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Abstract

Localization of the phase transformations in Shape Memory Alloys (SMA) wires are well
known. Several experimental and theoretical studies appeared in the last years. In this work
the problem is addressed by means of a variational approach within the framework of the
modeling of rate-independent materials by the specification of a non-local free energy and a
dissipation function, focusing attention on the basic case of isothermal conditions. General
expressions are given for a rather broad class of models, whereas a simple model is studied
in detail. A full stability analysis of both homogeneous and non-homogeneous solutions is
carried out analytically, showing that stable non-homogeneous solutions have necessarily to
occur if the bar is longer than an internal length determined by the constitutive parameters.
The analysis also shows that snap-back phenomena may occur both in the nucleation and
the coalescence phase, depending on another material length which is also function of the
number of transformation fronts. This helps to explain why the second stress drop associated
to coalescence is much more difficult to observe experimentally. Closed form expressions are
given for the phase fraction profiles of both single and multiple localizations as well as
nucleation and propagation stresses. A comparison between the prediction of the model
with experimental data finally shows a good agreement both in terms of global response and
in the spatio-temporal evolution of the transformation domains.
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1. Introduction

Shape Memory Alloys (SMA) exhibit a complex thermomechanical behavior induced by the
occurrence of phase transformations between austenite and one or more variants or groups
of variants of martensite [33, 23]. This is reflected at the macroscopic scale by their peculiar
functional properties known as pseudoelasticity, one or two-way shape memory effect [22, 26].
Such properties are nowadays widely known and are exploited by an increasing number of
applications like, among the others: biomedical devices, aerospace structures, mechanical
components, MEMS as well as civil engineering structural elements or devices [40, 41].

While the basic properties of SMA were known since 1960s, Shaw and Kyriakides [45]
first noticed the occurrence of non-homogeneous strain fields associated with the localization
of the phase transformations at the macroscopic scale in NiTi superelastic wires. Further
experimental investigations then provided ample confirmation that, during tensile tests under
displacement control, NiTi wires or stripes tend to transform through the nucleation, growth
and propagation of macroscopic domains observable at the macroscopic scale in the form of
bands with striking similarity with Lüders phenomena observed in other types of metals
[46, 43, 21, 11]. This phenomenology was confirmed by Sun and coworkers in fine-grained
polycrystalline NiTi microtubes where an additional level of complexity arises with respect
to the possibility of formation of cylindrical or helix-shaped domains [49, 16, 18]. Recent
experiments show qualitatively similar behavior also for SMA tubes subject to bending [4].

Further experimental analyses pointed out the importance of the thermomechanical cou-
pling [21, 42, 50, 13]. The latent heat released or absorbed during phase transformations
is localized at the domains and this generates a non-uniform temperature field that, given
the temperature dependence of the nucleation stress, usually gives rise to the formation of
multiple domains. Since the actual temperature field is determined by the concomitant ef-
fect of the latent heat and the heat exchanged with the environment, the thermomechanical
coupling is strongly related to the loading rate. For each loading rate the maximum number
of fronts and the corresponding spacing has been estimated in [20].

The occurrence of localized phase transformations is reflected on the overall response of
the sample by stress peaks that can be interpreted as the difference between the nucleation
and propagation stresses emerging as an outcome of material instability. The fact that SMA
tend to show unstable softening behavior is known since the first thermodynamic equilibrium
analyses in [17] and has recently been observed experimentally in [18].

A large number of constitutive models, able to describe many features of the complex
response of SMA, are available in the scientific literature [33, 23, 22, 8, 9] but most of them
cannot model the occurrence of localized phase transformations. However, over the years,
various different approaches have been used to describe the localizations in SMA.

The first attempts to model this phenomenology go back to [43] where FEM analyses
based on standard 3-dimensional plasticity models were carried out to model the loading
phase of SMA strips, later extended to take into account the thermomechanical coupling
[42]. In [44, 10] a 1-dimensional nonlocal model for SMA bars based on two internal variables
and a free energy depending on the strain gradient was proposed. Numerical simulations
showed the ability of the model to describe the localized responses in tensile tests of SMA
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wires. Another approach based on a series-asymptotic expansion method originating from
the work [12] led to interesting analytical results in the study of phase transformations
and the instability of SMA circular cylindrical wires [48, 47]. Implicit nonlocal gradient
models were proposed in [14, 3] through the introduction of an internal length parameter
that determines the nonlocality of the model through a partial differential equation. The
model was then implemented in FEM codes and numerical results showed a good agreement
with the experiments.

In this work, the study of the localization phenomena in pseudoelastic SMA bars, aris-
ing in tensile tests under displacement control, is addressed by using a variational approach
within the framework of a global energetic formulation for rate-independent dissipative ma-
terials modeled by the constitutive specification of a free energy and a dissipation function
[30, 29].

The evolution problem is stated by means of three energetic requirements: two of them
reflect the first and second law of thermodynamics, the third one is a directional stability
condition based on the minimization of the energy injection that would be needed to realize
virtual radial continuation processes from a given state. The latter plays a role analogous to
other criteria that provide restrictions on the dissipative behavior (like e.g. in [19, 25, 52]) but
it offers the possibility to be interpreted in terms of stability as done, from slightly different
perspectives in the important works [15, 35, 31]. Moreover, the approach is amenable to a
robust numerical implementation by means of Incremental Energy Minimization [34] that
will be discussed in forthcoming works.

The energetic criteria are stated in a global spatial and temporal form as proposed by
Mielke and coworkers to obtain a derivative-free formulation able to deal with very weak
smoothness requirements [30, 29]. The present analysis is however carried out without taking
full advantage of the generality in [30] working instead with differential stability conditions
in the spirit of Marigo and coworkers who successfully applied this type of criteria to the
study of gradient damage models [36, 37, 38] and coupled damage and plasticity models
[1, 2]. An application of this approach to SMA has recently appeared in [24] on the basis of
a rather specific model. Moreover, with respect to [24], here the complete stability analysis
of both homogeneous and non-homogeneous response is discussed.

The energetic formulation is described in Section 2 with reference to isothermal conditions
which are a good approximation of the actual behavior only for very slow loading rates.
This choice is done as the main motivation of the work is to show the applicability of the
energetic approach in the most basic setting. The extension of the formulation to a full
non-isothermal setting that properly takes into account the very important influence of the
thermomechanical coupling is presently under development.

Section 2 also shows how the combined use of first-order directional stability and energy
balance yields transformation criteria and kinetics both in variational and strong form. The
discussion is referred to a class of SMA models characterized by the free energy functions
proposed in [5, 6] modified by the introduction of a nonlocal term proportional to the gradient
of the martensite fraction. The constitutive information is then completed by a positively
homogeneous dissipation function as in [39, 7]. In this framework, various SMA models
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with different levels of detail can be studied by using specific expressions for the effective
elastic moduli, interaction energy and driving force thresholds as a function of the martensite
fraction.

The attention is then restricted to the simplest version of the model specified by a con-
stant elastic modulus, quadratic interaction energy and constant driving force thresholds, as
described in Section 3. The consideration of more elaborate versions of the model, taking
into account heterogeneity of the elastic properties of the phases, micromechanically derived
interaction energies, non-constant driving force thresholds as well as tension-compression
asymmetry, will be considered in forthcoming works.

In Section 4 the spatially homogeneous solutions are studied. Since the adopted free
energy is non-convex in the internal variables, homogeneous phase transformations are ac-
companied by softening. The study of their stability then reveals that such solutions become
unstable when the length of the bar exceeds an internal length `s determined by the depen-
dence of the free energy density on the gradient of the phase fraction.

Given the instability of the homogeneous transformations, localized martensite fraction
profiles may develop, provided that the length of the bar L is greater than a second internal
length ` (< `s), corresponding to the support of a half-localization. Due to the nonlocality
of the model, the transformation criteria turn out to be to integro-differential equations
that can be solved with the stress as a parameter. The stress is then computed from the
knowledge of the average value of the martensite fraction. Section 5 and Appendix A discuss
general properties of localized phase fraction profiles offering closed form expressions for the
basic cases of boundary and inner localizations.

