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 

Abstract— The automated specification and execution of 

composite services are important capabilities of service-oriented 

systems. In practice, service invocation is performed by client 

components (stubs) that are generated from service descriptions 

at design time. Several researchers have proposed mechanisms for 

late binding. They all require an object representation (e.g., Java 

classes) of the XML data types specified in service descriptions to 

be generated and meaningfully integrated in the client code at 

design time. However, the potential of dynamic composition can 

only be fully exploited if supported in the invocation phase by the 

capability of dynamically binding to services with previously 

unknown interfaces. In this work, we address this limitation by 

proposing a way of specifying and executing composite services, 

without resorting to previously compiled classes that represent 

XML data types. Semantic and structural properties encoded in 

service descriptions are exploited to implement a mechanism, 

based on the Graphplan algorithm, for the run-time specification 

of composite service plans. Composite services are then executed 

through the stubless invocation of constituent services. Stubless 

invocation is achieved by exploiting structural properties of 

service descriptions for the run-time generation of messages. 

 
Index Terms— Web Services, Semantic Web, Service 

Composition, Service Invocation, XML, Planning, Service 

Brokering, Service-Oriented Architecture. 

 

I. INTRODUCTION 

HE Service-Oriented Architecture (SOA) is a widely 

adopted paradigm that eases the design and development 

of distributed applications across heterogeneous organizational 

domains. Loose coupling among service providers and 

consumers is a reference principle for SOA implementations. 

This principle emphasizes the need for reducing dependencies 

among the service implementation, its published contract, and 

service consumers [1]. A way of achieving loose coupling is to 

rely on the intermediation capabilities provided by a third-
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party component, usually called a Service Broker, especially 

for service discovery and composition. Given a service 

consumer request, the Service Broker specifies the workflow 

of service invocations that have to be executed to address the 

request. Composite services can be specified in business 

process languages, such as the Web Services Business Process 

Execution Language (WS-BPEL) [2] and the Business Process 

Model and Notation (BPMN) [3], and executed directly by the 

requester or a third-party component through existing 

workflow engines or ad-hoc applications. 

Many researchers have proposed models and mechanisms 

for automating service discovery and composition, and 

enabling composite services specification at run-time (dynamic 

service composition) [4]. But fewer efforts have focused on 

the related topic of dynamic service invocation. In practice, 

service invocation is typically handled by client components 

(stubs) that are tightly bounded to service implementations, 

and are generated from the description of the service to be 

invoked [5]. The invocation of services with a similar interface 

requires a new stub component to be generated. The Web 

Service Description Language (WSDL) [6] is a standard 

specification for describing service interfaces, based on the 

eXtensible Markup Language (XML) [7]. 

Semantic Web technologies can help to identify similarities 

across service signatures, and build translation layers among 

similar service signatures. However, although reducing the 

need for client interfaces reprogramming, most existing 

approaches rely on a design-time step of programmatic binding 

to a reference service interface.  

We argue that the full potential of dynamic composition and 

related tasks (e.g., dynamic service selection and substitution) 

can only be fully exploited if it is complemented by the 

capability of dynamically binding to services with previously 

unknown interfaces. 

Several existing Web Services invocation frameworks (e.g., 

Apache WSIF [8], Apache Axis 2  [9], Codehaus XFire  [10], 

Apache CXF [11], and Java API for XML-based Web 

Services [12]) provide some capabilities for late binding to 

Web Services (e.g., via dynamic proxying). A weakness of 

these solutions is that the client code is highly dependent upon 

specific toolkit APIs [13]. 

Buhler et al. [13] solved that problem by minimizing the 

dependency of the client code upon the adopted invocation 
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framework. Leitner et al. [5] allow clients to invoke a service 

by sending a request message to an intermediate component. 

The main weakness of these two approaches is the need for a 

preprocessing step to compile the target service description 

into an internal object representation of XML data types. This 

limitation is due to the fact that the client must marshal input 

data into a request message, and then unmarshal the returned 

data from the response message. This can easily be done by 

libraries that automate the generation of compatible classes 

that represent XML data types, but these classes have to be 

known at design time to be meaningfully exploited and 

integrated in the client code. 

Our service composition and invocation approach addresses 

this issue by removing the need for generating an internal 

representation of XML data types at design time. Semantic and 

structural message properties encoded in service description 

files are exploited to implement a mechanism that allows the 

run-time specification of composite service plans, and their 

execution through the stubless invocation of constituent 

services. Semantic annotations are used to define relationships 

between elements of different service interfaces. Structural 

properties are exploited to define simple transformation rules 

(aggregation/disaggregation of XML elements). The joint use 

of these mechanisms allows the dynamic specification and 

execution of a sequence of service invocations, without the 

need for previously compiled classes that represent XML data 

types in service descriptions.  

As a result, our approach for dynamic composition and 

stubless invocation of information-providing services truly 

enables loose coupling between service consumers and 

providers. 

The remainder of this paper is organized as follows. Section 

II gives background information on SOA. Section III 

introduces the main principles of our approach. In Section IV, 

we describe our service profile model. Sections V and VI 

describe our approach for dynamic service composition and 

invocation. Section VII reports on the implementation of our 

prototype. In Section VIII, we show test results. In Section IX, 

we discuss related work. Finally, Section X concludes the 

paper with insight for future work. 

II. BACKGROUND 

According to Erl [1], the main principles underlying the SOA 

architecture are fivefold: service contract, loose coupling, 

service abstraction, service reusability, and service 

composability. 

The Service Contract expresses the purpose and capabilities 

offered by services. It is mandatory for a service contract to 

express the technical interface details (e.g., data types, 

message structure, network protocols, and endpoints in WSDL 

documents). The Loose Coupling principle emphasizes the 

need for reducing dependencies among the service 

implementation, its published contract, and service consumers. 

It enables the design and evolution of a service implementation 

while minimizing the impact on service consumers’ interfaces. 

Service Abstraction is a cross-cutting aspect of service-

orientation that consists in hiding as much as possible low-

level details of a service interface and implementation. The 

level of abstraction typically affects service contract 

granularity and the achieved loose-coupling degree. Service 

Reusability advocates that services should be designed for 

serving more than one consumer. The Service Composability 

principle expresses the need for designing services as building 

blocks that can be effectively used in future service 

compositions. 

