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Abstract 

The traditional bone tissue engineering approach exploits mesenchymal stem cells (MSCs) to be 

seeded once only on 3D scaffolds, hence differentiated for a certain period of time and resulting in a 

homogeneous osteoblast population at the endpoint. However, after achieving terminal osteo-

differentiation, cell viability is usually markedly compromised. On the other hand, naturally 

occurring osteogenesis results from the coexistence of MSC progenies at distinct differentiative 

stages in the same microenvironment. This diversification also enables long-term viability of the 

mature tissue. We report an easy and tunable in vitro method to engineer simple osteogenic cell 

niches in a biomimetic fashion. The niches were grown via periodic re-seeding of undifferentiated 

MSCs on MSC/scaffold constructs, the latter undergoing osteogenic commitment. Time-fractioning 

of the seeded cell number during differentiation time of the constructs allowed graded osteogenic 

cell populations to be grown together on the same scaffolds (i.e., not only terminally differentiated 

osteoblasts). In such cell-dynamic systems, the overall differentiative stage of the constructs could 

also be tuned by varying the cell density seeded at each inoculation. In this way, we generated two 

different biomimetic niche models able to host good reservoirs of pre-osteoblasts and other osteo-

progenitors after 21 culture days. At that time, the niche type resulting in 40.8% of immature 

osteogenic progenies and only 59.2% of mature osteoblasts showed calcium content comparable to 

the constructs obtained with the traditional culture method (i.e., 100.03 ± 29.30 vs. 78.51 ± 28.50 

pg/cell, respectively; p = n.s.), the latter colonized only by fully differentiated osteoblasts showing 

exhausted viability. This assembly method for tissue-engineered constructs enabled a set of 

important parameters, such as viability, colonization and osteogenic yield of the MSCs to be 

balanced on 3D scaffolds, thus achieving biomimetic in vitro models with graded osteogenicity, 

which are more complex and reliable than those currently used by tissue engineers. 

 

Keywords: mesenchymal stromal cell (MSC); niche; osteogenesis; biomimetics; cell seeding.  
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Introduction 

Regenerative processes in living tissues draw on reservoirs of pluripotent cells, namely stem cells 

(SCs), which boast the unique skill of generating committed phenotypes able to progress along 

maturation, while maintaining their own stemness.
1
 As a consequence, transit cellular progenies of 

the same lineage coexist at intermediate differentiative stages between the SC, upstream, and the 

terminally differentiated cell, downstream. In the bone tissue, fundamental regenerative phenomena, 

such as ossification, are ruled by osteoblastogenesis. Specifically, the osteogenic cascade is known 

to start following the activation of the mesenchymal stromal cells (MSCs), and to further progress 

across osteo-progenitor cells, pre-osteoblasts, osteoblasts, osteocytes and bone lining cells.
2
 The 

complex mechanism of osteogenic differentiation of immature progenies is driven by chemical, 

biological and physical signals that control MSC activation, proliferation, migration, differentiation 

and survival. Most signals come from a peculiar microenvironment, also known as “niche”, 

consisting of cell-secreted extra cellular matrix (ECM) molecules, where a broad-spectrum of cells 

lay, cross-talk and interact.
3
 

In bone tissue engineering (TE), MSCs have been routinely employed for their superior 

proliferation, easier way of drawing and shorter time of isolation than those of osteoblasts.
4
 For this 

application, MSCs have often been isolated from bone marrow (BM) (as they exhibit a high and 

well-established osteogenic potential) and have been expanded in vitro to obtain the desired cell 

number for seeding.
5
 Typically, the in vitro TE approach adopts MSC/osteoprogenitor populations 

to be seeded on 3D scaffolds, cultured and differentiated using appropriate chemical supplements in 

the culture medium (CM).
6
 These are sometimes combined with mechanical stimuli conveyed by 

bioreactors, aimed at enhancing the mineralized ECM formation.
7
 The sooner have the cells seeded 

in vitro than they are exposed to a completely unknown environment which exhibits a complex 

architecture as well as differentiative stimuli other than those of their native conditions. Preliminary 

steps are to be considered, including MSC loss during seeding and adaptive cues.
8
 At this point the 

survived cells, all at a similar early-stage of differentiation, are forced towards osteogenic 
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differentiation. Such a method may reveal to be effective in terms of final mineral matrix 

deposition, but it is still far from mimicking any physiological bone formation.
9
 In addition, after 

the stress necessary to push undifferentiated cells towards maturation in a relatively short time-

frame, most of them will either exhaust their replication capacity or die. Recently, developing 

biomimetic strategies have been envisioned as the most successful approach for creating functional 

complex tissues in the laboratory.
10

 Researchers have started to investigate the key role exerted by 

the native ECM molecules and neighboring tissue population in bone TE, reporting that the 

microenvironment affects the MSC fate in different ways. In particular, depending on its 

composition, ECM retains the capability of either maintaining cell stemness
11

 or conversely 

enhancing the osteogenic potential of MSCs.
12,13 

Moreover, the initial cellularity of the samples is 

another important but often underestimated factor, further affecting the development of the 

MSC/scaffold constructs.
14,15

 However, neither has the role performed by transient populations been 

deepened so far, nor have cell-dynamic biomimetic osteogenic niches been investigated in TE 

studies.  

In this study, simple tissue-engineered osteogenic niches were assembled so as to progress towards 

the in vitro regeneration of biomimetic bone substitutes, which can be functional and viable at the 

time of implantation. The idea lying behind this study is the generation of a 3D niche hosting 

simultaneously a spectrum of cells at different osteogenic stages, which range from the 

undifferentiated MSCs to the terminally differentiated osteoblasts. We developed osteogenic niches 

consisting of human MSCs (hMSCs) cultured on 3D spongy scaffolds based on poly(L-lactic acid) 

(PLLA) and gelatin (G) (i.e., PLLA/G). Such scaffolds were selected as they resulted to be highly 

suitable for both hMSC and osteoblast colonization on the basis of previous studies.
16-19

 

