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Abstract

The electrostatic potential at the nucleus is here calculated using

the quantum Monte Carlo method. Both variational and diffusion-

type data are presented for four different isoelectronic series of atomic

ions, namely He, Li, Be and B. These results are then utilized to eval-

uate the ground-state energies of such atomic ions.
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1 Introduction

Early work of Foldy [1] was important in emphasizing an intimate correla-

tion between the ground-state energy of neutral atoms of nuclear charge Ze,

namely E(Z), and the electrostatic potential created by the electrons, de-

noted as V0 below, evaluated at the assumed point nucleus. Before Foldy’s

study, such a correlation could be extracted analytically from the Thomas-

Fermi (TF) semi-classical theory, beginning with the ground-state energy

E(Z) of neutral atoms having nuclear charge Ze derived by Milne [2]. His

result was explicitly

E(Z) = −0.7687Z7/3 e
2

a0
: a0 =

h̄2

me2
. (1)

The electron-nuclear potential energy Uen in the TF model is also known

(see, for example, [3]) to be given by

Uen(Z) =
7

3
E(Z) . (2)

But on physical grounds, Uen(Z) is simply the interaction energy of the charge

Ze sitting in a potential V0, ie

Uen(Z) = ZeV0 . (3)

Hence, using Eq.(3) in Eq.(2), the desired correlation is expressed by

V0(Z) =
7

3

E(Z)

Ze
= −1.79Z4/3 e

a0
(4)

which is the precise semi-classical (non-relativistic) prediction for neutral

atoms. Unfortunately, the self-consistent TF ground-state density nTF (r)

has two truly major difficulties: (i) it is infinite at the assumed point nucleus,

being singular as r−3/2, and (ii) the decay at large r is not exponential but

has the much longer ranged r−6 form.

Politzer and Parr [4] proposed a generalization of Eq.(4) to read (see also

Politzer chapter in Ref. [3] and Politzer et al [5])

E(Z,N) =
∫ Z

0

V0(Z
′) dZ ′ . (5)
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However, it is now known that as Z ′ is varied through an isoelectronic series of

atomic ions with N electrons, there is a critical (non-integral) atomic number,

say Zc(N), at which, on further infinitesimal reduction, one electron ionizes,

sometimes referred to, somewhat loosely, as a ’phase transition’. Hence, we

shall rewrite Eq.(5) in our present study as

E(Z,N) = E(Zc, N) +
∫ Z

Zc

V0(Z
′) dZ ′ . (6)

Obviously V0 to be inserted in Eq.(6) is the central tool of the present work

and this is naturally to be determined from the ground-state electron density

n(Z,N ; r) through the isoelectronic series of atomic ions with N electrons.

It is relevant at this point to emphasize that, at least in principle, E(Z,N)

is determined solely by the ground-state electron density n(Z,N ; r), through

the Hohenberg-Kohn theorem [6]. Unfortunately, the functional E[n(r)] re-

mains unknown, and we bypass this fact here by invoking quantum Monte

Carlo (QMC) calculations for the appropriate range of Z ′ to very accurately

evaluate numerically the integral appearing in Eq.(6).

With this as background, we turn immediately to present the QMC results

to insert into Eq.(6).

2 Computational details

As the variational Monte Carlo (VMC) wave function for the atomic ions,

we employed a spin-free Slater-Jastrow form of the type

Ψ(r1, r2...) = Φ(r1, r2, ...)J(r1, r2, ..., r12, ...) . (7)

The determinantal component is given by

Φ =
∑
k

D↑
kD

↓
kdk (8)

where D↑
k and D↓

k are the Slater determinants written in terms of occupied

orbitals of spin-up and spin-down electrons, respectively, and dk are the mix-

ing coefficients. The Jastrow correlation factor is the exponential of the sum
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of three contributions which are functions of electron-nuclear (e-n), electron-

electron (e-e), and pure three-body mixed e-e and e-n distances[7]. In all

cases, we used a many determinant wave function with a flexible Slater-type

basis set. We optimized all parameters at the VMC level in energy minimiza-

tion and we performed the diffusion Monte Carlo (DMC) calculation with a

time step of 0.05 a.u.