The SOA model traditionally encompasses three main roles 

[1]: the Service Provider, which exposes a given service and 

publishes the service description in a registry; the Service 

Registry, which offers service description publishing and 

querying capabilities; and the Service Consumer, which 

queries the registry and binds to a service endpoint when an 

operation is invoked. In practice, SOA systems have 

introduced a fourth intermediating role: the Service Broker. 

In this context, we model dynamic and loosely coupled 

interactions among clients and services as a three-step process. 

In the first step, called Abstract Process Definition, the 

request message is analyzed by the Service Broker, which 

decides whether the request can be handled by accessing the 

Service Registry knowledge base. There are three possibilities 

at this point: i) the request can be handled by invoking one 

service; ii) the request can be handled by invoking a specific 

flow of operations (i.e., a composite service); or iii) the request 

has no known solutions in the domain of registered services. In 

the first two cases, the Service Broker specifies the service 

invocations to be executed to achieve the client goal.  

The second step, called Concrete Composition Process 

Mapping, consists in mapping an abstract process specification 

onto a set of executable actions, and selecting the concrete 

endpoints to be invoked.  

The third step, Service Execution, concerns the invocation 

of a set of service endpoints. Relying on stub-based client 

interfaces for service invocation inevitably limits the scope of 

dynamicity of service composition, because stub-based 

interfaces are programmatically bounded to service interfaces 

and in practice they are generated at design time. Whereas 

stubless invocation can help to achieve run-time binding to 

services whose interface was unknown at design time. 

III. MAIN PRINCIPLES OF OUR APPROACH 

The objective of this work is to provide a lightweight semantic 

and data-centric approach that enables the dynamic 

composition of services and the automatic run-time binding to 

service endpoints. We do so by re-interpreting and fully 

exploiting service-oriented principles, in order to favor loosely 

coupled interactions among service providers and consumers.  

Our approach is based on two principles. First, we model a 

service as a message processor: its interface is modeled in 

terms of the messages it can transmit and receive [14]. Second, 

we rely on syntactic, structural, and semantic information that 

can be encoded in service descriptions for realizing dynamic 
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service discovery, composition, and invocation. 

These principles have been put into practice in the design of 

a model for representing service functional profiles. This 

model aims at providing a layer of abstraction over existing 

service descriptions in order to accommodate the 

representation of different service specifications, and to ease 

the mediation of heterogeneities at the level of protocols, data 

formats, and semantics. 

By revisiting the data modeling layers adopted in database 

design, and by taking inspiration from Wilde’s analysis [15] on 

Representational State Transfer (REST) interactions, we 

model the message exchange at the conceptual, logical, and 

physical levels. 

At the physical level, data have to be serialized in properly 

formatted messages to be sent on the wire. Well-known 

examples include XML, the Simple Object Access Protocol 

(SOAP) [16], and the JavaScript Object Notation (JSON) [17]. 

Invocation is thus achieved by sending the message to the 

service endpoint over the proper communication protocol. 

At the logical level, syntactic and structural rules model the 

logical structure of the target message and specify how data 

have to be embedded in a valid document. In this work, we 

exploit the capabilities of XML Schema [18] in modeling tree-

based document structures, as it is a reference standard in the 

WSDL specification [6]. 

At the conceptual level, we explicitly represent concepts 

and relations that are embedded in the exchanged messages. 

Ontologies provide a formal representation of concepts and 

relations in a given domain. Ontology-based models and 

technologies can thus help to mediate and reconcile 

differences among service interfaces. As we cannot assume 

that service engineers will always refer to the same ontology, 

this is the level where semantic heterogeneities should be 

mediated. We do not address here the topic of ontology 

mediation, for it is already widely covered in the literature 

[19][20]. 

As mentioned above, we deal with XML documents whose 

grammar can be expressed in XML Schema. In valid XML 

documents, instance data values are ultimately carried by leaf 

nodes (i.e., attributes and simple type elements). We 

intentionally ignore mixed content models (i.e., a content 

structure where text data and subelements can be mixed in an 

element), as mixed content is not a best practice for 

interoperability [21]. In our model, Atom entities are used to 

represent leaf nodes and their properties. While some existing 

works [22][23] represent leaf nodes with a minimal set of 

syntactic properties (typically the local or qualified name of 

the XML node), we characterize the atoms with three types of 

properties. Syntactic Properties rely on the basic rules of the 

chosen formatting language (XML), such as the local or 

qualified name. Structural Properties (i.e., the hierarchical 

structure of the message) represent a context for a leaf node. 

Semantic Properties refer to semantic concepts and relations 

that describe an XML node. 

While structural and syntactic similarities could be 

exploited for improving XML document comparison 

techniques [24]     , we assume here that elements with the same 

qualified name, but embedded in different messages, are 

semantically different. The meaning implied by the document 

node could be explicitly conveyed by a concept in a shared 

domain representation (i.e., an ontology). Semantic matching 

for similarities and equivalences may be inferred by reasoning 

on such semantic-level information [20]. 

We call our proposed approach “data-centric” because 

properties of atom data ultimately carried by instance 

messages are considered key entities in the model. Our 

approach is also “lightweight” because we rely on lightweight 

semantic annotations to enhance service descriptions with 

semantic properties. 

We achieve loose coupling by using brokering services that 

exploit the expressiveness of the model. First, we assume that 

the client can invoke a service by sending a request message 

that specifies input parameters and the target output. When the 

Service Broker receives the request message, it interprets it 

and decides whether the client goal data can be obtained by 

using the functional capabilities offered by registered services. 

By exploiting structural and semantic descriptions of 

registered service profiles, the system tries to reach distributed 

target data atoms through dynamically computed “routing 

tables”, starting from the data provided in input. Such “routing 

tables” describe a service invocation sequence that workflow 

engines or clients may execute to obtain the requested data. 

In other words, analogously to existing planning-based 

approaches to service composition [4], we interpret the 

problem of solution search as the problem of finding a graph 

of functional profiles whose input data are known parameters 

within the query, and whose output (message) data contain the 

expected data (goal). Matching input and output data across 

services makes it possible to build a graph of connected 

functional profiles (see Fig. 1). Semantic properties can be 

exploited to connect different atoms referring to the same 

concept or to concepts related by some semantic relations. 

