
This is the author's version of an article that has been published in IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. Changes

were made to this version by the publisher prior to publication. The final version of record is available at

 http://dx.doi.org/ 10.1109/TNSM.2013.022213.120229

1



Abstract— The automated specification and execution of

composite services are important capabilities of service-oriented

systems. In practice, service invocation is performed by client

components (stubs) that are generated from service descriptions

at design time. Several researchers have proposed mechanisms for

late binding. They all require an object representation (e.g., Java

classes) of the XML data types specified in service descriptions to

be generated and meaningfully integrated in the client code at

design time. However, the potential of dynamic composition can

only be fully exploited if supported in the invocation phase by the

capability of dynamically binding to services with previously

unknown interfaces. In this work, we address this limitation by

proposing a way of specifying and executing composite services,

without resorting to previously compiled classes that represent

XML data types. Semantic and structural properties encoded in

service descriptions are exploited to implement a mechanism,

based on the Graphplan algorithm, for the run-time specification

of composite service plans. Composite services are then executed

through the stubless invocation of constituent services. Stubless

invocation is achieved by exploiting structural properties of

service descriptions for the run-time generation of messages.

Index Terms— Web Services, Semantic Web, Service

Composition, Service Invocation, XML, Planning, Service

Brokering, Service-Oriented Architecture.

I. INTRODUCTION

HE Service-Oriented Architecture (SOA) is a widely

adopted paradigm that eases the design and development

of distributed applications across heterogeneous organizational

domains. Loose coupling among service providers and

consumers is a reference principle for SOA implementations.

This principle emphasizes the need for reducing dependencies

among the service implementation, its published contract, and

service consumers [1]. A way of achieving loose coupling is to

rely on the intermediation capabilities provided by a third-

Manuscript received February 6, 2012, revised May 28, 2012 and October

31, 2012, accepted November 12, 2012. The Associate Editor coordinating

the review of this paper and approving it for publication was J.P. Martin-

Flatin.

F. Paganelli is with the National Interuniversity Consortium for

Telecommunications, Italy (phone: +39 055 4796382; fax: +39 055 4796427;

e-mail: federica.paganelli@unifi.it).

D. Parlanti is with Negentis, Firenze, Italy (e-mail:

david.parlanti@gmail.com).

party component, usually called a Service Broker, especially

for service discovery and composition. Given a service

consumer request, the Service Broker specifies the workflow

of service invocations that have to be executed to address the

request. Composite services can be specified in business

process languages, such as the Web Services Business Process

Execution Language (WS-BPEL) [2] and the Business Process

Model and Notation (BPMN) [3], and executed directly by the

requester or a third-party component through existing

workflow engines or ad-hoc applications.

Many researchers have proposed models and mechanisms

for automating service discovery and composition, and

enabling composite services specification at run-time (dynamic

service composition) [4]. But fewer efforts have focused on

the related topic of dynamic service invocation. In practice,

service invocation is typically handled by client components

(stubs) that are tightly bounded to service implementations,

and are generated from the description of the service to be

invoked [5]. The invocation of services with a similar interface

requires a new stub component to be generated. The Web

Service Description Language (WSDL) [6] is a standard

specification for describing service interfaces, based on the

eXtensible Markup Language (XML) [7].

Semantic Web technologies can help to identify similarities

across service signatures, and build translation layers among

similar service signatures. However, although reducing the

need for client interfaces reprogramming, most existing

approaches rely on a design-time step of programmatic binding

to a reference service interface.

We argue that the full potential of dynamic composition and

related tasks (e.g., dynamic service selection and substitution)

can only be fully exploited if it is complemented by the

capability of dynamically binding to services with previously

unknown interfaces.

Several existing Web Services invocation frameworks (e.g.,

Apache WSIF [8], Apache Axis 2 [9], Codehaus XFire [10],

Apache CXF [11], and Java API for XML-based Web

Services [12]) provide some capabilities for late binding to

Web Services (e.g., via dynamic proxying). A weakness of

these solutions is that the client code is highly dependent upon

specific toolkit APIs [13].

Buhler et al. [13] solved that problem by minimizing the

dependency of the client code upon the adopted invocation

A Dynamic Composition and Stubless

Invocation Approach for Information-Providing

Services

Federica Paganelli, Member, IEEE, and David Parlanti

T

http://dx.doi.org/%2010.1109/TNSM.2013.022213.120229

This is the author's version of an article that has been published in IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. Changes

were made to this version by the publisher prior to publication. The final version of record is available at

 http://dx.doi.org/ 10.1109/TNSM.2013.022213.120229

2

framework. Leitner et al. [5] allow clients to invoke a service

by sending a request message to an intermediate component.

The main weakness of these two approaches is the need for a

preprocessing step to compile the target service description

into an internal object representation of XML data types. This

limitation is due to the fact that the client must marshal input

data into a request message, and then unmarshal the returned

data from the response message. This can easily be done by

libraries that automate the generation of compatible classes

that represent XML data types, but these classes have to be

known at design time to be meaningfully exploited and

integrated in the client code.

Our service composition and invocation approach addresses

this issue by removing the need for generating an internal

representation of XML data types at design time. Semantic and

structural message properties encoded in service description

files are exploited to implement a mechanism that allows the

run-time specification of composite service plans, and their

execution through the stubless invocation of constituent

services. Semantic annotations are used to define relationships

between elements of different service interfaces. Structural

properties are exploited to define simple transformation rules

(aggregation/disaggregation of XML elements). The joint use

of these mechanisms allows the dynamic specification and

execution of a sequence of service invocations, without the

need for previously compiled classes that represent XML data

types in service descriptions.

As a result, our approach for dynamic composition and

stubless invocation of information-providing services truly

enables loose coupling between service consumers and

providers.

The remainder of this paper is organized as follows. Section

II gives background information on SOA. Section III

introduces the main principles of our approach. In Section IV,

we describe our service profile model. Sections V and VI

describe our approach for dynamic service composition and

invocation. Section VII reports on the implementation of our

prototype. In Section VIII, we show test results. In Section IX,

we discuss related work. Finally, Section X concludes the

paper with insight for future work.

II. BACKGROUND

According to Erl [1], the main principles underlying the SOA

architecture are fivefold: service contract, loose coupling,

service abstraction, service reusability, and service

composability.

The Service Contract expresses the purpose and capabilities

offered by services. It is mandatory for a service contract to

express the technical interface details (e.g., data types,

message structure, network protocols, and endpoints in WSDL

documents). The Loose Coupling principle emphasizes the

need for reducing dependencies among the service

implementation, its published contract, and service consumers.

It enables the design and evolution of a service implementation

while minimizing the impact on service consumers’ interfaces.

Service Abstraction is a cross-cutting aspect of service-

orientation that consists in hiding as much as possible low-

level details of a service interface and implementation. The

level of abstraction typically affects service contract

granularity and the achieved loose-coupling degree. Service

Reusability advocates that services should be designed for

serving more than one consumer. The Service Composability

principle expresses the need for designing services as building

blocks that can be effectively used in future service

compositions.

The SOA model traditionally encompasses three main roles

[1]: the Service Provider, which exposes a given service and

publishes the service description in a registry; the Service

Registry, which offers service description publishing and

querying capabilities; and the Service Consumer, which

queries the registry and binds to a service endpoint when an

operation is invoked. In practice, SOA systems have

introduced a fourth intermediating role: the Service Broker.

In this context, we model dynamic and loosely coupled

interactions among clients and services as a three-step process.

In the first step, called Abstract Process Definition, the

request message is analyzed by the Service Broker, which

decides whether the request can be handled by accessing the

Service Registry knowledge base. There are three possibilities

at this point: i) the request can be handled by invoking one

service; ii) the request can be handled by invoking a specific

flow of operations (i.e., a composite service); or iii) the request

has no known solutions in the domain of registered services. In

the first two cases, the Service Broker specifies the service

invocations to be executed to achieve the client goal.

The second step, called Concrete Composition Process

Mapping, consists in mapping an abstract process specification

onto a set of executable actions, and selecting the concrete

endpoints to be invoked.