Coexistence of multistage osteogenic cells in the niches could be simply obtained by periodic 

seeding of undifferentiated hMSCs on hMSCs/scaffold constructs, the latter being cultured in 

osteogenic CM. In this way, owing to the time elapsed between each cell inoculation (i.e., 5 days), 

we artificially created simple “cell-dynamic” systems in which  osteogenic cell gradients evolving 
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with time have been generated. This system may represent a basic model designed to mimic bone 

tissue formation, in which MSCs periodically come from the BM to the surrounding bone surfaces 

and interact both with bone ECM molecules and different osteogenic cells living in the niche.
20

 The 

system was investigated over three seeding groups with multiple cell inoculations (namely “multi-

shot”) and equal number of total seeded cells (i.e., 500,000 cells/sample), but with different seeding 

densities per period: (i) single shot (= traditional method, i.e., niche #3); (ii) multiple shots with 

decreasing cell densities (i.e., niche #2); and (iii) multiple shots at equal cell densities (i.e., niche 

#1) (Fig. 1). In the three cases, the initially seeded cells per scaffolds were 500,000, 250,000 and 

125,000, respectively. Time-fractioning of the seeded hMSC number was hypothesized to result in 

niches with modulated extents of osteogenic cell fractions (e.g., MSCs, progenitors, pre-osteoblasts, 

osteoblasts). Specific analyses were performed to evaluate the following parameters: (i) cell 

viability, (ii) scaffold colonization, (iii) bone-ECM molecule expression. 

 

 

Materials and Methods 

 

Expansion and culture of hMSCs  

The BM-derived hMSCs used for this study were either supplied by Darwin Prockop Lab, Tulane 

Center for Gene Therapy (Tulane, LA, USA), or obtained from orthopedic patients of our hospital 

after informed consent.
16

 HMSCs from both sources were preliminarily characterized in our 

laboratories and showed no appreciable differences in terms of osteogenic potential. According to 

the planned seeding schedule (Table 1), aliquots of hMSCs were defrosted from liquid nitrogen 

storage and plated in tissue culture polystyrene (TCPS) flasks at a cell density of 1,000 cells/cm
2
 in 

order to reach the desired cell number in identical conditions (70% confluence, passage 2) at the 

scheduled times. HMSCs were expanded in regular CM containing: MEM, 2 mM  L-glutamine, 

100 IU/ml penicillin, 100 g/ml streptomycin (all from Invitrogen, Carlsbad, CA, USA) 16.5% 
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(v%) premium select fetal bovine serum (FBS) (Atlanta Biologics, Atlanta, GA, USA). All cell 

cultures were carried out in incubators under standard cell conditions, namely 37°C, 95% relative 

humidity, and 5% CO2/95% air environment.  

 

Scaffold fabrication 

Biodegradable spongy scaffolds were fabricated based on poly(L-lactic acid) (PLLA; i.v. = 0.8, 

Lakeshore Biomaterials, Birmingham, AL, USA) and gelatin (G; Gelatin Type B, ~75 Bloom, from 

bovine skin, Sigma-Aldrich, St. Louis, MO, USA). PLLA/G scaffolds with a weight composition 

ratio of 91:9 were thus produced following an established procedure.
19 

Briefly, an aqueous phase containing 0.25% gelatin in ddH2O was emulsified with a light organic 

phase containing 2% PLLA in chloroform (Sigma-Aldrich). The foam obtained was immediately  

quenched in liquid nitrogen and quickly freeze-dried until all the solvents were stripped out and a 

dry sponge was developed. Specimens were puncher-cut in discs (thickness = 1.5 mm; 

diameter = 6 mm; weight ≈ 16 mg), sterilized by ethylene oxide gas, pre-wetted using absolute 

ethanol (Carlo Erba Reagents, Milan, Italy) under centrifugation, equilibrated in phosphate buffered 

saline (PBS; Sigma-Aldrich) and air-dried under laminar flow for 1 h. 

 

Culture of hMSC/scaffold constructs 

Sterilized scaffolds were press-fit into sterile silicon-molded holders, customized for these 

scaffolds, and placed in low-attachment 6-well TCPS culture plates (Cellstar, Greiner Bio-one, 

Frickenhausen, Germany). Before seeding, hMSCs were counted by a Coulter Counter (Coulters 

Multisizert 3, Beckman Coulter, Miami, FL, USA), taking an average over 3 measurements. Trypan 

blue dye (Sigma-Aldrich) at 0.2% (final sample concentration) was then used to evaluate the cell 

viability percentage. Cells were appropriately diluted in order to have cellular suspensions leading 

to the desired seeding density of viable cells per scaffold in a 200 l volume. 
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The experimental design consisted of 3 seeding groups, each of which was composed of 6 scaffolds 

(n = 6). The groups were seeded with different seeding densities per period, as shown in Table 1. At 

subsequent seeding times, the osteogenic CM (i.e., regular CM at 10% FBS, supplemented with 10
-7

  

M dexamethasone, 10
-2

  M -glycerophosphate, 50 g/ml L-ascorbic acid, 0.1 ng/ml fungizone, all 

from Sigma-Aldrich) was removed from the top of the cassettes, hMSCs were seeded and let to 

adhere for 1 h, and then regular CM was added for 24 h. For all groups the culture was carried out 

for 21 days, i.e., 16 days in osteogenic CM. After the last seeding time-point (t3), all constructs were 

released from the cassettes and freely placed inside TCPS 6-well plates until the endpoint (tf). The 

study design appears in Figure 1.  

 

Cell colonization and viability in the niches  

Neutral red (NR) assay  

Cell viability and cell colonization of the scaffold surfaces were qualitatively investigated using a 

non-disruptive assay based on neutral red (NR; Sigma-Aldrich).
21

 The day following both the first 

and the last cell inoculation [i.e., (t0 + 1 day) and (t3 + 1 day), respectively], one specimen for each 

group was incubated with 50 g/ml of NR in expansion CM for 1 h. Samples were rinsed in sterile 

PBS and their surfaces were observed under stereomicroscopy. After observation, PBS was 

replaced with CM and the culture was continued up to  the endpoint. 