As far as service discovery is concerned, full-fledged 

profiles enable authorized clients to submit complex queries to 

a Service Registry (i.e., by target message, data types, non-

functional properties, and/or semantic annotations). Once an 

 

 
 

Fig. 1.  Service composition through input/output matching 
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endpoint has been retrieved, a service invocation can be 

triggered by creating at run-time an XML message instance 

that is valid according to its structural rules, and then 

delivering it to the service endpoint over the protocol specified 

in the binding information. 

Relying on atom structural and semantic properties enables 

the automation of the following actions for stubless service 

invocation: (i) matching instance data values (available in the 

client request or in response messages of previous invocations) 

with the atoms of the input message; (ii) creating an input 

message whose structure complies with the atoms’ structural 

properties; and (iii) sending the input message over the proper 

communication channel to the target service endpoint. When 

the response message is received, the opposite operations are 

performed: (i) extracting the data values embedded in the 

message; and (ii) finding the proper associations with the 

atoms needed for the subsequent service invocations via 

semantic matchmaking. 

Thanks to these mechanisms, clients can interact via 

message-based passing with a Service Broker and ask for some 

functional capabilities, independently of any interface details 

of the registered services. The Service Broker tries to find a 

solution, which is specified as a composition of service 

invocation and data manipulation operations. Such operations 

can be performed (by the Service Broker or directly by the 

client) via generic mechanisms (e.g., data aggregation and 

message delivery) that can be configured at run-time according 

to the information contained in the service profile.   

Modeling a service as a message processor has the 

advantage of minimizing the requirements on service 

description complexity, as we rely on input/output stateless 

service signatures rather than on complex stateful signatures. 

This assumption limits the range of applicability of our 

planning-based composition approach to information-

providing services that are exposed via stateless service 

signatures, as our message processor model cannot be applied 

to stateful services whose capabilities are described by 

specifying inputs, outputs, preconditions, and effects. This 

limitation does not apply to the dynamic invocation technique, 

which can be used as a utility for stubless service invocation 

by third-party software components. 

IV. SERVICE PROFILE MODEL 

Our Service Profile Model defines modeling primitives for 

representing structural and semantic properties of service 

interfaces. The model is defined in terms of Service Entities, 

which represent functional and structural information of 

service interfaces, and Qualifying Attributes, which extend the 

model with additional properties such as non-functional or 

domain-specific attributes.  

Fig. 2 depicts the main entities and properties of the model 

in the UML class diagram notation. Service Entities represent 

the basic constructs of a functional profile in terms of 

Operations, Messages, and Atoms. An Operation defines the 

functional capability of a service in terms of input/output 

message pairs. A Message is an XML document. An Atom 

represents an XML entity that carries data values in an input or 

output Message. In well-formed Messages, Atoms are XML 

attributes or simple type elements. 

Atoms, Messages, and Operations are identified by a 

Qualified Name (has_qname attribute). An Operation may be 

provided by one or more endpoints (has_endpoint attribute).  

Atoms are the key entities in our model. Each atom is 

characterized by a set of structural information, especially by a 

structural path (i.e., by its position inside the message 

structure). Due to the underlying XML information model, 

atom structural paths identify either element leaves or element 

attributes. The final association of atoms with optional 

semantic properties can be used to link ontological 

annotations to data embedded into each message. 

Fig. 3 shows an example of properties that can be extracted 

from an XML Schema definition for a message document. 

A. Structural Properties 

An Atom is characterized by syntactic information (i.e., its 

qualified name) and two structural properties that specify how 

the atom is embedded in a message: (i) the type attribute, 

which specifies the atom data type (referring to the set of pre-

defined types in XML Schema); and (ii) the 

 
 

Fig. 2.  Service Profile Model 

 

 

 
 

Fig. 3.  Example of atom properties extracted from an XML Schema document 
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has_structuralPath attribute, which specifies the position of 

the atom in the XML document tree by representing the chain 

of parent elements up to the document root and parents’ 

content models. We defined a compact textual notation (called 

Structural Path Model) that encodes these structural 

constraints as a string. 

Our Structural Path Model has some aspects in common 

with XPath [25], but different objectives. The primary purpose 

of XPath is to select nodes in an XML document. According to 

the XPath Data Model [26], XPath uses a path notation based 

on a compact non-XML syntax for navigating the hierarchical 

structure of an XML document. Conversely, our Structural 

Path Model embeds in a compact path notation the information 

needed for performing two tasks: (i) extracting a leaf node 

from an XML document; and (ii) assembling the available 

atoms in an XML document that has been validated against its 

XML Schema specification. The automated execution of these 

tasks is a necessary condition for enabling our mechanism for 

stubless invocation. To this end, a Structural Path Model 

expression specifies structural information that characterizes a 

branch of the XML document tree from the document root 

node to a target leaf node. The Structural Path Model can be 

viewed as a compact notation of the XML Schema 

specification for an XML Atom. The use of the Structural Path 

Model for service invocation is described in Section  VI. 

The grammar of a Structural Path Model expression is 

defined as follows: 

 

<pathExpr> ::= <nodeName> / <order>  

(<atomName> | <pathExpr>) 

<order> ::= “[” [0-9]* “]” 

<atomName> ::= <nodeName> | “@ ” <nodeName> 

 

This grammar includes the following symbols: (i) the 

containment symbol “/” that represents a direct parent-child 

relationship between elements; (ii) the attribute reference 

symbol “@”; (iii) the <nodeName> symbol that represents the 

name of an XML node; and (iv) the ordering symbol “[…]” 

that is used to enforce a sequential order among siblings (the 

square bracket may be empty or contain an integer expressing 

the element ordering). 

A Structural Path Model expression represents solely 

absolute paths. As a consequence, the first node in the path is 

always the root element of the message, and the path 

expression contains the whole hierarchical chain of parent-

child nodes up to the target atom data. An atom structural path 

is thus a sequence of p node names separated by “/”.  

