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Abstract. We show that isometries between open sets of Carnot groups are affine. This result

generalizes a result of Hamenstädt. Our proof does not rely on her proof. We show that each isom-

etry of a sub-Riemannian manifold is determined by the horizontal differential at one point. We
then extend the result to sub-Finsler homogeneous manifolds. We discuss the regularity of isome-

tries of homogeneous manifolds equipped with homogeneous distances that induce the manifold
topology.

1. Introduction

A fundamental problem in geometry is the study of spaces that are isometrically homogeneous,
i.e., metric spaces on which the group of isometries acts transitively. Such spaces have particular
differentiable structures when in addition they are finite dimensional, locally compact, and their
distance is geodesic. Indeed, one can characterize these spaces as particular sub-Finsler manifolds
by using the theory of locally compact groups and methods from Lipschitz analysis on metric spaces,
[17, 8, 27, 6, 7]. Despite the fact that the group of global isometries of these manifolds is a Lie group
and acts smoothly and by smooth maps, the local isometries are still not completely understood.
By ‘local isometry’ we mean isometry between open subsets. In this paper we give a complete
description of the space of local isometries for those homogeneous spaces that also admit dilations.
These spaces, called Carnot groups, are particular nilpotent groups equipped with left-invariant
geodesic distances.

The study of isometries of distinguished Riemannian manifolds, such as homogeneous spaces,
symmetric spaces, and Lie groups, has been a flourishing subject. References for the regularity
of isometries are the seminal papers [29, 30], see also [10, 34]. Regarding the Finsler category, we
mention the work [15]. The space of isometries is well studied in Banach spaces, see [16, 4]. A number
of authors have tried to understand isometries of sub-Riemannian manifolds, see [32, 33, 18, 22, 20].
For sub-Finsler homogeneous spaces, we refer to [5, 6], see also [13]. Sub-Finsler geometry is needed
to deal with first-order differential operators over vector bundles on a manifold, see [14].

Regarding Carnot groups, U. Hamenstädt [18] showed that isometries are affine, in the case
that the isometry is globally defined and that the distance is sub-Riemannian. We say that a
homeomorphism of a group (equipped with a left-invariant distance inducing the manifold topology)
is affine if it is the composition of a left translation with a group isomorphism.

We generalize Hamenstädt’s result to the setting of a sub-Finsler distance and isometries defined
only on some open set. We need to point out, that to obtain such a local result, one cannot use the
same argument as in [18] to deduce smoothness of the map. Actually, the issue of smoothness was a
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subtle point, which was clarified only later by I. Kishimoto in [22] for global isometries. Moreover, in
Hamenstädt’s strategy, one needs to consider a blow down of the isometry, which requires the map
to be globally defined. Hence, we shall provide a new method of proof. In fact, our technique also
shows that, as in Riemannian geometry, isometries of homogeneous spaces are uniquely determined
by their ‘first-order’ expansion at one point. Throughout the paper, Lie groups and manifolds are
always finite dimensional.

1.1. Statement of the main results. Let G be a Lie group and H be a compact subgroup. Let
M = G/H be the homogeneous manifold of left cosets. Hence, the group G acts transitively on
M on the left. Let ∆ be a G-invariant subbundle of the tangent bundle TM . We assume that ∆
is bracket-generating and call it the horizontal bundle. Fix a norm on ∆p, for every p ∈ M , and
assume that it is G-invariant. Then the Carnot-Carathéodory distance between two points of the
manifold is the infimum of the lengths of curves tangent to ∆ and connecting the two points. Since
the length is measured using the norm, the distance is also called sub-Finsler. Unlike the general
case, we shall only consider symmetric norms, i.e., each X ∈ ∆p has the same norm as −X. We do
so because we are interested in a metric-space viewpoint. Theorem 2.6 will clarify that we are in
fact considering very general homogeneous metric spaces.

When H is trivial, i.e., M = G, we set V1 := ∆e and Vj+1 := [V1, Vj ]. If

Lie(G) = V1 ⊕ · · · ⊕ Vs,
then the space is called a sub-Finsler Carnot group. See Section 2 for more details.

Our first theorem characterizes local isometries between sub-Finsler Carnot groups as affine maps.

Theorem 1.1. Let G1, G2 be sub-Finsler Carnot groups and for i = 1, 2 consider Ωi ⊂ Gi open sets.
If F : Ω1 → Ω2 is an isometry, then there exists a left translation τ on G2 and a group isomorphism
φ between G1 and G2, such that F is the restriction to Ω1 of τ ◦ φ, which is a global isometry.

The fact that G1 is isomorphic to G2 is a consequence of Pansu’s Differentiability Theorem [31].
Note that in the statement above we require the domain Ω1 to be open. In Section 5, we shall
see that this assumption is necessary, unlike in the Euclidean case. However, connectedness is not
required.

In particular, Theorem 1.1 states that global isometries of Carnot groups are affine maps. This
fact, already present in [18, 22], is of crucial importance in the paper [12], where L. Capogna and
the first-named author prove the smoothness of isometries of sub-Riemannian manifolds. One of
the steps in their argument is the invariance of Popp measures, which rests on the global version of
Theorem 1.1.

