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Abstract 27 

 28 

      To understand the solidification processes of natural magma and the texture 29 

evolution of igneous rocks, we have carried out in situ observation of the 30 

crystallization of a high-K basaltic melt cooling from ~1240°C in a moissanite cell.  31 

In a series of experiments with different thermal history, olivine or clinopyroxene 32 

(cpx) appeared as the liquidus phase before the formation of plagioclase.  During 33 

cooling at 100°C/hr, the morphology of olivine and cpx transited from tabular to 34 

hopper habit.  To first order approximation, crystal grow rate (2u10-9 m/s to 7u10-9 35 

m/s for olivine and 6u10-9 m/s to 17u10-9 m/s for cpx), probably limited by chemical 36 

diffusion, is proportional to crystal size.  In one experiment dominated by olivine 37 

crystallization, the good image quality allows the analysis of texture evolution over an 38 

extended period.  Nucleation of olivine occurred only in a narrow temperature and 39 

time interval below the liquidus.  Two-dimensional length- and area-based crystal size 40 

distributions (CSDs) show counterclockwise rotation around axes of 8 Pm and 100 41 

Pm2, which is consistent with the proportionate crystal growth.  Both CSDs and direct 42 

observation show the dissolution of small crystals and Ostwald ripening.  These data 43 

suggest that conventional analyses of crystal size distributions of igneous rocks may 44 

be in error – the slope of the CSD cannot be interpreted in terms of a uniform growth 45 

rate and the intercept with the vertical axis does not correspond to a nucleation 46 

density. 47 

 48 

Keywords: Crystal growth; crystal size distribution; basalt melt; igneous rocks 49 
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 3 

Introduction 51 

Igneous rocks are formed by the solidification of silicate melts.  The advance and 52 

disruption of solidification fronts in magmatic systems can have planetary-scale 53 

consequences, with the formation of the continental crust being one example (Marsh 54 

2006).  From a microscopic perspective, melt solidification is known to involve a 55 

series of physicochemical processes, including crystal nucleation, crystal growth, 56 

Ostwald ripening, and others.  However, there is much to learn about the details, and 57 

in particular, about the mechanisms by which igneous texture evolves with cooling 58 

under the collective operation of these processes (Hersum and Marsh 2007).  To 59 

tackle the inverse problem of deciphering magma history from rock texture, it is 60 

indispensable to obtain a good understanding of the forward solidification process 61 

(Hammer 2008). 62 

      Already Jambon et al. (1992) observed olivine growth in situ by heating basaltic 63 

melt inclusions trapped in plagioclase phenocrysts.  However, the limited size of the 64 

melt inclusions (40-150 Pm) precluded texture evolution from being traced.  65 

Immediately after its development (Schiavi et al. 2009), the moissanite cell (SiC 66 

single crystals being used as the window material) was recognized to be a useful tool 67 

for “capturing crystal growth” (Hammer 2009).  The moissanite cell achieves better 68 

confined sample geometry and more precise temperature control than commonly used 69 

heating stages (e.g., Applegarth et al. 2013).  In previous experiments carried out in 70 

the moissanite cell, quantitative texture analysis had been made on images collected 71 

from a supercooled melt at 900°C (Schiavi et al. 2009), but image quality was rather 72 

poor for experiments cooling from superliquidus temperatures such as 1250°C 73 

(Schiavi et al. 2010). 74 
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 4 

      After technically improving the moissanite cell, we have been able to obtain 75 

continuous records of olivine, clinopyroxene and plagioclase crystallization in a high-76 

K basaltic melt cooling from ~1240°C.  Especially in one experiment, high-quality 77 

time-lapse images of olivine crystallization processes make it possible to trace not 78 

only the growth of individual crystals but also the texture evolution as represented by 79 

the crystal size distribution (CSD).  These data allow current interpretations of the 80 

crystal size distribution in igneous rocks to be directly tested. 81 

 82 

Experimental and analytical methods 83 

 84 

Starting material 85 

The starting material for in situ crystallization experiments was a synthetic basaltic 86 

glass with a composition targeted at the golden pumice PST-9 from the Stromboli 87 

volcano, Italy (Pichavant et al. 2011).  Because the presence of iron would 88 

significantly degrade sample visibility in transmission under an optical microscope, 89 

FeO was substituted by an equal amount of MnO.  Oxides and alkali nitrates were 90 

melted twice at 1500°C in a 1-bar chamber furnace, and the obtained glass was 91 

ground and melted again in a vacuum furnace to minimize the content of volatiles 92 

dissolved in the glass. 93 

      Schiavi et al. (2010) attributed bubble formation, which caused major problems in 94 

optical observation, to incomplete devolatization of their starting glass.  We doubly 95 

polished the synthesized basaltic glass to wafers of ~50 Pm thickness and analyzed 96 

their volatile contents with a Bruker IFS 120HR FTIR spectrometer in conjunction 97 

with a Bruker IRscope I.  The FTIR spectrum (Online Resource Fig. A1) indicates 98 

that the CO2 and H2O contents of our basaltic glass cannot be higher than a few Pg/g.  99 
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 5 