For instance, for 1 < i < p – 1, if nodes ni and ni+l are 

separated by a “/”, then ni+1 is a child element of ni. The two 

expressions ni / [1] ni+1  and ni / [2] ni+2 mean that ni+1 and ni+2 

are siblings and ni+1 must appear before ni+2 in instance 

documents. 

The joint use of the container and ordering symbols enables 

us to express the most relevant structural constraints of XML 

Schema content models: sequence, all, and choice. In the 

sequence content model (i.e., when child elements must appear 

in the instance document in the same order as they are 

declared), the ordering symbol is not empty and is assigned 

with the proper sequential index (see expression (a) in Fig. 4). 

In the choice content model (i.e., when child elements exclude 

each other), the ordering symbols have the same value (see 

expression (b) in Fig. 4). In the all content model (i.e., when 

all elements can occur with zero or one multiplicity and can 

appear in any order), the ordering symbol is left empty (see 

expression (c) in Fig. 4). 

Although it does not fully cover the whole XML Schema 

specification yet, our Structural Path Model does provide 

constructs for representing most of the structural properties 

that are typically encoded in service description files. 

 

B. Semantic Properties 

Semantic properties link service profile entities, especially 

atoms, with concepts defined in a given shared domain 

representation. Semantic properties allow the binding of 

structural atom properties to their intended meaning. 

Relations among atom data can be inferred through semantic 

reasoning. This may help to decouple client and service 

provider interfaces, as differences in message structure and 

syntax may be reconciled at the level of semantics. This may 

also help to define composite services as sequences of service 

invocations, as it is possible to decide whether instance data 

values obtained in a response message can be used to build a 

valid request message for the next service invocation in the 

sequence. 

In our Service Profile Model, the “has_ modelReference” 

property is used to represent references to semantic concepts. 

This type of information can be extracted from semantic 

service descriptions. 

Although alternative models for semantic service 

 

 
Fig. 4.  Examples of Atom Structural Path expressions for XML Schema 

content models: sequence (a), choice (b) , all (c)  
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descriptions exist, such as the Web Service Modeling 

Ontology (WSMO) [27]) and the Web Ontology Language for 

Services (OWL-S) [28], we rely on the Semantic Annotation 

for WSDL (SAWSDL) specification [29] because it is a W3C 

standard for lightweight annotations. SAWSDL extends 

WSDL with annotations pointing to semantics. Software 

systems can thus interpret and process these concept 

representations to automate tasks such as service discovery, 

composition, selection, negotiation, mediation, and invocation. 

C. Qualifying Properties 

Further optional properties (called Qualifying Properties) 

can be added to each input/output message pair to describe the 

non-functional aspects of service operations. For instance, 

Quality of Service (QoS) properties (e.g., availability, 

reliability, and reputation) and domain-specific attributes (e.g., 

geo-referenced information) can be represented as qualifying 

properties. 

V. DYNAMIC SERVICE COMPOSITION 

Dynamic service composition deals with the problem of 

handling a client request by specifying a composite service 

that matches the request’s input and goal data and executing it 

at run-time. 

Planning techniques from artificial intelligence can be 

exploited to find service composition solution plans at run-

time [4]. A planning problem can be represented as a 5-tuple 

(S, S0, G, A, Γ), where S is the set of all possible states of the 

world, S0 ⊂ S denotes the initial state of the world, G ⊂ S 

denotes the goal state of the world, A is the set of actions that 

the planner can perform while attempting to change one state 

to another state of the world, and the translation relation Γ ⊆ S 

× A × S defines the preconditions and effects for the execution 

of each action. When applying these concepts to the service 

composition problem, A represents the set of available 

services; S0 and G are, respectively, the initial and goal states 

provided by the composite service requester; Γ denotes the 

state change function of each service. 

To leverage the expressiveness of our Service Profile 

Model, we represent the service composition problem in a 

STRIPS model – a widely used model for representing 

planning problems. We use the Graphplan algorithm [30]   to 

solve the planning problem (i.e., to verify if the given request 

has a feasible solution in the known domain, and to 

dynamically specify the service invocation flow). We chose 

the Graphplan algorithm for three reasons: it is a well-known 

planning algorithm for which several implementations exist; it 

is guaranteed to terminate when no valid plan exists; and it has 

a polynomial complexity (as opposed to the exponential 

complexity of exhaustive search [31]). 

A. Service Composition Problem as a STRIPS Model 

In this subsection, we describe the STRIPS model defined 

for handling the service composition problem. 

STRIPS operators have preconditions, add-effects, and 

delete-effects that are represented as conjuncts of propositions, 

and have parameters that can be instantiated to objects in the 

world. Preconditions have to be valid immediately before the 

operator is applied. Add-effects and delete-effects are the sets 

of literals added to, or deleted from, the world state after the 

operator ends. An instantiated operator is called an action [32]. 

We use the STRIPS model to represent the profile of 

registered services. To this end, we define three types of 

operators: functional, structural, and semantic operators. 

Functional operators represent service operations (i.e., 

functional capabilities). For each operation, input messages are 

modeled as preconditions, and output messages as add-effects. 

Messages are identified by their fully qualified name. An 

operation is univocally identified by the qualified names of 

input and output messages. The operator type is identified by 

the label invoke_service. 

Structural operators represent structural containment 

relationships between messages and atom data.  We 

distinguish two operator types: the extract operator that 

extracts atom data (add-effects) from the containing message 

(preconditions), and the embed_into operator that links atom 

data (preconditions) to a message (add-effects). For each atom 

to be embedded in or extracted from a message, a specific 

action of type embed_into or extract_from is instantiated. 

Semantic operators encode the semantic properties that 

associate atoms with semantic concepts. These operators act as 

“semantic bridges” that connect different atoms via a common 

semantic concept. By applying semantic matchmaking 

techniques, it is possible to compute different degrees of 

matching between two concepts in an ontology, and 

consequently between output and input atom data in service 

messages. As discussed by Lécué et al. [20], there are five 

possible matching types between the output parameter oi of a 

service si, the input parameter ij of a service sj, and the 

numerical values that express similarity:  

• Exact: if oi and ij are equivalent (similarity value = 1). 

• Plugin: if oi  is sub-concept of ij (similarity value = 0.75). 

• Subsume: if oi is a super-concept of ij (similarity value = 

0.5). 