Later in the paper, with the tools of [12], we show that isometries of a sub-Riemannian manifold
are characterized by their value at one point and the differential at this point (see Corollary 4.1
and also Remark 4.3). In [32, 33], similar conclusions were obtained for particular sub-Riemannian
manifolds. In the case that for us is of particular interest, i.e., the class of sub-Finsler homogeneous
manifolds, the result reads as follows.

Theorem 1.2. For i = 1, 2, let Mi = (Gi/Hi, di) be a connected homogeneous manifold equipped
with a Gi-invariant sub-Finsler distance inducing the manifold topology. Let ∆ be the horizon-
tal bundle of M1. Let Ωi ⊂ Mi be open sets. Let F1 : Ω1 → Ω2 be an isometry. Then F1 is
C∞. Moreover, if F2 : Ω1 → Ω2 is another isometry with the properties that F1(p) = F2(p) and
(dF1)p|∆p = (dF2)p|∆p , for some p ∈M1, then F1 = F2.

The differentiability of the maps in the above theorems is a subtle point. Indeed, the fact that
isometries of Carnot groups are smooth is for us a consequence of a result by Capogna and M. Cowling
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[11]. Regarding smoothness of isometries of sub-Finsler homogeneous manifolds, we use a well-known
trick that uses John’s ellipsoids to bring the problem back to the sub-Riemannian case, which is solved
in [12]. However, when the isometries are globally defined in the whole homogeneous manifold, we
prove that they are analytic maps. This result holds true on any homogeneous space G/H equipped
with a G-invariant homogeneous distance which induces the manifold topology but is not necessarily
sub-Finsler.

Even under the additional assumption that the manifold in Theorem 1.2 is actually a Lie group,
one cannot have the same conclusions as in Theorem 1.1. Namely, for general Lie groups, it is not
true that isometries are necessarily affine maps, as, for example, some rotations in the group of
Euclidean motions. Moreover, both in Riemannian geometry and sub-Riemannian geometry, there
are cases of isometric Lie groups that are not isomorphic. Also, local isometries of homogeneous
spaces do not always extend to global isometries. For all these last remarks see Section 5.

Theorem 1.2 can be rephrased saying that every isometry F is determined by F (p) and by its
blow up at p. Namely, every quasiconformal map between two Carnot-Carathéodory spaces admits
a blow up map at almost every point that is an isomorphism between two Carnot groups, see [24]. If
F is an isometry, as in Theorem 1.2, then F is smooth and dF (p)|∆p

coincides with the differential
of the blow up at p restricted to ∆p.

Theorem 1.3. Let G/H be a homogeneous space of a Lie group G modulo a compact subgroup H.
Assume that d is a G-invariant distance that induces the manifold topology. If F : (G/H, d) →
(G/H, d) is an isometry, then F is analytic.

The above theorem is a consequence of Montgomery-Zippin’s solution of Hilbert’s fifth problem,
from which it is immediate that the group of isometries Iso(M,d) of the manifold M = G/H is a
Lie group acting transitively on M . Hence, M admits an analytic structure for which Iso(M,d) acts
by analytic maps. Our result states that this analytic structure coincides with the initial one.

1.2. Structure of the paper. The paper is organized as follows. In Section 2 we fix the notation
and we show some results that will be used in the proof of our main results. Section 3 is devoted
to the proof of Theorem 1.1, whereas in Section 4 we prove Theorem 1.2 and Theorem 1.3. We
conclude the paper with Section 5, where we collect a number of remarks and counterexamples.

Acknowledgements. Both authors would like to thank Université Paris Sud, Orsay, where part of this
research was conducted. This paper has benefited from discussions with E. Breuillard and P. Pansu.
Special thanks go to them. Moreover, the authors are particularly grateful to S. Nicolussi Golo and
to the anonymous referee for their thorough review of the paper and their helpful remarks.

2. Preliminaries

2.1. General notation. Let G be a Lie group. Denote by Lie(G) the Lie algebra of G whose
elements are tangent vectors at the identity e of G.

Let H be a closed subgroup of G. Hence, the space G/H of left cosets gH, with g ∈ G, has
a natural structure of an analytic manifold, see [19, page 123]. We may assume that H does not
contain any non-trivial normal subgroup of G, for otherwise we may factor it out. Given our later
assumptions, there is no loss of generality in assuming H to be compact; see Remark 2.4. The group
G is a Lie transformation group of M = G/H. Namely, every element g ∈ G acts by left translations
on M , i.e., induces the diffeomorphism

(2.1) Lg : g′H 7→ g · (g′H) := gg′H.
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We fix a G-invariant subbundle ∆ of the tangent bundle TM of M . The choice of ∆ can be
seen in the following way. There is a one-to-one correspondence between H-invariant subspaces
∆H in TH(M) and AdH -invariant subspaces V in Lie(G) that contain Lie(H). We choose such a
subspace ∆H in TH(G/H), and therefore, a corresponding V ⊆ Lie(G). Then, for all gH ∈ G/H,
the subbundle ∆ is defined as

∆gH := (dLg)H∆H ,

The subbundle is well defined, i.e., the definition does not depend on the representative in gH,
because ∆H is H-invariant.

