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Abstract. We prove three results on the existence of densities for the laws
of finite dimensional functionals of the solutions of the stochastic Navier-Stokes
equations in dimension 3. In particular, under very mild assumptions on the
noise, we prove that finite dimensional projections of the solutions have densi-
ties with respect to the Lebesgue measure which have some smoothness when
measured in a Besov space. This is proved thanks to a new argument inspired
by an idea introduced in [18]

1. Introduction

Our aim in this article is to give informations on the law of the solutions of the
stochastic Navier-Stokes equations in dimension three. The equations have the
form

(1.1)

{
u̇− ν∆u+ (u · ∇)u+∇p = η̇,

div u = 0,

on a bounded open set O. Here u is the velocity, p the pressure and ν the viscosity
of an incompressible fluid in the regionO. The equations are supplemented with an
initial data and suitable boundary conditions. This equation has been the subject
of intense researches, a survey can be found in the reference [11]. The forcing term
η̇ in the problem above is a Gaussian noise which is white in time and depending
on space (precise definitions will be given later). Under suitable assumptions on
the noise, it is known that there exist weak solutions, both in the probabilistic and
PDE sense. Their uniqueness is a completely open problem. Also, there exists a
unique strong solution on small time intervals. The situation is therefore similar
to the theory of the deterministic Navier-Stokes equations.

However, some more informations can be obtained if the noise is sufficiently non
degenerate. It has been shown in [5, 9, 14, 15, 16] that it is possible to construct
Markov solutions which depends continuously on the initial data. This indicates
that the noise can be helpful to obtain more results in the stochastic case.
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2 A. DEBUSSCHE AND M. ROMITO

It is thus important to understand more deeply the implications of the addition
of noise. In this article, we investigate the existence of densities of the law of the
solutions. Existence of densities can be considered as a sort of smoothness of the
solution, albeit a purely probabilistic one.

A first classical difficulty is that the solutions live in an infinite dimensional
space and that no standard reference measure, such as the Lebesgue measure in
finite dimension, exists. It is tempting to use other measures as reference measure
and, in [3, 6, 22] for instance, it is proved that for some equations the solutions
have densities with respect to a Gaussian measure. Unfortunately, these results do
not even cover the stochastic Navier-Stokes equations in dimension two. Another
possibility is to try to prove existence of densities for finite dimensional functionals
of the solutions. The problem of existence of densities of the solutions evaluated at
a fixed spatial point has been already studied by several authors and we point to
[23] for references. In the case of the two dimensional Navier-Stokes equation, finite
dimensional projections of the solutions are studied in [21], where using Malliavin
calculus, it is proved that there exist smooth densities.

Unfortunately, it seems hopeless to use Malliavin calculus for the three dimen-
sional Navier-Stokes equations. Indeed, it is not even possible to prove that the
solutions are Malliavin differentiable. The reason for this is immediately apparent
once one notices that the equation satisfied by the Malliavin derivative is essen-
tially the linearisation of Navier–Stokes, and any piece of information on that
equation could be used with much more proficiency for proving well–posedness.

In this article, we propose three different approaches to the problem which give
different results. First, in Section 3 we prove existence of densities under strong
regularity and non–degeneracy assumptions on the noise (see Assumption 3.1).
Due to the stronger assumptions, we are able to prove existence of densities for
any smooth enough map of the solution with values in a finite dimensional space.
In Section 4 we prove, by means of Girsanov’s theorem, existence of densities for
projections onto sub–spaces spanned by a finite number of Fourier modes, under
the sole assumption that the covariance is injective (hence without regularity as-
sumptions). A by–product of this technique is that the same statement holds also
for the projection (onto the same sub–spaces) of the joint law of the solution eval-
uated at a finite number of time instants (see Remark 4.3). Finally, in Section 5,
under the same assumptions on the covariance of the Girsanov case, we prove
again existence of densities with a completely different method, which extends an
idea of [18]. This allows to show regularity of densities in the class of Besov spaces
and to prove that they are in Lp spaces, for some p > 1, whereas the first two
methods only provide existence of a density in L1. The regularity can be even
slightly improved for stationary solutions.

We believe that these result will helpful for future research on the Navier–
Stokes equations. Recall for instance that the results of [21] have been a crucial
step towards the fundamental result of [19]. Moreover, it seems that some ideas
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introduced in this article are new and can be used to prove existence of densities
in other situations, we refer to [8, 17] for two applications of the method used in
Section 5.

Acknowledgements. The second author wishes to thank the kind hospitality of
the ENS de Cachan Bretagne, where part of this work was realised.

2. Preliminaries

We consider problem (1.1) with either periodic boundary conditions on the
three–dimensional torus O = [0, 2π]3 or Dirichlet boundary conditions on a smooth
domain O ⊂ R3. Let H be the closure in L2 = L2(O;R3) of the space of smooth
vector fields with divergence zero and satisfying the boundary conditions (either
periodic or Dirichlet). The inner product in H is denoted by 〈·, ·〉 and its norm
by ‖ · ‖H . The space V is the closure of the same space with respect to the
H1 = H1(O;R3) norm. Denote by Π the Leray projector, namely the orthogonal
projector of L2 onto H.

Let A = −Π∆, with domain D(A) = V ∩H2(O,R3), the Stokes operator and
let (λk)k≥1 and (ek)k≥1 be the eigenvalues and the corresponding orthonormal basis
of eigenvectors of A.

The bi–linear operator B : V × V → V ′ is the (Leray) projection of the non–
linearity (u · ∇)u onto divergence–free vector fields:

B(u, v) = Π (u · ∇v) , u, v ∈ V,
and B(u) = B(u, u). The operator B can be easily extended to more general u, v.
We recall that the following properties hold,

(2.1) 〈u1, B(u2, u3)〉 = −〈u3, B(u2, u1)〉 and 〈u!, B(u2, u1)〉 = 0,

for all u1, u2, u3 such that the above expressions make sense. Moreover, there is a
constant c > 0 such that

(2.2) ‖A
1
2B(u1, u2)‖H ≤ c‖Au1‖H‖Au2‖H , u1, u2 ∈ D(A).

