces a geometric quasi-action of Γ on X that will be fixed from
now on. As usual, we will identify every element γ ∈ Γ with the corresponding
quasi-isometry of X defined by the quasi-action.

We want to prove that every quasi-isometry γ : X → X, γ ∈ Γ can be coarsely
projected on B to obtain a quasi-isometry of B. Recall first that Theorem 5.1
implies that every wall of X is taken by γ close to another wall. Since every fiber
of X may be expressed as the coarse intersection of two walls, this readily implies
that γ must coarsely preserve also fibers. This fact can be exploited to define a
quasi-action of Γ on B as follows: for every γ ∈ Γ, we define a map ψ(γ) : B → B
by setting ψ(γ)(b) = πB(γ((b, 0))) for every b ∈ B, where πB : X ∼= B × Rd → B
is the natural projection. It is not difficult to show that ψ is indeed a cobounded
quasi-action. On the contrary, the fact that the quasi-action ψ is proper is a bit
more delicate.

We first observe that, from the way the quasi-action of Γ on B is defined, every
γ ∈ Γ coarsely permutes the components of ∂B. Recall that m = n − d is the
dimension of the neutered space B, and let G be the isometry group of (B, dB).
Every element of G is the restriction to B of an isometry of the whole hyperbolic
space Hm containing B. We will denote by Comm(G) the commensurator of
G in Isom(Hm), i.e. the group of those elements h ∈ Isom(Hm) such that the
intersection G ∩ (hGh−1) has finite index both in G and in hGh−1.

The following rigidity result is an important step in Schwartz’s proof of QI-
rigidity of non-uniform lattices in Isom(Hm):

Proposition 6.1 (Lemma 6.1 in [82]). For every γ ∈ Γ there exists a unique
isometry θ(γ) ∈ Isom(Hm) whose restriction to B stays at finite distance from
ψ(γ). Moreover, for every γ ∈ Γ the isometry θ(γ) belongs to Comm(G), and the
resulting map θ : Γ→ Comm(G) is a group homomorphism.

In order to conclude our study of Γ we now need to understand the structure
of the kernel and of the image of θ. We set Λ = θ(Γ) < Isom(Hm) the image of
the homomorphism θ, and we show that Λ is commensurable with π1(N). It is a
result of Margulis that a non-uniform lattice in Isom(Hm) is arithmetic if and only
if it has infinite index in its commensurator (see [97]). As a result, things would
be a bit easier if N were assumed to be non-arithmetic. To deal with the general
case, one needs to observe the following facts:

1. Since elements of Λ are uniformly close to quasi-isometries of B, each of them
must send every horosphere in ∂B into a horosphere O′ which is parallel and
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uniformly close to a horosphere O′′ ⊆ B;

2. using (1), one can slightly change the “heights” of the horospheres in ∂B in

order to define a new neutered space B̂ which is left invariant by the action
of Λ;

3. since the isometry group of B̂ is discrete, one then gets that Λ is discrete;
being cobounded on B̂, the action of Λ on Hm has a finite covolume, so Λ is
a non-uniform lattice;

4. being quasi-isometric to B̂ and B respectively, the groups Λ and π1(N) are
quasi-isometric to each other, so one may use again Schwartz’s results to
conclude that Λ is commensurable with π1(N).

The study of ker θ is easier. In fact, it is not difficult to show that the
quasi-action of ker θ on X may be slightly perturbed to define a geometric quasi-
action of ker θ on one fiber of X. As a consequence, ker θ is finitely generated,
quasi-isometric to Zd and quasi-isometrically embedded in Γ. Since groups quasi-
isometric to Zd are virtually isomorphic to Zd, we have thus shown that Γ is
isomorphic to the extension of a non-uniform lattice commensurable with π1(N)
by a group virtually isomorphic to Zd. Since abelian undistorted normal subgroups
are always virtually central (see [36, Proposition 9.10]), this concludes the proof
of Theorem 1.15.