The third step, Service Execution, concerns the invocation

of a set of service endpoints. Relying on stub-based client

interfaces for service invocation inevitably limits the scope of

dynamicity of service composition, because stub-based

interfaces are programmatically bounded to service interfaces

and in practice they are generated at design time. Whereas

stubless invocation can help to achieve run-time binding to

services whose interface was unknown at design time.

III. MAIN PRINCIPLES OF OUR APPROACH

The objective of this work is to provide a lightweight semantic

and data-centric approach that enables the dynamic

composition of services and the automatic run-time binding to

service endpoints. We do so by re-interpreting and fully

exploiting service-oriented principles, in order to favor loosely

coupled interactions among service providers and consumers.

Our approach is based on two principles. First, we model a

service as a message processor: its interface is modeled in

terms of the messages it can transmit and receive [14]. Second,

we rely on syntactic, structural, and semantic information that

can be encoded in service descriptions for realizing dynamic

http://dx.doi.org/%2010.1109/TNSM.2013.022213.120229

This is the author's version of an article that has been published in IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. Changes

were made to this version by the publisher prior to publication. The final version of record is available at

 http://dx.doi.org/ 10.1109/TNSM.2013.022213.120229

3

service discovery, composition, and invocation.

These principles have been put into practice in the design of

a model for representing service functional profiles. This

model aims at providing a layer of abstraction over existing

service descriptions in order to accommodate the

representation of different service specifications, and to ease

the mediation of heterogeneities at the level of protocols, data

formats, and semantics.

By revisiting the data modeling layers adopted in database

design, and by taking inspiration from Wilde’s analysis [15] on

Representational State Transfer (REST) interactions, we

model the message exchange at the conceptual, logical, and

physical levels.

At the physical level, data have to be serialized in properly

formatted messages to be sent on the wire. Well-known

examples include XML, the Simple Object Access Protocol

(SOAP) [16], and the JavaScript Object Notation (JSON) [17].

Invocation is thus achieved by sending the message to the

service endpoint over the proper communication protocol.

At the logical level, syntactic and structural rules model the

logical structure of the target message and specify how data

have to be embedded in a valid document. In this work, we

exploit the capabilities of XML Schema [18] in modeling tree-

based document structures, as it is a reference standard in the

WSDL specification [6].

At the conceptual level, we explicitly represent concepts

and relations that are embedded in the exchanged messages.

Ontologies provide a formal representation of concepts and

relations in a given domain. Ontology-based models and

technologies can thus help to mediate and reconcile

differences among service interfaces. As we cannot assume

that service engineers will always refer to the same ontology,

this is the level where semantic heterogeneities should be

mediated. We do not address here the topic of ontology

mediation, for it is already widely covered in the literature

[19][20].

As mentioned above, we deal with XML documents whose

grammar can be expressed in XML Schema. In valid XML

documents, instance data values are ultimately carried by leaf

nodes (i.e., attributes and simple type elements). We

intentionally ignore mixed content models (i.e., a content

structure where text data and subelements can be mixed in an

element), as mixed content is not a best practice for

interoperability [21]. In our model, Atom entities are used to

represent leaf nodes and their properties. While some existing

works [22][23] represent leaf nodes with a minimal set of

syntactic properties (typically the local or qualified name of

the XML node), we characterize the atoms with three types of

properties. Syntactic Properties rely on the basic rules of the

chosen formatting language (XML), such as the local or

qualified name. Structural Properties (i.e., the hierarchical

structure of the message) represent a context for a leaf node.

Semantic Properties refer to semantic concepts and relations

that describe an XML node.

While structural and syntactic similarities could be

exploited for improving XML document comparison

techniques [24] , we assume here that elements with the same

qualified name, but embedded in different messages, are

semantically different. The meaning implied by the document

node could be explicitly conveyed by a concept in a shared

domain representation (i.e., an ontology). Semantic matching

for similarities and equivalences may be inferred by reasoning

on such semantic-level information [20].

We call our proposed approach “data-centric” because

properties of atom data ultimately carried by instance

messages are considered key entities in the model. Our

approach is also “lightweight” because we rely on lightweight

semantic annotations to enhance service descriptions with

semantic properties.

We achieve loose coupling by using brokering services that

exploit the expressiveness of the model. First, we assume that

the client can invoke a service by sending a request message

that specifies input parameters and the target output. When the

Service Broker receives the request message, it interprets it

and decides whether the client goal data can be obtained by

using the functional capabilities offered by registered services.

By exploiting structural and semantic descriptions of

registered service profiles, the system tries to reach distributed

target data atoms through dynamically computed “routing

tables”, starting from the data provided in input. Such “routing

tables” describe a service invocation sequence that workflow

engines or clients may execute to obtain the requested data.

In other words, analogously to existing planning-based

approaches to service composition [4], we interpret the

problem of solution search as the problem of finding a graph

of functional profiles whose input data are known parameters

within the query, and whose output (message) data contain the

expected data (goal). Matching input and output data across

services makes it possible to build a graph of connected

functional profiles (see Fig. 1). Semantic properties can be

exploited to connect different atoms referring to the same

concept or to concepts related by some semantic relations.

As far as service discovery is concerned, full-fledged

profiles enable authorized clients to submit complex queries to

a Service Registry (i.e., by target message, data types, non-

functional properties, and/or semantic annotations). Once an

Fig. 1. Service composition through input/output matching

http://dx.doi.org/%2010.1109/TNSM.2013.022213.120229

This is the author's version of an article that has been published in IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. Changes

were made to this version by the publisher prior to publication. The final version of record is available at

 http://dx.doi.org/ 10.1109/TNSM.2013.022213.120229

4

endpoint has been retrieved, a service invocation can be

triggered by creating at run-time an XML message instance

that is valid according to its structural rules, and then

delivering it to the service endpoint over the protocol specified

in the binding information.

Relying on atom structural and semantic properties enables

the automation of the following actions for stubless service

invocation: (i) matching instance data values (available in the

client request or in response messages of previous invocations)

with the atoms of the input message; (ii) creating an input

message whose structure complies with the atoms’ structural

properties; and (iii) sending the input message over the proper

communication channel to the target service endpoint. When

the response message is received, the opposite operations are

performed: (i) extracting the data values embedded in the

message; and (ii) finding the proper associations with the

atoms needed for the subsequent service invocations via

semantic matchmaking.

Thanks to these mechanisms, clients can interact via

message-based passing with a Service Broker and ask for some

functional capabilities, independently of any interface details

of the registered services. The Service Broker tries to find a

solution, which is specified as a composition of service

invocation and data manipulation operations. Such operations

can be performed (by the Service Broker or directly by the

client) via generic mechanisms (e.g., data aggregation and

message delivery) that can be configured at run-time according

to the information contained in the service profile.

Modeling a service as a message processor has the

advantage of minimizing the requirements on service

description complexity, as we rely on input/output stateless

service signatures rather than on complex stateful signatures.

This assumption limits the range of applicability of our

planning-based composition approach to information-

providing services that are exposed via stateless service

signatures, as our message processor model cannot be applied

to stateful services whose capabilities are described by

specifying inputs, outputs, preconditions, and effects. This

limitation does not apply to the dynamic invocation technique,

which can be used as a utility for stubless service invocation

by third-party software components.

IV. SERVICE PROFILE MODEL

Our Service Profile Model defines modeling primitives for

representing structural and semantic properties of service

interfaces. The model is defined in terms of Service Entities,

which represent functional and structural information of

service interfaces, and Qualifying Attributes, which extend the

model with additional properties such as non-functional or

domain-specific attributes.

Fig. 2 depicts the main entities and properties of the model

in the UML class diagram notation. Service Entities represent

the basic constructs of a functional profile in terms of

Operations, Messages, and Atoms. An Operation defines the

functional capability of a service in terms of input/output

message pairs. A Message is an XML document. An Atom

represents an XML entity that carries data values in an input or

output Message. In well-formed Messages, Atoms are XML

attributes or simple type elements.

Atoms, Messages, and Operations are identified by a

Qualified Name (has_qname attribute). An Operation may be

provided by one or more endpoints (has_endpoint attribute).

Atoms are the key entities in our model. Each atom is

characterized by a set of structural information, especially by a

structural path (i.e., by its position inside the message

structure). Due to the underlying XML information model,

atom structural paths identify either element leaves or element

attributes. The final association of atoms with optional

semantic properties can be used to link ontological

annotations to data embedded into each message.