(see for instance [4]). We refer to Temam [31] for a detailed account of all the
above definitions.

We assume that the noise η̇ in (1.1) is of white noise type and can be described
as follows. Consider a filtered probability space (Ω,F ,P, {Ft}t≥0) and a cylindrical
Wiener process W =

∑
i∈N βiqi, where (βi)i∈N is a family of independent Wiener

processes adapted to (Ft)t≥0 and (qi)i∈N is an orthonormal basis of H (see [7]).
The noise η̇ is coloured in space with a covariance operator C ∈ L(H) which is

positive and symmetric. It is thus of the form η̇ = C 1
2
dW
dt

. We assume that C is
trace–class and we denote by σ2 = Tr(C) its trace. Finally, consider the sequence
(σ2

k)k∈N of eigenvalues of C. It is no loss of generality to assume that (qk)k∈N is
the orthonormal basis in H of eigenvectors of C: Cqk = σ2

kqk. Further assumptions
on C will be considered in the following sections.
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With the above notations, we can recast problem (1.1) as an abstract stochastic
equation

(2.3) du+ (νAu+B(u)) dt = C
1
2 dW,

supplemented with an initial condition u(0) = x ∈ H. It is classical that for any
x ∈ H there exist a martingale solution of this equation. More precisely, there

exists a filtered probability space (Ω̃, F̃ , P̃, {F̃t}t≥0), a cylindrical Wiener process

W̃ and a process u with trajectories in C(R+;D(A−1))∩L∞loc(R+, H)∩L2
loc(R

+;V )

adapted to (F̃t)t≥0 such that the above equation is satisfied with W̃ replacing W .
See for instance [11] and the references therein for further details.

The existence of martingale solutions is equivalent to the existence of a solution
of the following martingale problem. We say that a probability measure Px on
C(R+;D(A−1)) is a solution of the martingale problem associated to equation
(2.3) with initial condition x ∈ H if

• Px[L∞loc(R+, H) ∩ L2
loc(R

+;V )] = 1,
• for each φ ∈ D(A)), the process

〈ξt − ξ0, φ〉+

∫ t

0

〈ξs, Aφ〉 − 〈B(ξs, φ), ξs〉 ds

is a continuous square integrable martingale with quadratic variation equal
to t‖C1/2φ‖2H ,
• the marginal of Px at time 0 is the Dirac mass δx at x,

where in the formulae above (ξt)t≥0 is the canonical process on the path space
C(R+;D(A−1)).

The law of a martingale solutions is a solution of the martingale problem. Con-
versely, given a solution of the martingale problem, it is not difficult to prove that
the canonical process provides a martingale solution (see [11] for details).

If K is an Hilbert space, we denote by L(K) the space of linear bounded op-
erators from K into itself, by πF : K → K the orthogonal projection of K onto
a subspace F ⊂ K, and by span[x1, . . . , xn] the subspace of K generated by its
elements x1, . . . , xn. Also B(K) is the set of Borel subsets of K.

We shall use the symbol Ld to denote the Lebesgue measure on Rd and the
symbol LF to denote the Lebesgue measure on a finite dimensional space F in-
duced by the representation by a basis. Finally, given a measure µ and a mea-
surable map f , we denote by f#µ the image measure of µ through f , namely
(f#µ)(E) = µ(f−1(E)).

3. Existence of densities with non–degenerate noise: the
Markovian case

In this section we shall consider the following assumptions on the covariance.

Assumption 3.1. There are ε > 0 and δ ∈ (1, 3
2
] such that
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• Tr(A1+εC) <∞,

• C− 1
2A−δ ∈ L(H).

For example, C = A−α with α ∈ (5
2
, 3] satisfies the above assumptions.

Under the above assumptions, it has been proved in [5, 9] and in [14, 15, 16]
using a different method that there exists a family, indexed by the initial condition,
of Markov solutions.

We say that P (·, ·, ·) : [0,∞)×D(A)× B(D(A)) → [0, 1] is a Markov kernel in
D(A) of transition probabilities associated to equation (2.3) if P (·, ·,Γ) is Borel
measurable for every Γ ∈ B(D(A)), P (t, x, ·) is a probability measure on B(D(A))
for every (t, x) ∈ [0,∞)×D(A), the Chapman–Kolmogorov equation

P (t+ s, x,Γ) =

∫
D(A)

P (t, x, dy)P (s, y,Γ)

holds for every t, s ≥ 0, x ∈ D(A), Γ ∈ B(D(A)), and for every x ∈ D(A) there is
a solution Px of the martingale problem associated to equation (2.3) with initial
condition x such that P (t, x,Γ) = Px(ξt ∈ Γ) for all t ≥ 0.

Moreover, P (·, x, ·) and Px, solution of the martingale problem, can be defined
for all x ∈ H and the Chapman–Kolmogorov equation holds almost everywhere in
s. More precisely, for every x ∈ H and every t ≥ 0, there is a set I ⊂ R+ such
that the Chapman–Kolmogorov equation holds for all Γ ∈ B(H). Also

Ptϕ(x) = EPx [ϕ(ξt)], t ≥ 0, x ∈ H,
defines a transition semigroup (Pt)t≥0. It turns out that this transition semigroup
has the strong Feller property, that is Ptφ is continuous on D(A) if φ is merely
bounded measurable. Several other results can be found in the above references.
In the following, by a Markov solution (Px)x∈H we mean a family of probabil-
ity measures on C(R+;D(A)) associated to transition probabilities satisfying the
above properties.

Let f : D(A) → Rd be C1 and define, for our purposes, a singular point x of
f as a point where the range of Df(x) is a proper subspace of Rd. The following
result is proved in Sections 3.1, 3.2 and 3.3 below.

Theorem 3.2. Let Assumption 3.1 hold and let f : D(A) → Rd be a map such
that the set of singular points (as defined above) is not dense. Given an arbitrary
Markov solution (Px)x∈H , let u(·, x) be a random field with distribution Px. Then
for every t > 0 and every x ∈ H, the law of the random variable f(u(t;x)) has a
density with respect to the Lebesgue measure Ld on Rd.