• Intersection: if the intersection of oi and ij is satisfiable 

(similarity value = 0.25). 

• Disjoint: oi and ij are incompatible (similarity value = 0). 

Techniques that exploit all these semantic matchmaking 

degrees can dynamically infer meaningful service 

compositions that are rarely executable, due to unsolved 

structural and syntactic mismatches between XML messages 

[20]. Semantic relationships other than the equivalence (e.g., 

similarity or subsumption) may help to find abstract solution 

plans, but do not provide clear and safe hints for executing 

concrete solution plans. When several types of semantic 

relationships can be defined, we rely exclusively on the Exact 

matching degree. Thus, we use a single is_equivalent_to 

operator for binding atom data to their corresponding semantic 

concepts, as well as concepts to other equivalent concepts. In 

other words, we rely on an exact semantic equivalence in order 

to enable the transfer of a data value from one atom to another, 
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as required when actually executing the service invocations 

flow. 

B. Graphplan 

Graphplan is a general-purpose planner that was proposed 

by Blum and Furst [30] to provide an effective way of building 

plans in STRIPS domains. The Graphplan algorithm compiles 

the problem into a structure called a planning graph. The 

planning graph is created in a forward direction from the initial 

conditions, and then expands itself one level at a time until a 

solution is found.  

The first level contains the initial conditions. Each 

subsequent level has a node for each action that might possibly 

be performed (i.e., whose pre-conditions all exist in the 

previous level). At each level, the algorithm checks whether 

the propositions in the goal are all present at the current level. 

In that case, the algorithm searches for a valid plan in a 

backward-chaining manner.  

A plan is valid if it satisfies the following conditions: the 

actions at the same level do not interfere (e.g., when an action 

deletes a precondition or an add-effect of another action); each 

action’s preconditions are true at that point in the plan; and 

goals are satisfied at the end of the plan. If no valid plan exists 

at that level, the planning graph is expanded by adding another 

level.  

When a solution is found, the Graphplan ends its search and 

returns the shortest feasible sequence of actions required to 

meet the goal. The Graphplan is guaranteed to terminate with a 

solution if a valid plan exists, or with no plan if the problem is 

unsolvable  [30]. 

C. Dynamic Service Composition 

The dynamic service composition process is threefold. First, 

the client request message is analyzed in order to extract input 

data and expected goals. In this step, semantic annotations 

embedded in the request message may be used to translate 

client request into concepts expressed in shared ontologies. 

Second, the problem specification is translated into a STRIPS 

model and forwarded to the planner. Third, if a feasible 

solution exists, the planner returns the specification of the set 

of invocations to be performed; otherwise it terminates after a 

finite number of steps, concluding that no solution exists. 

Fig. 5 depicts a basic example in the application domain of 

maritime surveillance. The client wants to gather possible 

threats close to a given vessel (e.g., unidentified vessels 

nearby). The request message is thus made of two parts: the 

input parameters (the URLs for the ship identifier and the time 

interval concepts in a given ontology), and the output (the 

URL pointing to the unrecognized target concept). The 

solution plan depicted in Fig. 5 is a flow made of structural, 

semantic, and functional operators. The vesselIdentifier 

concept is mapped onto an atom (vesselId) via the 

equivalent_to operator. This atom and its value are embedded 

in a proper XML message (VesselPositionRequest) to invoke 

the service returning the position of the vessel. Similarly, 

position and time interval information is used to invoke a 

service returning the list of threats detected in a given area, 

including unidentified vessels. Although concepts, messages, 

and atoms are identified by fully-qualified names and 

Structural Path Model expressions, we use abbreviations in 

Fig. 5 to keep it readable. 

VI. DATA-CENTRIC DYNAMIC INVOCATION 

This section describes our mechanism for dynamic stubless 

invocation based on the Service Profile Model.  

We exploit the expressiveness of our Service Profile Model 

to define an automated process for run-time message creation 

and analysis. The mechanism for run-time service invocation 

consists in (i) dynamically creating an instance of an XML 

request message, and (ii) sending the message to the service 

endpoint address over the proper transport protocol. 

The structural properties for a given atom specify the 

structural constraints and rules that characterize the XML 

message part containing that atom. These properties are used 

to assemble/disassemble atoms in/from messages at run-time. 

As shown in Fig. 6, the invocation flow of a composite service 

is thus a sequence of operations for extracting atom values 

from response messages of invoked services (e.g., si and sj 

services), and embedding them into valid XML messages for 

subsequent invocations (e.g., sk). The former step is 

implemented through a Document Analyzer algorithm, as 

 

 
Fig. 5. Example of a service composition flow 
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detailed hereafter. The latter step is based on a Document 

Builder algorithm. 

The Document Builder takes as input a list of atom 

structural paths and associated input data values, and gives as 

output an XML document whose structure complies with the 

structural paths and that properly embeds input data values. 

 

 
Input data values are gathered from client requests or from 

response messages of previous invocations. The association 

between each input data value and the proper structural path is 

made by relying on equivalences implied by semantic 

properties. This pre-processing step is performed before 

invoking the Document Builder function. 

For each pair (structural path, instance atom value), the 

algorithm first builds a string, named instanceAtomKey, which 

provides a flat textual representation of the sub-tree of the 

instance document containing that atom. The instanceAtomKey 

expression is based on a textual notation that is similar to the 

Structural Path Model. While the Structural Path Model 

represents structural constraints of XML Schemas (i.e., 

document templates), this notation represents structural 

constraints in instance documents (e.g., the ordering symbol 

represents the exact position of nodes that carry actual values 

in an instance document). During this step, two constraints are 

checked: the multiplicity of atom instances and the atom data 

type. 

The first step of the document generation process consists in 

creating the root node. Then, the algorithm analyzes each 

instanceAtomKey to progressively create a subtree that is 

appended to the root node. 

Each subtree is created by analyzing the instanceAtomKey 

string from left to right (i.e., from the root up to the leaf 

nodes). For each node name, the algorithm calls a createNode 

operation, which creates the node (if it does not already exist) 

and adds it to the parent node. The operation is invoked for 

each extracted node name up to a leaf node, which finally 

embeds the target value. Fig. 7 shows how this approach can 

be applied to some example input data. 