If the subspace V ⊂ Lie(G) associated to ∆H has the property that Lie(G) is the smallest Lie
subalgebra of Lie(G) containing V , then V (or, equivalently, ∆) is said to be bracket-generating.

We shall fix a norm on ∆ that is G-invariant. These norms exist when H is compact; for example,
they can be obtained by averaging any norm on ∆ by H. The choice of such a norm can be seen in
the following way. Fix a seminorm on V that is AdH -invariant and for which the kernel is Lie(H).
The projection from G to M gives an H-invariant norm ‖·‖ on ∆H . Hence, we have an induced
G-invariant norm on ∆ by

‖v‖ :=
∥∥(dLg−1)gHv

∥∥ , ∀v ∈ ∆gH .

Since the initial norm is AdH -invariant, it follows that the above equation is independent of the
choice of the representative in gH.

An absolutely continuous curve γ : [0, 1] → M is said to be horizontal (with respect to ∆) if the
derivative γ̇(t) belongs to ∆, for almost every t ∈ [0, 1]. Each horizontal curve γ has an associated
length defined as

L(γ) :=

∫ 1

0

‖γ̇(t)‖ dt.

Definition 2.2 (sub-Finsler homogeneous manifolds). Let M = G/H be a homogeneous space
formed by a Lie group G modulo a compact subgroup H. We are given a bracket-generating G-
invariant subbundle ∆ ⊆ TM and a G-invariant norm ‖·‖ on ∆. We may choose the norm by fixing
an AdH -invariant seminorm on a bracket-generating subspace V ⊆ Lie(G) whose kernel is Lie(H).
The sub-Finsler distance between two points p, q ∈M is defined as

(2.3) d(p, q) := inf{L(γ) | γ horizontal and γ(0) = p, γ(1) = q}.

We call the pair (M,d) a sub-Finsler homogeneous manifold.

By Chow’s Theorem [28, Chapter 2], the topology induced by d coincides with the manifold
topology. Notice that, by construction, the above sub-Finsler distance is left-invariant, i.e., every
left translation (2.1) is an isometry of (M,d).

Remark 2.4. We remark that if a homogeneous space M = G/H with H closed admits a G-invariant
distance and the action of G on G/H is effective, i.e., kernel free, then H is compact. Indeed, H is
compact by the Ascoli-Arzelà theorem, as it is the stabilizer of the origin in M . Since the isometry
group of a homogeneous manifold is a Lie group, we conclude that any sub-Finsler homogeneous
manifold M is of the form G/H with G a Lie group and H a compact subgroup.

Definition 2.5 (sub-Finsler Carnot groups). Given a subspace V1 of the Lie algebra of a Lie group
G, define the subspaces Vj as

Vj := [V1, Vj−1], ∀j > 1.

If

Lie(G) = V1 ⊕ · · · ⊕ Vk ⊕ · · · ,
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then G is said to be a (nilpotent) stratified group and V1 is called the first stratum (of the stratification
{Vj}). If d is the sub-Finsler distance associated to (G,V1, ‖·‖), then the pair (G, d) is called a sub-
Finsler Carnot group, or simply a Carnot group.

Sub-Finsler Carnot groups are special cases of sub-Finsler homogeneous manifolds that admits
metric dilations, coming from the stratification. Indeed, one considers the family of linear operators
δt : Lie(G) → Lie(G) for t > 0, which act by scalar multiplication by ti on Vi. These operators are
Lie algebra automorphisms which preserve V1, and define correspondingly Lie group automorphisms
on G, for which d(δt(p), δt(q)) = td(p, q).

By the work of V. N. Berestovskĭı, we know that sub-Finsler homogeneous manifolds are the
only metric spaces that are isometrically homogeneous, are locally compact, have finite topological
dimension, and whose distance is intrinsic (see, e.g., [9]). This result is based on Montgomery-
Zippin’s characterization of Lie groups, see Theorem 4.4.

Theorem 2.6 (Consequence of [27], [7], and [26], see also [23]). Let X be a locally compact and
finite-dimensional topological space. Assume that X is equipped with an intrinsic distance d such
that its isometry group Iso(X, d) acts transitively on X. Then (X, d) is isometric to a sub-Finsler
homogeneous manifold.

If, moreover, the space (X, d) admits a nontrivial dilation, i.e., there exists λ > 1 such that (X,λd)
is isometric to (X, d), then (X, d) is a sub-Finsler Carnot group.