Fig. 3 shows an example of properties that can be extracted

from an XML Schema definition for a message document.

A. Structural Properties

An Atom is characterized by syntactic information (i.e., its

qualified name) and two structural properties that specify how

the atom is embedded in a message: (i) the type attribute,

which specifies the atom data type (referring to the set of pre-

defined types in XML Schema); and (ii) the

Fig. 2. Service Profile Model

Fig. 3. Example of atom properties extracted from an XML Schema document

http://dx.doi.org/%2010.1109/TNSM.2013.022213.120229

This is the author's version of an article that has been published in IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. Changes

were made to this version by the publisher prior to publication. The final version of record is available at

 http://dx.doi.org/ 10.1109/TNSM.2013.022213.120229

5

has_structuralPath attribute, which specifies the position of

the atom in the XML document tree by representing the chain

of parent elements up to the document root and parents’

content models. We defined a compact textual notation (called

Structural Path Model) that encodes these structural

constraints as a string.

Our Structural Path Model has some aspects in common

with XPath [25], but different objectives. The primary purpose

of XPath is to select nodes in an XML document. According to

the XPath Data Model [26], XPath uses a path notation based

on a compact non-XML syntax for navigating the hierarchical

structure of an XML document. Conversely, our Structural

Path Model embeds in a compact path notation the information

needed for performing two tasks: (i) extracting a leaf node

from an XML document; and (ii) assembling the available

atoms in an XML document that has been validated against its

XML Schema specification. The automated execution of these

tasks is a necessary condition for enabling our mechanism for

stubless invocation. To this end, a Structural Path Model

expression specifies structural information that characterizes a

branch of the XML document tree from the document root

node to a target leaf node. The Structural Path Model can be

viewed as a compact notation of the XML Schema

specification for an XML Atom. The use of the Structural Path

Model for service invocation is described in Section VI.

The grammar of a Structural Path Model expression is

defined as follows:

<pathExpr> ::= <nodeName> / <order>

(<atomName> | <pathExpr>)

<order> ::= “[” [0-9]* “]”

<atomName> ::= <nodeName> | “@ ” <nodeName>

This grammar includes the following symbols: (i) the

containment symbol “/” that represents a direct parent-child

relationship between elements; (ii) the attribute reference

symbol “@”; (iii) the <nodeName> symbol that represents the

name of an XML node; and (iv) the ordering symbol “[…]”

that is used to enforce a sequential order among siblings (the

square bracket may be empty or contain an integer expressing

the element ordering).

A Structural Path Model expression represents solely

absolute paths. As a consequence, the first node in the path is

always the root element of the message, and the path

expression contains the whole hierarchical chain of parent-

child nodes up to the target atom data. An atom structural path

is thus a sequence of p node names separated by “/”.

For instance, for 1 < i < p – 1, if nodes ni and ni+l are

separated by a “/”, then ni+1 is a child element of ni. The two

expressions ni / [1] ni+1 and ni / [2] ni+2 mean that ni+1 and ni+2

are siblings and ni+1 must appear before ni+2 in instance

documents.

The joint use of the container and ordering symbols enables

us to express the most relevant structural constraints of XML

Schema content models: sequence, all, and choice. In the

sequence content model (i.e., when child elements must appear

in the instance document in the same order as they are

declared), the ordering symbol is not empty and is assigned

with the proper sequential index (see expression (a) in Fig. 4).

In the choice content model (i.e., when child elements exclude

each other), the ordering symbols have the same value (see

expression (b) in Fig. 4). In the all content model (i.e., when

all elements can occur with zero or one multiplicity and can

appear in any order), the ordering symbol is left empty (see

expression (c) in Fig. 4).

Although it does not fully cover the whole XML Schema

specification yet, our Structural Path Model does provide

constructs for representing most of the structural properties

that are typically encoded in service description files.

B. Semantic Properties

Semantic properties link service profile entities, especially

atoms, with concepts defined in a given shared domain

representation. Semantic properties allow the binding of

structural atom properties to their intended meaning.

Relations among atom data can be inferred through semantic

reasoning. This may help to decouple client and service

provider interfaces, as differences in message structure and

syntax may be reconciled at the level of semantics. This may

also help to define composite services as sequences of service

invocations, as it is possible to decide whether instance data

values obtained in a response message can be used to build a

valid request message for the next service invocation in the

sequence.

In our Service Profile Model, the “has_ modelReference”

property is used to represent references to semantic concepts.

This type of information can be extracted from semantic

service descriptions.

Although alternative models for semantic service

Fig. 4. Examples of Atom Structural Path expressions for XML Schema

content models: sequence (a), choice (b) , all (c)

http://dx.doi.org/%2010.1109/TNSM.2013.022213.120229

This is the author's version of an article that has been published in IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. Changes

were made to this version by the publisher prior to publication. The final version of record is available at

 http://dx.doi.org/ 10.1109/TNSM.2013.022213.120229

6

descriptions exist, such as the Web Service Modeling

Ontology (WSMO) [27]) and the Web Ontology Language for

Services (OWL-S) [28], we rely on the Semantic Annotation

for WSDL (SAWSDL) specification [29] because it is a W3C

standard for lightweight annotations. SAWSDL extends

WSDL with annotations pointing to semantics. Software

systems can thus interpret and process these concept

representations to automate tasks such as service discovery,

composition, selection, negotiation, mediation, and invocation.

C. Qualifying Properties

Further optional properties (called Qualifying Properties)

can be added to each input/output message pair to describe the

non-functional aspects of service operations. For instance,

Quality of Service (QoS) properties (e.g., availability,

reliability, and reputation) and domain-specific attributes (e.g.,

geo-referenced information) can be represented as qualifying

properties.

V. DYNAMIC SERVICE COMPOSITION

Dynamic service composition deals with the problem of

handling a client request by specifying a composite service

that matches the request’s input and goal data and executing it

at run-time.

Planning techniques from artificial intelligence can be

exploited to find service composition solution plans at run-

time [4]. A planning problem can be represented as a 5-tuple

(S, S0, G, A, Γ), where S is the set of all possible states of the

world, S0 ⊂ S denotes the initial state of the world, G ⊂ S

denotes the goal state of the world, A is the set of actions that

the planner can perform while attempting to change one state

to another state of the world, and the translation relation Γ ⊆ S

× A × S defines the preconditions and effects for the execution

of each action. When applying these concepts to the service

composition problem, A represents the set of available

services; S0 and G are, respectively, the initial and goal states

provided by the composite service requester; Γ denotes the

state change function of each service.

To leverage the expressiveness of our Service Profile

Model, we represent the service composition problem in a

STRIPS model – a widely used model for representing

planning problems. We use the Graphplan algorithm [30] to

solve the planning problem (i.e., to verify if the given request

has a feasible solution in the known domain, and to

dynamically specify the service invocation flow). We chose

the Graphplan algorithm for three reasons: it is a well-known

planning algorithm for which several implementations exist; it

is guaranteed to terminate when no valid plan exists; and it has

a polynomial complexity (as opposed to the exponential

complexity of exhaustive search [31]).

A. Service Composition Problem as a STRIPS Model

In this subsection, we describe the STRIPS model defined

for handling the service composition problem.

STRIPS operators have preconditions, add-effects, and

delete-effects that are represented as conjuncts of propositions,

and have parameters that can be instantiated to objects in the

world. Preconditions have to be valid immediately before the

operator is applied. Add-effects and delete-effects are the sets

of literals added to, or deleted from, the world state after the

operator ends. An instantiated operator is called an action [32].

We use the STRIPS model to represent the profile of

registered services. To this end, we define three types of

operators: functional, structural, and semantic operators.

Functional operators represent service operations (i.e.,

functional capabilities). For each operation, input messages are

modeled as preconditions, and output messages as add-effects.

Messages are identified by their fully qualified name. An

operation is univocally identified by the qualified names of

input and output messages. The operator type is identified by

the label invoke_service.