The amount of other volatiles (such as N2) is expected to be even less because they 100 

are less soluble than CO2 and H2O.  Compared with PST-9, our synthetic glass, free 101 

of visible bubbles or crystals, is slightly depleted in Ca and enriched in Si and alkalis 102 

(Table 1). 103 

 104 

Moissanite cell experiments 105 

The general design of the moissanite cell closely resembles that of a Bassett-type 106 

externally heated diamond anvil cell, adapted for higher temperature and ambient 107 

pressure.  A detailed description of the first version of the moissanite cell can be 108 

found in Schiavi et al. (2009, 2010).  Although a moissanite cell using 2 concentric 109 

coils of Pt90Rh10 heating wires per anvil in principle allowed heating up to 1250°C 110 

(Schiavi et al. 2010), heater breakage often occurred at high temperature.  To solve 111 

this problem, we added a third Pt90Rh10 heating coil.  This 3-coil setup (Online 112 

Resource Fig. A2) significantly enhanced the robustness of the heater and extended 113 

the lifetime of the moissanite cell.  Furthermore, the glassy carbon gasket used in 114 

Schiavi et al. (2010), which was prone to oxidation despite flushing with an Ar–H2 115 

mixture, was replaced with an yttrium-stabilized zirconia gasket. 116 

      A glass chip of ~1.9 mm diameter and ~50 Pm thickness was placed between the 117 

two moissanite anvils and observed in transmission with an optical microscope (Zeiss 118 

Axioscope 40; output to either eyepieces or camera-computer).  The glass was first 119 

heated to 800°C (700°C for Run# Bas11) at a ramp rate of 1000°C/hr.  The cell was 120 

then tightened and was allowed to relax at this temperature for several to a few tens of 121 

minutes, before further heating.  To suppress crystallization and bubble formation 122 

during heating, temperature was rapidly increased to ~1240°C at 1u104 °C/hr (Fig. 1).  123 

Temperature was maintained at ~1240°C for several minutes, followed by cooling at 124 
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 6 

ramp rates of 50-2000 °C/hr to foster crystallization.  At high temperature, the quality 125 

of sample image deteriorated with time.  When the image became unsatisfactory, the 126 

experiment was quenched to ambient temperature at 1u104 °C/hr (2000 °C/hr for 127 

Run# Bas11). 128 

 129 

Electron microprobe and SEM/EDS analyses 130 

The chemical composition of the starting glass was analyzed by a JEOL JXA-8200 131 

electron microprobe with a defocused beam of 15kV and 15 nA and 5 Pm diameter.  132 

To examine chemical heterogeneity of the glass and minerals (olivine, clinopyroxene, 133 

and plagioclase) in the quenched products, a focused beam with the same acceleration 134 

voltage and current was used.  Despite the employment of a special routine for Na 135 

analysis (by extrapolation to zero time photon counts), Na loss from the glass caused 136 

by the focused beam cannot be completely avoided.  Backscattered electron (BSE) 137 

images of the quenched products were obtained with the electron microprobe and 138 

with an FEI scanning electron microscope (SEM), both of which were equipped with 139 

an energy-dispersive X-ray spectrometer (EDS) for phase identification. 140 

 141 

Image analysis 142 

Each sample image of 1600u1200 pixels (recorded under a 10u objective in 143 

transmission) corresponds to a visual field of 0.36 mm2 (0.693 by 0.52 mm).  Using 144 

the ImageJ64 program developed by the NIH, the length and width of tabular and 145 

hopper crystals were measured with an uncertainty of ~10% relative.  Here we define 146 

1D grain size to be the half length of the grain, with the “hopper” part counted for 147 

hopper crystals.  In determining 2D crystal size distribution, the boundary of each 148 

crystal was hand redrawn to a closed polygon, the area of which was taken to be the 149 
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crystal size.  Due to the overlap and clustering of crystals at different focal depths, 150 

known as the volume effect, a small amount of crystals without a well-defined 151 

boundary had to be excluded from the statistics. 152 

 153 

Experimental results 154 

In total eighteen crystallization experiments were carried out in the moissanite cell, 155 

among which four successful runs are reported here (Run# Bas11, Bas12, Bas14, and 156 

Bas21; Movies A1-A4 in Online Resource).  Little change was observed in sample 157 

image during the first heating step and the dwell period at ~800°C, although we 158 

cannot rule out the possibility that some critical crystal clusters might have already 159 

developed at 800°C.  In spite of the high ramp rate of the prime heating step (from 160 

800°C to ~1240°C took only a few minutes), numerous crystals still appeared 161 

together with bubbles at ~1000°C, but the nucleated crystals were partly resorbed 162 

upon further temperature increase.  Owing to the use of nearly volatile-free glass, the 163 

problem of bubbles degrading image quality was less severe than that observed in 164 

Schiavi et al. (2010). 165 

      Despite using the same starting glass in all the crystallization experiments, 166 

different minerals, as identified by EDS and electron microprobe analyses, formed in 167 

the four runs (Table 1).  In Run# Bas11 (and Bas12), olivine was the dominant 168 

mineral; in Run# Bas14 and Bas21, clinopyroxene±plagioclase prevailed, with only 169 

some sporadic olivine crystals being present.  Below, we will report the results from 170 

different experiments separately. 171 

 172 

Olivine crystallization in Run# Bas11 173 
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The best visual record of olivine crystallization was obtained from an experiment 174 