 

Live/Dead
®

 assay 

The Live/Dead
®
 viability/cytotoxicity kit (Molecular Probes, Eugene, OR, USA) was used to assess 

the 3D spatial distribution of cells at the endpoint (tf). The constructs were rinsed with PBS and 

incubated at 37 °C for 30 min in the dark with the fluorescent medium, consisting of 1.2 μM 

calcein AM and 2 μM EthD-1 in PBS. CLSM (Zeiss LSM 510 Axiovert, Carl Zeiss, Germany) was 

employed to image the constructs under an Argon laser excited at 488 nm with emitted light 

collected at 515 nm for calcein AM and 635 nm for EthD-1. Stacks of confocal optical sections 
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were acquired at 4 μm intervals. Cells in 3D cell/scaffold constructs were rendered with a depth 

code associated to their depth-location.  

 

Image analysis 

ImageJ software (version 1.44, NIH, Bethesda, USA) was used to process the images of the CLSM 

optical sections.
22

 The histogram of each color intensity was computed in each sample, for each 

slice, for each channel (green for live cells, red for dead cells and white for empty volumes). The 

logarithmic value (ln) of the pixel counts was calculated at maximum intensity. The R package (R 

Development Core Team, 2005) was employed to perform a polynomial (2
nd

 order) regression 

analysis of the series.
23

  

 

Scanning Electron Microscopy (SEM) analysis 

Samples (n = 2) at 2 time points, i.e., (t0 + 1 day) and (tf), were processed for SEM analysis as 

described earlier.
16

 The dried samples were cross-sectioned, sputter-coated with gold (Sputter coater 

Emitech K550, Quorum Technologies Ltd, West Sussex, UK) and examined on a Quanta scanning 

electron microscope (FEI, Hillsboro, OR, USA). 

 

Scaffold cellularity and seeding efficiency 

HMSC number (or cellularity) was determined measuring the double strand (ds) DNA content using 

the PicoGreen kit (Molecular Probes, Eugene, OR, USA) according to published methods.
24-25

 

Cellularity was calculated dividing the measured value of ds-DNA by the nuclear DNA content of a 

human diploid cell (7.18 pg/cell).
26

 One hour after each seeding event, a set of samples was used to 

evaluate the efficiency of the scaffold-cassette seeding system by collecting the CM and quantifying 

the unattached cell number. Total seeding efficiency was then calculated as the percentage ratio of 

the seeded cell number to the number of cells suspended. 
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For quantitative assays, 4 constructs for each group (n = 4) were collected at the endpoint (tf) and 

lysed via freeze-thawing-sonication cycles, as previously reported.
24

  

 

Osteogenic differentiation of the niches: quantitative analyses 

Alkaline Phosphatase (ALP) Activity 

Intracellular ALP activity was quantified in cascade on construct lysates assayed for cellularity (n = 

4) by means of a colorimetric endpoint assay based on p-nitrophenol, using the reagents provided 

by Sigma-Aldrich.
27

 The absorbance increase at 405 nm allowed the enzyme activity to be 

quantified in the samples, as previously reported.
25

 ALP activity was normalized by cellularity. 

 

Calcium Content 

Calcium content in construct lysates (n = 4) was quantified using a colorimetric endpoint assay 

based on Arsenazo III (Diagnostic Chemicals Ltd., Oxford, CT, USA), according to a published 

method.
24

 This assay measures at 650 nm the amount of blue-purple-colored Ca-Arsenazo
++

 

complex, formed when Arsenazo III binds to free Ca in acid solution. Ca content was normalized by 

cellularity. 

 

Osteogenic differentiation of the niches: qualitative and semiquantitative analyses 

Cell morphology and calcium imaging via CLSM 

A set of samples was treated with 10 g/ml tetracycline HCl (Sigma-Aldrich) to assess mineral 

matrix formation under CLSM.
28,29

 At the endpoint, samples were fixed in 4% buffered formalin 

and incubated with a 0.01 M solution of 4’-6’-diamidino-2-phenylindole (DAPI; Invitrogen) and 

phalloidin-Alexa633 (Invitrogen) for 45 min at RT. A laser diode (405 nm emission), Argon ion 

laser (488 nm emission) and Helium-Neon laser (633 nm emission) were used for excitation of the 3 

fluorophores.  
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Histological analysis 

Samples were processed for histology, as previously reported.
16

 The sections, 8 m thick, were 

stained with a specific kit for Alcian Blue (Bio-Optica, Milano, Italy), according to the 

manufacturer’s recommendations.  

Bone proteins were immunodetected using a streptavidin revelation kit (Vectastain Elite ABC Kit 

Standard, Vektor Lab, Burlingame, CA, USA), as described earlier.
16

 For osteopontin (OPN), 

osteocalcin (OCN) and collagen I (Coll I), the sections were permeabilized with 0.2% Triton 

solution (Sigma-Aldrich), while an unmasked buffer (Diapath S.p.A, Bologna, Italy) was used for 

Runx2. The following primary antibodies were used: mouse monoclonal anti-OPN (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA), rabbit polyclonal anti-OCN (Santa Cruz Biotechnology), 

rabbit polyclonal anti-Coll I (AbCam, Cambridge, MA, USA) mouse monoclonal anti-Runx 2 

(Abnova, Taipei, Taiwan). Micrographs at 40× optical magnification (total magnification 400×) 

were captured for each niche-type to evaluate cell morphology, number of antigen-positive cells and 

to score antigen intensity. Averages of about 600 cells were counted and analyzed for each group. 

Antigen positivity was scored by 3 independent observers according to the following criteria: 0 = 

negative; 1 = weak positivity; 2 = good positivity; 3 = strong positivity; 4 = very strong positivity. 

 

Statistical analysis 

For image analysis, a unique regressive model was built for each sample, able to fit both the green 

and the red series, using a centering method to minimize the autocorrelation impact. Significance of 

each model and normality of the residuals were checked out by the Jarque-Bera and Shapiro-Wilk 

tests. The confident intervals (95% of variance) of the models could thus be calculated to compare 

green and red series along the depth levels.  

Elsewhere, statistical analysis was conducted using Welch’s test to adequately manage samples 

having unequal variances. The results were corrected for multiple comparisons using the 
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Bonferroni-Holm method. Data underwent both descriptive [mean ± standard deviation (SD)] and 

inferential statistics (p values). 