Remark 3.3. Using the result in [30] , it is easy to see that the density is almost
everywhere positive provided sufficiently many modes are excited by noise.

Example 3.4. We give a few significant examples for the previous theorem.

• Functions such as f(u(t)) = ‖u(t)‖2H , as well as any other norm which is
well defined in D(A) admit a density with respect to the Lebesgue measure.
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• In view of the results of the following sections, consider the case where f ≈
πF , where F is a finite dimensional subspace of D(A), πF is the projection
onto F and f is given as f(x) = (〈·, f1〉, . . . , 〈·, fd〉), where f1, . . . , fd is a
basis of F . Then the image measure (πF )#Px is absolutely continuous with
respect to the Lebesgue measure of F .
• Given points y1, . . . , yd ∈ R3 (or in the corresponding bounded domain in

the Dirichlet boundary condition case), the map x 7→ (x(y1), . . . , x(yd)),
defined on D(A), clearly meets the assumptions of the previous theorem,
and hence has a density on Rd, since the elements of D(A) are continuous
functions by Sobolev’s embeddings.

Remark 3.5. In view of [29, 1], the same result holds true under a slightly weaker
assumption of non–degeneracy on the covariance of the driving noise. In few words,
a finite number of components of the noise can be zero.

By the results of [5, 9, 25] or [27], each Markov solution converges to its unique
invariant measure. The following result is a straightforward consequence of the
theorem above.

Corollary 3.6. Under the same assumptions of Theorem 3.2, given a Markov
solution (Px)x∈H , denote by µ? its invariant measure. Then the image measure
f#µ? has a density with respect to the Lebesgue measure on Rd.

Proof. If (P (t, x, ·))t≥0,x∈H is the corresponding Markov transition kernel and E ⊂
Rd has Lebesgue measure Ld(E) = 0, then by Theorem 3.2 P (t, x, f−1E) =
f#P (t, x, E) = 0 for each x ∈ H and t > 0. Then, by Chapman–Kolmogorov,

f#µ?(E) =

∫
D(A)

P (t, x, f−1E)µ?(dx) = 0,

since µ?(D(A)) = 1. �

3.1. Reduction to the local smooth solution. Let χ ∈ C∞(R) be a function
such that 0 ≤ χ ≤ 1, χ(s) = 1 for s ≤ 1 and χ(s) = 0 for s ≥ 2, and set for every
R > 0, χR(s) = χ( s

R
). Set

(3.1) BR(v) = χR(‖Av‖2H)B(v)

and denote by uR(·;x) the solution of

(3.2) duR +
(
νAuR +BR(uR)

)
dt = C

1
2dW.

with initial condition x ∈ D(A). Existence, uniqueness as well as several regularity
properties are proved in [16, Theorem 5.12]. We denote by PR(·, ·, ·) and PRx the
associated transition probabilities and laws of the solutions.

Define

(3.3) τR = inf{t ≥ 0 : ‖AuR(t)‖2H ≥ R},
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then again by [16, Theorem 5.12] it follows that τR > 0 with probability one if
‖Ax‖2H < R and that weak–strong uniqueness holds: every martingale solution of
(2.3) starting at the same initial condition x coincides with uR(·;x) up to time t
on the event {τR > t}, for every t > 0.

Lemma 3.7. Let Assumption 3.1 be true and let f : D(A)→ Rd be a measurable
function. Assume that for every x ∈ D(A), t > 0 and R ≥ 1 the image measure
f#PR(t, x, ·) of the transition density PR(t, x, ·) corresponding to problem (3.2)
is absolutely continuous with respect to the Lebesgue measure Ld on Rd. Then
the probability measure f#P (t, x, ·) is absolutely continuous with respect to Ld for
every x ∈ H every t > 0 and every Markov solution (Px)x∈H .

Proof. Fix a Markov solution (Px)x∈H and denote by P (t, x, ·) the associated tran-
sition kernel.

Step 1. We prove that each solution is concentrated on D(A) at every time
t > 0, for every initial condition x in H. By [27, Lemma 3.7]

EPx
[∫ t

0

‖Aξs‖δ ds
]
<∞,

for some δ > 0. Thus P (s, x,D(A)) = 1 for almost every s ∈ [0, t]. Recall that,
for z ∈ D(A) and r ≥ 0, P (r, z,D(A)) = 1. We deduce that P (t − s, y,D(A)) =
1, P (s, x, ·)–a. s. for almost every s ∈ [0, t]. Since the Chapman-Kolmogorov
equation holds for almost every s, we have:

P (t, x,D(A)) =
1

t

∫ t

0

(∫
P (t− s, y,D(A))P (s, x, dy)

)
ds = 1.

Step 2. Given x ∈ D(A), s > 0 and B ⊂ D(A) measurable, we prove the
following formula, ∣∣P (s, x,B)− PR(s, x,B)

∣∣ ≤ 2Px[τR ≤ s].

Indeed, by weak–strong uniqueness,

P (s, x,B) = EPx [ξs ∈ B, τR > s] + EPx [ξs ∈ B, τR ≤ s]

= PR(s, x,B) + EPx [ξs ∈ B, τR ≤ s]− EPRx [ξs ∈ B, τR ≤ s].

Hence the first side of the inequality holds. The other side follows in the same
way.

Step 3. We prove that the lemma holds if the initial condition is in D(A). Let
B be such that Ld(B) = 0, hence PR(t, x, f−1(B)) = 0 for all t > 0, x ∈ D(A)
and R ≥ 1, then

P (t+ ε, x, f−1(B)) =

∫
P (ε, y, f−1(B))P (t, x, dy)

≤ 2

∫
{‖Ay‖H<R}

Px[τR ≤ ε]P (t, x, dy) + 2P (t, x, {‖Ay‖H ≥ R}),
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Since by [15, Proposition 11], Px[τR ≤ s] ↓ 0 as s ↓ 0 if ‖Ax‖H < R, by first
taking the limit as ε ↓ 0 and then as R ↑ ∞, we deduce, using also the first step,
that P (t + ε, x, f−1(B)) → 0 as ε ↓ 0. On the other hand, by [28, Lemma 3.1],
P (t+ ε, x, f−1(B))→ P (t, x, f−1(B)), hence P (t, x, f−1(B)) = 0.