Section 6 discusses in detail the response of the bar when a single localization nucleates
at the fixed end, grows and then propagates towards the other end. Explicit expressions are
given for the nucleation and propagation stresses and it turns out that the corresponding
stress drop is completely determined by the interaction energy and the local transformation
strain. The analysis also shows that snap-back instabilities may occur depending on the
length of the bar. More specifically, snap-back can occur if the bar is longer than the internal
length `s of the material, during the phase of localization growth but also at the end of the
transformation when the last untransformed region coalesces with the rest of the bar. In
both cases, a stress drop is to be expected but it is shown that the one at the transformation
completion must always be smaller than the one at the outset of the transformation. This
helps to explain why the second type of stress drops are much more difficult to observe
experimentally.

Section 7 provides some indications about the structure of localizations with multiple
fronts and of their evolution that are easily handled in this framework. The occurrence of
snap-back phenomena is discussed by introducing a third length Ls (≥ `s), which depends
not only on the internal length `s but also on the number of transformation fronts.

In section 8 the full stability analysis of the non-homogeneous solutions is carried out.
The Rayleigh ratio associated with the second-variation of the difference between free energy
and dissipation is studied explicitly, in closed form. The analysis shows that the localized
transformation profiles are directionally stable provided the bar is sufficiently long to contain
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at least the initial support of half localization and leaving room for some propagation, namely
L ≥ `. As result, for specific lengths L, such that ` ≤ L < `s, both homogeneous and non-
homogeneous solutions are admissible.

Finally, Section 9 offers the numerical simulation of a well known experiment [21]. The
comparison shows a good agreement with the experiments in the simulation of the global
response, especially in the Forward A → M Transformation. A good agreement is also
obtained in the simulation of the spatio-temporal evolution of the transformation fronts.

Concerning notation, unless otherwise specified, the following will be assumed: the sub-
script t applied to a spatio-temporal field indicates the partial function at fixed time, like for
example ft(x) := f(x, t); a prime indicates either the derivative with respect to the spatial co-
ordinate or the directional derivative of functionals; a superposed dot means right-derivative
with respect to time.

2. The Energetic Formulation of tensile tests under displacement control

The response of a SMA bar, of constant cross-section and subject to applied axial displace-
ments (Figure 1), is studied by means of an energetic approach, based on the combined use
of the laws of thermodynamics and a dissipative principle expressed in the form of a stability
condition.

Attention is focused on the pseudoelastic behavior. Hence phase transformations are
modeled, at each point x, by the evolution of a single martensite fraction α(x) ∈ [0, 1] at
temperatures above Af , [11].

The state of the bar is described by three fields defined over the undeformed configuration
Ω := [0, L] that represent displacement, temperature and phase fraction

(u, α, T )

A process P for the bar is a time parametrized family of states

t 7→ Pt := (ut, αt, Tt), t ∈ [t0, t1]

Processes may be restricted to subintervals and, in the following, P |t will denote the process
P restricted to [t0, t] ⊆ [t0, t1].

Except for Section 2.2, attention will be restricted to isothermal processes in which the
temperature field is constant both in time and space, so that T will be considered as fixed
parameter omitted from the list of state variables. The state space is thus S := U × V
where U := H1([0, L],R) and V := H2([0, L], [0, 1]) are the spaces to which displacement
and phase fraction fields are assumed to belong, whereas processes are likewise assumed

L

Ut

x

Figure 1: Tensile test setting.
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to belong to H1([t0, t1],S). With such choices, gradients of fields and time derivatives of
processes always exists, at least in a weak sense and the gradient of the phase fraction is
continuous. Accordingly, even if not explicitly mentioned, most statements that involve
the derivatives of the fields and of the processes holds almost everywhere in the respective
domains of definition.

In the displacement controlled tensile test the left end (x = 0) of the bar is kept fixed
while the right end (x = L) is subject to a given loading history U , namely a map

t 7→ Ut, t ∈ [t0, t1]

in absence of body and surface forces. The loading is assumed to be smooth and slow enough
to neglect inertia. This gives boundary conditions

u(0, t) = 0, u(L, t) = Ut (1)

The subset of kinematically admissible displacement fields (i.e. satisfying (1)) at time t, will
be denoted Uk,t ⊂ U . On the contrary, no boundary conditions on the phase fractions are
specified a priori while some natural ones will emerge from the following analysis. Initial
conditions will correspond to the bar fully austenitic at a uniform temperature bigger than
Af , namely

u0 = 0, α0 = 0, T0 = T̄ > Af

The isothermal test consists in a monotonic loading followed by a monotonic unloading
described by

Ut :=

{
Lt if 0 ≤ t ≤ tu

−Lt+ 2Ltu if tu < t ≤ 2tu
(2)

which corresponds to the application of a displacement equal to the length of the bar in a
unit of time. This choice of units helps to simplify notation and does not affect the results
since the material behavior is assumed to be rate-independent.

2.1. Basic energetic quantities

The analysis is based on three quantities that specify how the bar stores and dissipates
energy as well as how it exchanges energy with the environment.

The Helmholtz free energy content of the bar is given by

E(u, α, T ) :=

∫ L

0

Φ (ε(x), α(x), γ(x)) dx (3)

where Φ is a smooth constitutive function expressing free energy per unit length and ε := u′,
γ := α′ denote the axial strain and the gradient of the martensite fraction field. The
dependence of the free energy density on γ will be, of course, crucial for the modeling of
localizations. The stress at point x then reads

σ(x) :=
∂Φ

∂ε
(ε(x), α(x), γ(x)) (4)
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The dissipated power corresponding to a martensite fraction profile α and a phase transfor-
mation field rate β, is defined as

D (α, β) :=

∫ L

0

Γ (α(x), β(x)) dx (5)

where Γ is a constitutive function of the phase fraction and its rate that models the rate
of energy dissipation per unit length. The dissipative evolution is assumed to be rate-
independent, hence Γ is positively homogeneous of degree 1 in its second argument so that it
turns out to be equivalent to a dissipation potential in the sense of the generalized standard
materials, [19]. On the basis of (5), it is possible to compute the amount of dissipated energy
in the bar for a given process P ,

D (P ) :=

∫ t1

t0

D (ατ (x), α̇τ (x)) dτ (6)

As temperature is constantly uniform, the energy exchange with the environment is purely
mechanical due to the applied displacements at the boundary. The total energy supplied to
the bar by the displacement history U , is

L (U) :=

∫ t1

t0

(
στ (L)AU̇τ

)
dτ (7)

where στ (L) is the stress at the moving end at time τ and A is the cross-section area.

2.2. The nonlocal constitutive model for SMA

According to (3) and (6), the constitutive behavior of the bar is completely determined by
two scalar quantities: the free energy density Φ and the dissipation function Γ. This is
consistent with the Ziegler-Green-Naghdi framework, used for SMA in [39] as well as in [7].

To deal with localizations of the phase transformations, a free energy density function
consistent with the expressions proposed in [5] but augmented by a nonlocal term, quadratic
in the gradient γ of the martensite fraction field is adopted

Φ(ε, α, γ, T ) :=
1

2
E(α) (ε− µα)2 +B(T − Te)α+

+ Ω(α)α(1− α) +
1

2
Mγ2 + Φch(T )

(8)

where: E(α) is the elastic modulus, µ ≥ 0 the macroscopic transformation strain of the active
type of martensite, Te the equilibrium temperature at which pure austenite and martensite
have the same free energy under stress-free conditions, B ≥ 0 the entropy difference between
the phases at equilibrium temperature Te, M ≥ 0 a parameter related to the internal length
of the material and Φch(T ) the chemical free energy, [5].

The term containing the coefficient Ω(α) is the interaction energy arising due to the
incompatibility between the two phases at the microscopic scale and plays a crucial role
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in SMA modeling. Several micromechanically-based expressions for it are available in the
literature (see e.g. [5], [6], [33] and references therein). For what follows, it is important
to remark that, as shown in [6], interaction energy has, in any case, to be bigger than the
Reuss bound and smaller than the Voigt bound. This yields a constraint for the material
parameters, namely

0 ≤ Ω(α) <
µ2E(0)

2
(9)

that will be very important in the following. In the special case of constant Ω, interaction
energy is non-negative for any value of the phase fraction and the free energy density is
non-convex in α, except, of course, the limiting case of Ω = 0, which is excluded from
consideration.