The Document Analyzer takes as input an XML document 

(i.e., the response message obtained by a service invocation) 

and the structural paths for the atoms of that message type 

maintained in the Service Registry. It returns a set of pairs 

(value, structural path) that bind embedded response data 

values to the corresponding atom data structural paths. For 

each structural path, the algorithm implements a recursive 

search in the XML document from the root to the leaf node 

that embeds a target value. The given value is then extracted 

and associated to the structural path. The rest of our Document 

Analyzer algorithm exploits structural path information in a 

way similar to an XPath traversal on the document. 

VII. PROTOTYPE 

In order to validate the effectiveness of our Service Profile 

Model in enabling dynamic service composition and 

invocation in a working environment, we developed a 

prototype that serves as a proof of concept. This prototype 

exploits and extends the capabilities provided by a middleware 

infrastructure, the Service and Application Integration (SAI) 

system, developed in our research laboratory [33][34]. SAI is 

written in Java and implements many SOA principles and 

design patterns. It was conceived as a set of components that 

can be configured, assembled, and extended in different 

deployment configurations. It enables message exchanges 

across environments characterized by managerial and 

technological heterogeneity. The current implementation of the 

messaging infrastructure is powered by ActiveMQ [35], one of 

the leading open-source implementations of the Java Message 

Service specification (JMS) [36]. 

Fig. 8 shows the reference architecture for our prototype. 

The Service Registry is the SAI component that stores the 

profiles of registered services and exposes a set of APIs for 

service registration and lookup. In the registration phase, the 

 
Fig. 6. Atom data extraction and insertion for dynamic invocation 

 

 
Fig. 7.  Mechanism for run-time document creation. 
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Service Registry parses the service interface descriptions to 

generate an internal representation according to the Service 

Profile Model. At present, the system can interpret service 

descriptions written in WSDL and XML Schema. Semantic 

annotations for data atoms can be specified through SAWSDL 

annotations or SAI-specific XML files. The logic for WSDL 

and XML Schema parsing and the generation of structural 

properties are based on the XML Schema Object Model 

(XSOM)  [37], which is the only general-purpose Java schema 

parser available to date (to the best of our knowledge). 

Registration is not restricted solely to services whose interface 

complies with the WSDL specification. External systems may 

also be accessed through customized Adaptor components that 

expose message-based interfaces [33]. 

Our Service Profile Model is expressed using the Web 

Ontology Language (OWL) [38]. We chose OWL because it is 

an expressive language with well-defined semantics and it is a 

W3C Recommendation. Registered service profiles are 

maintained in a knowledge base that was implemented using 

JENA, an open-source semantic framework in Java [39]. We 

adopted the Jena TDB triple-store storage system because it 

greatly facilitates the persistence of functional profiles. 

The Composition Engine includes a STRIPS model builder 

that parses the functional profiles maintained in the SAI 

Service Registry for creating the corresponding STRIPS 

operators. The planner is based on a refactoring of PL-PLAN, 

an open-source Java library that implements the Graphplan 

algorithm [40]. Our extensions add support for caching 

computed plans and speed up client request handling by 

quickly identifying known-unsolvable planning problems. This 

component can easily be extended to integrate other planners. 

The Plan Interpreter translates the plans produced by the 

Composition Engine into executable actions. More 

specifically, the Plan Interpreter offers two main features. 

First, Endpoint Selection implements a QoS optimization 

algorithm for selecting endpoints while maximizing an 

objective function depending on a set of quality attributes, as 

described in [41]. Second, Plan Interpretation translates the 

operators of the STRIPS model into executable actions 

according to the adopted service invocation strategy. 

Dynamic stubless service invocation on a specific target 

endpoint is handled by two components. The Data-Centric 

Document component implements the Document Builder and 

Document Analyzer algorithms, based on the Java-based 

Document Object Model for XML (JDOM) [42]. The Delivery 

Channel offers a uniform and general-purpose message-

handling interface for handling client interactions with the SAI 

system. The Delivery Channel can be configured by adding 

and removing pre- and post-processing interceptors. At 

present, the Delivery Channel supports request-response and 

one-way communication over the HTTP and JMS protocols. 

The capabilities offered by the Data-centric Document and 

Delivery Channel components can be exploited to invoke 

services at run-time.  

Analogously, this mechanism can be exploited to execute 

composite services by leveraging a workflow engine. We 

chose to use the jBPM process engine [43] rather than other 

available open-source solutions (e.g., JOpera [44] or Enhydra 

Shark [45]) because it is well-documented and stable. In order 

to automate the actions defined in the composition plan, we 

defined four custom jBPM activities, one for each type of 

STRIPS operator: Embed Activity, Extract Activity, 

Equivalence Activity, and Invoke Activity. 

VIII. EXPERIMENTS 

In this section, we present the results of the experiments that 

we carried out to evaluate the performance of our composition 

and invocation mechanisms. 

Our testing environment included the JUnit 4.7 testing 

framework and the Eclipse 3.6 Helios development 

environment. Tests were run on a PC equipped with an Intel 

Core 2 Duo processor (2.4 GHz) and 4GB DDR2 RAM. 

First, we defined a set of test cases to measure the 

computational time needed by the dynamic composition 

mechanism to handle a composition request. These test cases 

were defined by varying the number of registered services and 

the number of associated semantic concepts, as shown in Table 

I. We defined three types of request (see Table II). Each 

request type has an expected solution with a given number of 

services and depth (i.e., the number of levels, where each level 

contains one or more services that can be invoked 

independently). For example, Fig. 9 shows the expected type 

of solution for request s1. Test cases were populated with a set 

of services designed ad hoc for matching the expected 

solutions, and a second set of non-matching services further 

populating the Service Registry. 

TABLE I.  TEST CASES 

Service Registry 

Population (number of 

registered services) 

Number of 

Concepts 

20 200 

40 400 

70 600 

100 800 

 

 
Fig. 8.  Proof of concept 
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TABLE II.  COMPOSITION REQUESTS 

Request Type # Services # Levels 

s1 4 3 

s2 7 5 

s3 10 7 

 

The results of our tests are presented in Fig. 10. Our 

measurements illustrate the polynomial complexity of the 

Graphplan algorithm in the number of registered services. This 

was expected because the time complexity of the planning 

graph creation is known to be polynomial in the number of 

propositions and actions  [30]. 