3 Discussion of results

We record in Tables 1-4 results for the ground-state energy E and for V0 from

QMC calculations. Both VMC and DMC are here utilized, for N = 2 to 5

(He- to B-like isoelectronic series of atomic ions). V0 values for the neutral

atoms from VMC and DMC are in pretty good agreement. In particular for

the B neutral atom V0 values are –11.41(1) and –11.39(1) Hartree for VMC

and DMC respectively. The electron-nuclear potential energies Uen corre-

sponding to these values follow from Eq.(3) for the neutral B atom as –57.07

and –56.95 Hartree. Uen/E = 2.316 and 2.310, these ratios being somewhat

smaller than the TF prediction of 7/3 in Eq.(2). In the customary language

of DFT, the ground-state energy E and the universal density functional F ,

on the minimum, are related by

E = F + Uen . (9)

Hence for VMC, for neutral B, F = 32.43 Hartree compared with F = 32.30

Hartree for DMC. We anticipate that the DMC value for F will be somewhat

more accurate than that from the variational approach. If T denotes the total

kinetic energy including correlation kinetic energy, then the virial theorem

would give as a useful approximation T = −E, in each case.

As to the ground-state density at the nucleus, n0 say, this is not an

easy quantity to calculate accurately from QMC, though it is, in essence,

an observable via the Mössbauer effect. However, Figure 1 shows our rough

estimates for n0 from QMC. Apart from statistical error, our values are in

agreement with literature data for neutral atoms [8, 9, 10, 11].
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In Table 5 we show, for comparison, the separate magnitudes of the two

terms on the right-hand-side (RHS) of Eq.(6) together with the total energy

E(Z,Z) for neutral atoms. It is important here to make contact with the

fairly recent work of Politzer et al [5]. These authors, however, did not inte-

grate V0(Z
′, N) from the critical value Zc(N) to Z, but from a chosen value

of Z ′, namely N−1. It was the existence of Zc, at which V0 is continuous, but

non-analytic, which prompted us to separate into the form of Eq.(6). Politzer

et al analyzed a larger interval of nuclear charges. For the four neutral atoms

of the present study, their results show an energy which is about 0.2 Hartree

lower then the exact one. In our case, as shown in Table 5, the discrepancy

is much lower, ranging from 0.0002 Hartree for He to 0.01 Hartree for B. It

should be noted that they used the B3PW91 functional to compute V0 while

here we use QMC.

It is worthy of note then that one could view Eq.(6) as a formally exact

summation of the 1/Z expansion[12] to all orders for the difference energy

E(Z,N)−E(Zc, N). Unfortunately, so far no known exact analytic formula

exists for Zc(N), though Cordero et al [13] give an empirical fit over a re-

stricted range of N . Also the inequality (see, for example, [14])

N − 1 ≥ Zc(N) ≥ N − 2 (10)

is well established.