The derivatives of the free energy density with respect to the martensite fraction and its
gradient will have a key role and deserve a specific notation

Πα := −∂Φ

∂α
, Πγ :=

∂Φ

∂γ
(10)

As it will be seen, the quantity
Π := Πα + Π′γ (11)

will play the role of driving force of the phase transformations. It is important to remark that
it is given by the sum of a local part Πα and a non-local part determined by the dependence
of the free energy density Φ on the gradient of the phase fraction γ.

Concerning the second constitutive ingredient, it is assumed that the only dissipative
phenomenon is the progress of the phase transformations and that the corresponding rate of
energy dissipation is given by:

Γ (α, α̇) := ΛF (α) α̇+ + ΛR(α)α̇− (12)

where α̇+ := max (α̇, 0) and α̇− := min (α̇, 0). The constitutive functions ΛF(α) and ΛR(α)
can be interpreted as the threshold levels that the driving force must reach in order to
activate the phase transformations. In particular, their eventual explicit dependence on the
phase fraction determines different slopes for the pseudoelastic plateaus. The thresholds
are generally different for the two transformations and the subscripts F,R here and in the
following denote respectively Forward Transformation (FwT) A → M (increasing α) and
Reverse Transformation (RvT) M → A (decreasing α). With this choice, the dissipation
function is convex, satisfies Γ(α, 0) = 0 and is homogeneous of degree 1 with respect to the
phase fraction rate.

2.3. Energetic requirements on processes

The evolution problem amounts to find the processes that the bar can undergo under a given
displacement history. This will be stated by means of three energetic criteria.

A process P is energetically consistent with the environment if, for each t ∈ [t0, t1],
the following energy balance holds

EP (t)− EP (t0) +DP (t) = LU(t) (EB)
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where EP (t) := E (Pt) = E (ut, αt) is the free energy evaluated along the process and
DP (t) := D (P |t) is the energy dissipated in the process P |t obtained by restriction of P
on the subinterval [t0, t]. Similarly LU(t) := L (U |t) is the energy supplied by the applied
displacements1 Ut up to time t.

A process P is said to satisfy the irreversibility condition if, for each t ∈ [t0, t1],
the rate of energy dissipation is non-negative at any point:

Γ (αt(x), α̇t(x)) ≥ 0 (IR)

In this context, with a slightly abuse of notation, both reversible and irreversible processes,
for which respectively the rate of energy dissipation is vanishing or positive, are meant to
satisfy (IR).
Taking into account the structure (12) of the dissipation function, the irreversibility condi-
tion is then automatically satisfied if the constitutive functions in (12) obey the following
fundamental sign restrictions:

ΛF(α) ≥ 0, and ΛR(α) ≤ 0 (13)

While energy balance and irreversibility are nothing but particular statements of the first
and second law of thermodynamics, they are not enough to characterize the evolution of
phase transformations and further restrictions are needed. While such restrictions can be
implemented in various ways, [28, 34, 19, 52, 15, 27, 25], here a stability condition that
involves the energetic comparison among different competing admissible states is used.

Due to the possibility of energy dissipation, the comparison between the energy of dif-
ferent states is, in general, process-dependent. If the competing states are allowed to vary
over the whole state space this leads to the notion of global stability that requires varia-
tional statements over the whole space of processes. On the other hand, directional stability
conditions involve comparisons over restricted subsets of competing states parameterizable
in a way that can be usefully interpreted as a special kind of virtual continuation processes.

Specifically, a radial continuation process starting from the state (u, α) in the test direc-
tion (ũ, α̃) is a map

τ 7→ (u+ τ ũ, α + τ α̃) , τ ∈ [0, h] (14)

If τ is assumed to have the dimensions of time, the test directions have the dimensions of
rates and must satisfy some conditions to ensure that all states reached by the continua-
tion are admissible. In particular, in order to preserve displacement boundary conditions,
displacement test directions must belong to

U0 := {ũ ∈ U | ũ (0) = ũ (L) = 0} (15)

1Of course, in presence of applied forces, energy exchanges with the environment will also have to take
into account the potential energy of the loading device.
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On the contrary, phase fraction fields are not constrained, a priori, by boundary conditions
but, due to the fact that their values must belong to a bounded interval, there are state-
dependent sign restrictions on the test direction fields that must belong to

Vα := {α̃ ∈ V | α̃(x) ≥ 0, if α(x) = 0 and α̃(x) ≤ 0, if α(x) = 1} (16)

This simply means that, at every point of pure austenite, test directions for the phase fraction
cannot be negative, while at points of pure martensite test directions cannot be positive.
For coming mathematical manipulations it is also useful to introduce the test directions

V+
α := Vα ∩ {α̃ ∈ V | α̃ ≥ 0} , V−α := Vα ∩ {α̃ ∈ V | α̃ ≤ 0} (17)

A process P is directionally stable at time t ∈ [t0, t1] if there exists a continuation
interval [0, h̄] such that the free energy change induced by any radial continua-
tion process starting from Pt = (ut, αt) does not exceed the corresponding energy
dissipation, namely for every h ∈ [0, h̄], it must be

E (ut + hũ, αt + hα̃)− E (ut, αt) +Dh(αt, α̃) ≥ 0, ∀(ũ, α̃) ∈ U0 × Vαt (DS)

In (DS), Dh(αt, α̃) is the energy dissipated in the radial continuation process determined by
the direction α̃ from the state αt, during the continuation interval [0, h]. By (EB) the sum
of the free energy change and the energy dissipated during a process is equal to the energy
supply from the environment, hence the left-hand side in (DS) can be interpreted as the
energy injection from the exterior that would be needed in order to sustain the virtual radial
continuation process. In this way, directional stability can be interpreted as the requirement
that actual states correspond to local minima of the energy injection.

In this framework the evolution problem consists in finding the processes P that satisfy the
three energetic criteria (EB), (IR), (DS) for a given environment specified by a displacement
history U .

As it will be seen, this naturally leads to the study of the material stability and therefore
is particularly useful in the study of localization phenomena. Moreover it is amenable to
robust numerical implementation via incremental energy minimization.

2.4. Derivatives of the energetic quantities

In the next sections repeated use of various derivatives of the energetic quantities will be
made, hence it is useful to record here the general expressions that will be used.

The first directional derivative of the free energy (3) at the state (u, α) evaluated in the
direction (ũ, α̃) will be denoted E ′ (u, α; ũ, α̃) and, under the adopted constitutive assump-
tions, turns out to be continuous in the state hence linear with respect to the directions, so
that

E ′ (u, α; ũ, α̃) = E ′ (u, α; ũ, 0) + E ′ (u, α; 0, α̃) (18)

10



Denoting ε̃ := ũ′, γ̃ := α̃′ and taking into account (8) and (12) as well as the definitions of
the stress (4) and of the driving forces (10)

E ′ (u, α; ũ, 0) =

∫ L

0

(σε̃) dx (19)

E ′ (u, α; 0, α̃) =

∫ L

0

(−Παα̃ + Πγ γ̃) dx (20)

Similarly, the second directional derivative of the free energy (3) at the state (u, α) evaluated
in the directions (ũ1, α̃1) and (ũ2, α̃2) can be written, taking into account (8), as

E ′′ (u, α; ũ1, α̃1; ũ2, α̃2) =

∫ L

0

(
∂σ

∂ε
ε̃1ε̃2 −

∂Πα

∂α
α̃1α̃2 +

∂Πγ

∂γ
γ̃1γ̃2

)
dx+

+

∫ L

0

(
∂σ

∂α
ε̃1α̃2 −

∂Πα

∂ε
α̃1ε̃2

)
dx

(21)

The directional derivative of the dissipated power (5) with respect to its first argument in
the direction α̃ is given by

D′(α, β; α̃) =

∫ L

0

(
∂ΛF

∂α
β+ +

∂ΛR

∂α
β−
)
α̃ dx (22)

The first and second derivatives of the energy Dh(α, α̃) dissipated in the radial continuation
from the state (u, α) in the direction (ũ, α̃) of duration h, with respect to h at h = 0 and
fixed direction will also be needed. Taking into account (6), (5) and (12) it turns out that

D′0 (α, α̃) = D(α, α̃) =

∫ L

0

(
ΛFα̃

+ + ΛRα̃
−) dx (23)

D′′0 (α, α̃) = D′(α, α̃; α̃) =

∫ L

0

(
∂ΛF

∂α
α̃+ +

∂ΛR

∂α
α̃−
)
α̃ dx (24)

2.5. Differential directional stability

Whenever the energetic quantities possess enough directional derivatives it is possible to
expand in series the left-hand side of (DS), as in [38], and hence to adopt a general strategy to
enforce the stability condition (DS) based on a sequence of necessary and sufficient conditions
obtained by restricting the energetic comparisons to processes of infinitesimal duration of
increasing order.