(Run# Bas11; Movie A1) that encountered some technical problems.  In this 175 

experiment, first signs of crystallization came into view at ~1048°C during heating 176 

(defined as t = 0), and there appeared to be a high nucleation density.  After ~2 min 177 

dwell at ~1240°C, the Pt90Rh10 heater of the upper moissanite anvil failed.  178 

Nevertheless, the new 3-coil-heater setup allowed heating to be sustained by the 179 

heater of the lower anvil.  During the subsequent cooling at 100°C/hr, the temperature 180 

reading of the upper thermocouple was below that of the lower one by about 100°C 181 

(Fig. 1).  In the following, temperature will be referred to as the average of the two 182 

thermocouple readings. 183 

 184 

Crystal morphology 185 

Nucleation of new olivine crystals was observed only during a narrow temperature 186 

and time interval of a few minutes at the beginning of the experiment.  During the 187 

subsequent cooling, only the growth of already existing crystals was observed, but not 188 

the appearance of new crystals.  A similar confinement of nucleation to short events 189 

was also observed in other experiments. 190 

      At near-liquidus temperatures, olivine crystals moved and occasionally rotated in 191 

the melt, which is more close to natural conditions than the “staying in place” crystal 192 

growth in basaltic andesite at 900°C (i.e., crystals hardly moved once formed) in 193 

Schiavi et al. (2009).  The apparent movement of the crystals was caused by the flow 194 

of the melt in response to the expansion, contraction or deformation of large gas 195 

bubbles, which can be clearly seen towards the end of Movie A1.  Therefore, in 196 

reality, this was not so much a movement of individual crystals inside the melt, but a 197 

slight movement of the melt, which carried the crystals along. 198 
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 9 

      In the first stage of cooling, such as at ~1142°C, most olivine crystals developed a 199 

tabular shape, while a limited number of them already grew “horns” along the long 200 

dimension, typically better developed at one end than the other (Fig. 2a).  As 201 

temperature continued to decrease, a lot more crystals started to show hopper 202 

behavior, i.e., they developed an hourglass shape (Fig. 2b; Fig. 3a-e).  According to 203 

Faure et al. (2003), the long dimension of tabular and hopper olivine crystals (Fig. 3a-204 

o) corresponds to the [100] zone axis, and the short dimension corresponds to [001].  205 

Although not particularly obvious in the time-lapse images, a quasi-hexagonal shape 206 

was found to be widespread in BSE images of the quenched sample (Fig. 4).  The 207 

hexagonal shape is actually a sectioning effect of observing a hopper crystal along 208 

[100], and the “hollow” center of the hexagon corresponds to the cavity of a hopper 209 

crystal filled with melt/glass (Faure et al. 2003). 210 

      In some time-lapse images, we observed the presence of “ladder”-shaped hopper 211 

olivine crystals, with multiple melt inclusion cavities trapped in a single crystal (Fig. 212 

3p-q).  Up to eight inclusion cavities were distributed quite regularly along the [100] 213 

zone axis and were separated from each other by thin “bridges”, apparently arising 214 

from repeated closing and reopening of hopper crystals to surrounding melt.  Most 215 

cavities closed before the experiment ended, leaving just few, generally small 216 

inclusions in the quenched sample.  The quenched sample also contains plenty of 217 

dendritic crystals, which judging from Movie A1 are probably clinopyroxene 218 

nucleated during the dwell at ~900°C. 219 

      While most crystals continued to grow over the entire span of the experiment, 220 

some crystals with size less than 6 Pm, with one example shown in Fig. 5, appeared to 221 

shrink following a brief stage of growth.  Simultaneous growth of big crystals and 222 

dissolution of small ones suggests the occurrence of Ostwald ripening. 223 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 10 

 224 

Crystal growth rates 225 

The traditional “snapshot” technique used in quench experiments evaluates crystal 226 

growth rate from the change of average size of many crystals (Hammer 2008), which 227 

relies on statistics and hence involves extra uncertainty.  In contrast, our in situ 228 

observation permits to trace the growth of individual crystals (Fig. 3a-o; Fig. 6a).  229 

These data further allow to directly test whether crystal growth rate is uniform, as 230 

often assumed (e.g., Marsh 1988), or whether it depends on crystal size (Eberl et al. 231 

2002; Kile and Eberl 2003). 232 

      From the growth curves of eight olivine crystals in Fig. 6a, t = 34 min, at which 233 

all the considered crystals still enjoyed free growth (i.e., no impingement by 234 

surrounding crystals), was chosen to be an appropriate moment for comparing growth 235 

rates, calculated using a central differential algorithm.  The growth rates of olivine, 236 

with an estimated uncertainty of 20%, fell within 2u10-9 m/s to 7u10-9 m/s (Fig. 6b).  237 

While decreasing temperature did not appear to modify the slope of growth curve 238 

significantly even across the tabular-hopper transition (Fig. 6a), there is a general 239 

positive correlation between growth rate and crystal size (Fig. 6b) – larger crystals 240 

tended to grow more rapidly than smaller ones, in contrast with some previous results 241 