 

Results 

 

Cellular viability, colonization and morphology  

Cell viability on the top surfaces of the niches 

The NR assay, performed on the same samples at two different time-points (2
nd

 and 16
th

 culture 

day) highlighted the presence of viable cells on the top surfaces of the constructs (Fig. 2). At those 

times, the niches had just received 1 and 4 seeding shots, respectively. Stereomicroscopy analysis 

revealed interesting differences between the samples. At the first time of observation (t0 + 1 day), 

the extent of cell viability on the top surfaces of the niches reflected the densities of cell seeding, 

being the lowest in niche #1 and the highest in niche #3 (Fig. 2 A1-C1). Instead, at the last time of 

observation (t3 + 1 day), niches #1 and #2 displayed a higher top colonization of viable cells than 

niche #3 (Fig. 2 A2-C2). Specifically, in niche #1 the viable cells were found to be very 

concentrated in the center of the scaffold 1 day after the first seeding (Fig. 2 A1) and 

homogeneously diffused all over the top surface after the last seeding (Fig. 2 A2). The same trend 

was observed in  niche #2, in which the cells, initially seeded at a double concentration (Fig. 2 B1), 

could spread out over the whole surface following the subsequent seeding shots (Fig. 2 B2). 

Differently, in niche #3, where no additional seeding was performed with time, cell viability on the 

top surface was significantly reduced on day 16 (Fig. 2 C1-C2).  

 

Cell viability inside the niches 

The Live/Dead
®

 assay allowed images of both live and dead cells to be  obtained via CLSM up to 

about 200 m depth, which were rendered using the “depth code” mode (Fig. 3 A-B). Live cell 

colonization in the niches was reported in Figures 3 A1-3, dead cell localization in Figures 3 B1-3. 
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From this qualitative evaluation, it was possible to visualize a massive presence of live cells in the 

investigated thickness of all samples. Moreover, the presence of dead cells was detected in the same 

volumes although at a lesser extent than that of live ones. In such samples, a qualitative comparison 

was very difficult and presumably would have been misleading; therefore, we devised an image 

analysis method to comment these data. 

Image analysis performed on the CLSM sections revealed that the color levels displayed a 

statistically significant difference within the same niche (ANOVA Bonferroni-corrected; p<0.0001), 

while this difference was not statistically significant when the same color levels were compared 

between the three niches (p=0.2, n.s.). This means that the obtained data can only be used for intra-

niche analysis (Fig. 3 C1-3). In the centered series, normality of the residuals was checked by the 

Jarque-Bera test, discovering that the null hypothesis of normal distribution of the data could not be 

rejected (JB test p>0.09). However, a statistically significant effect of the factor interaction 

(color×sample, p=0.0001) was found. The white channel resulted as a linear constant in each 

sample, allowing intra-sample comparison between live and dead cells. The resulting regressive 

models for the live and dead cells are shown in Table 2. The models and their confident intervals 

were calculated and compared within each sample, as reported in Figure 3C. The boundaries of 

green and red series never overlapped only in niche #2, making the differences between viable and 

dead cells significant for only this niche (Fig. 3 C2).  

 

Cell colonization and morphology inside the niches 

The results of SEM analysis are reported in Figure 4. Micrographs of constructs showed the cellular 

colonization in the three niches (magnification 200×) (Fig. 4 A-C), at (t0 + 1 day) (Fig. 4 A1-C1) 

and at (tf) (Fig. 4 A2-C2). Cell morphology and ECM production by osteo-differentiated hMSCs at 

the endpoint (tf) were also shown (magnification 1,000×) (Fig. 4 A3-C3). At (t0+1 day), the hMSCs 

were found to be lying at the top of the scaffolds and displaying a flat and smooth morphology, 

which was similar in all the niche-groups (Fig. 4 A1-C1). Owing to the different number of seeded 
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cells, incomplete colonization was observed in niches #1 and #2, while niche #3 was almost fully 

covered by a cell layer (Fig. 4 A1-C1).  

Cells could be found in the cross-sections at the endpoint (tf) of all samples (Fig. 4 A2-C2). 

However, colonization in niche #1 was still incomplete (Fig. 4 A2). In this niche, the cells mostly 

appeared in spindle-like rather than round shape, and basic ECM production could be observed 

(Fig. 4 A3). By contrast, niche #2 showed a high cellular density (Fig. 4 B2), and cells with 

elongated or round-shaped morphology could be observed (Fig. 4 B2-B3). Evidence of protein 

synthesis could also be seen (Fig. 4 B3). Colonization in niche #3 appeared to be concentrated in 

cell-dense volumes mainly at the center of the scaffold (Fig. 4 C2). Here, all cells displayed a round 

morphology and production of intercellular ECM was abundantly revealed (Fig. 4 C3). 

 

Niche cellularity 

Using the scaffold-customized cassettes, the estimated seeding efficiencies were 91.08%, 93.27%, 

90.49% in niche #1, #2, #3, respectively (Table 1). Cellularity quantified at the endpoint is shown in 

Figure 5A. Calculated cell numbers were: 266,415 ± 43,830,  228,106 ± 31,002 and 300,529 ± 

81,265 cells/sample, for niche #1, #2 and #3, respectively (Fig. 5 A). However, no statistically 

significant difference could be detected among the three niche-groups (p>0.05).  

 

Osteogenic differentiation of the niches 

Osteogenic biomolecules: Quantitative analyses 

The outcomes of the intracellular ALP activity assay are given in Figure 5B. The enzyme was 

present and active in all the niches, with the following values: 0.125 ± 0.027, 0.149 ± 0.012 and 

0.117 ± 0.030 pmol/(h∙cell), in niche #1, #2 and #3, respectively, with no statistical difference 

among the niches (p>0.05) (Fig. 5 B).  

Results of calcium content are shown in Figure 5C. Ca
++

 quantity in niche #1 was 25.53 ± 22.90 

pg/cell, while it was 100.06 ± 29.30 and 78.51 ± 28.50 pg/cell in niches #2 and #3, respectively. 
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Statistically significant differences were detected between niches #1 and #2, and between niches #1 

and #3 (in both cases, p<0.01). No statistically significant difference was found between niches #2 

and #3 (p>0.05) (Fig. 5 B). 