A process P is directionally stable at the first order if, for any time t ∈ [t0, t1],

E ′ (ut, αt; ũ, α̃) +D′0(αt, α̃) ≥ 0 ∀(ũ, α̃) ∈ U0 × Vαt (DS1)

for any admissible test direction (ũ, α̃) from the state Pt = (ut, αt).
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Taking into account (18), (19), (20) and (23) this can be written∫ L

0

(σ ε̃)t dx+

∫ L

0

(
−Πα α̃ + Πγ γ̃ + ΛFα̃

+ + ΛRα̃
−)

t
dx ≥ 0 ∀(ũ, α̃) ∈ U0 × Vαt (25)

where the subscript t, here and henceforth, indicates that all the state-dependent quantities
included within the parentheses are evaluated at the given process at time t.

The fulfillment of (DS1) is a necessary but not sufficient condition for the validity of the
directional stability (DS). In general, if the state satisfies first-order stability, there is a set
of directions for which it holds as an equality

S1(ut, αt) := {(ũ, α̃) ∈ U0 × Vαt ⇒ E ′ (ut, αt; ũ, α̃) +D′0 (αt, α̃) = 0} (26)

and the complementary set of directions for which it holds as a strict inequality

S2(ut, αt) := {(ũ, α̃) ∈ U0 × Vαt ⇒ E ′ (ut, αt; ũ, α̃) +D′0 (αt, α̃) > 0}

If S2 = U0 × Vαt , namely the condition is satisfied as an inequality for all test directions,
(DS1) is also sufficient for full stability. Otherwise it becomes necessary to analyze the
second-order stability relatively to the set S1 of directions for which (DS1) is satisfied as an
equality.

A process P is directionally stable at the second order if for any time t ∈ [t0, t1]
either first-order stability is satisfied as a strict inequality for all directions (ũ, α̃)
from the state Pt = (ut, αt), namely S2(ut, αt) = U0 × Vαt, or

E ′′(ut, αt; ũ, α̃; ũ, α̃) +D′′0(αt, α̃) ≥ 0 ∀(ũ, α̃) ∈ S1(ut, αt) (DS2)

Taking into account (21) and (25), the inequality in (DS2) can be written as∫ L

0

(
∂σ

∂ε
ε̃2 − ∂Πα

∂α
α̃2 +

∂Πγ

∂γ
γ̃2 − 2

∂Πα

∂ε
ε̃α̃ +

∂ΛF

∂α
α̃+ +

∂ΛR

∂α
α̃−
)
t

dx ≥ 0 ∀(ũ, α̃) (27)

The fulfillment of (DS2) is another necessary condition for the validity of (DS) that becomes
sufficient if it is satisfied as a strict inequality for directions S1. If the sufficient condition is
not yet attained the procedure can be iterated by enforcing stability of higher orders, but
hereinafter this will be never necessary.

Combining the above results, a sufficient condition for the validity of full directional
stability, that makes sense provided the energetic quantities possess enough directional dif-
ferentiability, is obtained :

A process is directionally stable if for any time t ∈ [t0, t1] there in an integer
n > 0 such that

E (n)(ut, αt; ũ, α̃) +D(n)
0 (αt, α̃) > 0 ∀(ũ, α̃) ∈ S(n−1)(ut, αt) (28)
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and moreover, if n > 1,

E (k)(ut, αt; ũ, α̃) +D(k)
0 (αt, α̃) ≥ 0 ∀(ũ, α̃) ∈ S(k−1)(ut, αt) k = 1, . . . , n− 1

(29)
where the subsets of directions to be tested at each order are given by

Sk(ut, αt) :=
{

(ũ, α̃) ∈ U0 × Vαt | E (k)(ut, αt; ũ, α̃) +D(k)
0 (αt, α̃) = 0

}
S0(ut, αt) := U0 × Vαt

This is a sufficient condition which, however, is not necessary and in fact there is another
possibility for full stability to hold.

A process is indefinitely stable if for any time t ∈ [t0, t1] and any integer k > 0
the set Sk(ut, αt) is non empty and

E (k)(ut, αt; ũ, α̃) +D(k)
0 (αt, α̃) ≥ 0 ∀(ũ, α̃) ∈ S(k−1)(ut, αt) (30)

An indefinitely stable process does satisfy the full (DS) and it is the analogue of indifferent
equilibrium in classical elastic stability.

2.6. Solution strategy
Once the energetic quantities have been made explicit, the characterization of the processes
that solve the evolution problem can be carried out by the following two-steps strategy.

Responses consistent with first-order directional stability (DS1) and energy balance (EB),
as well as irreversibility (IR) are determined first and called candidate solutions. This is
possible since, as it will be shown, the combined use of first-order stability and energy
balance leads to the statement of phase transformation criteria and phase transformation
kinetics that can be solved to determine the corresponding processes. Moreover, as discussed
above, the irreversibility condition can be taken into account, automatically, by enforcing
sign restrictions (13) on the constitutive prescription of the driving force thresholds, that
will be systematically assumed to hold.

Afterwards, since first-order stability is a necessary condition for directional stability,
candidate solutions are tested by checking, a posteriori, the second-order stability condition
for the fulfillment of the full directional stability (DS).

In view of the following discussion it is useful to introduce a further piece of notation. A
phase fraction field α induces a partition of the bar into three disjoint subdomains composed
by points that are either pure phases or a mixture of the two. Similarly, a field of rates α̇
induces another partition of the bar into three disjoint subdomains of transforming and non
transforming points.

SA(α) := {x ∈ Ω | α(x) = 0} FwT (α̇) := {x ∈ Ω | α̇(x) > 0}
SM(α) := {x ∈ Ω | α(x) = 1} RvT (α̇) := {x ∈ Ω | α̇(x) < 0} (31)

SAM(α) := {x ∈ Ω | 0 < α(x) < 1} NoT (α̇) := {x ∈ Ω | α̇(x) = 0}
Of course, for any pair of fields α and α̇ the following relations have to hold:

FwT ⊆ SA ∪ SAM, RvT ⊆ SM ∪ SAM (32)
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2.7. Transformation criteria as a consequence of first-order stability

To analyze the consequences of first-order differential directional stability, the terms contain-
ing ũ′ and α̃′ can be eliminated from (25) after integration by parts. Using the definitions
(10), (11) of the driving force Π as well as (12) and (15), the first-order directional stability
becomes:∫ L

0

(
−σ′ũ− Πα̃ + ΛF α̃

+ + ΛRα̃
−)

t
dx+

[
(Πγ)t α̃

]L
0
≥ 0 ∀ (ũ, α̃) ∈ U0 × Vα (33)

Further consequences can now be determined by standard arguments of the calculus of
variations, considering suitable special cases of test directions.