6.2 QI-rigidity of 3-dimensional pieces

Something more can be said in the 3-dimensional case. Namely, if Γ is quasi-
isometric to the fundamental group of a hyperbolic piece, then Schwartz’s results
imply that Γ is a finite extension of a non-uniform lattice in Isom(H3), i.e. Γ fits
into a short exact sequence

1 // F // Γ // Γ′ // 1 ,

where F is finite and Γ′ is the fundamental group of a finite-volume hyperbolic
3-orbifold with flat cusps. Moreover, (quasi-)stabilizers in Γ of boundary flats of
X are sent to peripheral subgroups of Γ′, and the subgroup F can be characterized
as the maximal finite normal subgroup of Γ′, and is also the unique maximal finite
normal subgroup of every (quasi-)stabilizer of boundary flats of X.

In the Seifert case we have X = B×R, where B may be chosen to be the com-
plement in H2 of an equivariant collection of disjoint open half-planes (horoballs
are replaced by half-planes because the base surface is now geometrized as a sur-
face with geodesic boundary rather than with cusps). Schwart’s results are no
longer available in dimension 2, but using the fact that all the (quasi-)isometries
involved (quasi-)preserve the boundary of B it is possible to slighlty modify the
strategy described above to show that Γ fits into a short exact sequence

1 // K // Γ // Γ′ // 1 ,
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whereK has a unique maximal finite normal subgroup F , the groupK/F is isomor-
phic either to Z or to the infinite dihedral group, and Γ′ is the fundamental group
of a compact hyperbolic 2-orbifold with geodesic boundary. The (quasi-)stabilizer
of any boundary component of X is again sent to a peripheral subgroup of π1(O),
and F is also the unique maximal normal subgroup of the (quasi-)stabilizers of
the boundary components of X.

6.3 Quasi-isometric rigidity: the final step

Let now M be either an irreducible non-geometric 3-manifold or an irreducible
HDG manifold with universal covering X, and take a group Γ quasi-isometric to
π1(M). By Proposition 2.4 we have a geometric quasi-action of Γ on X. By The-
orem 4.1, this quasi-action induces an action by automorphisms on the simplicial
tree T which encodes the structure of X as a tree of spaces. Now a fundamental
result from Bass-Serre theory says that any group acting on a simplicial tree with-
out inversions is isomorphic to the fundamental group of a graph of groups whose
vertex groups coincide with (conjugates of) the stabilizers of vertices, and edge
groups coincide with (conjugates of) the stabilzers of edges (recall that G acts on
T without inversions if no element of G switches the endpoints of an edge of T ).

Now the action of Γ on T might include some inversions, but it is easy to con-
struct a subgroup Γ0 of Γ of index at most two that acts on T without inversions.
Moreover, it readily follows from the construction that vertex groups of Γ0 are
quasi-isometric to stabilizers of chambers, while edge groups are quasi-isometric
to stabilizers of walls. This already concludes the proof of quasi-isometric rigidity
in the higher dimensional case (i.e. Theorem 1.16).

In the 3-dimensional case a stronger result holds, thanks to the extra informa-
tion we described above. In fact, after replacing Γ with Γ0 (which is obviously
virtually isomorphic to Γ), we can make use of the fact that the unique maximal
finite normal subgroups of all vertex and edge stabilizers coincide, and therefore
coincide with the kernel F of the action of Γ on T . The vertex stabilizers for
the action of Γ′ = Γ/F on T are fundamental groups of hyperbolic or Seifert 3-
orbifolds with boundary. One can then glue these orbifolds together (according
to the combinatorics described by the graph T/Γ) to get a 3-dimensional orbifold
with fundamental group Γ′. This 3-orbifold is finitely covered by a manifold [64],
and this concludes the proof of Theorem 1.9.

7 Open questions

As already stated in the introduction, in order to conclude the classification of
3-manifold groups up to quasi-isometry only the case of non-geometric irreducible
manifolds with at least one arithmetic hyperbolic piece still has to be understood
(see [5]). Therefore, in this section we pose some questions about the quasi-
isometric rigidity of higher dimensional piecewise geometric manifolds. Many of
the following problems are taken from [36, Chapter 12].