Structural operators represent structural containment

relationships between messages and atom data. We

distinguish two operator types: the extract operator that

extracts atom data (add-effects) from the containing message

(preconditions), and the embed_into operator that links atom

data (preconditions) to a message (add-effects). For each atom

to be embedded in or extracted from a message, a specific

action of type embed_into or extract_from is instantiated.

Semantic operators encode the semantic properties that

associate atoms with semantic concepts. These operators act as

“semantic bridges” that connect different atoms via a common

semantic concept. By applying semantic matchmaking

techniques, it is possible to compute different degrees of

matching between two concepts in an ontology, and

consequently between output and input atom data in service

messages. As discussed by Lécué et al. [20], there are five

possible matching types between the output parameter oi of a

service si, the input parameter ij of a service sj, and the

numerical values that express similarity:

• Exact: if oi and ij are equivalent (similarity value = 1).

• Plugin: if oi is sub-concept of ij (similarity value = 0.75).

• Subsume: if oi is a super-concept of ij (similarity value =

0.5).

• Intersection: if the intersection of oi and ij is satisfiable

(similarity value = 0.25).

• Disjoint: oi and ij are incompatible (similarity value = 0).

Techniques that exploit all these semantic matchmaking

degrees can dynamically infer meaningful service

compositions that are rarely executable, due to unsolved

structural and syntactic mismatches between XML messages

[20]. Semantic relationships other than the equivalence (e.g.,

similarity or subsumption) may help to find abstract solution

plans, but do not provide clear and safe hints for executing

concrete solution plans. When several types of semantic

relationships can be defined, we rely exclusively on the Exact

matching degree. Thus, we use a single is_equivalent_to

operator for binding atom data to their corresponding semantic

concepts, as well as concepts to other equivalent concepts. In

other words, we rely on an exact semantic equivalence in order

to enable the transfer of a data value from one atom to another,

http://dx.doi.org/%2010.1109/TNSM.2013.022213.120229

This is the author's version of an article that has been published in IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. Changes

were made to this version by the publisher prior to publication. The final version of record is available at

 http://dx.doi.org/ 10.1109/TNSM.2013.022213.120229

7

as required when actually executing the service invocations

flow.

B. Graphplan

Graphplan is a general-purpose planner that was proposed

by Blum and Furst [30] to provide an effective way of building

plans in STRIPS domains. The Graphplan algorithm compiles

the problem into a structure called a planning graph. The

planning graph is created in a forward direction from the initial

conditions, and then expands itself one level at a time until a

solution is found.

The first level contains the initial conditions. Each

subsequent level has a node for each action that might possibly

be performed (i.e., whose pre-conditions all exist in the

previous level). At each level, the algorithm checks whether

the propositions in the goal are all present at the current level.

In that case, the algorithm searches for a valid plan in a

backward-chaining manner.

A plan is valid if it satisfies the following conditions: the

actions at the same level do not interfere (e.g., when an action

deletes a precondition or an add-effect of another action); each

action’s preconditions are true at that point in the plan; and

goals are satisfied at the end of the plan. If no valid plan exists

at that level, the planning graph is expanded by adding another

level.

When a solution is found, the Graphplan ends its search and

returns the shortest feasible sequence of actions required to

meet the goal. The Graphplan is guaranteed to terminate with a

solution if a valid plan exists, or with no plan if the problem is

unsolvable [30].

C. Dynamic Service Composition

The dynamic service composition process is threefold. First,

the client request message is analyzed in order to extract input

data and expected goals. In this step, semantic annotations

embedded in the request message may be used to translate

client request into concepts expressed in shared ontologies.

Second, the problem specification is translated into a STRIPS

model and forwarded to the planner. Third, if a feasible

solution exists, the planner returns the specification of the set

of invocations to be performed; otherwise it terminates after a

finite number of steps, concluding that no solution exists.

Fig. 5 depicts a basic example in the application domain of

maritime surveillance. The client wants to gather possible

threats close to a given vessel (e.g., unidentified vessels

nearby). The request message is thus made of two parts: the

input parameters (the URLs for the ship identifier and the time

interval concepts in a given ontology), and the output (the

URL pointing to the unrecognized target concept). The

solution plan depicted in Fig. 5 is a flow made of structural,

semantic, and functional operators. The vesselIdentifier

concept is mapped onto an atom (vesselId) via the

equivalent_to operator. This atom and its value are embedded

in a proper XML message (VesselPositionRequest) to invoke

the service returning the position of the vessel. Similarly,

position and time interval information is used to invoke a

service returning the list of threats detected in a given area,

including unidentified vessels. Although concepts, messages,

and atoms are identified by fully-qualified names and

Structural Path Model expressions, we use abbreviations in

Fig. 5 to keep it readable.

VI. DATA-CENTRIC DYNAMIC INVOCATION

This section describes our mechanism for dynamic stubless

invocation based on the Service Profile Model.

We exploit the expressiveness of our Service Profile Model

to define an automated process for run-time message creation

and analysis. The mechanism for run-time service invocation

consists in (i) dynamically creating an instance of an XML

request message, and (ii) sending the message to the service

endpoint address over the proper transport protocol.

The structural properties for a given atom specify the

structural constraints and rules that characterize the XML

message part containing that atom. These properties are used

to assemble/disassemble atoms in/from messages at run-time.

As shown in Fig. 6, the invocation flow of a composite service

is thus a sequence of operations for extracting atom values

from response messages of invoked services (e.g., si and sj

services), and embedding them into valid XML messages for

subsequent invocations (e.g., sk). The former step is

implemented through a Document Analyzer algorithm, as

Fig. 5. Example of a service composition flow

http://dx.doi.org/%2010.1109/TNSM.2013.022213.120229

This is the author's version of an article that has been published in IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. Changes

were made to this version by the publisher prior to publication. The final version of record is available at

 http://dx.doi.org/ 10.1109/TNSM.2013.022213.120229

8

detailed hereafter. The latter step is based on a Document

Builder algorithm.

The Document Builder takes as input a list of atom

structural paths and associated input data values, and gives as

output an XML document whose structure complies with the

structural paths and that properly embeds input data values.

Input data values are gathered from client requests or from

response messages of previous invocations. The association

between each input data value and the proper structural path is

made by relying on equivalences implied by semantic

properties. This pre-processing step is performed before

invoking the Document Builder function.

For each pair (structural path, instance atom value), the

algorithm first builds a string, named instanceAtomKey, which

provides a flat textual representation of the sub-tree of the

instance document containing that atom. The instanceAtomKey

expression is based on a textual notation that is similar to the

Structural Path Model. While the Structural Path Model

represents structural constraints of XML Schemas (i.e.,

document templates), this notation represents structural

constraints in instance documents (e.g., the ordering symbol

represents the exact position of nodes that carry actual values

in an instance document). During this step, two constraints are

checked: the multiplicity of atom instances and the atom data

type.

The first step of the document generation process consists in

creating the root node. Then, the algorithm analyzes each

instanceAtomKey to progressively create a subtree that is

appended to the root node.

Each subtree is created by analyzing the instanceAtomKey

string from left to right (i.e., from the root up to the leaf

nodes). For each node name, the algorithm calls a createNode

operation, which creates the node (if it does not already exist)

and adds it to the parent node. The operation is invoked for

each extracted node name up to a leaf node, which finally

embeds the target value. Fig. 7 shows how this approach can

be applied to some example input data.

The Document Analyzer takes as input an XML document

(i.e., the response message obtained by a service invocation)

and the structural paths for the atoms of that message type

maintained in the Service Registry. It returns a set of pairs

(value, structural path) that bind embedded response data

values to the corresponding atom data structural paths. For

each structural path, the algorithm implements a recursive

search in the XML document from the root to the leaf node

that embeds a target value. The given value is then extracted

and associated to the structural path. The rest of our Document

Analyzer algorithm exploits structural path information in a

way similar to an XPath traversal on the document.

VII. PROTOTYPE

In order to validate the effectiveness of our Service Profile

Model in enabling dynamic service composition and

invocation in a working environment, we developed a

prototype that serves as a proof of concept. This prototype

exploits and extends the capabilities provided by a middleware

infrastructure, the Service and Application Integration (SAI)

system, developed in our research laboratory [33][34]. SAI is

written in Java and implements many SOA principles and

design patterns. It was conceived as a set of components that

can be configured, assembled, and extended in different

deployment configurations. It enables message exchanges

across environments characterized by managerial and

technological heterogeneity. The current implementation of the

messaging infrastructure is powered by ActiveMQ [35], one of

the leading open-source implementations of the Java Message

Service specification (JMS) [36].