Continuations at fixed phase fraction (α̃ = 0) and arbitrary admissible ũ together with
the continuity of σ over [0, L] yield global and local mechanical equilibrium equations:

−
∫ L

0

(σ′)t ũ dx ≥ 0 ∀ũ ∈ U0 → σt(x) = f(t) (34)

namely the stress field is spatially uniform at any time t. This also means that first-order
stability is necessarily satisfied as an equality for all continuations at fixed phase fraction,
namely

E ′(ut, αt; ũ, 0) = 0 ∀ũ ∈ U0 (35)

Continuations at fixed displacement (ũ = 0) with arbitrary positive phase fraction null at
the boundary yield∫

SA∪SAM

(−Π + ΛF)t α̃ dx ≥ 0 ∀α̃ ∈
{
V+
α | α̃(0) = α̃(L) = 0

}
(36)

since α̃(x) = 0 in SM. Similarly, continuations at fixed displacement (ũ = 0) with arbitrary
negative phase fraction null at the boundary yield∫

SM∪SAM

(−Π + ΛR)t α̃ dx ≥ 0 ∀α̃ ∈
{
V−α | α̃(0) = α̃(L)+ = 0

}
(37)

since α̃(x) = 0 in SA.
As it will be seen, the two conditions (36) and (37) derived from the first-order direc-

tional stability (DS1) can be interpreted as variational formulation of phase transformation
criteria. When integrands are continuous, arbitrariness of the test directions yield, at any
time (omitting from the notation the dependence from t)

Π(x) ≤ ΛF(x) if x ∈ SA (38)

ΛR(x) ≤ Π(x) ≤ ΛF(x) if x ∈ SAM (39)

Π(x) ≥ ΛR(x) if x ∈ SM (40)

This provides phase transformation criteria in terms of the driving force (11). As it will
be discussed in detail, due to the presence of the gradient of the phase fraction in the free
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energy density (8) the resulting criteria are nonlocal and this will be crucial in the study of
localizations. Transformation criteria show that the driving force cannot exceed the threshold
ΛF unless it is in pure martensite nor it can be less than ΛR unless it is pure austenite.

Again by standard variational arguments that involve the consideration of suitable se-
quences of test directions (with ũ = 0) and taking into account (8), the first-order stability,
(DS1) reduces to

M [α′t (L) α̃ (L)] ≥ 0, −M [α′t (0) α̃ (0)] ≥ 0 ∀α̃(0), α̃(L) ∈ Vα ({0, L}) (41)

Since M ≥ 0, the state-dependent sign restrictions (16) on α̃ and the continuity of α′t yield
the following boundary conditions for the gradient of the phase fraction

α′t(0) = 0, α′t(L) = 0 (42)

In order to understand (36, 37), or their counterparts (38-40), as phase transformation
criteria, it is necessary to study the consequences of the energy balance. For this purpose it
is enough to consider it with respect to each subprocess of infinitesimal duration.

A process P is energetically consistent with the environment at the first order
if for any time t ∈ [t0, t1] the following power balance holds

ĖP (t) + ḊP (t) = L̇U(t) (43)

This involves the right-derivatives of the functions of time that enter in (EB). Provided that
the energetic quantities are sufficiently regular, (43) is sufficient for the validity of energy
balance. It turns out that ĖP (t) = E ′(ut, αt; u̇t, α̇t) and that ḊP (t) = D′0(αt, α̇t) therefore the
left-hand side of (43) is equal to the corresponding term in the first-order directional stability
(DS1) evaluated with test directions equal to the actual rates in the process. Moreover, using
(7) and the linearity of E ′ in the test directions, the balance (43) can be written as:

E ′ (ut, αt; u̇t, 0) + E ′ (ut, αt; 0, α̇t) +D′0 (αt, α̇t) = σt(L)A U̇t (44)

However (34) and (1) imply that E ′ (ut, αt; u̇t, 0) = L̇U(t) hence (44) yields the following
reduced first-order energy balance

E ′ (ut, αt; 0, α̇t) +D′0 (αt, α̇t) = 0 (45)

that, after integration by parts with respect to α̃′ in (25) and consideration of (42), explicitly
reads ∫ L

0

(
−Π α̇ + ΛF α̇

+ + ΛR α̇
−)

t
dx = 0 (46)

This plays the role of a dissipative balance between the power released and dissipated during
the actual process of phase transformations. Using the partition (31) induced by the field of
rates α̇t, (46) reduces to:∫

FwTt

((−Π + ΛF) α̇)t dx+

∫
RvTt

((−Π + ΛR) α̇)t dx = 0 (47)
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Taking into account (32) and the transformation criteria (38-40) obtained as consequences
of the first-order directional stability, it turns out that the left-hand side of (47) is the sum
of two non-negative quantities hence the two integrands must both be zero. Since this has
to hold for any admissible rate it follows that, at any point where the integrands of (47) are
continuous

(−Π + ΛF)α̇+ = 0, in FwT (48)

(−Π + ΛR)α̇− = 0, inRvT (49)

where the dependence on t has been omitted. More explicitly, (48) and (49) equals to

α̇(x) > 0 → Π(x) = ΛF(x)
α̇(x) < 0 → Π(x) = ΛR(x)

(50)

This means that the occurrence of the phase transformations is possible only if the driving
force Π, defined in (11), is equal to the quantities that characterize the dissipation func-
tion (12). Accordingly, ΛF,R can be interpreted as a model for the resistance that need to be
overcome in order to activate the phase transformations.

Therefore, at each time, the bar is partitioned into the set of points where transformation
criteria are satisfied as an equality

FwT := {x ∈ [0, L] | Π(x) = ΛF(x), 0 ≤ α(x) < 1} ⊇ FwT (51)

RvT := {x ∈ [0, L] | Π(x) = ΛR(x), 0 < α(x) ≤ 1} ⊇ RvT (52)

that include the transforming regions, and the remaining part where the transformation
criteria are satisfied as strict inequalities and transformation cannot occur.

2.8. Transformation kinetics
The evolution of the phase transformations, can be described through a kinetic equation that
can be obtained by enforcing the first-order stability (DS1) and first-order energy balance
(43) at infinitesimally close instants. To this end, note that, by (34) and (42), the first order
stability (DS1) at time t+ τ can be written as

E ′ (ut+τ , αt+τ ; 0, α̃) +D′0 (αt+τ , α̃) =: g(τ, α̃) ≥ 0 ∀α̃ and ∀τ > 0 (53)

whence, in particular, g (0, α̃) ≥ 0. Moreover, the reduced energy balance (45) yields
g (0, α̇t) = 0, then evaluating the left and right derivatives with respect to τ at τ = 0
and invoking the Nguyen continuity argument [32] it follows that:

ġ(0, α̇t) = 0

More explicitly, this means that

E ′′ (ut, αt; u̇, α̇; 0, α̇) +D′ (αt, α̇t; α̇t) = 0 (54)

By arguments similar to those used to derive (48) and (49) the consistency condition (54)
implies ∫

FwT

(
−Π̇ + Λ̇F

)
t
α̇t dx = 0

∫
RvT

(
−Π̇ + Λ̇R

)
t
α̇t dx = 0 (55)

that are global statements of the transformation kinetics for the two phase transformations.
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2.9. Characterization of candidate solutions

Putting together transformation criteria (48) and (49) and transformation kinetics (55) it
follows that candidate solutions are characterized, at any time and at any point where the
driving force and the phase fraction rates are continuous, by the following constraints:

• at any point of pure austenite (α(x) = 0) :

Π(x) < ΛF(x) → α̇(x) = 0

α̇(x) > 0 → Π(x) = ΛF(x) and Π̇(x) = Λ̇F (x)
(56)

• at any point of mixture (0 < α(x) < 1):

ΛR(x) < Π(x) < ΛF(x) → α̇(x) = 0

α̇(x) > 0 → Π(x) = ΛF(x) and Π̇(x) = Λ̇F (x)

α̇(x) < 0 → Π(x) = ΛR(x) and Π̇(x) = Λ̇R(x)

(57)

• at any point in pure martensite (α(x) = 1);

Π(x) > ΛR(x) → α̇(x) = 0

α̇(x) < 0 → Π(x) = ΛR(x) and Π̇(x) = Λ̇R(x)
(58)

The search of candidate solutions will be carried out by first computing phase fraction fields
satisfying transformation criteria in the form Π = Λ and then checking if and how they can
evolve according to Π̇ = Λ̇.