 

Osteogenic biomolecules: Histomorphological analyses  

Presence and specific localization of the ECM molecules and of the main markers involved in the 

osteogenic differentiation of hMSCs were investigated using histochemical, immunohistochemical 

and CLSM analyses (Fig. 6). Semiquantification of the protein markers is summarized in Figure 7, 

in which the detected proteins are grouped in relation to cell number, cell morphology (spindle- 

versus round-shaped cells) and, in some cases, to their localization (nuclear versus cytoplasm, or 

intra- versus extra-cellular). In particular, Figure 7A summarizes that niches #1 and #2 (i.e., 

periodically seeded niches) display cells with two well-distinguishable morphologies (with 79.9% 

and 40.8% spindle-like cells, respectively), while niche #3 only contains round-shaped cells. Alcian 

Blue staining at pH 2.5 showed the presence of generic GAGs (in cyan), which were 

homogeneously detected both at intra- and extra-cellular levels in niche #3 (Fig. 6 A3) and to a 

lesser extent in niche #2 (Fig. 6 A2), while GAGs in niche #1 showed a low expression, which 

could be more rarely observed at an extracellular level (Fig. 6 A1).  

Protein markers were investigated via immunohistochemistry. The Runx2 expression appeared in 

both the nuclei and the cytoplasm, showing its highest positivity at the nuclear level, with the 

exception of the round-shaped subpopulation in niche #2 (Fig. 7 B). Specific differences related to 

cell morphology could be highlighted among the niche types. In niche #1, Runx2 protein was 

expressed only in spindle-shaped cells (Fig. 6 A2 and 7 B) with nuclear intensity of 2.56 ± 1.06 and  

cytoplasmatic intensity of 0.85 ± 0.35. Differently, in niche #2, Runx2 was immunodetected in both 

cell morphotypes, and expressed in an opposite fashion. In the round-shaped cells, the Runx2 

appeared mostly in the cytoplasm, while in elongated cells mostly in the nucleus (Fig. 6 B2 and 7 

B). Specifically, the intensity of cytoplasmatic positivity was 0.69 ± 0.46 in spindle-shaped and 
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3.08 ± 0.05 in round-shaped cells), while intensity of nuclear positivity was 2.08 ± 1.39 in spindle-

shaped and 0.50 ± 1.33 in round-shaped cells; both comparisons showed statistical significance 

(p<0.0001). In the round-shaped cells of niche #2, Runx2 showed a highly heterogenic expression 

at the nuclear level, being either zero in 87% or 4 (top score) in 13% of nuclei. In niche #3, all cells 

showed round morphology and high Runx2 immunopositivity, with 4.10 ± 0.04 at nuclear and 3.02 

± 0.06 at cytoplasm level (Fig. 6 C2 and 7 B). Lastly, inter-niche comparisons between elongated 

cells revealed that the highest positivity intensity was in in niche #1, both at nuclear (p<0.005) and 

cytoplasm level (p<0.004). Conversely, inter-niche comparisons among round cells, showed that the 

highest Runx2 nuclear intensity occurred in niche #3 (p<0.0001), while cytoplasmatic intensity was 

not statistically different (p=n.s.) (Fig. 7 B). Summarizing, a cell-heterogenic expression of the 

Runx2 protein was slightly observable in niche #1 (where the round cells appeared to be completely 

immunonegative) and mostly in niche #2 (where distinct cell populations displayed a different 

immunopositivity localization). 

OPN was immunodetected in all niches (Fig. 6 A3-C3 and 7 C). Round-shaped cells were allover 

strongly OPN-immunopositive (positivity intensity: 3.03 ± 0.05, 3.11 ± 0.04 and 3.09 ± 0.05, in 

niche #1, #2 and #3, respectively; p=n.s. in all the comparisons), with both cytoplasmatic and 

extracellular localizations, while spindle-shaped cells showed characteristic perinuclear localization 

(2.18 ± 0.76 and 0.98 ± 0.13, in niche #1 and #2, respectively) and reduced immunopositivity in 

niche #2 (p<0.0001) (Fig. 7 C). In this case, a graded positivity of the OPN protein could be 

observed in elongated cells. The results of intra-niche comparisons (spindle versus round cells), 

showed that OPN was all over the most intense in the round cells (p<0.0001). 

Coll I was immunodetected both at the intra- and extra-cellular levels in all the niches, but with 

important differences ranging from partial immunonegativity of niches #1 to abundant extracellular 

secretion of niches #3 (Fig. 6 A4-C4). In niche #1, Coll I was synthesized with low and 

heterogeneous positivity (Fig. 6 A4). The elongated cells showed this marker sometimes at the 

extra- and more often at the intra-cellular level, with intensity of 1.25 ± 0.56 and 0.58 ± 0.18, 
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respectively (Fig. 7 D). In round cells, the positivity intensity was  0.25 ± 0.25 at the intra- and 0.75 

± 0.76 at the extra-cellular level (Fig. 7 D). In this niche, the intracellular Coll I intensity was higher 

in elongated cells than in round cells (p<0.0001), while no statistically significant difference was 

found at the extracellular level (p=n.s.) (Fig. 7 D). In niche #2, elongated cells expressed Coll I 

antigen at the intracellular level (1.02 ± 0.05), without statistically significant difference against 

niche #1 (p=n.s.). However, the highest extracellular expression (2.00 ± 0.04) of this protein in 

niche #2 was revealed within the intercellular areas of round-shaped cells (Fig. 7 D), where well-

defined interconnected filaments of Coll I could be observed (Fig. 6 B4). In niche #2, round cells 

displayed Coll I intensity significantly higher than in niche #1 at both the intracellular (p<0.0001) 

and the extracellular levels (p<0.0001) (Fig. 7D). Finally, niche #3 displayed the strongest 

extracellular immunopositivity for Coll I (4.09 ± 0.05; p<0.0001) among the three niches (Fig. 7 D). 

At intracellular level no statistically significant difference was detected against niche #2. In this 

niche, a dense network of collagen fibrils embracing round cells was highlighted (Fig. 6 C4).  