If the norm in Definition 2.2 comes from a scalar product, then the associated distance is called
sub-Riemannian. If this is the case for a sub-Finsler Carnot group, then we call it a sub-Riemannian
Carnot group. More generally, a sub-Riemannian manifold is a triplet (M,∆, ρ) where M is a
connected smooth manifold, ∆ is a subbundle of the tangent bundle TM that bracket-generates
TM , and ρ is a Riemannian metric restricted to vectors in ∆, see [28]. Given a sub-Riemannian
manifold (M,∆, ρ), we iteratively set ∆1 := ∆, and ∆k+1 := ∆k + [∆k,∆], for k ∈ N. Namely, for
every p ∈M ,

∆k
p = span{[Y1, [Y2, [. . . [Yl−1, Yl]]]]p | l ≤ k, Yj ∈ Γ(∆),∀j = 1, . . . , l}.

The bracket-generating condition is expressed by the existence of s ∈ N such that, for all p ∈ M ,
one has

∆s
p = TpM.

A sub-Riemannian manifold (M,∆, ρ) is equiregular if, for all i ∈ N, the dimension of ∆k
p is constant

in p ∈M . In other words,

∆1 ⊆ ∆2 ⊆ · · · ⊆ ∆s = TM

is a flag of subbundles.

Sub-Riemannian manifolds have an associated length structure on horizontal curves and a distance
defined as in (2.3). One can show [28] that a curve in a sub-Riemannian manifold has finite length
if and only if it is a horizontal curve, up to reparametrization. Consequently, if an isometry F of a
sub-Finsler homogeneous manifold is C1, then it is a contact map, i.e., its differential preserves the
subbundle. Namely,

dFp(∆p) ⊆ ∆F (p), ∀p ∈ G.

Moreover, F being an isometry, dFp|∆p
is an isometry between the two normed vector spaces ∆p

and ∆F (p).
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2.2. Riemannian extensions and the horizontal differential. In this section we show that
every smooth isometry of a sub-Riemannian manifold is determined by its value at one point and
that of its differential at that point, restricted to the subbundle ∆.

Given a sub-Riemannian metric (M,∆, ρ) we say that a Riemannian metric ρ̂ is a Riemannian
extension of ρ if ρ equals ρ̂ restricted to ∆. For a metric space M = (M,d) we denote by Iso(M)
the group of isometries of M . Moreover, for all p ∈M, we set

Isop(M) = {F ∈ Iso(M) | F (p) = p}.

Lemma 2.7. Let M be a sub-Riemannian manifold and p ∈ M . Assume that Isop(M) ⊂ C∞(M).
Then there exists a Riemannian extension ρ̂ on M such that Isop(M) ⊂ Iso(M, ρ̂).

Proof. Let H := Isop(M). By Ascoli-Arzelà’s theorem, H is compact. Actually by a result of
Montgomery and Zippin [27, Theorem 2 at page 208 and Theorem at page 212], H is a compact Lie
group acting smoothly on M . In particular, the map F 7→ dF with F ∈ H is continuous. Let µH

be a probability Haar measure on H. Fix an auxiliary Riemannian extension ρ̃ on M and define

ρ̂ =

∫
H

F∗ρ̃ dµH(F ).

Here, F∗ρ̃(v, w) := ρ̃(dF (v), dF (w)). Since by assumption H acts on M smoothly, the set G :=
{F∗ρ̃ : F ∈ H} is a compact set of Riemannian tensors extending the sub-Riemannian metric on
M . In particular, in local coordinates, all ρ′ ∈ G can be represented with a matrix with uniformly
bounded eigenvalues. Hence, ρ̂ is a Riemannian tensor, which is H-invariant by the linearity of
integrals. �

Proposition 2.8. Let (M,∆, ρ) be a connected equiregular sub-Riemannian manifold. Let ρ̃ be a
Riemannian extension of ρ. Let F : M →M be a C∞ map. Assume that F is an isometry for both
ρ and ρ̃. If there exists p ∈ M such that F (p) = p and dF |∆p = id∆p then dF |TpM = idTpM and
hence F = idM .

Proof. Since (M,∆, ρ) is equiregular, in a neighborhood of p we can find a frame X1, . . . , Xn of TM
such that, if rk = dim∆k

p, then X1, . . . , Xrk is a frame of ∆k, for every k = 1, . . . , s. We shall prove
that dF |∆k

p
= Id∆k

p
by induction on k. The case k = 1 holds by assumption. Assume now that

dF |∆l
p

= Id∆l
p

for every l < k. Let X ∈ Γ(∆), Y ∈ Γ(∆k−1). Since dF preserves the horizontal

bundle, dF (Γ(∆j)) = Γ(∆j) for every j. Therefore

dF (X) = X +

r1∑
j=1

ajXj and dF (Y ) = Y +

rk−1∑
l=1

blXl.

Moreover, aj(p) = bl(p) = 0 for every j, l by the inductive hypothesis. Hence

dF [X,Y ] = [dF (X), dF (Y )]

= [X +

r1∑
j=1

ajXj , Y +

rk−1∑
l=1

blXl]

= [X,Y ] +
∑
l

XblXl +
∑
j

aj [Xj , Y ] +
∑
l

bl[X,Xl]

−
∑
j

Y ajXj +
∑
j,l

ajbl[Xj , Xl] +
∑
j,l

ajXjb
lXl −

∑
j,l

blXla
jXj .
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At p,

(2.9) dF [X,Y ]p = [X,Y ]p +
∑
l

(Xbl)p(Xl)p −
∑
j

(Y aj)p(Xj)p.