The following question in addressed in [35]:
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Problem 7.1. In [68, 69] Nguyen Phan defined the class of cusp decomposable
manifolds, each element of which decomposes into cusped locally symmetric pieces.
Is is true than any quasi-isometry between the fundamental groups of two cusp
decomposable manifolds induces a quasi-isometry between the fundamental groups
of their pieces? To what extent does quasi-isometric rigidity hold for fundamental
groups of cusp decomposable manifolds?

Problem 7.2. In [62], Leeb and Scott defined a canonical decomposition for non-
positively curved closed Riemannian manifolds, which provides a generalization
to higher dimensions of the JSJ decomposition of irreducible 3-manifolds. Is it
true than every quasi-isometry between the fundamental groups of two closed
non-positively curved Riemannian manifolds induces a quasi-isometry between the
fundamental groups of their pieces?

Specializing to the class of HDG manifold groups, Theorem 1.16 describes a
necessary condition for deciding whether the fundamental groups of two irreducible
HDG manifolds M1 and M2 are quasi-isometric to each other: the two HDG
manifolds Mi must essentially be built up from the same collection of pieces (up
to commensurability), with the same patterns of gluings (see [36, Theorem 10.7]
for a precise statement). The only distinguishing feature between M1 and M2

would then be in the actual gluing maps used to attach pieces together. We are
thus lead to the following questions:

Problem 7.3. Take pieces V1 and V2 each having exactly one boundary compo-
nent, and let M1,M2 be a pair of irreducible HDG manifolds obtained by gluing
V1 with V2. Must the fundamental groups of M1 and M2 be quasi-isometric?

Problem 7.4. Is there a pair of irreducible HDG manifolds with quasi-isometric
fundamental groups, with the property that one of them supports a locally CAT(0)
metric, but the other one cannot support any locally CAT(0) metric?

Problem 7.5. Is it true that the fundamental group of every irreducible HDG
manifold is quasi-isometric to the fundamental group of a non-positively curved
HDG manifold?

Problem 7.6. Is it true that the fundamental group of every irreducible HDG
manifold is semihyperbolic in the sense of Alonso and Bridson [1]?

A positive answer to Problem 7.3 would imply positive answers both to Prob-
lem 7.4 and to Problem 7.5, and a positive answer to Problem 7.5 would imply in
turn a positive answer to Problem 7.6.

Concerning Problem 7.4, Nicol’s thesis [70] exhibits in each dimension ≥ 4
infinitely many pairs of non-irreducible HDG manifolds with quasi-isometric fun-
damental groups, with the property that each pair consists of one manifold that
supports a locally CAT(0) metric and one manifold that cannot support any locally
CAT(0) metric.

Notice that in the proof of Theorem 1.16 each vertex stabilizer is studied sep-
arately. It might be possible to obtain additional information by studying the
interaction between vertex stabilizers of adjacent vertices, just as Kapovich and
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Leeb did in the 3-dimensional case [55]. This could lead to (partial) answers to
the following:

Problem 7.7. Is it possible to strenghten the conclusion of Theorem 1.16?