OCN was immunodetected in all niches (Fig. 7 E), but with different localization and 

immunopositivity (Fig. 7 E). In niche #1, OCN was weakly expressed (1.06 ± 0.06) only in 

elongated cells at intracellular level (Fig. 6 A5). In addition to a similar OCN expression by spindle-

like cells, niche #2 displayed a round-cell population with strong OCN-immunopositivity (3.04 ± 

0.05), localized mainly at the cytoplasm and more rarely at the extracellular level (Fig. 6 B5). The 

presence of these two populations with different immunopositivity and localization of OCN 

rendered the niche #2 yield less positive on the whole than that of niche #3, in which only round 

cells were present. These cells showed OPN positivity comparable to that of niche #2 (3.00 ± 0.05), 

in addition to a wider extracellular localization of this antigen than that detected in niche #2 (Fig. 

6 C5). No statistical differences were found in inter-niche comparisons of the same morphotypes (p 

= n.s.). However, owing to the coexistence of two distinct cell populations (elongated and round 

cells), each one retaining a specific expression of this antigen, niche #2 was the only one in which 

the expression of this biomolecule was found to be diversified (p<0.0001). 
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Finally, the calcium matrix formation was highlighted via CLSM (Fig. 6 A6-C6). Calcium deposits 

were enhanced in all the niches in proximity of round cells, although they were encountered only 

sporadically in niche #1, suggesting a reduced amount of mineralization. In particular, elongated 

cells with large nuclei and well-defined f-actin filaments mixed with smaller round cells could be 

observed in niches #1 and #2 (Fig. 6 A6-B6). Finally, the cells in niche #3 were round and small, 

showing DNA condensation and poor f-actin development (Fig. 6 C6). 

  

 

Discussion 

The conventional TE approach exploits MSCs to be inoculated on 3D scaffolds with static (e.g., 

droplet) or dynamic methods and therein differentiated.
30

 However, after achieving in vitro terminal 

osteo-differentiation, including a large production of calcium matrix in the short timeframe of a few 

weeks, osteoblast viability and synthetic activity are usually exhausted. On the other hand, naturally 

occurring osteogenesis results from the coexistence of MSC-derived progenies at distinct 

differentiative stages which form a complex and intercommunicating microenvironment with their 

ECM. This diversification of osteogenic cells also enables long-term viability and self-renewal of 

the mature tissue in vivo.
31

 Bone formation thus relies on the concept of “niche”, which is 

considered as a dynamic SC-matrix microenvironment providing both self-renewal and specific 

differentiating stimuli.
3,20

 The use of biomimetic approaches has been proposed in recent years as a 

key factor for engineering functional tissues ex vivo.
9,10

 Indeed, the novel TE strategies should “try 

to fabricate scaffolds or create microenvironments that mimic these metastable tissues and promote 

complex cell–cell and cell–matrix interactions, rather than precisely engineer the final tissue 

form”.
10

 It is a fact that in its initial decades TE has widely employed “minimalistic approaches 

based on homogenous populations of cells provided with suitable environmental conditions to give 

rise to specific practical outcomes (e.g., mineralized scaffolds..)
”
.
9
 However, it is of general 

 Page 18 of 43 

T
is

su
e 

E
ng

in
ee

ri
ng

 P
ar

t C
: M

et
ho

ds
G

ro
w

in
g 

bo
ne

 ti
ss

ue
-e

ng
in

ee
re

d 
ni

ch
es

 w
ith

 g
ra

de
d 

os
te

og
en

ic
ity

: a
n 

in
 v

itr
o 

m
et

ho
d 

fo
r 

bi
om

im
et

ic
 c

on
st

ru
ct

 a
ss

em
bl

y 
(d

oi
: 1

0.
10

89
/te

n.
T

E
C

.2
01

2.
04

45
)

T
hi

s 
ar

tic
le

 h
as

 b
ee

n 
pe

er
-r

ev
ie

w
ed

 a
nd

 a
cc

ep
te

d 
fo

r 
pu

bl
ic

at
io

n,
 b

ut
 h

as
 y

et
 to

 u
nd

er
go

 c
op

ye
di

tin
g 

an
d 

pr
oo

f 
co

rr
ec

tio
n.

 T
he

 f
in

al
 p

ub
lis

he
d 

ve
rs

io
n 

m
ay

 d
if

fe
r 

fr
om

 th
is

 p
ro

of
.



19 

 19 

understanding that the regeneration of functional tissues, for their intrinsic complexity, will 

necessarily have to be based on more advanced in vitro models than those achieved so far.  

Our study is aimed at going a step further in this direction, creating simple osteogenic cell niches 

hosting a gradation of mesenchymal-origin bone cells by means of an easy and tunable in vitro 

method able to engineer simple osteogenic cell niches in a biomimetic fashion. In this report, basic 

in vitro models of osteogenic 3D niches were obtained by periodic seeding of undifferentiated 

hMSCs on osteoinduced hMSC/scaffold constructs. Such an experimentally simple method allows 

diverse osteogenic cells to be developed on the same scaffold. Moreover, the arrival of new 

immature cells at an osteogenic niche mimics in a simple way the cell turnover in non-

hematopoietic BM compartments, where undifferentiated cells constitutively present in the BM, 

come into contact with adherent osteogenic cells, which are attached to the neighboring bone 

surfaces, and differentiate.
20

 Although still largely incomplete (e.g., the hematopoietic and the 

endothelial cells are missing), our cell-dynamic system is actually far too complex to be evaluated 

during its development, as discontinuity points due to the seeding events are present which would 

affect measurements over time. Therefore, in this paper we only focus on the comparison of 3 niche 

types at a selected endpoint (i.e., 21 culture days, 16 osteo-induction days), all of them having 

received the same number of cells (i.e., 500.000 cells/sample).  