Note that
∑

l(Xb
l)p(Xl)p−

∑
j(Y a

j)p(Xj)p is in ∆k−1
p . Hence, on the one hand the linear map dFp

acts as a unipotent matrix on ∆k
p. On the other hand, since F is a Riemannian isometry, the linear

map dFp is an orthogonal matrix. Since the only unipotent and orthogonal matrix is the identity,
we conclude that dF |∆k

p
= Id∆k

p
. The classic argument based on the Riemannian geodesics gives

that F = idM . �

Corollary 2.10. Let M and N be two connected, equiregular, sub-Riemannian manifolds. Assume
that Isop(M) ⊂ C∞(M). Let p ∈M and let ∆ be the horizontal bundle of M . Let F1, F2 : M → N
be two C∞ isometries. If F1(p) = F2(p) and dF1|∆p

= dF2|∆p
, then F1 = F2.

Proof. This follows from Lemma 2.7 and Proposition 2.8 applied to F1 ◦ F−1
2 . �

2.3. Disconnected domains. The proposition proved in this section will be instrumental to show
that our result on isometries of Carnot groups (Theorem 1.1) holds with no connectedness assump-
tions on the domain of the isometries.

Regarding the next theorem, notice that every homogeneous sub-Riemannian manifold is analytic,
i.e., both the manifold and the subbundle are analytic.

Theorem 2.11 ([1, Theorem 1]). Let M be an analytic sub-Riemannian manifold and set q0 ∈M .
Then there exists an open and dense subset Σq0 ⊆M such that for any q ∈ Σq0 there exists a unique
length minimizing curve γ connecting q0 to q. Moreover, the curve γ is analytic.

The following result holds for general sub-Riemannian manifolds. We show that an isometry is
completely determined by its behavior on an open set.

Proposition 2.12. Let M be an analytic sub-Riemannian manifold. Let F : Ω1 → Ω2 be an
isometry of two open sets in M . Assume that F is the identity on an open subset Ω of Ω1. Then F
is the identity.

Proof. Pick q ∈ Ω1. According to the notation in Theorem 2.11, consider Σ = Σq ∩ ΣF (q). Fix
p ∈ Σ ∩ Ω. Since p ∈ Σq, Theorem 2.11 implies that there exists a unique and analytic length
minimizing curve γ such that γ(0) = p and γ(1) = q. Since Ω is open, one can choose s0 ∈ (0, 1)
such that p′ := γ(s0) 6= p and γ(s0) ∈ Ω. Denote by σ a length minimizing curve such that σ(0) = p′

and σ(1) = F (q). Let γ̃ be the curve formed by joining γ|[0,s0] with σ. We claim that γ̃ minimizes
the length between p and F (q). Indeed, since F (p) = p, F (p′) = p′, and F is an isometry,

d(p, F (q)) = d(p, q) = d(p, p′) + d(p′, q)

= d(p, p′) + d(p′, F (q)).

So γ̃ attains the distance from p to F (q). Since p ∈ ΣF (q), it follows that γ̃ is analytic. Since γ and
γ̃ coincide on an interval, they are both analytic and have the same length, we conclude that they
coincide everywhere. In particular, q = F (q). �



8 ENRICO LE DONNE AND ALESSANDRO OTTAZZI

2.4. Sub-Finsler structures. There are several natural definitions for the notion of sub-Finsler
manifold. One considers triplets (M,∆, N) where M is a connected smooth manifold, ∆ ⊆ TM
a bracket-generating subbundle, and, for each p ∈ M , Np := N(p) is a norm on ∆p. The various
definitions differ depending on the requested regularity for N . The requirement that N is the
restriction to ∆ of a Finsler structure is an assumption that for us is too strong. In fact, we need
to allow any arbitrary norm on vector spaces, which may not be smooth away from the origin.
Low-regularity assumptions are that the function N is merely continuous, or Lipschitz in smooth
coordinates. In our case the norm changes smoothly with respect to the point of the manifold in
a suitable sense, which can be formalized following the notion of partially smooth Finsler metrics
presented in [25]; see [3]. The case of interest for us are those norms that are of constant type.
Namely, norms for which there exists a smooth frame, such that the norm of all linear combinations
of its elements is independent on the point. Sub-Finsler homogeneous manifolds are examples.
Hence, we prove the following lemma only for homogeneous manifolds and discuss in Remark 2.16
the general case.

Lemma 2.13. Let G/H be a homogeneous manifold equipped with a G-invariant sub-Finsler dis-
tance. Then there exists a G-invariant sub-Riemannian distance dSR with same horizontal bundle
as dSF , such that any isometry among open subsets of G/H with respect to dSF is an isometry with
respect to dSR.

Proof. The proof uses a well-known trick based on John’s Ellipsoid Theorem, see [21], together with
Margulis-Mostow Differentiability Theorem, [24].