Step 4. We finally prove that the lemma holds with initial conditions in H. We
know that P (t, x, f−1(B)) = 0 for all t > 0 and x ∈ D(A) if Ld(B) = 0. If x ∈ H
and s > 0 is a time such that the a. s. Markov property holds, then

P (t, x, f−1(B)) =

∫
P (t− s, y, f−1(B))P (s, x, dy) = 0,

since P (s, x,D(A)) = 1 by the first step. �

3.2. Absolute continuity for the truncated problem. We now show that the
law of f(uR(t;x)) has a density with respect to the Lebesgue measure on Rd for
every R > 0, x ∈ D(A) and t > 0. We use Theorem 2.1.2 of [23]

Let x ∈ D(A), t > 0 and R > 0. It is standard to prove that uR(t;x) has
Malliavin derivatives and that DsuR(t;x) · qk = σkηk(t, s;x), for s ≤ t, where ηk is
the solution of

(3.4)

{
dtηk + νAηk +DBR(uR)ηk = 0,

ηk(s, s;x) = qk,
t ≥ s

BR is defined in (3.1), so that its derivative along a direction θ is given as

DBR(v)θ = χR(‖Av‖2H)
(
B(θ, v) +B(v, θ)

)
+ 2χ′R(‖Av‖2H)〈Av,Aθ〉HB(v, v),

and we recall that (qk, σk)k∈N is the system of eigenvectors and eigenvalues of the
covariance C of the noise. Standard estimates imply that

uR(t;x) ∈ D1,2(D(A)) =
{
u : E

[
‖Au‖2H

]
+
∞∑
k=0

E
∫ t

0

‖Dsu · qk‖2D(A) <∞
}
.

Moreover, for every k ∈ N and x ∈ D(A), the function ηk(t, s;x) is continuous in
both variables s ∈ [0,∞) and t ∈ [s,∞).

By the chain rule for Malliavin derivatives, the Malliavin matrix Mf (t) of
f(uR(t;x)) is then given by

Mf
ij(t) =

∞∑
k=1

∫ t

0

(
Dfi(uR(t;x))DsuR(t;x) · qk

)(
Dfj(uR(t;x))DsuR(t;x) · qk

)
ds

=
∞∑
k=1

σ2
k

∫ t

0

(
Dfi(uR(t;x))ηk(t; s, x)

)(
Dfj(uR(t;x))ηk(t; s, x)

)
ds

for i, j = 1, . . . , d, where f = (f1, . . . , fd).
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To show thatMf (t) is invertible a. s., it is sufficient to show that if y ∈ Rd and

〈Mf (t)y, y〉 =
∞∑
k=1

σ2
k

∫ t

0

∣∣∣ d∑
i=1

Dfi(uR(t;x))ηk(t; s, x)yi

∣∣∣2 ds
is zero, then y = 0. This is clearly true, since if 〈Mf (t)y, y〉 = 0, then

d∑
i=1

yiDfi(uR(t;x))ηk(t; s, x) = 0, P− a.s.,

for all k ∈ N and a. e. s ≤ t. By continuity, the above equality holds for all s ≤ t.
In particular for s = t this yields

d∑
i=1

yiDfi(uR(t;x))qk = 0, P− a.s.,

for all k ≥ 1. Under our assumptions on the covariance, the support of the law of
uR(t;x) is the full space D(A) (this follows from Lemma C.2 and Lemma C.3 of
[16]). Hence, uR(t;x) belongs to the set of non singular points of f with positive
probability. We know that (qk)k≥1 is a basis of H, hence the family of vectors
(Df1(uR(t;x))qk, . . . , Dfd(uR(t;x))qk)k≥1 spans all Rd with positive probability,
and in conclusion y = 0.

3.3. Proof of Theorem 3.2. Fix an initial condition x ∈ H and a time t > 0,
and consider a finite–dimensional map f : D(A)→ Rd satisfying the assumptions
of Theorem 3.2. Gathering the two previous sections, we know that f(u(t;x)) has
a density with respect to the Lebesgue measure on Rd.

4. Existence of densities with non–degenerate noise: Girsanov
approach

In contrast with the previous section, in this section we only assume that the
covariance C ∈ L(H) is of trace–class. Further non–degeneracy assumptions will
be given in the statements of our results.

We consider solutions of (1.1) obtained by Galerkin approximations. Given
an integer N ≥ 1, consider the sub–space HN = span[e1, . . . , eN ] and denote by
πN = πHN the projection onto HN . It is standard (see for instance [11]) to verify
that the problem

(4.1) duN +
(
νAuN +BN(uN)) dt = πNC

1
2dW,

where BN(·) = πNB(πN ·), admits a unique strong solution for every initial condi-
tion xN ∈ HN . Moreover,

(4.2) E
[
sup
[0,T ]

‖uN‖pH
]
≤ cp(1 + ‖xN‖pH),

for every p ≥ 1 and T > 0, where cp depends only on p, T and the trace σ2.
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If x ∈ H, xN = πNx and PNx is the distribution of the solution of the problem
above with initial condition xN , then any limit point of (PNx )N≥1 is a solution of
the martingale problem associated to (1.1) with initial condition x.

We prove the following result.

Theorem 4.1. Fix an initial condition x ∈ H and let F be a finite dimensional
subspace of D(A) generated by the eigenvalues of A, namely F = span[en1 , . . . , enF ]
for some arbitrary indexes n1, . . . , nF . Assume moreover that πFC is invertible on
F , where C is the covariance of the noise perturbation. Then for every t > 0
the projection πFu(t) has a density with respect to the Lebesgue measure on F ,
where u is any solution of (2.3) whose law is a limit point of the spectral Galerkin
approximations defined above. Moreover the density is positive almost everywhere
(with respect to the Lebesgue measure on F ).