(e.g., Applegarth et al. 2013).  To first order approximation, olivine growth rate is 242 

roughly proportional to crystal size.  For a given crystal, the rate of lateral growth 243 

(growth along [001]) was smaller than longitudinal growth rate by a factor of ~3, but 244 

larger crystals were also found to grow faster laterally than smaller crystals. 245 

 246 

Development of crystal size distribution 247 
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The crystal size distribution (CSD) theory, since developed by Marsh (1988, 1998), 248 

has been widely used for quantitative description and interpretation of rock texture 249 

(Armienti 2008).  With our in situ technique, texture evolution of the melt can be 250 

conveniently followed.  Two-dimensional olivine CSDs of 5 snapshots taken during 251 

cooling were carefully measured using 5 logarithmic size bins (Table 2), according to 252 

either half length along [100] (Fig. 7a) or crystal area (Fig. 7b).  The plotted CSDs are 253 

roughly log-linear except the first one or two logarithmic size bins, similar to the 254 

plagioclase CSDs in Schiavi et al. (2009).  For both length- and area-based analyses, 255 

we observe a counterclockwise rotation of CSD, around axes of 8 Pm and 100 Pm2, 256 

respectively.  The population densities of crystals larger than these threshold values 257 

increased with time, whereas those of small crystals continued to decrease. 258 

 259 

Composition of olivine and melt 260 

The average composition of olivine in the quenched product (Table 1) can be given as 261 

(Mg0.838Mn0.153Ca0.009)2SiO4.  Due to olivine crystallization, in far-field melt (i.e., melt 262 

at some distance away from olivine crystals), the contents of oxide components other 263 

than MgO and MnO became higher than in the starting glass (Table 1).  A simple 264 

mass balance calculation indicates that olivine crystals sum to approximately 12 wt% 265 

in the quenched sample, which translates to ~10.7% modal abundance for olivine 266 

considering the density difference between olivine and melt/glass.  The only 267 

mismatch between the bulk composition of the quenched product as (12 wt% 268 

olivine+88 wt% glass) and that of the starting glass is in terms of Na2O content (Table 269 

1), which is attributed to Na loss by the focused beam used in microprobe analysis on 270 

the quenched glass, although minor Na loss may also have occurred during the 271 

experiment. 272 
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 273 

Clinopyroxene and plagioclase crystallization 274 

Unlike in Bas11, clinopyroxene (cpx) was the dominant liquidus phase in Bas14 275 

(Movie A3; Fig. 8a) and Bas21 (Movie A4; Fig. 8b-c).  In Bas14, during cooling at 276 

100°C/hr, cpx first appeared at ~1212°C in the form of tabular crystals.  Similar to 277 

olivine in Bas11, from ~1189°C cpx started to develop a hopper behavior, which was 278 

preserved in the quenched Bas14 sample (Fig. 8a).  Furthermore, the growth rate of 279 

cpx crystals also depended on crystallographic orientation, and more importantly, on 280 

crystal size.  Again, the longitudinal growth rate, ranging from 6u10-9 m/s to 17u10-9 281 

m/s at 1192°C, is approximately proportional to crystal size (Fig. 9).  Therefore, 282 

proportionate growth appears to be ubiquitous for the crystallization of minerals from 283 

magma. 284 

      In Bas21, nuclei of cpx crystals already existed at 1240°C.  They continued to 285 

grow during cooling to 1150°C at 2000°C/hr.  During the dwell at 1150°C, 286 

plagioclase crystals grew rapidly from several nucleation points in a radiating manner, 287 

and the mechanical interference with plagioclase broke the earlier formed cpx crystals 288 

into pieces (Fig. 10), which was consistent with the texture of the quenched sample 289 

(Fig. 8b-c).  In agreement with our observations, cooling to 1100°C of a shoshonitic 290 

melt (compositionally similar to PST-9) at 900 °C/h produced intergrowths of 291 

plagioclase and clinopyroxene with skeletal and hopper shapes (Conte et al. 2006).  292 

No dendritic crystals were found in the quenched samples of Bas14 and Bas21 as 293 

those in Bas 11 (Fig. 4), which was probably due to the higher quenching rates in the 294 

former two runs. 295 

      The cpx in Bas21 has a higher Mn/Mg ratio than that in Bas14 (Table 1).  In both 296 

experiments only a small amount of olivine crystals were found in the quenched 297 
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samples (shown in Fig. 8a for Bas14).  The olivine in Bas14 is compositionally 298 

similar to that in Bas11, but the olivine crystals in Bas21 have a much higher Mn/Mg 299 

ratio, indicating that the latter formed in a much later stage than cpx (from an Mn-300 

enriched melt).  This is coherent with the rapid cooling from 1240°C to 1150°C in 301 

Bas21 – according to Donaldson (1979), the delay in olivine nucleation in basaltic 302 

liquids increases with the increase of cooling rate. 303 

      The image quality of Bas14 and Bas21 is inferior to that of Bas11, and hence does 304 

not allow a reliable texture analysis to be made. 305 

 306 

Discussion 307 

 308 

Mineralogical differences between the experiments 309 

For a synthetic melt compositionally similar to PST-9, Pichavant et al. (2009) found 310 

that during cooling at ambient pressure, olivine and clinopyroxene appeared at 311 