The issue of the uniqueness of processes satisfying the above requirements can be dis-
cussed by a bifurcation analysis that, in this context, can be carried out by stating the
global consistency condition (54) as a variational inequality. This follows by subtracting the
reduced energy balance equality ġ(0, α̇) = 0 from the inequality ġ(0, α̃) ≥ 0 obtained as time
derivative of first-order directional stability:

E ′′ (ut, αt; u̇t, α̇t, 0, α̃− α̇t) +D′ (αt, α̃; α̇t)−D′ (αt, α̇t; α̇t) ≥ 0, ∀α̃

The detailed bifurcation analysis is beyond the scopes of this work that, on the other hand,
will be focused on the comparison between spatially homogeneous and non-homogeneous
candidate solutions.

2.10. Stability analysis

The final stability analysis consists in the check of the sufficient conditions of (DS1) and
(DS2) for full stability over all processes that solve transformation kinetics and criteria,
namely that satisfy (56-58). This consists in the verification of the validity of (27), a task that
may be strongly dependent on the particular constitutive model at hand. For some models
its analytical evaluation may become prohibitive and the recourse to numerical analysis is
unavoidable. On the contrary, in the following, the attention will be restricted to a special
constitutive model for which the complete stability analysis can be carried out analytically.
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3. A specific constitutive model

The developments discussed so far apply to any SMA model that can be specified in this
context by a free energy density of the form (8) and a dissipation function of the form
(12). The various features of the pseudoelastic behavior can be described at different levels
of detail by specifying more or less sophisticated expressions of the two basic constitutive
functions. Since the present work is aimed to highlight the applicability of the energetic
approach to the study of the localization of the phase transformations in SMA, constitutive
assumptions are kept to the maximum level of simplicity. In particular, from now on, the
following assumptions will be enforced:

• constant elastic modulus E ′(α) = 0;

• constant interaction energy coefficient Ω′(α) = 0 subject to the constraint (9) with
Ω > 0;

• M = Ωη2 where η :=
√
M/Ω. As it will be seen it is useful to introduce the quantity η,

since it has the dimension of a length and will be representative of the internal length
of the material;

• driving force thresholds independent on the phase fraction

Λ′F (α) = 0, Λ′R(α) = 0 (59)

Moreover, as already discussed, the behavior will be assumed to be isothermal with a uniform
and constant temperature T ≥ Af . Summarizing, under the above simplifying assumptions,
the two basic constitutive functions (8) and (12) take the following form:

Φ(ε, α, γ, T ) =
E

2
(ε− µα)2 +BT α + Ωα(1− α) +

Ωη2

2
γ2 + Φ0(T )

Γ(α, α̇) =ΛFα̇
+ + ΛRα̇

−
(60)

where BT := B(T − Te). Since B > 0 and T > Af > Te it is BT > 0. Taking into account
(4) and (60) the constitutive equation for the stress is

σ = E(ε(x)− µα(x)) (61)

Evaluating it at the generic time t of a given process and using the corresponding boundary
conditions, stress can be expressed, in terms of applied displacements, as

σt = E

(
Ut
L
− µ 〈αt〉

)
with 〈αt〉 :=

1

L

∫ L

0

αt dx (62)

It turns out that the stress also depends on the the average value of the phase fraction over
the bar. The driving forces (11) is

Π = E (ε− µα)µ+ 2Ωα−BT − Ω + Ωη2α′′ (63)
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with E and Ω constant values. This expression clearly points out the nonlocal effect induced
by the dependence of the free energy on the phase fraction gradient, namely the second spatial
derivative of the phase fraction field acts as a driving force of the phase transformations. In
particular an increase of α′ acts like an increase of the stress.

3.1. Transformation criteria and kinetics

According to (56-58) Forward and Reverse Transformations can occur only in the regions
FwT and RvT where the criteria Π = ΛF and Π = ΛR are respectively met. Taking into
account (59), (61) and (63) the criteria can be written as:

Ωη2 α′′t (x) + 2Ω αt(x) = µ(σMS
− σt) x ∈ FwT

Ωη2 α′′t (x) + 2Ω αt(x) = µ(σAF
− σt) x ∈ RvT

(64)

where, as it will be seen, the quantities

σMS
:=

BT + Ω + ΛF

µ
, σAF

:=
BT + Ω + ΛR

µ
(65)

represent the values of stress at which the Forward and Reverse homogeneous transformations
respectively starts and finishes.

If the phase fraction profile is homogeneous, each one of (64) reduces to an algebraic
equation that can be solved for the unique value of the phase fraction that satisfies the
criterion.

On the other hand, for non-homogeneous phase fraction profiles (64) give rise to stress-
parameterized families of second-order differential equations in αt. Since, by (62), the stress
depends on the average value of the phase fraction, (64) turn out to be integro-differential
equations of Fredholm type that can be solved by first integrating the differential equation
with the stress as a parameter and then by computing its value by (62).

Moreover, (56-58) also require that the rate of change of phase fraction satisfy transfor-
mation kinetics of the type Π̇ = Λ̇F and Π̇ = Λ̇R. Taking into account the specific expressions
of the energetic quantities both kinetics take the same form

Ωη2 α̇′′t (x) + 2Ω α̇t(x) = −µσ̇t (66)

For non-homogeneous profiles this defines a family of differential equations in the field of
rates α̇t parameterized by the stress-rate. But, the time derivative of a phase fraction field
that satisfies (64) also satisfies (66), hence the possibility of evolution can be evaluated
directly from the solutions of (64).

3.2. Stability analysis

For the specific model the second order stability (DS2) reads∫ L

0

E (ε̃− µα̃)2 + Ωη2 (γ̃)2 − (2Ω) α̃2 dx ≥ 0 ∀(ũ, α̃) ∈ S1(ut, αt) (67)
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The left-hand side, that coincides with the second variation of the free energy, does not
depend on the present state but only on the constitutive parameters. Therefore the stability
analysis of any part of a process can be carried out at any instant within its domain of
definition since it is not affected by the evolution.

The first two terms in (67) are non-negative while the third one is non-positive, hence
the left-hand side has no lower bound in general. To enforce the non-negativity of (67) it
is then convenient to introduce the Rayleigh ratio of the positive over the negative terms in
(67), namely

R(ũ, α̃) =

∫ L

0
E (ũ′ − µ α̃)2 dx+

∫ L

0
Ω η2α̃′2 dx∫ L

0
2Ω α̃2 dx

(68)

and compare it to the value 1. The second-order stability of the actual state can then be
assessed as follows:

min
S1
R(ũ, α̃)

{
> 1, ⇒ the state (ut, αt) is stable

< 1, ⇒ the state (ut, αt) is unstable
(69)

If the minimum is equal to 1, the second variation vanishes, nothing can be said about the
character of the state and higher order directional stability conditions have to be investigated.
The existence of the minimum (in the sense that it is reached by an admissible pair (ũ, α̃))
over the convex subset S1 is guarantee by the strictly positiveness of R, by virtue of the
compactness of the injection of H1 into L2 and by the weak lower semi-continuity of a semi-
norm, as in [38]. It is worth to remark that the minimum (69) has to be evaluated only with
respect to those test directions that belongs to S1 where (DS1) is satisfied as an equality. It
is then possible to consider the optimality with respect to ũ, namely R′(u, α̃)(v, 0) = 0, and
to eliminate ũ by minimizing R with respect to ũ at given α̃, specifically,

R′(ε̃, α̃)(v, 0) =−
∫ L

0

2E (ε̃− µ α̃)′ v dx+ [2E (ε̃− µ α̃) v]L0 = 0

Taking into account the boundary conditions v(0) = v(L) = 0, it follows that ε̃ − µ α̃ = k
with k a constant. Recalling that ε̃ = ũ′ and ũ(0) = ũ(L) = 0 it follows that the minimizing
displacement test direction can be expressed in terms of α̃ as

ũ = k x+ µ

∫ x

0

α̃ dx, with k = −µ
L

∫ L

0

α̃ dx (70)

Substituting (70) into (68) one gets the reduced Rayleigh ratio depending only on the test
direction for the phase fraction:

R∗(α̃) =

Eµ2

L

(∫ L

0
α̃ dx

)2
+ Ω η2

∫ L

0
α̃′2 dx

2Ω
∫ L

0
α̃2 dx

(71)

such that
min
S1
R(ũ, α̃) = min

S∗1
R∗(α̃)
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where S∗1 := S1 ÷ U0. Even if the second variation does not depend on the state, different
types of solutions may lead to a different stability analyses due to the fact that the set of
directions S1(ut, αt) over which second-order stability needs to be tested may be different.
Specific results follow in the next Sections.