Proof. Fix x ∈ H and let u be a weak martingale solution of (2.3) with distribution
Px and assume PNkx ⇀ Px, where Nk ↑ ∞ is a sequence of integers and for each k,
PNkx is solution of (4.1). Fix a time t > 0 and consider the Galerkin approximation
(4.1) at level N ≥ nF .

Step 1: the Girsanov density. We are going to use Girsanov’s theorem in the
version given in [20, Theorem 7.19]. Let vN be the solution of

dvN +
(
νAvN +BN(vN)− πFBN(vN)

)
dt = πNC

1
2 dW,

with the same initial condition as uN . We notice in particular that the projection
of vN on F solves a linear equation (see (4.6) below) which is decoupled from
vN − πFvN . Moreover, it is easy to prove, with essentially the same methods that
yield (4.2), that

(4.3) E
[
sup
[0,T ]

‖vN‖pH
]
<∞.

Note that sup‖w‖W1,∞=1〈v, w〉 is a norm on πNH, which is therefore equivalent to

the norm of H on πNH. We can then write:

〈πNB(v), w〉 = −〈B(v, πNw), v〉 ≤ c‖w‖W 1,∞‖v‖2H ,
therefore

(4.4) ‖πNB(v)‖H ≤ cN‖v‖2H , v ∈ H.

Since the covariance πFC
1
2 is invertible on F , we deduce from (4.2), (4.3) that∫ t

0

‖C−
1
2πFB(uN)‖2H ds <∞,

∫ t

0

‖C−
1
2πFB(vN)‖2H ds <∞. P− a.s.

By Theorem 7.19 of [20] the process

(4.5) GN
t = exp

(∫ t

0

〈C−
1
2πFB(uN), dWs〉 −

1

2

∫ t

0

‖C−
1
2πFB(uN)‖2H ds

)
,
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is positive, finite P–a. s. and a martingale. Moreover, under the probability

measure P̃N(dω) = GN
t PN(dω) the process

W̃t = Wt −
∫ t

0

C−
1
2πFB(uN) ds

is a cylindrical Wiener process on H and πFu
N(t) has the same distribution as the

solution zF of the linear problem

(4.6) dzF + νAzF = πFC
1
2 dW,

which is independent of N . In particular for every measurable E ⊂ F ,

PN [zF (t) ∈ E] = P̃N [πFu
N(t) ∈ E] = EPN

[
GN
t 1E(πFu

N(t))
]

and if LF (E) = 0, where LF is the Lebesgue measure on F , then 1E(zF (t)) =
0. Since GN

t > 0, PN–a. s., we have that 1E

(
πFu

N(t)
)

= 0, PN–a. s., that is

PN [πFu
N(t) ∈ E] = 0. In conclusion πFu

N(t) has a density with respect to the
Lebesgue measure on F .

Step 2: passage to the limit. Now consider the weak martingale solution u of the
infinite dimensional problem (2.3). We show that GNk

t is convergent. By possibly
changing the underlying probability space and the driving Wiener process via the
Skorokhod theorem, we can assume that there is a sequence of processes (uNk)k≥1
such that uNk has law PNk and uNk → u a. s. in C([0, T ];Hw) — where Hw is
the space H with the weak topology — and in L2(0, T ;H) for every T > 0. In
particular the sequence (uNk)k≥1 is a. s. bounded in L∞(0, T ;H) and thus a. s.
strongly convergent in Lp(0, T ;H) for every T > 0 and every p <∞. This ensures
that GNk

t → Gt, a. s., for every t, where Gt is the same as in (4.5) for u.
Moreover, we notice that Gt > 0 and finite a. s., since by (4.4) and (4.2),

1

2

∫ t

0

‖C−
1
2πFB(u)‖2H ds <∞, a. s.

on the limit solution.
Step 3: conclusion. We show that πFu(t) has a density with respect to the

Lebesgue measure on F . Let E ⊂ F with LF (E) = 0, then for every open
set J such that E ⊂ J we have by Fatou’s lemma (notice that 1J is lower semi–
continuous with respect to the weak convergence in H since J is finite dimensional),

E[Gt1E(πFu(t))] ≤ E[Gt1J(πFu(t))] ≤
≤ lim inf

N
E[GN

t 1J(πFu
N(t))] = P[zF (t) ∈ J ],

hence E[Gt1E(πFu(t))] = 0 since J can have arbitrarily small measure and zF (t)
has Gaussian density. Again we deduce that P[πFu(t) ∈ E] = 0 from the fact that
Gt > 0. Finally, the fact that the density of πFu(t) is positive follows from the
results of [30]. �
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Remark 4.2. The bounds on the sequence (GN
t )N≥1 are not strong enough to deduce

a stronger convergence to Gt and hence to deduce the representation

(4.7) E[φ(zF (t))] = E
[
Gtφ(πFu(t))

]
in the limit, for smooth function φ : F → R. Although this formula would provide
a representation for the (unknown) density of πFu(t) in terms of the (known)
density of zF , solution of (4.6), this would not characterise the law of πFu(t)
by any means, since the factor Gt which appears in the formula depends on the
sub–sequence (Nk)k∈N which ensures that PNk ⇀ P.

Vice versa, one could use the inverse density

G̃N
t = exp

(
−
∫ t

0

〈C−
1
2πFB(vN), dWs〉 −

1

2

∫ t

0

‖C−
1
2πFB(vN)‖2H ds

)
,

which is also a martingale by [20, Theorem 7.19], to get in the limit

(4.8) E[φ(πFu(t))] = E
[
G̃tφ(zF (t))

]
but the bound (4.3) for vN is not uniform in N .

Remark 4.3. Since our proof is based on Girsanov formula, it gives more infor-
mation. In fact, it easily extends to show that for every t1, . . . , tm, the law of
(πFu(t1), . . . , πFu(tm)) has a density with respect to the Lebesgue measure on
F × · · · × F .