1190°C and plagioclase formed at 1180°C.  For our basaltic composition, the MELTS 312 

program (Ghiorso and Sack 1995) predicts that olivine (Mg0.84Mn0.15Ca0.01)2SiO4 313 

should appear at 1218°C and 0.1 MPa as the liquidus phase.  Because the same 314 

starting glass was used in all the crystallization experiments, the different mineralogy, 315 

predominantly olivine in Bas11 and Bas12 and cpx±plagioclase in Bas14 and Bas21, 316 

must seek an explanation from kinetics considerations.  In view of the proximity of 317 

crystallization temperatures of the three minerals (Pichavant et al. 2009), we suggest 318 

that subtle changes in the initial heating and cooling paths may be sufficient for 319 

causing the nucleation of different minerals.  During the subsequent cooling, the 320 

phase that nucleated first may deplete the melt in Mg and therefore suppress the 321 

nucleation of the second phase.  For Bas11, we highlight the excellent agreement 322 
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between the olivine composition [(Mg0.838Mn0.153Ca0.009)2SiO4] and the prediction of 323 

MELTS. 324 

 325 

Mechanisms and rates of olivine growth in Bas11 326 

In their dynamic crystallization experiments with a synthetic CaO-MgO-Al2O3-SiO2 327 

basalt, Faure et al. (2003) found that for cooling rates in the range of 50-200°C/hr, 328 

hopper crystals were the dominant olivine morphology for 50-200°C undercooling.  329 

Our in-situ observations are entirely consistent with their results obtained using the 330 

traditional technique, as well as with the in situ observation of melt inclusion by 331 

Jambon et al. (1992). 332 

      Different mechanisms for crystal growth from silicate melts have been proposed 333 

by a number of authors (e.g., Kirkpatrick 1975; Sunagawa 2005; Faure et al. 2007).  334 

At low degree of undercooling ∆T, spiral growth (by a screw dislocation mechanism) 335 

is taking place, crystal surfaces are smooth, and crystals typically exhibit a 336 

polyhedral/tabular morphology.  At intermediate degree of undercooling, layer-by-337 

layer growth (or called two-dimensional nucleation) dominates, crystal surfaces 338 

roughen, and hopper crystals are prevalent.  At large undercooling, it transits to 339 

adhesive-type continuous growth, and dendritic or swallowtail crystals form.  With 340 

respect to the formation of tabular and hopper olivine crystals in Bas11, both spiral 341 

growth and layer-by-layer growth must have been operative. 342 

      However, this does not mean that the growth rate of olivine is controlled by these 343 

interface reaction mechanisms.  For olivine growth in the basalt melt, MgO and MnO 344 

need to be carried from far-field melt to olivine-melt interfaces, and incompatible 345 

components such as Al2O3 need to be transported away.  Concentration gradients of 346 

these oxide components were found in the melt close to olivine-melt interface along 347 
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both [100] and [001] (Online Resource Fig. A3), generally consistent with the 348 

observations of Faure and Schiano (2005) except for CaO.  The flat Na2O profile is 349 

probably due to fast Na diffusion.  The presence of concentration gradients strongly 350 

suggests that mass transfer played a crucial role in limiting crystal growth rate (Zhang 351 

2008).  In view of the small change in olivine growth rate across the tabular-hopper 352 

transition (Fig. 6a), we suggest that chemical transport, rather than interface reaction, 353 

perhaps already controlled olivine growth from early on.  This is also consistent with 354 

the previous finding of olivine growth rate peaking at ~20 K undercooling (Lasaga 355 

1998). 356 

      MgO was identified by Chen and Zhang (2008) to be the principal equilibrium-357 

determining component for transport-controlled olivine dissolution or growth in 358 

basaltic melt.  In diffusive crystal dissolution or growth, the dissolution/growth rate 359 

may be estimated by D(Um/Uc)(D/t)1/2, with D being a dimensionless parameter 360 

depending on interface composition, Um and Uc being the density of the melt and that 361 

of the crystal, D being MgO diffusivity and t being time.  Here it is difficult to 362 

constrain D accurately, but 0.03 may be a reasonable value (e.g., Zhang 2008).  For a 363 

characteristic t of 900 s (cooling by 50°C) and DMgO ~ 10-12 m2/s at 1150-1050°C 364 

(Chen and Zhang 2008), crystal growth rate under our experimental conditions should 365 

be around 10-9 m/s, which is lower than but roughly consistent with the measured 366 

grow rates (Fig. 6b).  The difference may be attributed to growth aided by the 367 

movement of crystals in the melt. 368 

      While chemical diffusion is recognized to be a determinative mechanism in 369 

limiting olivine growth, it is certainly not the only operative mechanism – otherwise 370 

olivine crystals should grow into spheres.  The difference between the growth rate 371 

along [100] and that along [001] must arise from different interface reaction rates.  It 372 
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is still not clear which mechanism may account for size-dependent growth rate, but a 373 

close link between proportionate growth and transport-controlled growth has already 374 

been realized (Eberl et al. 2002). 375 

 376 

Closed hopper olivine crystals and melt convection 377 

We observed in Bas11 the presence of closed hopper olivine crystals with multiple 378 

melt inclusions (Fig. 3p-q).  Inside pumice samples from Stromboli volcano, euhedral 379 

olivine crystals were found to coexist with melt inclusion-bearing hollow (hopper) 380 

crystals and closed skeletal olivines, sometimes exhibiting dendritic overgrowths 381 