For the dynamic invocation mechanism, we estimated the 

time needed for building XML documents at run-time. This 

action is performed by an instance of the Data-Centric 

Document component. Input data are provided and processed, 

then the document creation is triggered. We adopted two 

performance metrics. First, the Pre-processing Time is the 

time needed to process the input data values and structural 

path expressions, in order to build a suitable representation of 

structural constraints for the target instance document (i.e., the 

instanceAtomKey expression mentioned in subsection VI-A). 

This step can be compared to the instantiation of an in-memory 

object representation of XML Schema types in most common 

service invocation frameworks (e.g., Apache WSIF , Apache 

Axis 2, and Java API for XML-based Web Services). Second, 

the Document Building Time is the time needed for actually 

creating the XML document, based on a JDOM representation. 

It may be viewed as a serialization time, i.e., the time needed 

to convert an in-memory object into an XML stream in most 

common service invocation frameworks (such as the ones 

mentioned above). 

We performed several test iterations by varying the type of 

input data, to observe the behavior of the system when the 

message size increased. This increase in the message size was 

steered by providing an increasing number of input atom 

instances. We also varied the message tree-based structure by 

changing the nesting depth of the document tree. Figs. 11 and 

12 depict the results that we collected. Both operations show 

an average time complexity of O(n log n). 

IX. RELATED WORK 

In this section, we discuss related work in the areas of 

dynamic service selection, composition, and invocation. 

A. Service Composition and Selection 

Several works on dynamic service composition exploit 

classic planning techniques from artificial intelligence [4]. As 

proposed by McIlraith et al.  [46], planning-based solutions can 

be classified by the type of actions in such systems: (i) world-

altering actions that change the state of the world, or (ii) 

information-providing actions that change the agent’s state of 

knowledge.  

 

 
Fig. 9. Expected solution for request s1 

 

 
Fig. 10.  Execution time for service composition 

 

 
 

Fig. 11.  Execution times for the pre-processing step 

 

 
Fig. 12.  Execution times for the document building step 
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In this paper, we focus on the approaches dealing with 

information-providing services. Zheng and Yan [22] model the 

composition of services as a syntactic matching problem, 

where the output parameters of a Web Service can be used as 

the input parameters of another Web Service. They exploit the 

planning model and a backward search algorithm for 

generating final solutions. They also enhance these classical 

approaches with four strategies for pruning redundant Web 

Services. Hewett et al. [23] compose services based on a state-

space search model. A state represents a set of input 

parameters for services that can be added to the composition 

under construction. Each transition from one state to another 

represents an invokable service. They apply a depth-first 

search technique to find a solution path from an initial state to 

the goal state, and then a mechanism for pruning unnecessary 

Web Services. 

Our approach is similar to these two approaches in so far as 

we construct a planning graph to solve an input/output 

matching problem (i.e., a chain of services is built by using the 

output parameters of a service as the input parameters of 

another service). While the above-mentioned works only rely 

on syntactic matching, our approach exploits structural and 

semantic matching as well. More specifically, Zheng and Yan 

[22] and Hewett et al. [23] assume that the messages are 

defined as a sequence of simple type elements, i.e., messages 

are defined in the WSDL description file (in the WSDL 

<message> element) as a collection of WSDL <part> elements 

declared as XML Schema simple types. Such an assumption 

makes it difficult to process real-world services whose 

interfaces may be described using different WSDL styles [47]. 

For instance, the message content may also be defined in the 

<types> element section of the WSDL document, usually by 

means of XML Schema constructs. This style allows for a 

more flexible specification of the message structure (e.g., 

complex types). Our Service Profile Model uses the Structural 

Path Model to represent these XML Schema constructs 

through structural operators, which are then exploited in the 

matching problem.  

Planning-based approaches have been enhanced with 

semantic-based service specifications to enable semantic-based 

matchmaking and reasoning tasks on service contracts. Many 

people adopted rich semantic services models, especially 

OWL-S [28] and the Web Service Modeling Ontology 

(WSMO) [27]. Examples of approaches adopting OWL-S 

specifications and planning algorithms are presented by 

Akkiraju et al. [48] and Agarwal et al. [49]. Works based on 

WSMO for service discovery, composition, and invocation 

include the Web Service eXecution Environment (WSMX) 

[50] and IRS-III [51]. 

Both OWL-S and WSMO specify a top-down approach to 

semantic Web Services. They assume that a service designer 

first models the semantics of services, and then specifies 

grounding information. Kopecky and Vitvar [52] showed that 

this type of approach is not easily applicable to enterprise 

scenarios where many services are available. In order to cope 

with these issues, bottom-up approaches for semantic Web 

Services are gaining increasing interest. In this direction, the 

World Wide Web Consortium published the Semantic 

Annotations for WSDL and XML Schema Recommendation 

(SAWSDL) [29]. More recently, WSMO-Lite was proposed as 

a lightweight service ontology that defines semantic Web 

Service descriptions; it was published as a formal request to 

W3C for discussion [53]. WSMO-Lite specification activities 

have been mainly carried out within the SOA4All European 

Project [54]. Moreover, within that project, lightweight 

semantic service specifications were adopted for the design 

and implementation of iServe, a registry platform for 

publishing semantic annotations of services of different types 

(e.g., REST or Web Services APIs) with annotations in 

different formalisms (e.g., OWL-S or WSMO-Lite) [55]. This 

approach is based on a common model for service description, 

the Minimal Service Model (MSM), which is a simple RDF(S) 

ontology providing a minimal and conceptual model that 

captures the semantics of WSDL and RESTful services. 

While our prototype implementation relies on WSDL and 

SAWSDL specifications, our approach can in principle 

support different description formalisms, thanks to our Service 

Profile Model. This model is similar to the Minimal Service 

Model proposed by Pedrinaci et al. [55] in that it represents a 

minimal common abstraction for service interface models. 

Pedrinaci et al. [56] also exploited the Minimal Service 

Model to build service matchmaking techniques. Service 

matchmaking techniques encompass two steps: i) matching a 

given service request with the description of registered 

services according to one or more metrics; and ii) ranking the 

services according to the measured degree of semantic 

relevance [57].  