5. Existence of densities with non–degenerate noise: bounds in
Besov spaces

We now show that the density found in the previous theorem has a little bit
more regularity than the one provided by the Radon–Nykodym theorem. At the
same time we provide an alternative proof of existence of the density, which is
based on an idea of [18].

We prove in fact that the density belongs to a suitable Besov space. A general
definition of Besov spaces Bs

p,q(R
d) is given by means of Littlewood–Paley’s de-

composition. Here we use the equivalent definition given in [32, Theorem 2.5.12]
or [33, Theorem 2.6.1] in terms of differences. Define

(∆1
hf)(x) = f(x+ h)− f(x),

(∆n
hf)(x) = ∆1

h(∆
n−1
h f)(x) =

n∑
j=0

(−1)n−j
(
n

j

)
f(x+ jh)

then the following norms, for s > 0, 1 ≤ p ≤ ∞, 1 ≤ q <∞,

‖f‖Bsp,q = ‖f‖Lp +
(∫
{|h|≤1}

‖∆n
hf‖

q
Lp

|h|sq
dh

|h|d
) 1
q
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and for q =∞,

‖f‖Bsp,∞ = ‖f‖Lp + sup
|h|≤1

‖∆n
hf‖Lp
|h|s

,

where n is any integer such that s < n, are equivalent norms of Bs
p,q(R

d) for the
given range of parameters. Note that if 1 ≤ p < ∞ and s > 0 is not an integer,
then Bs

p,p(R
d) = W s,p(Rd) (this is formula 2.2.2/(18) of [32]). We refer to [32, 33]

for a general introduction on these spaces, for their properties and for further
details on the topic.

5.1. Besov regularity of the densities. We prove the following result.

Theorem 5.1. Fix an initial condition x ∈ H and let F be a finite dimensional
subspace of D(A) generated by the eigenvectors of A, namely F = span[en1 , . . . , enF ]
for some arbitrary indices n1, . . . , nF . Assume moreover that πFC is invertible on
F . Then for every t > 0 the projection πFu(t) has an almost everywhere positive
density fF,t with respect to the Lebesgue measure on F , where u is any solution of
(2.3) which is limit point of the spectral Galerkin approximations (4.1).

Moreover fF,t ∈ Bs
1,∞(Rd), hence fF,t ∈ W s,1(Rd), for every s ∈ (0, 1), and

fF,t ∈ Lp(Rd) for any p ∈ [1, d
d−1), where d = dimF .

Proof. Let u be a weak martingale solution of (2.3) with initial condition x and
distribution Px, and assume PNkx ⇀ Px, where Nk ↑ ∞ is a sequence of integers and
for each k the probability measure PNkx is a weak martingale solution of (4.1) with
initial condition πNkx. Given a finite dimensional space F = span[en1 , . . . , enF ]
and a time t, which without loss of generality is taken equal to t = 1, we wish to
show that the random variable πFu(1) has a density with respect to the Lebesgue
measure on F (which we identify with Rd, d = dimF ). We first notice that, again
by the results of [30], the density will be positive almost everywhere.

For N ≥ nF , let fN be the density of the random variable πFu
N(1), where uN is

the solution of (4.1). The existence of fN is easy to prove under our assumptions
and follows for instance by the results of [26]. For every ε < 1, denote by ηε =
1[0,1−ε] the indicator function of the interval [0, 1− ε]. Denote by uN,ε the solution
of

duN,ε +
(
νAuN,ε +B(uN,ε)− (1− ηε)πFB(uN,ε)

)
dt = πNC

1
2 dW,

where πN is the projection onto span[e1, . . . , eN ], and notice that uN,ε(s) = uN(s)
for s ≤ t− ε. Moreover for t ∈ [1− ε, 1], v = πFu

N,ε satisfies

(5.1)

{
dv + νπFAv dt = πFC

1
2 dW,

v(1− ε) = πFu
N,ε(1− ε).

Therefore, conditioned to F1−ε, πFu
N,ε(1) is a Gaussian random variable with

covariance

QF =

∫ ε

0

πF eνπFAs C eνπFAs πF ds
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and mean πFu
N,ε(1−ε). We denote by gε,N its density with respect to the Lebesgue

measure. Since QF is bounded and invertible on F and its eigenvalues are all of
order ε, it is easy to see, by a simple change of variable (to get rid of the random
mean and to extract the behaviour in ε) and the smoothness of the Gaussian
density, that

‖gε,N‖Bn1,1 ≤ cε−
n
2 ,

holds almost surely with a deterministic constant c > 0.
Fix φ ∈ C∞0 (Rd), n ≥ 1 and h ∈ Rd with |h| < 1, then

(5.2)
E[(∆n

hφ)(πFu
N(1))] = E[(∆n

hφ)(πFu
N(1))− (∆n

hφ)(πFu
N,ε(1))]

+ E[(∆n
hφ)(πFu

N,ε(1))].

Consider the second term and use a discrete integration by parts

E[(∆n
hφ)(πFu

N,ε(1))] = E
[
E[(∆n

hφ)(πFu
N,ε(1))|F1−ε]

]
= E

[ ∫
Rd

∆n
hφ(x)gε,N(x) dx

]
= E

[ ∫
Rd

φ(x)∆n
−hgε,N(x) dx

]
≤ ‖φ‖L∞‖h‖nE[‖gε,N‖Bn1,1 ]

≤ c‖φ‖L∞ε−
n
2 ‖h‖n.