(Métrich et al. 2010).  The correspondence between experimental and natural textures 382 

thus highlights that crystal morphologies and quantities of entrapped melts are 383 

important parameters carrying information on the cooling history of the magma. 384 

      Closed hopper olivine crystals in basalts dredged from the Mid-Atlantic Ridge 385 

were attributed to turbulent convection beneath the ridge and the experience of 386 

several cooling-heating cycles (Faure and Schiano 2004; Welsch et al. 2009; Colin et 387 

al. 2012).  Since there was a thermal gradient in Bas11, one may expect that the 388 

formation of closed hopper crystals in Bas11 also arose from melt convection.  389 

However, several lines of evidence suggest the absence of convection during the 390 

experiment.  Firstly, the movement of crystals was largely horizontal; otherwise a 391 

change of focal depth of the crystals would have been observed.  In another 392 

experiment Bas12 (Movie A2) that did not involve a thermal gradient, melt and 393 

crystals moved much more dynamically (the boiling finally caused most melt to be 394 

lost).  Furthermore, for melt convection to occur would require a high Rayleigh 395 

number, which is calculated as (UgD∆TL3)/KN with U being melt density, g being 396 

the gravitational acceleration, D being thermal expansivity, ∆T being temperature 397 
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difference, L being characteristic length scale, K being melt viscosity, and N being 398 

thermal diffusivity.  For the melt at 1373-1473 K in Bas 11, assuming 2.6u103 kg/m3 399 

for density and 5u10-5 /K for thermal expansivity (Lange and Carmichael 1987), 100 400 

K for the maximum temperature difference over the 5u10-5 m melt thickness, 1u103-401 

1u104 Pa s for viscosity (Hui and Zhang 2007), and 3u10-7 m2/s for thermal 402 

diffusivity (Nabelek et al. 2012), the Rayleigh number of the system is estimated to be 403 

only 5u10-9 to 5u10-8, more than 10 orders of magnitude below the value (> 103) 404 

required for convection.  Therefore, repeated cooling and heating may not be 405 

necessary for developing the complex morphology of closed hopper crystals. 406 

 407 

Physical processes shaping CSD 408 

The volume effect due to crystals aggregating and overlapping inevitably affected the 409 

accuracy of texture analysis of Bas11.  However, the uncertainty caused by the 410 

volume effect is inferred to be insignificant.  As shown in Table 2, the modal 411 

abundance of olivine increased with time, and reached ~10.5% for the last snapshot.  412 

This value is in good agreement with the 10.7% inferred from chemical analysis, and 413 

suggests limited counting errors from neglecting crystal clots.  Decreasing crystal 414 

density (Table 2) was most likely caused by physical processes such as crystal 415 

coalescence (e.g., Schiavi et al. 2009) and Ostwald ripening.  Ostwald ripening 416 

involves negative growth and elimination of small crystals (Fig. 5), consistent with 417 

evolution of the population density of the first two logarithmic size bins (Fig. 7). 418 

      Many applications of the crystal size distribution theory (Marsh 1988, 1998) 419 

assumed that (1) Nucleation rate and nucleation density increase exponentially with 420 

time and undercooling and (2) the rate of crystal growth is constant and uniform for 421 

all crystals.  If these two assumptions were correct, CSD should be shifted parallel to 422 
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itself upon progressive crystallization.  However, neither the assumptions nor the 423 

inferred CSD evolution agrees with our observations.  Results from this study show 424 

conclusively that (1) nucleation of olivine or cpx occurred only in a narrow time and 425 

temperature interval at the beginning of the experiment; (2) growth rate was not 426 

uniform; rather, growth was roughly proportionate, i.e., the larger the crystal the 427 

higher the growth rate (Figs. 6b and 9b); and (3) CSD rotated counterclockwise with 428 

time (Fig. 7). 429 

      Nucleation and crystal growth are two competing mechanisms that both will 430 

reduce the supersaturation of the melt (Toramaru 1991).  In general, crystal nucleation 431 

requires a larger degree of undercooling or supersaturation than crystal growth (e.g., 432 

Zhang 2008), as in a nucleus, the ratio of surface to volume is high so that the higher 433 

surface energy will counteract the free energy change of crystallization.  Therefore, as 434 

soon as some olivine nuclei have formed, the growth of these crystals removes olivine 435 

component from the melt and suppresses further nucleation and the crystallization of 436 

other minerals such as cpx.  Nucleation therefore stops once a first generation of 437 

olivine nuclei starts growing.  Proportionate growth, with growth rates increasing with 438 

crystal size, has been observed in various systems (Kile and Eberl 2003 and 439 

references therein).  Kile and Eberl (2003) presented evidence that proportionate 440 

growth is expected to occur whenever advection supplies material to the surface of 441 

crystals.  This again is consistent with our experimental results, as crystals moved 442 

horizontally in the melt and as the growth rate predicted from diffusion alone is 443 

somewhat smaller than measured growth rates. 444 

      As shown in Fig. 11, proportionate growth will naturally cause the CSD slope to 445 

decrease.  In the absence of new nucleation, the intercept of CSD with the vertical 446 

axis has to decrease, for the total number of crystals to be conserved.  The reduction 447 
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in both slope and intercept leads to a counterclockwise rotation of the CSD (Fig. 11).  448 