Fig. 8 shows the reference architecture for our prototype.

The Service Registry is the SAI component that stores the

profiles of registered services and exposes a set of APIs for

service registration and lookup. In the registration phase, the

Fig. 6. Atom data extraction and insertion for dynamic invocation

Fig. 7. Mechanism for run-time document creation.

http://dx.doi.org/%2010.1109/TNSM.2013.022213.120229

This is the author's version of an article that has been published in IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. Changes

were made to this version by the publisher prior to publication. The final version of record is available at

 http://dx.doi.org/ 10.1109/TNSM.2013.022213.120229

9

Service Registry parses the service interface descriptions to

generate an internal representation according to the Service

Profile Model. At present, the system can interpret service

descriptions written in WSDL and XML Schema. Semantic

annotations for data atoms can be specified through SAWSDL

annotations or SAI-specific XML files. The logic for WSDL

and XML Schema parsing and the generation of structural

properties are based on the XML Schema Object Model

(XSOM) [37], which is the only general-purpose Java schema

parser available to date (to the best of our knowledge).

Registration is not restricted solely to services whose interface

complies with the WSDL specification. External systems may

also be accessed through customized Adaptor components that

expose message-based interfaces [33].

Our Service Profile Model is expressed using the Web

Ontology Language (OWL) [38]. We chose OWL because it is

an expressive language with well-defined semantics and it is a

W3C Recommendation. Registered service profiles are

maintained in a knowledge base that was implemented using

JENA, an open-source semantic framework in Java [39]. We

adopted the Jena TDB triple-store storage system because it

greatly facilitates the persistence of functional profiles.

The Composition Engine includes a STRIPS model builder

that parses the functional profiles maintained in the SAI

Service Registry for creating the corresponding STRIPS

operators. The planner is based on a refactoring of PL-PLAN,

an open-source Java library that implements the Graphplan

algorithm [40]. Our extensions add support for caching

computed plans and speed up client request handling by

quickly identifying known-unsolvable planning problems. This

component can easily be extended to integrate other planners.

The Plan Interpreter translates the plans produced by the

Composition Engine into executable actions. More

specifically, the Plan Interpreter offers two main features.

First, Endpoint Selection implements a QoS optimization

algorithm for selecting endpoints while maximizing an

objective function depending on a set of quality attributes, as

described in [41]. Second, Plan Interpretation translates the

operators of the STRIPS model into executable actions

according to the adopted service invocation strategy.

Dynamic stubless service invocation on a specific target

endpoint is handled by two components. The Data-Centric

Document component implements the Document Builder and

Document Analyzer algorithms, based on the Java-based

Document Object Model for XML (JDOM) [42]. The Delivery

Channel offers a uniform and general-purpose message-

handling interface for handling client interactions with the SAI

system. The Delivery Channel can be configured by adding

and removing pre- and post-processing interceptors. At

present, the Delivery Channel supports request-response and

one-way communication over the HTTP and JMS protocols.

The capabilities offered by the Data-centric Document and

Delivery Channel components can be exploited to invoke

services at run-time.

Analogously, this mechanism can be exploited to execute

composite services by leveraging a workflow engine. We

chose to use the jBPM process engine [43] rather than other

available open-source solutions (e.g., JOpera [44] or Enhydra

Shark [45]) because it is well-documented and stable. In order

to automate the actions defined in the composition plan, we

defined four custom jBPM activities, one for each type of

STRIPS operator: Embed Activity, Extract Activity,

Equivalence Activity, and Invoke Activity.

VIII. EXPERIMENTS

In this section, we present the results of the experiments that

we carried out to evaluate the performance of our composition

and invocation mechanisms.

Our testing environment included the JUnit 4.7 testing

framework and the Eclipse 3.6 Helios development

environment. Tests were run on a PC equipped with an Intel

Core 2 Duo processor (2.4 GHz) and 4GB DDR2 RAM.

First, we defined a set of test cases to measure the

computational time needed by the dynamic composition

mechanism to handle a composition request. These test cases

were defined by varying the number of registered services and

the number of associated semantic concepts, as shown in Table

I. We defined three types of request (see Table II). Each

request type has an expected solution with a given number of

services and depth (i.e., the number of levels, where each level

contains one or more services that can be invoked

independently). For example, Fig. 9 shows the expected type

of solution for request s1. Test cases were populated with a set

of services designed ad hoc for matching the expected

solutions, and a second set of non-matching services further

populating the Service Registry.

TABLE I. TEST CASES

Service Registry

Population (number of

registered services)

Number of

Concepts

20 200

40 400

70 600

100 800

Fig. 8. Proof of concept

http://dx.doi.org/%2010.1109/TNSM.2013.022213.120229

This is the author's version of an article that has been published in IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. Changes

were made to this version by the publisher prior to publication. The final version of record is available at

 http://dx.doi.org/ 10.1109/TNSM.2013.022213.120229

10

TABLE II. COMPOSITION REQUESTS

Request Type # Services # Levels

s1 4 3

s2 7 5

s3 10 7

The results of our tests are presented in Fig. 10. Our

measurements illustrate the polynomial complexity of the

Graphplan algorithm in the number of registered services. This

was expected because the time complexity of the planning

graph creation is known to be polynomial in the number of

propositions and actions [30].

For the dynamic invocation mechanism, we estimated the

time needed for building XML documents at run-time. This

action is performed by an instance of the Data-Centric

Document component. Input data are provided and processed,

then the document creation is triggered. We adopted two

performance metrics. First, the Pre-processing Time is the

time needed to process the input data values and structural

path expressions, in order to build a suitable representation of

structural constraints for the target instance document (i.e., the

instanceAtomKey expression mentioned in subsection VI-A).

This step can be compared to the instantiation of an in-memory

object representation of XML Schema types in most common

service invocation frameworks (e.g., Apache WSIF , Apache

Axis 2, and Java API for XML-based Web Services). Second,

the Document Building Time is the time needed for actually

creating the XML document, based on a JDOM representation.

It may be viewed as a serialization time, i.e., the time needed

to convert an in-memory object into an XML stream in most

common service invocation frameworks (such as the ones

mentioned above).

We performed several test iterations by varying the type of

input data, to observe the behavior of the system when the

message size increased. This increase in the message size was

steered by providing an increasing number of input atom

instances. We also varied the message tree-based structure by

changing the nesting depth of the document tree. Figs. 11 and

12 depict the results that we collected. Both operations show

an average time complexity of O(n log n).

IX. RELATED WORK

In this section, we discuss related work in the areas of

dynamic service selection, composition, and invocation.

A. Service Composition and Selection

Several works on dynamic service composition exploit

classic planning techniques from artificial intelligence [4]. As

proposed by McIlraith et al. [46], planning-based solutions can

be classified by the type of actions in such systems: (i) world-

altering actions that change the state of the world, or (ii)

information-providing actions that change the agent’s state of

knowledge.

Fig. 9. Expected solution for request s1

Fig. 10. Execution time for service composition

Fig. 11. Execution times for the pre-processing step

Fig. 12. Execution times for the document building step

http://dx.doi.org/%2010.1109/TNSM.2013.022213.120229

This is the author's version of an article that has been published in IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. Changes

were made to this version by the publisher prior to publication. The final version of record is available at

 http://dx.doi.org/ 10.1109/TNSM.2013.022213.120229

11

In this paper, we focus on the approaches dealing with

information-providing services. Zheng and Yan [22] model the

composition of services as a syntactic matching problem,

where the output parameters of a Web Service can be used as

the input parameters of another Web Service. They exploit the

planning model and a backward search algorithm for

generating final solutions. They also enhance these classical

approaches with four strategies for pruning redundant Web

Services. Hewett et al. [23] compose services based on a state-

space search model. A state represents a set of input

parameters for services that can be added to the composition

under construction. Each transition from one state to another

represents an invokable service. They apply a depth-first

search technique to find a solution path from an initial state to

the goal state, and then a mechanism for pruning unnecessary

Web Services.