The first term of (5.2) can be estimated as follows∣∣E[(∆n
hφ)(πFu

N(1))− (∆n
hφ)(πFu

N,ε(1))]
∣∣ ≤

≤
∣∣∣ n∑
j=0

(−1)n−j
(
n

j

)
E
[
φ
(
πFu

N(1) + jh
)
− φ
(
πFu

N,ε(1) + jh
)]∣∣∣

≤ c[φ]αE
[
‖πF

(
uN(1)− uN,ε(1)

)
‖α
]
,

where [φ]α is the Hölder semi-norm of Cα(Rd), and α ∈ (0, 1) will be suitably
chosen later. Since

πF
(
uN(1)− uN,ε(1)

)
= −

∫ 1

1−ε
e−νA(1−s) πFB(uN(s), uN(s)) ds,

(4.4) and (4.2) yield

E
[
‖πF

(
uN(1)− uN,ε(1)

)
‖
]
≤ cF

∫ 1

1−ε
E[‖uN(s)‖2H ] ds ≤ cF (‖x‖2H + 1)ε.

Gathering the estimates of the two terms gives∣∣E[(∆n
hφ)(πFu

N(1))]
∣∣ ≤ c[φ]αε

α + cε−
n
2 ‖h‖n‖φ‖∞ = c‖φ‖Cα‖h‖

2αn
2α+n
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where the number c is independent of N , and we have chosen ε = ‖h‖
2n

2α+n . By a
discrete integration by parts,∣∣E[(∆n

−hφ)(πFu
N(1))]

∣∣ =

∫
Rd

(∆n
−hφ)(x)fN(x) dx =

∫
Rd

(∆n
hfN)(x)φ(x) dx

(we have switched from h to −h for simplicity) and so we have proved that for
every h ∈ Rd with |h| ≤ 1,

(5.3)
∣∣∣∫

Rd

φ(y)
(∆n

hfN)(x)

|h|αn
dy
∣∣∣ ≤ c‖φ‖Cα ,

with αn = 2αn
2α+n

. We wish to deduce from the above inequality the following claim:

The sequence (fN)N≥nF is bounded in Bγ
1,∞(Rd) for every γ ∈ (0, 1).

Before proving the claim, we show how it immediately implies the statements
of the theorem. Indeed, by Sobolev’s embeddings and [32, formula 2.2.2/(18)],

Bγ
1,∞(Rd) ⊂ Bγ′

1,1(R
d) = W γ′,1(Rd) ⊂ Lp(Rd) for every γ′ < γ and 1 ≤ p ≤

d/(d−γ′), hence for every 1 ≤ p < d/(d−1) by choosing γ′ arbitrarily close to γ and
γ close to 1. This fact implies that the sequence (fNk)k≥1 is uniformly integrable
and hence convergent to a positive function f ∈ Lp(Rd) for any 1 ≤ p < d/(d−1),
which is the density of πFu(1). We recall here that PNk ⇀ P, where P is the law
of u, hence the limit is unique along the subsequence (Nk)k≥1. Moreover, since the
bound in the claim is independent of N , it follows that f ∈ Bγ

1,∞(Rd) for every
γ ∈ (0, 1).

It remains to show the above claim. Let ψ ∈ S(Rd), where S(Rd) is the Schwartz
space of smooth rapidly decreasing functions, and set φ = (I − ∆d)

−β/2ψ, where
∆d is the Laplace operator on Rd and β > α will be suitably chosen later. Notice
that since Cα(Rd) = Bα

∞,∞(Rd) [32, Theorem 2.5.7, Remark 2.2.2/3] and since

(I −∆d)
−β/2 is a continuous operator from Bα−β

∞,∞(Rd) to Bα
∞,∞(Rd) [32, Theorem

2.3.8], it follows that

‖φ‖Cα ≤ c‖φ‖Bα∞,∞ ≤ c‖ψ‖Bα−β∞,∞
≤ c0‖ψ‖L∞ ,

where the last inequality follows from the fact that L∞(Rd) ↪→ Bα−β
∞,∞(Rd), since

Bα−β
∞,∞(Rd) is the dual of Bβ−α

1,1 (Rd) [32, Theorem 2.11.2] and Bβ−α
1,1 (Rd) ↪→ L1(Rd)

by definition, since β > α.
Let gN = (I −∆d)

−β/2fN , then (5.3) yields∣∣∣∫
Rd

ψ(y)(∆n
hgN)(y) dy

∣∣∣ ≤ c0|h|αn‖ψ‖L∞ ,

hence ∆n
hgN ∈ L1(Rd) and

‖∆n
hgN‖L1 ≤ c0|h|αn .

Moreover, by [2, Theorem 10.1], ‖gN‖L1 ≤ c‖fN‖L1 = c, hence (gN)N≥nF is a
bounded sequence in Bαn

1,∞(Rd) and, since (I−∆d)
β/2 maps Bα

1,∞(Rd) continuously
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onto Bα−β
1,∞ (Rd) [32, Theorem 2.3.8], it follows that (fN)N≥nF is a bounded sequence

in Bαn−β
1,∞ (Rd) for every β > α.

We notice that by suitably choosing n ≥ 1, α ∈ (0, 1) and β > α, the number
αn−β runs over all reals in (0, 1): this can be easily seen by noticing that αn → 2α
as n→∞. This proves the claim and consequently the whole theorem. �

5.2. Additional regularity for stationary solutions. We can slightly improve
the regularity of densities if we consider a special class of solutions, namely station-
ary solutions. Consider again problem (4.1), it admits a unique invariant measure
(see for instance [11], see also [26] for related results). Denote by PN the law of
the process started at the invariant measure. Every limit point is a stationary
solution of (2.3), that is a probability measure which is invariant with respect to
the forward time–shift (other methods can be used to show existence of stationary
solutions, see for instance [12]).

The idea that stationary solutions may have better regularity properties has
been already exploited [13, 24].

Theorem 5.2. Let F be a finite dimensional subspace of D(A) generated by
the eigenvalues of A, namely F = span[en1 , . . . , enF ] for some arbitrary indices
n1, . . . , nF . Let u be a stationary solution of (2.3) which is a limit point of a se-
quence of stationary solutions of the spectral Galerkin approximation. Under the
same assumptions of Theorem 5.1, the projection πFu(1) has a density fF with
respect to the Lebesgue measure on F , which is almost everywhere positive.

Moreover fF ∈ Bs
1,∞(Rd), which in particular implies that fF ∈ W s,1(Rd) for

every s ∈ (0, 2), where d = dimF .