In summary, the main achievement of the present work is to exhibit ex-

tensive QMC calculations for four isoelectronic series of light elements. These

are finally utilized to determine the ground-state energies E(Z,N) of such

ions from Eq.(6).
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Z E(VMC) err V0(VMC) err E(DMC) err ZV0(DMC) err
0.88 -0.38517 0.00001 -0.8925 0.001 -0.38548 0.00001 -0.7867 0.002
0.89 -0.39398 0.00001 -0.9056 0.001 -0.39452 0.00001 -0.7991 0.002
0.90 -0.40306 0.00001 -0.9146 0.001 -0.40347 0.00001 -0.8213 0.002
0.905 -0.40784 0.00001 -0.9178 0.001 -0.40800 0.00001 -0.8270 0.002
0.907 -0.41029 0.00001 -1.1545 0.002 -0.41042 0.00002 -1.0189 0.002
0.91 -0.41378 0.00001 -1.1563 0.002 -0.41380 0.00002 -1.0349 0.002
0.911 -0.41495 0.00001 -1.1579 0.002 -0.41494 0.00002 -1.0427 0.002
0.9113 -0.41528 0.00001 -1.1589 0.001 -0.41524 0.00002 -1.0533 0.002
0.9115 -0.41559 0.00001 -1.1553 0.001 -0.41550 0.00002 -1.0452 0.002
0.912 -0.41598 0.00001 -1.1609 0.001 -0.41611 0.00002 -1.0614 0.002
0.915 -0.41957 0.00001 -1.1667 0.001 -0.41963 0.00002 -1.0756 0.002
0.92 -0.42547 0.00001 -1.1853 0.001 -0.42550 0.00002 -1.0845 0.002
0.93 -0.43743 0.00001 -1.2097 0.001 -0.43744 0.00002 -1.1244 0.002
0.96 -0.47479 0.00001 -1.2827 0.001 -0.47478 0.00002 -1.2307 0.002
1.00 -0.52773 0.00001 -1.3602 0.001 -0.52771 0.00002 -1.3655 0.002
1.10 -0.67475 0.00001 -1.5713 0.001 -0.67476 0.00002 -1.7379 0.002
1.30 -1.02980 0.00001 -1.9737 0.001 -1.02989 0.00002 -2.5669 0.003
1.50 -1.46519 0.00001 -2.3765 0.002 -1.46534 0.00002 -3.5699 0.004
1.70 -1.98061 0.00001 -2.7767 0.002 -1.98074 0.00002 -4.7168 0.005
1.95 -2.73736 0.00001 -3.2749 0.003 -2.73742 0.00002 -6.4033 0.006
1.98 -2.83657 0.00001 -3.3334 0.003 -2.83657 0.00002 -6.6097 0.007
2.00 -2.90364 0.00001 -3.3776 0.003 -2.90373 0.00004 -6.7484 0.007
2.01 -2.93757 0.00001 -3.4024 0.003 -2.93757 0.00003 -6.8330 0.007
2.03 -3.00590 0.00001 -3.4328 0.003 -3.00588 0.00003 -6.9968 0.007
2.05 -3.07503 0.00001 -3.4745 0.003 -3.07509 0.00003 -7.1379 0.007
2.10 -3.25133 0.00001 -3.5759 0.003 -3.25133 0.00004 -7.5318 0.008
2.30 -4.00664 0.00002 -3.9701 0.003 -4.00674 0.00003 -9.1471 0.008
2.65 -5.52082 0.00002 -4.6765 0.003 -5.52087 0.00003 -12.3791 0.009
3.00 -7.27989 0.00001 -5.3803 0.004 -7.27990 0.00003 -16.1282 0.0010
3.50 -10.21775 0.00001 -6.3776 0.005 -10.21780 0.00004 -22.3467 0.0017
4.00 -13.65555 0.00002 -7.3775 0.006 -13.65562 0.00005 -29.5164 0.0020
5.00 -22.03087 0.00003 -9.3803 0.007 -22.03134 0.00010 -46.8642 0.0027

Table 1: Quantum Monte Carlo results for the electrostatic potential at the
nucleus for the He-like series of atomic ions for some thirty values (mostly
non-integral) of nuclear charge Ze.
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Z E(VMC) err V0(VMC) err E(DMC) err ZV0(DMC) err
1.95 -2.73407 0.00001 -3.3204 0.002 -2.73597 0.00001 -6.4446 0.002
2.01 -2.93414 0.00004 -3.4207 0.002 -2.93757 0.00001 -6.8702 0.002
2.05 -3.07421 0.00003 -3.5127 0.002 -3.07612 0.00001 -7.2125 0.002
2.10 -3.25455 0.00002 -3.6534 0.002 -3.25508 0.00001 -7.6669 0.002
2.30 -4.03046 0.00004 -4.1283 0.003 -4.03236 0.00006 -9.5009 0.003
2.50 -4.90202 0.00003 -4.5836 0.003 -4.90269 0.00003 -11.4711 0.002
2.70 -5.86398 0.00003 -5.0385 0.003 -5.86469 0.00002 -13.6113 0.002
2.81 -6.43108 0.00004 -5.2894 0.004 -6.43253 0.00002 -14.8618 0.002
2.84 -6.59192 0.00002 -5.3555 0.004 -6.59216 0.00002 -15.2186 0.002
2.845 -6.61868 0.00002 -5.3647 0.004 -6.61900 0.00002 -15.2732 0.002
2.85 -6.64559 0.00002 -5.3799 0.004 -6.64584 0.00002 -15.3327 0.002
2.855 -6.67250 0.00002 -5.3917 0.004 -6.67276 0.00002 -15.3879 0.002
2.86 -6.69947 0.00002 -5.3918 0.004 -6.69974 0.00002 -15.4451 0.002
3.00 -7.47779 0.00002 -5.7200 0.004 -7.47810 0.00002 -17.1661 0.003
3.50 -10.61908 0.00002 -6.8491 0.005 -10.61971 0.00003 -23.9474 0.004
4.00 -14.32433 0.00004 -7.9774 0.005 -14.32527 0.00010 -31.8723 0.0015
5.00 -23.42402 0.00006 -10.2136 0.007 -23.42581 0.00016 -51.1051 0.0020