Our approach is similar to these two approaches in so far as

we construct a planning graph to solve an input/output

matching problem (i.e., a chain of services is built by using the

output parameters of a service as the input parameters of

another service). While the above-mentioned works only rely

on syntactic matching, our approach exploits structural and

semantic matching as well. More specifically, Zheng and Yan

[22] and Hewett et al. [23] assume that the messages are

defined as a sequence of simple type elements, i.e., messages

are defined in the WSDL description file (in the WSDL

<message> element) as a collection of WSDL <part> elements

declared as XML Schema simple types. Such an assumption

makes it difficult to process real-world services whose

interfaces may be described using different WSDL styles [47].

For instance, the message content may also be defined in the

<types> element section of the WSDL document, usually by

means of XML Schema constructs. This style allows for a

more flexible specification of the message structure (e.g.,

complex types). Our Service Profile Model uses the Structural

Path Model to represent these XML Schema constructs

through structural operators, which are then exploited in the

matching problem.

Planning-based approaches have been enhanced with

semantic-based service specifications to enable semantic-based

matchmaking and reasoning tasks on service contracts. Many

people adopted rich semantic services models, especially

OWL-S [28] and the Web Service Modeling Ontology

(WSMO) [27]. Examples of approaches adopting OWL-S

specifications and planning algorithms are presented by

Akkiraju et al. [48] and Agarwal et al. [49]. Works based on

WSMO for service discovery, composition, and invocation

include the Web Service eXecution Environment (WSMX)

[50] and IRS-III [51].

Both OWL-S and WSMO specify a top-down approach to

semantic Web Services. They assume that a service designer

first models the semantics of services, and then specifies

grounding information. Kopecky and Vitvar [52] showed that

this type of approach is not easily applicable to enterprise

scenarios where many services are available. In order to cope

with these issues, bottom-up approaches for semantic Web

Services are gaining increasing interest. In this direction, the

World Wide Web Consortium published the Semantic

Annotations for WSDL and XML Schema Recommendation

(SAWSDL) [29]. More recently, WSMO-Lite was proposed as

a lightweight service ontology that defines semantic Web

Service descriptions; it was published as a formal request to

W3C for discussion [53]. WSMO-Lite specification activities

have been mainly carried out within the SOA4All European

Project [54]. Moreover, within that project, lightweight

semantic service specifications were adopted for the design

and implementation of iServe, a registry platform for

publishing semantic annotations of services of different types

(e.g., REST or Web Services APIs) with annotations in

different formalisms (e.g., OWL-S or WSMO-Lite) [55]. This

approach is based on a common model for service description,

the Minimal Service Model (MSM), which is a simple RDF(S)

ontology providing a minimal and conceptual model that

captures the semantics of WSDL and RESTful services.

While our prototype implementation relies on WSDL and

SAWSDL specifications, our approach can in principle

support different description formalisms, thanks to our Service

Profile Model. This model is similar to the Minimal Service

Model proposed by Pedrinaci et al. [55] in that it represents a

minimal common abstraction for service interface models.

Pedrinaci et al. [56] also exploited the Minimal Service

Model to build service matchmaking techniques. Service

matchmaking techniques encompass two steps: i) matching a

given service request with the description of registered

services according to one or more metrics; and ii) ranking the

services according to the measured degree of semantic

relevance [57].

Several matchmaking algorithms have been proposed to

support SAWSDL-based service discovery. Most approaches

calculate different similarity metrics and aggregate available

measures into an overall similarity value used for service

ranking. SAWSDL-MX2 [58] computes three types of

matching: logical, text, and structural similarity. It adopts a

Support Vector Machine (SVM) for the optimally weighted

aggregation of these different matching metrics. URBE [59]

calculates text and structural similarity values, and then uses a

weighted aggregation scheme for service ranking. SAWSDL

iMatcher [60] supports syntactic and semantic matching, as

well as statistical models for aggregating different matching

measures. Analogously to these SAWSDL matchmakers, our

solution adopts an input/output model for describing services,

rather than a full (Input, Output, Preconditions, and Effects)

profile. We thus sacrifice expressivity in order to reduce the

costs required for rich semantic service descriptions. The

objective of a service matchmaker is to return a ranking list of

relevant services to the requestor, and eventually information

that allows direct interaction with providers [57]. It does not

handle the composition and execution of services, as our

solution does.

http://dx.doi.org/%2010.1109/TNSM.2013.022213.120229

This is the author's version of an article that has been published in IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. Changes

were made to this version by the publisher prior to publication. The final version of record is available at

 http://dx.doi.org/ 10.1109/TNSM.2013.022213.120229

12

B. Service Invocation

Dynamic service invocation can be defined as the capability

of a system to bind to a service and invoke one of its offered

operations at run-time [13] . In practice, service invocation is

usually performed by making reference to a stub (i.e., a local

proxy that offers a local interface of the remote service).

In the Semantic Web research community, dynamic

invocation has been often treated as a problem of mediation

across client and service APIs by reconciling heterogeneities

among service signatures. Semantic Web technologies were

applied by Nagano et al. [61] and Lin et al. [62] to identify

similarities across service signatures and build translation

layers among similar service interfaces. Although they reduce

the need for reprogramming client interfaces, these semantic-

based approaches do require a pre-processing step of

programmatic binding to a reference service interface for

generating a stub. Conversely, our approach implements a

generic, extensible, and truly stubless invocation mechanism

that is steered at run-time by structural and semantic properties

of the target services.

Several tools provide capabilities for late binding to Web

Services interfaces (e.g., Apache WSIF [8], Apache Axis 2

 [9], Codehaus XFire [10], Apache CXF [11], and Java API for

XML-based Web Services [12]). These solutions typically

support dynamic invocation by means of dynamic proxying

capabilities (e.g., the DynamicInvoker in WSIF and the

javax.xml.ws.Dispatch client in JAX-WS). However, as argued

by Buhler et al. [13], these toolkits “are incapable of handling

complex types returned from the invoked service. This

limitation is due to the fact that the returned data must be

unmarshalled from the SOAP message, which in Java is not

possible without having a compatible class that implements

the serializable interface”. This means that the client code

must include an internal representation of XML data types that

has to be generated at design time in order to meaningfully

exploit the information returned upon service invocation. For

instance, Java-to-XML binding libraries, such as the Java

Architecture for XML Binding (JAXB) [63] and XMLBeans

[64], can be exploited to this purpose. More specifically,

Buhler et al. [13] pointed out the following weaknesses in

existing solutions: i) dynamic invocation is supported only for

Web Services whose message structure does not include

complex data types; ii) the handling of complex data types

requires a preprocessing step that generates an internal

representation of XML data in the specific programming

language (e.g., Java classes); and iii) the client code is highly

dependent upon specific toolkit APIs.

Buhler et al. [13] solved the latter problem by proposing a

Composite Pattern for Web Service Invocation that combines

two design patterns (the Bridge and Factory Method patterns

 [65]) for decoupling the service client code from peculiarities

of specific concrete service interfaces and service invocation

technologies. Leitner et al. [5] focused on the first problem by

proposing the Dynamic and Asynchronous Invocation of

Services Framework (Daios). Daios is a message-based service

framework that allows clients to invoke remote services

through a message-based stubless interface. The client request

is handled by the Daios framework: Daios chooses to invoke

the service interface whose input message has the lowest

structural distance metric to the provided data; the framework

then converts the client request data into the encoding

expected by the service (e.g., a SOAP message), and launches

the invocation using a proper service stack. However, Leitner

et al. do not provide details about service registration and

discovery in Daios, and both approaches [5][13] require a

preprocessing step to compile the target service description

into compatible Java classes. To this end, Leitner et al.

adopted the XMLBeans library, and Buhler et al. the Java

Record Object Model (JROM) [66]. Conversely, our work

implements a message-oriented invocation library that allows

clients as well as brokers to perform dynamic stubless

invocations. Structural path expressions enable a generic

mechanism for the run-time generation of XML messages that

contain simple and/or complex type elements. The proposed

dynamic invocation library is not strictly bounded to SOAP or

to HTTP. This generic mechanism for message building and

analysis can be instructed at run-time to bind to a service

interface, without generating data type representations in

specific programming languages.