Proof. We proceed as in the proof of Theorem 5.1. Fix a stationary solution u with
law P, a sequence PNk ⇀ P of stationary solutions of (4.1) and a finite dimensional
space F = span[en1 , . . . , enF ]. Write again

(5.4)
E[(∆n

hφ)(πFu
N(1))] = E[(∆n

hφ)(πFu
N(1))− (∆n

hφ)(πFu
N,ε(1))]

+ E[(∆n
hφ)(πFu

N,ε(1))].

where this time uN,ε is defined as the solution of

duN,ε +
(
νAuN,ε +B(uN,ε)− (1− ηε)πFB(uN,ε) +

+ (1− ηε)πFB(e−A(s−1+ε) uN,ε(1− ε))
)
ds = πNC

1
2 dWs

so that again uN(t) = uN,ε(t) for t ≤ 1 − ε, and for t ≥ 1 − ε the process πFu
N,ε

satisfies

dv +
(
νπFAv + πFB(e−A(s−1+ε) uN,ε(1− ε))

)
ds = πFC

1
2 dWs,

which is the same equation as in (5.1) with an additional adapted external forcing.
As before, conditioned to F1−ε, πFu

N,ε(1) is Gaussian with covariance QF . Thus,
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the second term of (5.4) has the estimate∣∣E[(∆n
hφ)(πFu

N,ε(1))]
∣∣ ≤ cε−

n
2 |h|n‖φ‖∞.

We claim that

(5.5) E
[
‖πFuN(1)− πFuN,ε(1)‖H

]
≤ cε

3
2 .

Before proving (5.5), we show how to use it to conclude the proof. Indeed, as
before, the first term on the right–hand side of (5.4) is bounded from above as∣∣E[(∆n

hφ)(πFu
N(1))− (∆n

hφ)(πFu
N,ε(1))]

∣∣ ≤ c[φ]αE
[
‖πFuN(1)− πFuN,ε(1)‖H

]α
≤ c[φ]αε

3
2
α,

and so ∫
Rd

(∆n
hfN)(x)φ(x) dx ≤ c[φ]αε

3
2
α + cε−

n
2 |h|n‖φ‖∞ ≤ c‖φ‖Cα|h|αn ,

by choosing ε = |h|2n/(3α+n), where this time αn = 3αn
3α+n

. As in the proof of
Theorem 5.1, the above estimate yields that (fN)N≥nF is a bounded sequence in
Bs

1,∞, for every s < αn − α. Since αn − α → 2α as n → ∞ and α ∈ (0, 1) can be
arbitrarily chosen, we conclude that (fN)N≥nF is bounded in Bs

1,∞ for every s < 2.

In particular, since Bs
1,∞(Rd) ↪→ Bs

1,1(R
d) = W s,1(Rd), (fN)N≥nF is also bounded

in W s,1(Rd) for every s < 2.
We conclude with the proof of (5.5). We have that

πF
(
uN(1)− uN,ε

)
=

∫ 1

1−ε
e−νA(1−s) πF

(
B(e−νA(s−1+ε) uN(1− ε))−B(uN(s))

)
ds,

hence by (4.4) and Hölder’s inequality,
(5.6)
E
[
‖πF

(
uN(1)− uN,ε(1)

)
‖
]
≤

≤ c

∫ 1

1−ε
E
[(
‖ e−νA(s−1+ε) uN(1− ε)‖H + ‖uN(s)‖H

)
‖ e−νA(s−1+ε) uN(1− ε)− uN(s)‖H

]
ds

≤ c

∫ 1

1−ε
E
[(
‖uN(1− ε)‖H + ‖uN(s)‖H

)4] 1
4E
[
‖ e−νA(s−1+ε) uN(1− ε)− uN(s)‖

4
3
H

] 3
4 ds

≤ c

∫ 1

1−ε
E
[
‖ e−νA(s−1+ε) uN(1− ε)− uN(s)‖

4
3
H

] 3
4 ds,

since E[‖uN(s)‖4H ] is finite, constant in s and uniformly bounded in N . Now, for
s ∈ (1− ε, 1),

e−νA(s−1+ε) uN(1− ε)− uN(s) =

∫ s

1−ε
e−νA(s−r)B(uN(r)) dr −

∫ s

1−ε
e−νA(s−r) C

1
2dWr
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and so

E
[
‖ e−νA(s−1+ε) uN(1− ε)− uN(s)‖

4
3
H

]
≤

≤ E
[(∫ s

1−ε

∥∥e−νA(s−r)B(uN(r))
∥∥
H
dr
) 4

3
]

+ E
[∥∥∥∫ s

1−ε
e−νA(s−r) C

1
2dWr

∥∥∥ 4
3

H

]
= 1 + 2 .

To estimate 1 we use the inequality

‖A−
1
2B(v)‖H ≤ c‖v‖2L4 ≤ c‖v‖

1
2
H‖v‖

3
2
V ,

standard estimates on analytic semigroups and we exploit the fact that uN is
stationary,

1 ≤ E
[(∫ s

1−ε

c√
s− r

‖uN(r)‖
1
2
H‖u

N(r)‖
3
2
V dr

) 4
3
]

≤ cε
1
3E
[∫ s

1−ε

1

(s− r) 2
3

‖uN(r)‖
2
3
H‖u

N(r)‖2V dr
]

= cε
2
3E
[
‖uN‖

2
3
H‖u

N‖2V
]

= cε
2
3 .

The second term is standard,

2 ≤ E
[∥∥∥∫ s

1−ε
e−νA(s−r) C

1
2dWr

∥∥∥2
H

] 2
3 ≤

(1

2
εTr(C)

) 2
3

= cε
2
3 ,

and in conclusion

E
[
‖ e−νA(s−1+ε) uN(1− ε)− uN(s)‖

4
3
H

]
≤ cε

2
3 ,

hence from (5.6),

E
[
‖πF

(
uN(1)− uN,ε

)
‖
]
≤ cε

3
2 ,

which proves (5.5). �
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