On top of that, small crystals may partly or completely dissolve due to their higher 449 

surface energies (their negative growth rates are qualitatively consistent with 450 

proportionate growth), which cause their population density to fall below the log-451 

linear CSD curve (Fig. 11) and the total number of crystals to decrease (Table 2). 452 

 453 

Concluding remarks 454 

In this study, we directly observed the transition of olivine and cpx morphology from 455 

tabular to hopper habit (Fig. 2; Fig. 3a-e; Movie A1 and A3), the incorporation of 456 

melt inclusions in closed hopper olivine crystals (Fig. 3p-q), and the dissolution of 457 

small olivine crystals (Fig. 5).  Spiral growth and layer-by-layer growth are inferred to 458 

be the mechanisms for interface reaction, but the growth rate, varying with crystal 459 

size and crystallographic orientation, was primarily limited by chemical diffusion 460 

(helped by advection).  The formation of closed hopper crystals may not necessarily 461 

require a complex thermal history. 462 

      The most important result of this study, however, is that it provides a new 463 

interpretation of the CSDs observed in igneous rocks.  Our data suggest that during 464 

cooling of a magma, short nucleation events occur that generate an initial, log-linear 465 

CSD.  The log-linear shape of this curve may indeed reflect an exponential increase of 466 

nucleation rate with time and undercooling, as often assumed in crystal size 467 

distribution theory.  However, these events are short and nucleation does not continue 468 

during the growth of crystals.  Rather, as soon as some crystals start to grow, they 469 

reduce the oversaturation that would be required for further nucleation and thus 470 

nucleation essentially stops.  The further development of CSD is exclusively due to 471 

the growth of the initially established ensemble of nuclei.  Proportionate growth in 472 
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conjunction with the negative growth of small crystals causes counterclockwise CSD 473 

rotation and a decrease in the population density of small crystals and in the total 474 

number of crystals. 475 

      The traditional interpretation of CSDs of igneous rocks may therefore be 476 

fundamentally flawed.  The slope does not give an average growth rate.  Rather, even 477 

if growth rate does not depend on time, the CSD rotates and becomes flatter due to the 478 

increase of growth rate with crystal size.  The slope of the CSD is therefore primarily 479 

controlled by time and the difference in growth rates between the smallest and largest 480 

crystals, rather than by average growth rate.  Similarly, the intercept of the CSD with 481 

the vertical axis does not give a nucleation density; rather, it gives a lower limit of the 482 

initial nucleation density, because of both proportionate growth and the elimination of 483 

small crystals by Ostwald ripening.  More generally, the idea behind classical CSD 484 

theory that nucleation and crystal growth occur simultaneously over a large 485 

temperature and time interval does not capture the reality of nature.  In reality, 486 

nucleation of each mineral is probably limited to a short event, which is followed by a 487 

long period of crystal growth and annealing.  When multiple nucleation events occur 488 

during magma storage and ascent (e.g., Armienti et al. 1994), these events are likely 489 

related to rapid perturbations in pressure and temperature. 490 
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FIGURE CAPTIONS 592 

 593 

 594 

Fig. 1  Thermal history of four moissanite cell experiments (Run# Bas11, Bas12, 595 

Bas14, and Bas21).  In Bas11, olivine nucleation appeared at 1048°C (solid 596 

circle, defined as t =0); failure of the upper heater caused temperature reading of 597 

the upper thermocouple (11U) to be smaller than that of the lower thermocouple 598 

(11L) by ~100°C during cooling, with their average shown in curve “Bas11”.  599 

On this curve, the moments for the two snapshots in Fig. 2 are shown in 600 

triangles, and those for the crystal “A” in Fig. 3 are shown in open circles.  The 601 

curves for other runs are horizontally offset for clarity, and the time or t referred 602 

to in the text and other figures is invariably consistent with Fig. 1. 603 

 604 

Fig. 2  Real-time photomicrographs of olivine crystals in basaltic melt cooling at 605 

100°C/hr in Bas11.  (a) T ~1142°C; most olivine crystals showed a tabular habit 606 

with some exceptions (two examples are circled with ellipse); (b) T ~1062°C; 607 

numerous hopper crystals formed.  Crystal “A” (see Fig. 3 and Fig. 6) is 608 

enclosed with rectangle in both (a) and (b). 609 

 610 

Fig. 3  Evolution of individual olivine crystals at size-dependent growth rates in 611 

Bas11: (a-e) Crystal “A”, fast growth and transition from tabular shape to 612 

hopper shape; (f-j) Crystal “B”, with an intermediate growth rate; (k-o) Crystal 613 