X. CONCLUSION

In this work, we have proposed a lightweight and data-

centric approach for achieving loosely coupled interactions

among Web Service providers and consumers, via dynamic

composition of services and automatic run-time binding to

service endpoints. Our approach relies on a Service Profile

Model that represents common aspects of service descriptions.

In this model, leaf nodes in XML documents are considered

first-class entities, as they contain data values in instance

messages. We showed how, by means of semantic and

structural properties that can be extracted at run-time from

XML schema, WSDL, and SAWSDL description files,

mechanisms for run-time service composition and stubless

invocation have been successfully built into a prototype.

In the future, it would be useful to extend the proposed

approach with ontology mediation techniques that support

matching and transformation operations between XML

elements and semantic concepts, or concept hierarchies (e.g.,

by lifting and lowering schema mappings in SAWSDL

specifications). This would alleviate the need for fine-grained

annotations of message and type definitions in service

interface descriptions. Another direction for future work would

be to extend the proposed approach to support REST-style

invocations and lightweight semantic annotations (e.g.,

Semantic Annotations for REST [67] and MicroWSMO [68])

and to adopt data formats other than XML (e.g., JSON).

http://dx.doi.org/%2010.1109/TNSM.2013.022213.120229

This is the author's version of an article that has been published in IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. Changes

were made to this version by the publisher prior to publication. The final version of record is available at

 http://dx.doi.org/ 10.1109/TNSM.2013.022213.120229

13

REFERENCES

[1] T. Erl, SOA: Principles of Service Design, Prentice Hall, 2008.

[2] OASIS, Web Services Business Process Execution Language Version

2.0, OASIS Standard 11 April 2007, http://docs.oasis-

open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[3] OMG, Business Process Model and Notation (BPMN) Version 2.0,

January 2011, http://www.omg.org/spec/BPMN/2.0/

[4] J. Rao and X. Su. “A Survey of Automated Web Service Composition

Methods”, in Proc. of First International Workshop on Semantic Web

Services and Web Process Composition (SWSWPC 2004), San Diego,

California, USA, July 2004.

[5] P. Leitner, F. Rosenberg, and S. Dustdar, “Daios: Efficient Dynamic

Web Service Invocation”, IEEE Internet Computing, vol. 13, no. 3, May

2009, pp. 72-80.

[6] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, “Web

Services Description Language (WSDL”), W3C Note, 15 March 2001,

http://www.w3.org/TR/wsdl.

[7] Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C

Recommendation, 26 November 2008, http://www.w3.org/TR/xml/.

[8] Apache Web Services Invocation Framework (WSIF),

http://ws.apache.org/wsif.

[9] Apache Axis 2, http://ws.apache.org/axis2.

[10] Codehaus XFire, http://xfire.codehaus.org.

[11] Apache CXF, http://cxf.apache.org.

[12] Java API for XML-Based Web Services (JAX-WS) 2.0, JSR 224, May

2006, http://jcp.org/en/jsr/detail?id=224.

[13] P. Buhler, C. Starr, W. H. Schroder, and J.M. Vidal, “Preparing for

Service-Oriented Computing: A Composite Design Pattern for Stubless

Web Service Invocation”, in Proc. of 2005 IASTED Conf. on Software

Engineering (SE 2005), Innsbruck, Austria, February 2005, pp.276-281.

[14] J. Kramer, J. Magee, and M. Sloman, “A software architecture for

distributed computer control systems”, Automatica, vol. 20, no. 1, 1984,

pp. 93-102.

[15] E. Wilde and R.J. Glushko, “Document Design Matters”,

Communications of the ACM, vol. 51, no. 10, pp. 43-49, 2008.

[16] W3C, SOAP Version 1.2 Part 0: Primer (Second Edition) W3C

Recommendation, 27 April 2007, http://www.w3.org/TR/soap12-part0/

[17] D. Crockford, “The application/json Media Type for JavaScript Object

Notation (JSON)”, RFC 4627, IETF, July 2006.

[18] D.C. Fallside and P. Walmsley, XML schema part 0: Primer, Second

edition (2004), W3C Recommendation, 28 October 2004.

[19] M. Granitzer, V. Sabol, K.W. Onn, D. Lukose, and K. Tochtermann,

“Ontology Alignment—A Survey with Focus on Visually Supported

Semi-Automatic Techniques”, Future Internet, vol. 2, no. 3, pp. 238-

258, 2010.

[20] F. Lécué, S. Salibi, P. Bron, and A. Moreau, “Semantic and Syntactic

Data Flow in Web Service Composition”, in Proc. of 2008 IEEE

International Conference on Web Services (ICWS 2008), Beijing,

China, September 2008, pp. 211-218.

[21] P. Walmsley, “The Importance of Schema Design in SOA”, SOA

Magazine, no. XXXVII, March 2010,

http://www.servicetechmag.com/I37/0310-1

[22] X. Zheng and Y. Yan, “An Efficient Syntactic Web Service

Composition Algorithm Based on the Planning Graph Model”, in Proc.

of 2008 IEEE International Conference on Web Services (ICWS 2008),

Beijing, China, September 2008, pp. 691-699.

[23] R. Hewett, P. Kijsanayothin, and B. Nguyen, “Scalable Optimized

Composition of Web Services with Complexity Analysis”, in Proc. of

2009 IEEE Int. Conf. on Web Services (ICWS 2009), Los Angeles, CA,

USA, July 2009, pp. 389-396.

[24] J. Tekli and R. Chbeir, “A novel XML document structure comparison

framework based-on sub-tree commonalities and label semantics”,

Journal of Web Semantics, vol. 11, pp. 14-40, March 2012.

[25] W3C, XML Path Language (XPath) 2.0, W3C Recommendation 23

January 2007, http://www.w3.org/TR/xpath20/.

[26] W3C, XQuery 1.0 and XPath 2.0 Data Model (XDM), W3C

Recommendation 23 January 2007, http://www.w3.org/TR/xpath-

datamodel/.

[27] D. Fensel, H. Lausen, A. Polleres, J. de Bruijn, M. Stollberg, D. Roman,

and J. Domingue, Enabling Semantic Web Services: The Web Service

Modeling Ontology. Springer, 2007.

[28] D. Martin, M. Burstein, D. McDermott, S. McIlraith, M. Paolucci, K.

Sycara, D.L. McGuinness, E.Sirin, and N.Srinivasan, “Bringing

Semantics to Web Services with OWL-S”, World Wide Web, vol. 10,

no. 3, September 2007.

[29] J. Kopecky, T. Vitvar, C. Bournez, and J. Farrell, “SAWSDL: Semantic

Annotations for WSDL and XML Schema”, IEEE Internet Computing,

vol. 11, no. 6, pp. 60-67, Nov.-Dec. 2007.

[30] A. Blum and M. Furst, “Fast Planning Through Planning Graph

Analysis”, Artificial Intelligence, vol. 90, pp. 281-300, 1997.

[31] M. Alrifai and T. Risse, “Efficient QoS-aware Web Service

Composition”, in 3rd Workshop on Emerging Web Services Technology

(WEWST 2008) in conjunction with ECOWS 2008, Dublin, Ireland,

November 12, 2008.

[32] E. Kutluhan, S. N. Dana, and V. S. Subrahmanian, “When is planning

decidable?”, in Proc. of First Int. Conf. on Artificial Intelligence

Planning Systems, College Park, MD, USA, June 15-17, 1992, pp.222-

227.

[33] D. Parlanti, F. Paganelli, D. Giuli, “A Service-Oriented Approach for

Network-Centric Data Integration and Its Application to Maritime

Surveillance”, IEEE Systems Journal, vol.5, no.2, pp.164-175, 2011.

[34] F. Paganelli, D. Parlanti, D. Giuli, “Message-Based Service Brokering

and Dynamic Composition in the SAI Middleware”, in Proc. of 2010

IEEE International Conference on Services Computing (SCC 2010),

Miami, FL, USA, July 2010, pp.474-481.

[35] The Apache Software Foundation. ActiveMQ.

http://activemq.apache.org/.

[36] M. Richards, R. Monson-Haefel, and D.A Chappell, Java Message

Service, O’Reilly, 2009.