The importance of finding appropriate methods for MSC seeding has also been pointed out by 

several authors looking for optimization of their tissue constructs;
14,30,32

 however, the seeded cell 

number should always be considered a decisive parameter to be taken into account, as it affects the 

cell loss at seeding (i.e., the real cell density achieved per scaffold area) together with the scaffold 

specific architecture and material and surface properties.
33

 Cell-cell signals have indeed proved to 

be extremely important in cell proliferation, migration and ECM molecule deposition and either too 

high or too low densities may be equally detrimental to achieve the desired neo-tissue formation.
9 

In our model, long-term viability of the periodically seeded niches (niches #1 and #2) seemed to be 

confirmed by our observations: on the top surfaces, the viable cells detected by the NR assay 
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increased with respect to the use of the traditional method. An attempt to determine the viability of 

the constructs in the third dimension was performed using the Live/Dead
®
 assay under CLSM. The 

presence of both live and dead cells in the three niches could be highlighted via CLSM up to its 

detection threshold (about 200 m). However, since a qualitative inter-niche comparison of these 

phenomena resulted very difficult, we performed image analysis of the samples for each slice (i.e., 

depth level) and for each color channel (i.e., green and red, for live and dead cells, respectively) by 

computing the histogram of the colored pixels at the maximum intensity. This method made it 

possible to extract additional information from those images. First of all, only intra-niche 

differences between live and dead cells could be identified. Moreover, a statistically significant 

difference between live and dead cell numbers was detected only for niche #2. Finally, the 

cellularity data obtained by ds-DNA quantification, which cannot discriminate between live and 

dead cells, were not statistically different in the three niches, corroborating the consistency of our 

seeding method. Colonization of the three niches in cross-sections was also confirmed by SEM 

analysis conducted at the endpoint. All in all, this set of analyses highlighted that multiple-seeding 

methods allowed increased cell viability and homogeneous colonization of the seeding surface with 

respect to the traditional method. On the other hand, inner colonization in these scaffolds seemed to 

be pulsed by higher initial cell densities (250,000 and 500,000 cells/shot). Among the 3 niche-

groups, niche #2 accounted for the highest surface viability, most regular inner colonization and 

statistically significant difference between live and dead cells over the third dimension.  

From the osteo-differentiation standpoint, the ALP activity was similarly expressed in the three 

niches, while calcium content in both niches #2 and #3 was almost 4 times higher than in niche #1, 

with statistical significance, clearly indicating bone maturation of these constructs.
34

 It is interesting 

to note that multi-seeded niches resulted in high seeding efficiency (>90%) and fairly homogeneous 

quantitative results (i.e., standard deviations not higher than in niche #3). Differently, niche #3 was 

the most heterogeneous in terms of Ca
++

 content. Therefore, a multiple-shot (in this case, s=4 shots) 

method can also offer advantages in seeding efficiency, decreasing the risks associated with a single 
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seeding event (s=1). As a matter of fact, the subsequent seeding events may favor the achievement 

of more homogeneous cell distribution and differentiation in all three dimensions in a reproducible 

manner. Improvement of seeding efficiency and spatial distribution of seeded cells has also been 

reported to occur in bioreactors used for cell seeding under oscillating flow (s>>1).
33,35

 

Histology and SEM highlighted subpopulations with two different morphologies (spindle-like and 

round) in niches #1 and #2, while only round cells were observed in niche #3. Niche #1 mainly 

showed elongated cells (about 80%), expressing high positivity for Runx2 and OPN, and low levels 

of Coll I and OCN. Calcium was present but in reduced amount with respect to the other niches, 

thus indicating that it was the most immature niche type.
36

 In niche #2, the two subpopulations were 

more balanced (elongated- vs. round-cell ratio about 2:3) and osteogenic antigens were well 

diversified according to cell morphology. In particular, an enhanced expression of OCN, Coll I 

fibers and nuclear-level Runx2 were found in round cells, while high cytoplasmatic expression of 

Runx2 was shown by the elongated cells. Finally, niche #3 showed round cells (100%) with the 

highest positivity among all the investigated osteogenic proteins.
37

 However, chromatin 

condensation, was revealed, which is a sign of cell sufferance and apoptosis.
38

 Finally, it should be 

observed that calcium content in niches #2 and #3 was not statistically different. However, only 

niche #2 still had a reservoir of non-terminally differentiated cells (i.e., spindle-like cells) able to 

maintain self-renewal and to carry on further ECM maturation or remodeling. Considering that the 

average residence time of cells (i.e., the average time hMSCs were exposed to osteogenic CM) in 

niche #2 was shorter than in niche #3 (weighted mean of culture times: 16.7 days versus 21 days), 

our results indicate that the niche microenvironment has played a role in the osteogenic 

commitment of hMSCs. 

 

Conclusions 

The periodic addition of undifferentiated cells inside a differentiative environment is a simple 

method that permits osteogenic cell gradients to be generated within the resulting population. 
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Moreover, via periodic seeding, a biomimetic cell-dynamic niche model can be created, where 

hMSCs periodically come and interact with both bone ECM molecules and other previously 

generated osteogenic cells. Variation of cell densities of the seeding shots (i.e., time-fractioning the 

cell number to be seeded into 4 inoculations performed at 5 day intervals) resulted in constructs 

with different osteogenic cell progenies. Specifically, constructs with higher seeding densities in the 

first cell inoculation reached earlier maturation.  

Distinct subpopulations, spindle- and round-shape cells, could be morphologically detected only in 

the periodically seeded niches (i.e., niches #1 and #2), while only round-shape cells were found in 

constructs grown with the traditional method (i.e., niche #3). Different cellular morphotypes were 

found to be associated with different expression levels of osteogenic proteins, thus enabling 

microenvironmental diversification of the niches. In particular, an enhanced expression of OCN, 

Coll I fibers and nuclear-level Runx2 was found in round cells, while high cytoplasmatic expression 

of Runx2 was shown by the elongated cells. Among these three niche-groups, niche #2 accounted 

for the highest surface viability, most regular inner colonization and statistically significant 

difference between live and dead cells over the third dimension. Finally, niche #2 showed calcium 

content not statistically different from the traditional method (100.03 ± 29.30 vs. 78.51 ± 28.50 

pg/cell, respectively; p = n.s.) but, unlike niche #3, it gained a reservoir of non-terminally 

differentiated cells (i.e., 40.8% of spindle-like cells), potentially able to maintain self-renewal and 

to pulse further maturation of the construct. Niche #2 can thus be considered an interesting and 

efficient alternative to the traditional bone-TE substitutes. 
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Captions 
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Figure 1 