Let ∆p be the horizontal bundle at p ∈ M := G/H. Denote Kp = {v ∈ ∆p | ‖v‖ ≤ 1}, where
‖ · ‖ is the norm defining dSF . John’s Ellipsoid Theorem states that there exists a unique ellipsoid
Ep contained in Kp with maximal volume and, moreover, there exists c ≥ 1 depending only on the
topological dimension of M , such that

(2.14) Ep ⊆ Kp ⊆ c · Ep.

First, let F be a C1 dSF -isometry. We claim that for all p in the domain of F ,

(2.15) dfp(Ep) = EF (p).

Indeed, dFp restricts to a linear isometry between (∆p, ‖ · ‖) and (∆F (p), ‖ · ‖). In particular,
dFp(Kp) = KF (p) and dFp(Ep) is an ellipsoid contained in KF (p). Since EF (p) is the maximal-

volume ellipsoid, it follows that vol(dFp(Ep)) ≤ vol(EF (p)). Since dF−1
p also restricts to a linear

isometry, we obtain the reverse inequality and, by uniqueness, (2.15) follows. In particular, taking
F = Lg the left translation by g ∈ G, we conclude that EgH = (dLg)HEH . Recall that g can be
chosen smoothly as gH varies, see [19]. Therefore, {Ep}p∈M defines a G-invariant scalar product
〈·, ·〉 on ∆p which in turn gives a G-invariant sub-Riemannian distance dSR on M . Also, by (2.14),
dSF and dSR are c-bi-Lipschitz.

Let F be a map between open subsets of M that is an isometry with respect to dSF , but for which
we ask no a priori smoothness assumptions. The two distances being bi-Lipschitz equivalent, the
map F is bi-Lipschitz with respect to dSR. By Margulis-Mostow Theorem, the Pansu differential
of F exists almost everywhere. Namely, for almost every p ∈ M the blow up of F at p is a group
isomorphism (PF )p : Gp → GF (p). In particular, for these p, the derivative XF exists for all
X ∈ ∆p and the horizontal differential is a linear map that uniquely determines (PF )p. Being
the blow up of an isometry, (PF )p is an isometry between (Gp, ‖·‖p) and (GF (p), ‖·‖F (p)) and then

(PF )p(Gp, 〈·, ·〉p) → (GF (p), 〈·, ·〉F (p)) is an isometry as well. In other words, almost every tangent
of F is a sub-Riemannian isometry.
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We plan to show that F is a sub-Riemannian isometry, by showing that it preserves the sub-
Riemannian length of curves. Take any smooth horizontal curve γ, which we may suppose to be
locally a straight segment, in some coordinates. Let Ω ⊆ M be the full-measure set on which F is
Pansu-differentiable. By Fubini’s theorem, there exists curves of the form γn := gn · γ with gn ∈ G,
gn arbitrarily close to the identity in G such that γn ∩ Ω has full H1-measure. In other words,
σn := F ◦γn is differentiable almost everywhere and 〈σ̇n, σ̇n〉 = 〈γ̇n, γ̇n〉. Hence, the sub-Riemannian
length of σn equals the sub-Riemannian length of γn. Passing to the limit, the sub-Riemannian
length of F ◦ γ equals the sub-Riemannian length of γ. Therefore F is an isometry with respect to
dSR. �

Remark 2.16. We note that the above proof extends to sub-Finsler structures with norm of constant
type and to those that admit a Finsler extension. However, it does not immediately generalize to the
case of partially smooth sub-Finsler manifolds. The issue is that the scalar product defined using the
John Ellipsoid Theorem may not depend smoothly on the base point, see for example [25, Example
3.2. page 7]. However, in [25], the authors consider a different Riemannian metric associated to a
Finsler one and prove that if the structure is partially smooth then the Riemannian metric is indeed
smooth. One can use a similar construction to associate a sub-Riemannian metric to a partially
smooth sub-Finsler metric, for which the analogue of Lemma 2.13 holds.

3. Isometries of Carnot groups

In this section we prove Theorem 1.1. First, we consider the particular case when the distance
is sub-Riemannian and the domain of the map is connected. Namely, in Section 3.1 we show that
every isometry defined between two connected and open subsets of a Carnot group G endowed with
a sub-Riemannian metric is affine. Next, in Section 3.2 we use Lemma 2.13 and Proposition 2.12 to
deduce the general case.

3.1. Sub-Riemannian isometries on connected sets.

Theorem 3.1. Let (G, d) be a sub-Riemannian Carnot group. Let Ω1,Ω2 ⊂ G be two connected
open sets. Let F : Ω1 → Ω2 be an isometry. If F (e) = e, then F is the restriction to Ω1 of a group
isomorphism of G.

Proof. By [11, Theorem 1.1], F is smooth. Let φ be the blow up of F at e, i.e., the Pansu differential
at the identity. We plan to show that F = φ|Ω1

.