A Quasi-isometric invariance of the prime decom-
position

One of the most influential results in geometric group theory is Stallings’ The-
orem, which asserts that a group has more than one end if and only if it splits
non-trivially as a free product or an HNN-extension with amalgamation over a fi-
nite subgroup (recall that the number of ends of any proper geodesic metric space
is a quasi-isometry invariant (see e.g. [8, Proposition 8.29]), so it makes sense to
speak of the number of ends of a group). Before going into the details of the
proofs of Theorems 1.4 and 1.5, let us recall some terminology and the main re-
sults from [77]. We say that a graph of groups is terminal if every edge group
is finite and no vertex group can be expressed as a non-trivial free product or
HNN-extension amalgamated along finite subgroups. By Stallings’ Theorem, this
is equivalent to saying that every vertex group has less than two ends. We also
say that a terminal graph of groups is a terminal decomposition of its fundamental
group. It is a striking fact that not all finitely generated groups admit a terminal
decomposition: in other words, there may be cases when one can go on splitting
a finitely generated group along finite subgroups an infinite number of times [22].
Groups admitting a realization as the fundamental group of a terminal graph of
groups are called accessible. In the torsion-free case, free products amalgamated
along finite subgroups are just free products, so accessibility is guaranteed by
Grushko Theorem, which asserts that the minimal number of generators of a free
product is the sum of the minimal number of generators of the factors. More-
over, it is a deep result of Dunwoody [21] that every finitely presented group is
also accessible, so fundamental groups of closed 3-manifolds are accessible (this
may also be easily deduced from the existence of a prime decomposition, together
with Grushko Theorem and the fact that aspherical manifolds have torsion free
fundamental groups).

For any group Γ, let us denote by e(Γ) the number of ends of Γ. Theorem 0.4
in [77] states the following:

Theorem A.1 ([77]). Let Γ be an accessible group with terminal decomposition
G. A group Γ′ is quasi-isometric to Γ if and only if the following holds: Γ′ is also
accessible, e(Γ) = e(Γ′), and any terminal decomposition of Γ′ has the same set of
quasi-isometry types of one-ended factors as G.

Let us now apply this result in the context of 3-manifolds. We first prove the
following:

Lemma A.2. Let M be a closed 3-manifold with fundamental group Γ. Then:

1. M is irreducible with finite fundamental group if and only if e(Γ) = 0.
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2. M is irreducible with infinite fundamental group if and only if e(Γ) = 1.

3. M ∈ {S2 × S1,P3(R)#P3(R)} if and only if e(Γ) = 2.

4. M is not prime and distinct from P3(R)#P3(R) if and only if e(G) =∞.

Proof. Since being irreducible with finite fundamental group, being irreducible
with infinite fundamental group, belonging to {S2×S1,P3(R)#P3(R)}, and being
not prime but distinct from P3(R)#P3(R) are mutually exclusive conditions, it
is sufficient to prove the “if” implications. Let M = M1# . . .#Mk be the prime
decomposition of M , and set Γi = π1(Mi) so that Γ = Γ1∗. . .∗Γk. By the Poincaré
conjecture, we have Γi 6= {1} for every i = 1, . . . , k.

If e(Γ) = 0, then Γ is finite, so k = 1 and Γ 6= π1(S2 × S1). Therefore, M
has a finite fundamental group, and it is prime and distinct from S2×S1, whence
irreducible.

Let now e(Γ) = 1, and suppose by contradiction that M is not irreducible.
Since e(π1(S2 × S1)) = 2 we have M 6= S2 × S1, so M is not prime and Γ splits
as a non-trivial free product Γ = Γ1 ∗ . . . ∗ Γk, k ≥ 2. Now it is well known that
such a product has two ends if k = 2 and Γ1 = Γ2 = Z2 and infinitely may ends
otherwise (see e.g. [8, Theorem 8.32]). This contradicts the fact that e(Γ) = 1,
and shows that M is irreducible (the fact that Γ in infinite obviously follows from
e(Γ) = 1).

Let now e(Γ) = 2. We can argue as above to deduce that either M is prime,
or k = 2 and Γ1 = Γ2 = Z2. In the second case, by the Poincaré conjecture both
M1 and M2 are doubly covered by S3, and this implies that M1 = M2 = P3(R),
since any fixed-point-free involution of the 3-sphere is conjugated to the antipodal
map [63]. Therefore, we may suppose that M is prime, and since S2 × S1 is the
only prime manifold which is not irreducible, we are left to show that M is not
irreducible. Suppose by contradiction that M is irreducible. Since groups with
two ends are virtually infinite cyclic (see e.g. [8, Theorem 8.32]), we can choose a

finite covering M̃ of M with infinite cyclic fundamental group. The manifold M̃
is still irreducible, and it is well known that irreducible 3-manifolds with infinite
fundamental groups are aspherical. Therefore, the cohomological dimension of
Z = π1(M̃) should be equal to three, a contradiction. This concludes the analysis
of the case e(Γ) = 2.