Schematic of dynamic hMSC/scaffold assembly leading to 3 different osteogenic niches at an 

endpoint (tf). In each niche type, the total number (N) of undifferentiated hMSCs to be seeded is 

time-fractioned in 4 seeding shots to be inoculated at time intervals (t0, t1, t2, t3), with specific cell 

densities for each group. Niche #1 is periodically seeded with constant-density cell shots, niche #2 

with decreasing-density cell shots and niche #3 with the traditional seeding mode (all cells in one 

shot). In the three cases described in this study, the seeded cells per scaffolds and the specific times 

used are reported in Table 1. 
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Figure 2 

Surface viability of the niches: Stereomicroscopy images of the NR assay showing viable cells (in 

red) on the top surfaces of the same samples observed at two different time-points. (A1-C1) 

Samples on day 2, (i.e., 1 day after the 1
st
 cell-shot). (A2-C2) Samples on day 16 (i.e., 1 day after 

the last cell-shot). 
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Figure 3 

3D viability of the niches: viable and dead cells at tf. (A-B) Results of Live/Dead
®

 assay via CLSM 

rendered using the “depth code” mode up to about 200 m depth (colored scale bars for z axis). 

White scale bar (for xy plane) is 200 m. (A1-3) Live cell colonization. (B1-3) Dead cell 

localization. (C) Results of image analysis performed on the CLSM sections for each depth level 
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and color channel at maximum intensity, fitted with a polynomial regression and statistically 

evaluated. (C1-3) Graphs show the logarithmic progression of the pixel number for live and dead 

cells over the sample thickness (z axis) and the related confident intervals.  
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Figure 4 

SEM micrographs of the three niches on day 2  [i.e., (t0 + 1 day)] and on day 21 [i.e., endpoint or 

(tf)]. Thin and thick arrows indicate cells and ECM, respectively. (A1-C1) Micrographs on day 2, 

showing the hMSC colonization of the top surfaces; magnification 200×, scale bar 100 m. (A2-

C2) Micrographs at the endpoint (tf), showing cell colonization and ECM production by osteo-

differentiated hMSCs in cross-sections (magnification 200×, scale bar 100 m). (A3-C3) Inner 

section micrographs at the endpoint (tf), highlighting cell morphology and ECM production; 

(magnification 1,000×, scale bar 20 m).  
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Figure 5 

Bar graphs of quantitative analyses performed in quadruplicate (n = 4) and in succession on the 

same construct lysates of the three niches at the endpoint (tf). (A) Cellularity obtained by ds-DNA 

quantification, assuming 7.18 pg of DNA per hMSC. The detected differences are not statistically 

significant (p = n.s.). (B) Intracellular ALP activity shows not statistically significant values (p = 

n.s.). (C) Calcium content after final acid incubation of the constructs. Statistically significant 

differences are detected between niche #1 and #2, and between niche #1 and #3 (p<0.01 in both 

comparisons). None statistically significant difference is found between niche #2 and #3 (p = n.s.).  
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Figure 6 

(1-5 A-C) Light microscopy images of inner sections of niches #1, #2, #3 (A, B, C, respectively) at 

the endpoint (tf). Magnifications are expressed as the ocular magnification (10×) multiplied by the 

objective magnifications. These micrographs are representative of about 10–12 sections per 

staining/antigen type performed at different depths of constructs. (A1–C1) Alcian Blue staining at 

pH 2.5, showing the presence of generic acid GAGs in cyan blue and cell nuclei in red, 

magnification 400×. (2-5 A-C) Osteogenic proteins via immunohistochemistry. Antigens are 

revealed in brown. (A2–C2) Runx2 expression, magnification 400×. Insets show examples of 

nuclear/cytoplasm localizations, magnification 1,000×. (A3–C3) OPN expression, magnification 

1000×. (A4–C4) Coll I expression, magnification 1,000×. (A5–C5) OCN expression, magnification 

1000×. Insets show different OPN intensity in niche #2, magnification 1,000×(B5). (6 A-C) CLSM 

images of inner sections of niches #1, #2, #3 (A, B, C, respectively), magnification 600×. These 

micrographs are representative of about 5-7 sections performed at different depths of constructs. 

Calcium is stained in green, f-actin in red and nuclei in blue. (1-6 A-C) Scale bar 30 m. 
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Figure 7 
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Bar graphs showing semiquantification of cell morphotypes and related proteic markers at the 

endpoint (tf). Averages of about 600 cells were counted and analyzed for each niche-type, using 

light microscopy micrographs at 40× optical magnification (total magnification 400×). (A) Pie 

graphs representing the percentage ratio between spindle-like and round morphotypes in the niches. 

(B-E) Intensity of osteogenic antigens in the niches. (B) Runx2 intensity and localization in the 

different cell morphotypes of the niches. (C) OPN intensity in the different cell morphotypes of the 

niches. (D) Coll I intensity and localization in the different cell morphotypes of the niches. (E) 

OCN intensity in the different cell morphotypes of the niches. 

Antigen positivity was scored by 3 independent observers according to the following criteria: 0 = 

negative; 1 = weak; 2 = good; 3 = strong; 4 = very strong. Error bars indicate scoring differences 

due to non-homogeneous expression of the antigen within the specific morphotype/niche. Asterisk 

indicates statistical significance (*, ** and *** indicate p= 0.01, p =0.001 and p = 0.0001, 

respectively), while “n.s.” indicates not statistically significance of comparisons. 
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Table 1 

 

Seeding parameters 
Niche # Number of seeded cells at each seeding time TOT seeded 

cells/sample 

Seeding 

efficiency t0 = day 0 t1 = day 5 t2 = day 10 t3 = day 15 

1 125,000 125,000 125,000 125,000 500,000 91.08 % 

2 250,000 125,000 75,000 50,000 500,000 93.27 % 

3 500,000 0 0 0 500,000 90.49 % 
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  Table 2 

 

Regressive model coefficients for the equation Y= (a+_s)+bX+ cX
2
.  

Niche # a b c red green 

1 1.098 0.00178 -0.0003 4.099 7.253 

2 1.372 -0.02664 9.319∙10
-5

 2.806 8.510 

3 -5.814 0.15509 -0.0008 4.660 7.539 
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<b> Potential journal cover (Figure 6 C4)</b> 

Coll I expression in niche 3 via immunohistochemistry. Magnification 1,000 x. 
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