[37] XML Schema Object Model (XSOM) https://xsom.dev.java.net/

[38] Web Ontology Language, W3C recommendation,

http://www.w3.org/TR/owl-guide/.

[39] Jena: Semantic web framework,

http://jena.sourceforge.net/documentation.html.

[40] P. Fournier-Viger, and L. Lebel, PL-PLAN, Java Open-Source AI

Planner, http://plplan.philippe-fournier-viger.com/index.html.

[41] F. Paganelli, T. Ambra, D. Parlanti, and D. Giuli, “A semantic-driven

Integer Programming Approach for QoS-aware Dynamic Service

Composition”, in Proc. of 50th FITCE Congress ICT: Bridging an Ever

Shifting Digital Divide (FITCE 2011), Palermo, Italy, August 2011.

[42] JDOM, http://www.jdom.org/.

[43] JBoss jBPM, http://www.jboss.org/jbpm.

[44] C. Pautasso, T. Heinis, G. Alonso, “JOpera: Autonomic Service

Orchestration”, IEEE Data Engineering Bulletin, vol. 29, no. 3,

September 2006.

[45] Enhydra Shark, http://shark.ow2.org/doc/1.0/index.html

[46] S. McIlraith and T. C. Son, “Adapting Golog for composition of

Semantic Web services”, in Proc. of 8th Int. Conf. on Knowledge

Representation and Reasoning (KR2002), Toulouse, France, April 2002.

[47] R. Butek, “Which style of WSDL should I use?”, IBM Technical

library, 2005,

http://www.ibm.com/developerworks/webservices/library/ws-

whichwsdl/

[48] R. Akkiraju, B. Srivastava, A.-A. Ivan, R. Goodwin, and R. Tanveer

Syeda-Mahmood, “SEMAPLAN: Combining Planning with Semantic

Matching to Achieve Web Service Composition”, in Proc. of 2006 Int.

Conf. on Web Services (ICWS 2006), Chicago, IL, USA, Sept. 2006,

pp. 37-44.

[49] V. Agarwal, G. Chafle, K. Dasgupta, N. Karnik, A. Kumar, S. Mittal,

and B. Srivastava, “Synthy: A system for end to end composition of web

services”, Web Semantics: Science, Services and Agents on the World

Wide Web, vol. 3, no. 4, pp. 311-339, December 2005.

[50] A. Haller, E. Cimpian, A. Mocan, E. Oren, C. Bussler, “WSMX - a

semantic service-oriented architecture”, in Proc. of 2005 IEEE Int.

Conference on Web Services (ICWS 2005), vol. 1, Orlando, FL, USA,

July 2005, pp. 321- 328.

[51] J. Domingue, L. Cabral, S. Galizia, V. Tanasescu, A. Gugliotta, B.

Norton, C. Pedrinaci, “IRS-III: A broker-based approach to semantic

Web services”, Web Semantics: Science, Services and Agents on the

World Wide Web, vol. 6, no. 2, pp. 109-132, April 2008.

http://dx.doi.org/%2010.1109/TNSM.2013.022213.120229
http://www.w3.org/TR/xml/
http://cxf.apache.org/
http://jcp.org/en/jsr/detail?id=224
http://plplan.philippe-fournier-viger.com/index.html

This is the author's version of an article that has been published in IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. Changes

were made to this version by the publisher prior to publication. The final version of record is available at

 http://dx.doi.org/ 10.1109/TNSM.2013.022213.120229

14

[52] J. Kopecky, and T. Vitvar, “WSMO-Lite: Lowering the Semantic Web

Services Barrier with Modular and Light-Weight Annotations”, in Proc.

of 2008 IEEE Int. Conf. on Semantic Computing (ICSC 2008), Santa

Clara, CA, USA, August 2008, pp. 238-244.

[53] D. Fensel, F. Fischer, J. Kopecký, R. Krummenacher, D. Lambert, T.

Vitvar, “WSMO-Lite: Lightweight Semantic Descriptions for Services

on the Web”, W3C Member Submission 23 August 2010.

http://www.w3.org/Submission/WSMO-Lite/.

[54] SOA4All European Project, http://www.soa4all.eu/.

[55] C. Pedrinaci, D. Liu, M. Maleshkova, D. Lambert, J. Kopecky and J.

Domingue, “iServe: a linked services publishing platform”, in Proc. of

the 1st Workshop on Ontology Repositories and Editors for the

Semantic Web (ORES 2010), Heraklion, Greece, May 2010.

[56] C. Pedrinaci, D. Lambert, M. Maleshkova, D.Liu, J. Domingue, and R.

Krummenacher, “Adaptive Service Binding with Lightweight Semantic

Web Services”, in Schahram Dustdar and Fei Li (Eds.), Service

Engineering: European Research Results, Springer, 2010.

[57] M. Klusch, “The S3 Contest: Performance Evaluation of Semantic

Service Matchmakers”, in Evaluating Semantic Web Services

Advancement through Evaluation, M.B. Blake, L. Cabral, B. Knig-Ries,

U. Kster, D. Martin (Eds.), Springer, 2012.

[58] M. Klusch, P. Kapahnke, and I. Zinnikus, “Adaptive Hybrid Semantic

Selection of SAWSDL Services with SAWSDL-MX2”, International

Journal on Semantic Web and Information Systems (IJSWIS), vol. 6,

no. 4, pp. 1-26.

[59] P. Plebani and B. Pernici, “URBE: Web Service Retrieval Based on

Similarity Evaluation”, IEEE Transactions on Knowledge and Data

Engineering , vol.21, no.11, pp.1629-1642, Nov. 2009.

[60] D. Wei, T. Wang, J. Wang, and A. Bernstein, “SAWSDL-iMatcher: A

customizable and effective Semantic Web Service matchmaker”, Web

Semantics: Science, Services and Agents on the World Wide Web, vol.

9, no. 4, pp. 402-417, December 2011.

[61] S. Nagano, T. Hasegawa, A. Ohsuga, and S. Honiden, “Dynamic

invocation model of Web services using subsumption relations”, in

Proc. of 2004 IEEE Int. Conf. on Web Services (ICWS 2004), San

Diego, CA, USA, July 2004, pp. 150- 156.

[62] B. Lin, N. Gu, and Q. Li, “A Requester-based Mediation Framework for

Dynamic Invocation of Web Services”, in Proc. of 2006 IEEE

International Conference on Services Computing (SCC 2006), Chicago,

IL, USA, September 2006, pp.445-454.

[63] Java Architecture for XML Binding (JAXB) 2.0, Java Specification

Request (JSR) 222, http://jcp.org/en/jsr/detail?id=222

[64] Apache XMLBeans, http://xmlbeans.apache.org/

[65] E. Gamma, Design patterns : elements of reusable object-oriented

software, Addison-Wesley, 1995.

[66] IBM Alphaworks. Java Record Object Model (JROM),

http://www.alphaworks.ibm.com/tech/jrom, 2002.

[67] A. P. Sheth, K. Gomadam, and J. Lathem, “SA-REST: Semantically

Interoperable and Easier-to-Use Services and Mashups”, IEEE Internet

Computing, vol. 11, no. 6, 2007.

[68] J. Kopecky, and T. Vitvar, “MicroWSMO”, WSMO Working Draft,

February 2008, http://www.wsmo.org/TR/d38/v0.1/20080219/.

Federica Paganelli (M’07) received a Ph.D. degree in Telematics and

Information Society from the University of Florence, Italy, in 2004. She is a

Senior Researcher at the National Interuniversity Consortium for

Telecommunications (CNIT), Italy. Her research interests include context-

aware systems, Ambient Intelligence, service-oriented computing, and next

generation networks.

David Parlanti received a Ph.D. degree in Telematics and Information

Society from the University of Florence, Italy, in 2007. From 2007 to 2009,

he was a Researcher at CNIT, Italy. Since 2010, he is with Negentis, a System

Integration company in Firenze, Italy. His research interests are focused on

message-oriented systems, P2P distributed systems, and SOA/EDA

architectures for systems integration.

http://dx.doi.org/%2010.1109/TNSM.2013.022213.120229
http://www.soa4all.eu/