By [31], the map φ is a group isomorphism and, moreover, it is an isometry, being the limit of
isometries. Hence, the maps φ and F are C∞ isometries with the property that F (e) = φ(e) = e
and dφe|V1 = dFe|V1 , see [35], where V1 is the first stratum of the stratification of G. By [11,
Theorem 1.1] we know that Isoe(Ω1, d) ⊂ C∞(Ω1,Ω1), we can apply Corollary 2.10 and conclude
that F = φ|Ω1

. �

3.2. General case: Proof of Theorem 1.1. We recall that by Pansu’s Differentiability Theorem
[31], we may assume that G1 = G2. Let (G, dSF ) be a sub-Finsler Carnot group. Let Ω1,Ω2 ⊆ G
be two open sets and F : Ω1 → Ω2 a sub-Finsler isometry, which a priori is not smooth. Let dSR be
the sub-Riemannian distance on G associated to dSF by Lemma 2.13. Thus, by Lemma 2.13, the
map F is also an isometry with respect to dSR. Up to composing with a translation, we may assume
F (e) = e. By Theorem 3.1, the map F is a group isomorphism φ on the connected component Ω of
Ω1 containing e, . Then the map φ−1 ◦ F is an isometry that is the identity on Ω. By Proposition
2.12, we get that φ−1 ◦ F is the identity on Ω1. �
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4. Isometries of manifolds

In this section we consider the regularity of isometries of sub-Riemannian manifolds. First we
discuss the case of general manifolds, then the case of global isometries of homogeneous manifolds.

4.1. Isometries of manifolds and the horizontal differential. We show here Theorem 1.2,
which is a a consequences of our preliminary results together with the regularity theorem obtained
by Capogna and the first-named author in [12].

Corollary 4.1. Let M and N be connected equiregular sub-Riemannian manifolds. Let p ∈M and
let ∆ be the horizontal bundle of M . Let F1, F2 : M → N be two isometries. If F1(p) = F2(p) and
dF1|∆p = dF2|∆p , then F1 = F2.

Proof. From the regularity result in [12, Corollary 1.5], F1, F2 are C∞ and Isop(M) ⊂ C∞(M).
Corollary 2.10 concludes. �

Remark 4.2. Using Proposition 2.12, one has the following more general consequence. With M,N,∆,
and p as in the corollary above, let U ⊆M,V ⊂ N be two open subsets, not necessarily connected.
Let F1, F2 : U → V be isometries. If F1(p) = F2(p) and dF1|∆p

= dF2|∆p
, then F1 = F2.

Proof of Theorem 1.2. Let F1, F2 : Ω1 → Ω2 be two isometries for the sub-Finsler distance. By
Lemma 2.13, they are also isometries with respect to some sub-Riemannian distance. By [12, Corol-
lary 1.5], F1, F2 are C∞. By Corollary 4.1, we conclude. �

Remark 4.3. It is possible to generalize both the C∞ regularity and Corollary 4.1 to isometries
of (partially smooth) sub-Finsler manifolds. Indeed, one can use the analogue of Lemma 2.13 as
explained in Remark 2.16.

4.2. Analytic regularity for global isometries of sub-Finsler homogeneous spaces.

Theorem 4.4 (Gleason-Montgomery-Zippin). If a second countable and locally compact group H
acts by isometries, continuously, effectively, and transitively on a locally compact, locally connected,
and finite-dimensional metric space X, then H is a Lie group and X is a differentiable manifold.

Proposition 4.5 (Consequence of Theorem 4.4). Let M = G/H be a homogeneous manifold
equipped with a G-invariant distance d, inducing the manifold topology. Then the isometry group
Iso(M) is a Lie group, the action

Iso(M)×M → M(4.6)

(F, p) 7→ F (p)

is analytic, and, for all p ∈M , the space Isop(M) is a compact Lie group.

Proof. By the Ascoli-Arzelà Theorem, Iso(M) is locally compact and Isop(M) is compact (both
equipped with the compact open topology). Obviously they both are groups with the composition
as multiplication. Furthermore, since G acts transitively on M , so does Iso(M). Therefore, by
Theorem 4.4 it follows that Iso(M) is a Lie group. Being a compact subgroup, Isop(M) is a Lie
group as well.

For the proof that the action of Iso(M) on M is analytic, we make explicit the analytic structures
considered. The group G and the manifold M are given with their analytic structures, which we
denote ωG and ωM , respectively. Hence, by assumption, the action

(4.7) (G,ωG)× (M,ωM ) −→ (M,ωM ),
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given by (2.1), is analytic. The group Iso(M) has an analytic structure ωI of Lie group and, since
it is acting transitively (and continuously) on M , there exists an analytic structure ω̃M on M such
that the map

(4.8) (Iso(M), ωI)× (M, ω̃M ) −→ (M, ω̃M ),

given by (4.6), is analytic, see [19, page 123]. Every element of G induces an isometry. Hence, we
have a map

(4.9) ι : (G,ωG) −→ (Iso(M), ωI),

induced by (2.1). The map ι is a continuous homomorphism. By [19, Theorem 2.6], ι is, in fact,
analytic. By composition of (4.8) and (4.9),

(4.10) (G,ωG)× (M, ω̃M ) −→ (M, ω̃M ),

again given by (2.1), is analytic. By [19, Theorem 4.2] there is a unique analytic structure on M for
which the action given by (2.1) is analytic. Therefore, we conclude that ωM = ω̃M . Hence, the map
(4.6) is analytic when M is equipped with ωM . �

5. Remarks and examples

We conclude the article with some comments. In particular, we present examples in order to show
that: in Theorem 1.1 the hypothesis that the set Ω is open cannot be dropped; isometries of the
blow up spaces of G/H do not necessarily come from isometries in G/H; isometries are not always
restrictions of global isometries, unless we are in the setting of Carnot groups; isometries in a general
Lie group are not necessarily compositions of translations and isomorphisms.