4. Homogeneous processes

Spatially homogeneous states of the form

ut(x) = xt, αt(x) =: ξt (72)

correspond to the bar uniformly stretched with the same composition all over its length,
ξ being the common value of the phase fraction. Due to the particular form assumed for
the applied displacements (7), the uniform strain is numerically equal to the value of time,
namely εt(x) = t. This choice helps to simplify notation and is irrelevant since the material
response is rate-independent.

It is now shown that there is a unique process composed of homogeneous states of the
form (72) which is a candidate solution for the loading-unloading displacement controlled
tensile test.

The homogeneity of the phase fraction field implies that 〈αt〉 = ξ so that the stress is
given by

σt = E

(
Ut
L
− µξt

)
(73)

Initially the bar is fully austenitic and, taking into account (2), the driving force Π(t) =
Eµt− BT − Ω is constant over the bar and increases with time. The initial driving force is
negative since BT ,Ω > 0, while irreversibility requires that ΛF ≥ 0, hence Π < ΛF so that,
from (56), it follows that α̇t = 0 hence ξt = 0. This corresponds to the elastic deformation
of the purely austenitic bar that continues until the stress is equal to the value σMS

defined
in (65) when the driving force attains the FwT threshold level ΛF and the conditions for
incipient Forward A → M Transformation over the whole bar, namely FwT = [0, L], are
met. This happens at time

tI := σMS
/E

when a simultaneous Forward Transformation of the whole bar may arise as a candidate
solution. In fact, since α′t = 0 the criterion (64) reduces to an algebraic equation that can
be solved for

ξt =
µ(σMS

− σ)

2Ω
=

Eµ

Eµ2 − 2Ω
t− µσMS

Eµ2 − 2Ω
(74)

This solution can evolve in a FwT, according to (56), provided Eµ2 − 2Ω > 0 which holds
by (9). Therefore at times t > tI homogeneous FwT could take place, at constant rate,
accompanied by the stress

σt = − 2EΩ

Eµ2 − 2Ω

(
t− Eµ2

2Ω
tI

)
(75)
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This corresponds to stress softening, due to the positivity of Ω. Homogeneous Forward
Transformation can proceed until the bar is fully transformed into pure martensite when the
stress reaches the value

σMF
:=

BT − Ω + ΛF

µ
= σMS

− 2Ω

µ
(76)

at time
tII := σMF

/E + µ

Further loading then involves elastic deformation of pure martensite since Π > ΛR. If
unloading takes place after the completion of FwT, it induces a decrease of the driving
force, hence elastic unloading of pure martensite until Π = ΛR when the conditions for
incipient Reverse M → A Transformation over the whole bar, namely RvT = [0, L], are met.
Homogeneous RvT may then arise as candidate solution at constant rate with

ξt =
µ(σAF

− σt)
2Ω

=
Eµ

Eµ2 − 2Ω
t− µσAF

Eµ2 − 2Ω
(77)

The complete reverse transformation takes place during the interval [t̄I , t̄II ] computed as
above accompanied by a stress that increases from

σAS
= σAF

− 2Ω

µ
(78)

to the value σAF
defined in (65). The slopes of the branches associated with FwT and

RvT are equal and proportional to the ratio between interaction energy coefficient and the
transformation strain. Moreover, hysteresis is determined by the difference between the
thresholds for the two transformations

σAS
− σMF

=
ΛR − ΛF

µ
(79)

Since by (IR), ΛR ≤ 0 ≤ ΛF, irreversibility condition forces the stress line associated to RvT
to be always below the FwT one.

Further unloading after RvT completion, at t > t̄I , involves elastic deformation of pure
austenite since Π < ΛF. If unloading starts before the completion of FwT, namely at some
phase fraction value 0 < ξ̄ < 1, the situation is analogous to the previous one provided

σAS

(
ξ̄
)

= σAF
− 2Ω

µ
ξ̄ (80)

4.1. Stability of the homogeneous responses

The homogeneous process just described is only a candidate solution as it satisfies first-
order directional stability, energy balance and irreversibility. Hence to guarantee (DS), it
is necessary to check second-order differential stability conditions with respect to the test
directions for which first-order stability is satisfied as an equality. To this end, the situation
is different for the various stages of the process.

22



Ut/L0

σ

σMS

t̄II tI t̄I tII

σAF

σMF

σAS

tu

Figure 2: Global response for candidate solutions composed of homogeneous states.

During the elastic stage of pure austenite (t < tI) the first-order directional stability
(DS1) is satisfied, over the whole bar, as an equality for all test directions of the form
(ũ, 0) due to (35), whereas it is satisfied as a strict inequality Π < ΛF for all other directions.
Therefore, second order stability have to be checked for continuations at fixed phase fraction.
By evaluating (67) in this special case it follows that∫ L

0

E ε̃2 dx > 0 ∀ũ ∈ U0 (81)

Since E > 0, the second-order directional stability is satisfied as a strict inequality and this is
sufficient to guarantee full stability. By similar considerations it follows that all homogeneous
elastic loading or unloading stages of the process are directionally stable and hence solutions
of the evolution problem in the respective parts of the process.

During the Forward (tI ≤ t < tII) and Reverse (t̄I < t ≤ t̄II) Transformation stages
the first-order stability is satisfied as an equality for test directions for which the phase
transformation variation is respectively positive, S1 = U0 ×V+

αt
and negative S1 = U0 ×V−αt

.
Then, limited to the Forward Transformation stage, the second-order stability (67) can be
evaluated by minimizing the reduced Rayleigh ratio (71) that, after a change of variable
y := x/L, can be expressed in the form:

R∗(α̃) =
a
(∫ 1

0
α̃ dy

)2
+ b
∫ 1

0
(α̃′)2 dy∫ 1

0
α̃2 dy

(82)

with

a :=
Eµ2

2Ω
b :=

η2

2L2

As shown, for example in [38], it is possible to prove that

min
S∗1
R∗(α̃) = min

(
a,

3
√
π2a2b

)
(83)
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Taking into account the definitions of a and b and introducing a new notation for the nor-
malized internal length

`s :=
πa√

2
η (84)

the minimization (83) becomes

min
S∗1
R∗(α̃) = min

(
Eµ2

2Ω
,

3

√
`2s
L2

)
(85)

Due to the restrictions on the interaction energy coefficient (9), the first value in (85) is
always greater than one, hence the stable or unstable character is determined by the second
value. This latter depends, through `s defined by (84), on the material parameter η which
governs the dependence of the free energy density on the phase fraction gradient as well as on
the length L of the bar. It then follows that the stability of the homogeneous transformation
is determined by the competition of `s and L so that:{

L < `s, the homogeneous transformation is stable

L ≥ `s, the homogeneous transformation is unstable
(86)

If the bar is longer than `s the homogeneous transformation stage is unstable and therefore
cannot be solutions of the evolution problem. Phase transformations have then necessarily to
develop through spatially non-homogeneous phase fraction fields that will model localization
phenomena. As the critical length `s does not depend upon the state variables, the stable
or unstable character of the homogeneous response is immediately determined for the whole
transformation stages regardless of time t. Figure 12 summarizes the stability results.

5. Non-homogeneous processes

As it will be discussed in Section 9, the internal length `s turns out to be rather small.
Non-homogeneous responses have then to be searched, especially in the case L > `s where
the homogeneous response is unstable. Nevertheless, the occurrence of non-homogeneous
responses for L ≤ `s can so far be expected which are here studied in detail.