Finally suppose that e(Γ) = ∞. Since π1(P3(R)#P3(R)) has two ends, we
need to show that M is not prime. Since π1(S2 × S1) has two ends and finite
groups have 0 ends, we may suppose by contradiction that M is irreducible with
infinite fundamental group. We have already observed that this implies that M
is aspherical, so Γ is torsion free. By Stallings’ Theorem, since e(Γ) > 1 the
group Γ must split as an HNN-extension or an amalgamated product over a finite
subgroup. Being Γ torsion free, this implies that Γ actually splits as a non-trivial
free product, so by the Kneser conjecture M cannot be prime.

Remark A.3. Thanks to the previous lemma, a prime manifold M is big if and
only if its fundamental group has one end.
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Let nowM be a closed 3-manifold with prime decompositionM = M1# . . .#Mk.
The graph of groups G corresponding to this decomposition is not quite termi-
nal according to the definition above, because every summand homeomorphic to
S2 × S1 gives rise to a vertex group which may be expressed as the unique HNN-
extension of the trivial group. However, if in G one replaces every vertex labelled
by Z with a vertex labelled by {1} and a loop based at it, then the new graph
of groups G0 still has π1(M) as fundamental group, and is indeed terminal. We
call G0 the terminal graph of groups corresponding to the prime decomposition of
M . By Remark A.3 one-ended vertex groups of G0 are precisely the fundamental
groups of the big prime summands of M .

We are now ready to prove Theorem 1.4. Let M = M1# . . .#Mk and M ′ =
M ′1# . . .#M ′k′ be the prime decompositions of M,M ′ respectively, and let G0,G′0
be the corresponding terminal graphs of groups. As usual, we set Γ = π1(M), Γi =
π1(Mi), Γ′ = π1(M ′), Γ′i = π1(M ′i). We first show that the conditions on M,M ′

described in points (1), (2), (3), (4) are sufficient to ensure that Γ is quasi-isometric
to Γ′. This is obvious if M,M ′ are both prime with finite fundamental groups,
or if M,M ′ are irreducible with infinite quasi-isometric fundamental groups, or if
M,M ′ ∈ {S2 × S1,P3(R)#P3(R)}, so we may suppose that both M and M ′ are
not prime and distinct from P3(R)#P3(R). In this case, Lemma A.2 ensures that
e(Γ) = e(Γ′) = ∞. Moreover, big summands in the decompositions of M,M ′ are
exactly the one-ended vertex groups respectively of G0,G′0, so the groups Γ and Γ′

are quasi-isometric by Theorem A.1.
Let us now suppose that Γ is quasi-isometric to Γ′. Of course we have e(Γ) =

e(Γ′). By Lemma A.2 if e(Γ) = e(Γ′) < ∞ we are done, so we may suppose that
both M and M ′ are not prime and distinct from P3(R)#P3(R). The fact that the
set of quasi-isometry types of fundamental groups of big summands of M coincides
with the set of quasi-isometry types of fundamental groups of big summands of
M ′ is now a consequence of Theorem A.1 and Remark A.3. This concludes the
proof of Theorem 1.4.

The proof of Theorem 1.5 is very similar. Let M be a non-prime manifold
which is distinct from P3(R)#P3(R). By Lemma A.2 we have e(π1(M)) =∞, and
we know that one-ended vertex groups of the terminal decomposition of π1(M)
induced by the prime decomposition of M correspond to fundamental groups of
big summands of M . Therefore, Theorem A.1 implies that a group Γ is quasi-
isometric to π1(M) if and only if e(Γ) = ∞ and the set of quasi-isometry classes
of one-ended vertex groups in a terminal decomposition of Γ is equal to the set of
quasi-isometry classes of fundamental groups of big summands of M . This finishes
the proof of Theorem 1.5.
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