Table 2: QMC results for Li-like isoelectronic series of atomic ions for about
20 values of fractional nuclear charge Ze.
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Z E(VMC) err V0(VMC) err E(DMC) err ZV0(DMC) err
2.81 -6.42351 0.00003 -5.3520 0.004 -6.42963 0.00007 -14.9583 0.005
2.84 -6.58742 0.00002 -5.4496 0.004 -6.59033 0.00006 -15.5090 0.005
2.845 -6.61478 0.00003 -5.4832 0.006 -6.61785 0.00006 -15.5917 0.005
2.85 -6.64236 0.00004 -5.5108 0.004 -6.64480 0.00005 -15.7154 0.005
2.855 -6.67001 0.00003 -5.5267 0.004 -6.67227 0.00005 -15.7704 0.005
2.86 -6.69905 0.00003 -5.5644 0.004 -6.70082 0.00006 -15.8568 0.005
2.90 -6.91779 0.00005 -5.6429 0.004 -6.92404 0.00008 -16.3710 0.005
3.00 -7.49685 0.00004 -5.9034 0.004 -7.50053 0.00007 -17.6939 0.006
3.50 -10.76575 0.00005 -7.1637 0.005 -10.76827 0.00008 -25.0570 0.007
3.95 -14.24689 0.00006 -8.3000 0.006 -14.25006 0.00011 -32.7569 0.009
4.00 -14.66461 0.00007 -8.4101 0.006 -14.66791 0.00011 -33.6570 0.009
4.05 -15.08962 0.00007 -8.5547 0.006 -15.09286 0.00011 -34.5678 0.009
4.10 -15.52029 0.00007 -8.6760 0.006 -15.52382 0.00012 -35.5470 0.010
4.30 -17.30648 0.00008 -9.1839 0.006 -17.30963 0.00012 -39.4211 0.010
4.50 -19.19290 0.00008 -9.6728 0.006 -19.19638 0.00012 -43.5149 0.011
4.70 -21.17892 0.00009 -10.1850 0.007 -21.18294 0.00013 -47.8008 0.012
5.00 -24.34664 0.00007 -10.9277 0.007 -24.35036 0.00013 -54.6127 0.014

Table 3: QMC results for Be-like isoelectronic series of atomic ions for some
fifteen values of fractional nuclear charge Ze.

Z E(VMC) err V0(VMC) err E(DMC) err ZV0(DMC) err
3.90 -13.83248 0.00006 -8.1922 0.005 -13.83736 0.00009 -31.8800 0.007
3.95 -14.24454 0.00006 -8.3012 0.005 -14.24887 0.00008 -32.7797 0.007
4.05 -15.08983 0.00008 -8.5864 0.006 -15.09302 0.00008 -34.7415 0.010
4.10 -15.52244 0.00006 -8.6979 0.006 -15.52767 0.00017 -36.1269 0.010
4.30 -17.34745 0.00007 -9.4313 0.006 -17.35668 0.00015 -40.5444 0.010
4.70 -21.34813 0.00008 -10.566 0.007 -21.35827 0.00018 -49.5728 0.012
5.00 -24.64189 0.00008 -11.414 0.007 -24.65164 0.00018 -56.9498 0.013

Table 4: QMC results for B-like isoelectronic series of atomic ions for seven
values of fractional nuclear charge Ze.
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Z = N Zc Ec(Zc, N)
∫
V0 E(Z,Z) E(DMC) ratio

2 0.911 -0.41494(2) -2.4890 -2.9039 -2.90372 0.1667
3 2.000 -2.90372(4) -4.5801 -7.4838 -7.47810 0.6340
4 2.856 -6.68112(5) -7.9819 -14.6630 -14.66791 0.8370
5 4.000 -14.6679(10) -9.9727 -24.6406 -24.65164 1.4708

Table 5: Displays magnitudes of the two terms on the RHS of Eq.(6).
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Figure 1: Plot of the electron density at the nucleus n0[Z,N ] as a function of
the fractional nuclear charge Z for the four series of atomic ions considered
in this work. Neutral atoms correspond to the case N = Z. These are the
only observables.
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