Several matchmaking algorithms have been proposed to 

support SAWSDL-based service discovery. Most approaches 

calculate different similarity metrics and aggregate available 

measures into an overall similarity value used for service 

ranking. SAWSDL-MX2 [58] computes three types of 

matching: logical, text, and structural similarity. It adopts a 

Support Vector Machine (SVM) for the optimally weighted 

aggregation of these different matching metrics. URBE [59] 

calculates text and structural similarity values, and then uses a 

weighted aggregation scheme for service ranking.  SAWSDL 

iMatcher [60] supports syntactic and semantic matching, as 

well as statistical models for aggregating different matching 

measures. Analogously to these SAWSDL matchmakers, our 

solution adopts an input/output model for describing services, 

rather than a full (Input, Output, Preconditions, and Effects) 

profile. We thus sacrifice expressivity in order to reduce the 

costs required for rich semantic service descriptions. The 

objective of a service matchmaker is to return a ranking list of 

relevant services to the requestor, and eventually information 

that allows direct interaction with providers [57]. It does not 

handle the composition and execution of services, as our 

solution does. 
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B. Service Invocation 

Dynamic service invocation can be defined as the capability 

of a system to bind to a service and invoke one of its offered 

operations at run-time [13]  . In practice, service invocation is 

usually performed by making reference to a stub (i.e., a local 

proxy that offers a local interface of the remote service). 

In the Semantic Web research community, dynamic 

invocation has been often treated as a problem of mediation 

across client and service APIs by reconciling heterogeneities 

among service signatures. Semantic Web technologies were 

applied by Nagano et al. [61] and Lin et al. [62] to identify 

similarities across service signatures and build translation 

layers among similar service interfaces. Although they reduce 

the need for reprogramming client interfaces, these semantic-

based approaches do require a pre-processing step of 

programmatic binding to a reference service interface for 

generating a stub. Conversely, our approach implements a 

generic, extensible, and truly stubless invocation mechanism 

that is steered at run-time by structural and semantic properties 

of the target services. 

Several tools provide capabilities for late binding to Web 

Services interfaces (e.g., Apache WSIF [8], Apache Axis 2 

 [9], Codehaus XFire  [10], Apache CXF [11], and Java API for 

XML-based Web Services [12]). These solutions typically 

support dynamic invocation by means of dynamic proxying 

capabilities (e.g., the DynamicInvoker in WSIF and the 

javax.xml.ws.Dispatch client in JAX-WS). However, as argued 

by Buhler et al. [13], these toolkits “are incapable of handling 

complex types returned from the invoked service. This 

limitation is due to the fact that the returned data must be 

unmarshalled from the SOAP message, which in Java is not 

possible without having a compatible class that implements 

the serializable interface”. This means that the client code 

must include an internal representation of XML data types that 

has to be generated at design time in order to meaningfully 

exploit the information returned upon service invocation. For 

instance, Java-to-XML binding libraries, such as the Java 

Architecture for XML Binding (JAXB) [63] and XMLBeans 

[64], can be exploited to this purpose. More specifically, 

Buhler et al. [13] pointed out the following weaknesses in 

existing solutions: i) dynamic invocation is supported only for 

Web Services whose message structure does not include 

complex data types; ii) the handling of complex data types 

requires a preprocessing step that generates an internal 

representation of XML data in the specific programming 

language (e.g., Java classes); and iii) the client code is highly 

dependent upon specific toolkit APIs. 

Buhler et al. [13] solved the latter problem by proposing a 

Composite Pattern for Web Service Invocation that combines 

two design patterns (the Bridge and Factory Method patterns 

 [65]) for decoupling the service client code from peculiarities 

of specific concrete service interfaces and service invocation 

technologies. Leitner et al. [5] focused on the first problem by 

proposing the Dynamic and Asynchronous Invocation of 

Services Framework (Daios). Daios is a message-based service 

framework that allows clients to invoke remote services 

through a message-based stubless interface. The client request 

is handled by the Daios framework: Daios chooses to invoke 

the service interface whose input message has the lowest 

structural distance metric to the provided data; the framework 

then converts the client request data into the encoding 

expected by the service (e.g., a SOAP message), and launches 

the invocation using a proper service stack. However, Leitner 

et al. do not provide details about service registration and 

discovery in Daios, and both approaches [5][13] require a 

preprocessing step to compile the target service description 

into compatible Java classes. To this end, Leitner et al. 

adopted the XMLBeans library, and Buhler et al. the Java 

Record Object Model (JROM) [66]. Conversely, our work 

implements a message-oriented invocation library that allows 

clients as well as brokers to perform dynamic stubless 

invocations. Structural path expressions enable a generic 

mechanism for the run-time generation of XML messages that 

contain simple and/or complex type elements. The proposed 

dynamic invocation library is not strictly bounded to SOAP or 

to HTTP. This generic mechanism for message building and 

analysis can be instructed at run-time to bind to a service 

interface, without generating data type representations in 

specific programming languages. 

X. CONCLUSION 

In this work, we have proposed a lightweight and data-

centric approach for achieving loosely coupled interactions 

among Web Service providers and consumers, via dynamic 

composition of services and automatic run-time binding to 

service endpoints. Our approach relies on a Service Profile 

Model that represents common aspects of service descriptions. 

In this model, leaf nodes in XML documents are considered 

first-class entities, as they contain data values in instance 

messages. We showed how, by means of semantic and 

structural properties that can be extracted at run-time from 

XML schema, WSDL, and SAWSDL description files, 

mechanisms for run-time service composition and stubless 

invocation have been successfully built into a prototype. 

In the future, it would be useful to extend the proposed 

approach with ontology mediation techniques that support 

matching and transformation operations between XML 

elements and semantic concepts, or concept hierarchies (e.g., 

by lifting and lowering schema mappings in SAWSDL 

specifications). This would alleviate the need for fine-grained 

annotations of message and type definitions in service 

interface descriptions. Another direction for future work would 

be to extend the proposed approach to support REST-style 

invocations and lightweight semantic annotations (e.g., 

Semantic Annotations for REST [67] and MicroWSMO [68]) 

and to adopt data formats other than XML (e.g., JSON). 
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