Unlike in the Euclidean space, Theorem 1.1 cannot be generalized to arbitrary subsets. Here we
present a counterexample. We take the sub-Riemannian Heisenberg group (H, dSR) and we define
exponential coordinates (x, y, z) with respect to the basis of its Lie algebra given by vectors X,Y
and Z, whose only nontrivial bracket is [X,Y ] = Z. Consider the set given by the xy plane together
with the third axis, namely,

E := exp(RX ⊕ RY ) ∪ exp(RZ).

Then the map (x, y, z) 7→ (x, y,−z) is an isometry of E into itself. However, this map is not the
restriction of a group isomorphism. In discussion with J. Tyson, we observed that the above map
does not even extend to a quasiconformal map, in particular, to a bi-Lipschitz map. Indeed, suppose
such a map F exists. By Pansu’s theorem, a quasi-conformal map admits blow ups that are group
isomorphisms. Now, every group isomorphism of the Heisenberg group is topological orientation
preserving. On the other hand, one can show that F is topological orientation reversing and hence
the blow ups of F are not orientation preserving. We have reached a contradiction.

Given an isometry F of a sub-Finsler homogeneous space G/H, the differential of the blow up
at a point p equals the differential at p, when they are both restricted to ∆p. Therefore Theorem
1.2 claims that Isop(G/H) injects into Isop((G/H)p), where (G/H)p denotes the Gromov tangent
cone of G/H at p, which is a Carnot group. However, it is not true that isometries of (G/H)p are
always blow ups of isometries of G/H. We can find counterexamples already in Riemannian Lie
groups. Take, for instance, the three dimensional Heisenberg group, endowed with a Riemannian
distance. We denote it by (H, dR). Then its tangent cone at every point is the Euclidean 3-space,
which contains all the rotations among its isometries. However, rotations with respect to horizontal
lines are not isometries for (H, dR). This follows from the observation that Iso(H, dR) = Iso(H, dSR).
The identification of the two isometry groups rests upon the study of length minimizing curves: for
both metric models of H, the only infinite geodesics are the 1-parameter groups corresponding to
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horizontal vectors. Since isometries must preserve infinite geodesics, it follows that the horizontal
space is preserved by the differential of every isometry.

For general Lie groups, isometries between open sets may not be restrictions of global isometries.
For example, every point in the flat cylinder R × S1 has a neighborhood isometric to a disk in R2

and hence, all rotations are isometries of this neighborhood. Of course, not all of them extend to
global isometries.

Not even in Euclidean space it is true that all group isomorphisms are isometries. However, an
automorphism of a sub-Finsler Carnot group is an isometry if and only if its differential preserves
the first stratum (ad hence all strata) and restricted to the first stratum preserves the norm defining
the sub-Finsler distance. Hence we have a complete description of local isometries of sub-Finsler
Carnot groups. We notice that the statements of Theorem 1.1 and Theorem 1.2 become equivalent
if G/H = G is a Carnot group. If this is not the case, we cannot conclude that an isometry in a

sub-Finsler Lie group G is affine. As counterexample, we take the universal covering group G̃ of the
group G = E(2) of Euclidean motions of the plane. One can see that there exists a Riemannian

distance on G̃ that makes it isometric to the Euclidean space R3. In particular, they have the
same isometry group. However, a straightforward calculation of the automorphisms shows that not
all isometries fixing the identity are group isomorphisms of G̃. Indeed, let {X,Y, T} be a basis of
Lie(G) and let [X,Y ] = T , [Y, T ] = X be the nonzero brackets. It turns out that only the rotations
in the plane RX + RT are automorphisms. Notice that the latter discussion also implies that R3

and G̃ are not isomorphic. Examples of isometric Lie groups that are not isomorphic can be found
also in the strict sub-Riemannian context. A. Agrachev e D. Barilari [2] showed that SL(2,R) and
A+(R) ⊕ R are isometric with respect to suitable sub-Riemannian structures. Here A+(R) is the
group of orientation preserving affine maps on R. A direct computation shows that the isometric
isomorphisms fixing the identity in SL(2,R) form a one-dimensional space, whereas the identity
map is the only isometric isomorphism fixing the identity in A+(R) × R. The following question
arises naturally. Let (G, dSR) be a sub-Riemannian Lie group for which not all isometries are affine.
Does there exist another sub-Riemannian Lie group (G′, d′SR) isometric to (G, dSR) for which all
isometries are affine?
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