“C”, slow growth; (p-q) two closed hopper crystals trapping multiple melt 614 

inclusions. 615 
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 617 

Fig. 4  (a) Zoom-out and (b) close-up BSE images of quenched Bas11 sample.  Zone 618 

axes of olivine crystals are indicated in (b).  The dendrites are presumably 619 

clinopyroxene crystals formed during the dwell at ~900°C. 620 

 621 

Fig. 5  Dissolution of a small olivine crystal in Bas11, being circled with ellipse in the 622 

top panel (at t = 34 min or 12:00:00 in Movie A1). 623 

 624 

Fig. 6  (a) Growth of half length along [100] for eight olivine crystals in Bas11.  For 625 

crystals “A”, “D”, and “E”, the crystal shape transition (from tabular to hopper 626 

shape) is indicated by a break in the curve.  For crystals “B”, “F”, and “G”, a 627 

conspicuous slow down is attributed to the impingement by surrounding 628 

crystals.  (b) Growth rate at t = 34 min is roughly proportional to crystal size.  629 

Error bars represent r20% uncertainty. 630 

 631 

Fig. 7  Counterclockwise rotation of two-dimensional crystal size distributions 632 

(CSDs) during cooling in Bas11, according to (a) half length along [100]; and 633 

(b) crystal area. 634 

 635 

Fig. 8  BSE images of quenched samples (a) Bas14; and (b)&(c) Bas21.  In Bas14, 636 

Hopper clinopyroxene (cpx) crystals formed the dominant mineral phase, with 637 

some sporadic olivine (ol) cyrstals.  In Bas21, cpx crystals were often broken 638 

into pieces by the later formed plagioclase (plag). 639 
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Fig. 9  (a) Half length of five clinopyroxene crystals in Bas14.  For crystals “C” and 641 

“E”, the tabular to hopper transition is indicated by a break in the curve.  (b) 642 

Size-dependent clinopyroxene growth rate at t = 48.6 min.  Error bars represent 643 

r20% uncertainty. 644 

 645 

Fig. 10  Real-time photomicrographs of Bas21 showing the disruption of cpx crystals 646 

by plagioclase (dark root and limbs) at 1150°C. 647 

 648 

Fig. 11  Interpretation of the observed CSD evolution.  A short nucleation event 649 

produces an initial CSD (thin solid line).  Due to proportionate growth 650 

(rightward horizontal arrows) and conservation of the number of crystals, CSD 651 

evolves into the thick solid line.  In addition, Ostwald ripening acts to reduce 652 

the population density and size of small crystals. 653 
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Table 1  Composition of glasses and minerals in wt% 
 
  SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O total 
PST-91  49.40 0.79 15.75 7.67 0.15 7.96 12.73 2.27 1.85 98.57 
Bas2  52.29 0.85 16.29  7.81 7.53 10.24 3.15 2.21 100.37 
            
Run# Bas11 
Olivine3  40.19    14.51 45.11 0.65   100.46 
Melt4  53.94 1.00 18.56  6.72 2.39 11.94 3.03 2.51 100.09 
Ol+Melt5  52.29 0.88 16.33  7.65 7.52 10.59 2.67 2.21  
            
Run# Bas14 
Cpx  49.59 1.36 8.23 0.02 8.07 16.11 17.19 0.22 0.04 100.83 
Olivine  40.45    13.06 46.75 0.55   100.81 
Melt  55.77 0.77 19.92 0.05 7.17 2.11 8.12 3.14 2.80 99.85 
            
Run# Bas21 
Cpx  49.60 1.43 8.22 0.04 8.85 14.71 17.67 0.27 0.10 100.89 
Plagioclase  53.48 0.17 28.16 0.01 1.31 0.52 11.95 3.92 1.06 100.58 
Olivine  40.30    24.04 35.21 0.92   100.47 
Melt  54.20 1.06 17.76 0.05 9.53 3.32 6.98 3.27 4.06 100.23 
 
1A golden pumice from Stromboli volcano, containing also 0.43 wt% P2O5 (Pichavant et al. 2011), 
served as the target composition for glass synthesis. 
2The starting synthetic glass for crystallization experiments. 
3Olivine composition corresponds to (Mg0.838Mn0.153Ca0.009)2SiO4. 
4Far-field melt (i.e., melt at some distance away from olivine crystals). 
5Composition corresponding to 12 wt% olivine and 88 wt% far-field melt. 
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http://www.editorialmanager.com/ctmp/download.aspx?id=109649&guid=2921f825-5f84-46c8-8ee8-c3bc3de1cf5f&scheme=1


Table 2  Texture analyses of 5 snapshots in Run# Bas11 
 

Time1 
(min) 

T 
(°C) 

Crystal density 
(counts/mm2) 

Max. crystal area 
(Pm2) 

Max. crystal length 
(Pm) 

Crystal abundance 
(vol.%) 

7 1174 993 221 12 4.7 
13 1165 807 359 17 5.7 
24 1137 841 609 27 8.6 
39 1124 771 893 31 9.9 
59 1081 638 865 32 10.5 

1Elapsed time since a short nucleation event occurring at ~1048°C during heating. 
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