The initial stage of the process (t ≤ tI) corresponds, in any case, to elastic strain of the
austenitic bar as in Section 4. Since it is Π < ΛF over the whole bar, this gives a stable
process until time tI when the stress equals σMS

and there are conditions for incipient FwT
over the whole bar. However, for L > `s, the homogeneous transformation is unstable and
non-homogeneous solutions will arise. This means that for t > tI the FwT criterion has to
be satisfied by phase fraction fields with α′t 6= 0. The first one of (64) then gives rise to a
stress-parameterized linear second-order ODEs with constant coefficients formally analogous
to the equation of motion of an undamped simple oscillator of ”mass” Ωη2 and ”stiffness”
2Ω subject to a constant ”force” determined by the difference between the actual value of
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the stress and the limit value σMs . Since 2/η2 > 0 the general integral is oscillatory and can
be written as

αt (x) = C1 cos
(π
`
x
)

+ C2 sin
(π
`
x
)

+
µ(σMS

− σt)
2Ω

x ∈ FwT (87)

with ` := `s/a that defines another material internal length. This internal length strongly
depends on the microstructure and is related to the phase transformation interface width,
responsible of the sharp strain variation, arising bot in single-crystal SMA (kinematic com-
patibility reasons) and in poly-crystal SMA, [16, Fig. 15].

Eq. 87 corresponds to spatial oscillations of periodicity 2` determined solely by the co-
efficient η that characterizes the dependence of the free energy density on the gradient of
the phase fraction, whereas amplitude depends on the difference between the stress and the
limit value σMS

. Comparing with (74) the constants-independent term in (87) turns out to be
equal to the value of the phase fraction that would arise in an homogeneous transformation.

Forward Transformation must proceed with non-homogeneous phase fraction profiles for
L ≥ `s until the completion of the transformation at time tII, but they could also occur
for ` ≤ L < `s. For L < `, non-homogeneous responses are not admissible, since any non-
homogeneous phase transformation profile cannot satisfy (DS1), meaning that there is not
enough space in the bar for the development of at least half oscillation, (88).{

L < `, the non-homogeneous transformation is impossible

L ≥ `, the non-homogeneous transformation is stable
(88)

Unloading process then involve no transformation hence stable elastic strain, until the second
criterion in (64) is attained over the set RvT at time t̄I . For each t > t̄I phase fraction profile
is then determined by a stress-parameterized ODE formally similar to the one for FwT, whose
general integral is

αt (x) = C3 cos
(π
`
x
)

+ C4 sin
(π
`
x
)

+
µ(σAF

− σt)
2Ω

x ∈ RvT (89)

This differs from (87) only for the constant-independent term which is now equal to the value
of the phase fraction that would arise in an homogeneous RvT (see (77)).

Since the stress depends on the average value of the phase fraction, the solutions depend
on the geometry of the regions where transformation criteria are met. To this end several
situations are possible, each one modeling different physical behaviors. While in real cases the
nucleation of the localized transformation is triggered by the inhomogeneities of the various
quantities that are induced by phenomena not taken into account in the model (like e.g.
imperfections, stress concentrations and thermal effects), some basic cases will be discussed
in detail.

5.1. Evolution of a full oscillation

There is a limit case in which a non-homogeneous candidate solution may develop with
FwT = [0, L]. This happens if L = 2n` namely the length of the bar is exactly an even
multiple of the internal length `.
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Concerning boundary conditions, consider the case in which (87) has a maximum in
x = 0 and α(`) = 0. This yields maxima at the two extremities and internal minima in pure
austenite. The general integral (87) then yields

αt (x) = ᾱF(σt) cos2
πx

2`
x ∈ [0, L] (90)

This corresponds to a sinusoidal profile with the nucleation of a boundary localization of
support ` at each end and n−1 inner localizations of support 2` (Figure 3a). All localizations
have a constant support and a common stress-dependent peak

ᾱF(σt) :=
µ (σMS

− σt)
Ω

(91)

It is interesting to note that this is equal to twice the value of the fraction that would arise
in an homogeneous transformation (see (74)). Substituting the average fraction, 〈αt〉 =
ᾱF(σ)/2, into (62) it follows that the localizations grow accompanied by a stress softening
governed by the same law (75) of the homogeneous solutions. The explicit form of the phase
fraction profile during the first part of the FwT then becomes

αt (x) =
2Eµ (t− tI)
Eµ2 − 2Ω

cos2
π (`− x)

2`
x ∈ [0, L] (92)

The growth of the localizations proceed until time tIII = tI + (Eµ2 − 2Ω)/(2Eµ) when the
stress is equal to

σMP
= σMS

− Ω

µ
(93)

At this moment the FwT transformation is complete at the peaks of the localizations. The
stress level (93) at which growth is complete turns out to be equal to the mean of the values
σMs and σMf at which the homogeneous transformation starts and finishes. Computation of
the stress shows that the stress evolution is the same as for the homogeneous transformation.

1

x

α

σMP

0

σMS

t ∈ [tI, tIII]

` 2` 2` ` L

(a)

1

x

α
σMF

0

σMP

t ∈ [tIII, tII]

` 2` 2` ` L

(b)

Figure 3: Evolution during FwT of non-homogeneous phase fraction profiles with full oscillation in the case
of L = 6`: growth (left) and coalescence (right).
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Figure 4: Global response associated with non-homogeneous phase fraction profiles with full oscillation. The
behavior is analogous to the one of homogeneous transformation but with completely different evolution of
the phase fraction profiles.

A further reduction of the stress with the profile (92) would give points with α > 1 hence
a different profile has to evolve. Imposing new boundary conditions αt(0) = 1 and x̄ = 0 a
different solution emerges from (87), so that for t > tIII the phase fraction profile is given by

αt (x) = 1− 2

(
1− Eµ (t− tI)

Eµ2 − 2Ω

)
cos2

π (x− `)
2`

As shown in Figure 3b this corresponds to a dual sinusoid with n ”valleys” growing toward the
coalescence with the already transformed regions. This second stage is accompanied again
by stress softening analogous to the one of the homogeneous solution. The transformation
is complete when the whole bar is fully converted to martensite and this happens at time tII
when the stress is equal to σMF

.
Loading and unloading after the completion of the FwT leads to elastic strain of the

pure martensite until the reverse transformation takes place with RvT = [0, L] giving rise
to nucleation, growth and coalescence of sinusoidal profiles that mirror those formed during
FwT but with stress levels

σAS
, σAP

:=
σAS

+ σAF

2
, σAF

(94)

corresponding respectively to σMS
, σMP

and σMF
of Figure 3b.

This describes another candidate solution derived on the basis of first-order stability. The
investigation of its full stability is analogous to the one already discussed for the homogeneous
solution and shows that such non-homogeneous transformation with fully oscillating profiles
is again unstable and therefore different types of non-homogeneous solutions with disjointed
localizations have to be searched. The global response associated to non-homogeneous phase
fraction profiles with full oscillation is depicted qualitatively in Figure 4.
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5.2. Basic types of localizations

The case discussed in the preceding Section is very special since it could, eventually, take
place only in the unlikely situation of a bar of length equal to an exact even multiple of `.
In practice this would never be the case and therefore the full oscillation will not develop
due to the impossibility to fulfill boundary conditions (in addition to the fact that it would
be unstable anyway). Spatially non-homogeneous responses will, in general, arise with the
transformation criteria attained as an equality over strict subsets of the whole bar. To
this end there are various possibilities. First of all, it may happen that the potentially
transforming sets can be expressed as the union of connected components FwT i and RvT i
where the criteria (64) hold.

FwT =
⋃
i

FwT i ⊂ [0, L], RvT =
⋃
i

RvT i ⊂ [0, L] (95)

The nucleation of several disjoint regions corresponds to the case of multiple localizations.
However, irrespective of the number of localizations, within each one of them the phase
fraction profiles are necessarily determined by (64). The general integrals (87) and (89) have
then to be computed explicitly in each component by imposing suitable boundary conditions
that ensure consistency with the fact that in the rest of the bar the first-order stability is
satisfied as a strict inequality and transformations cannot occur. This means that a general
non-homogeneous phase fraction profile is obtained as the union of three types of regions:
boundary localizations, inner localizations, non-transforming zones.

In Appendix A closed form expressions of the phase fraction profile are given for the six
cases that can be considered as the basic building blocks for more general situations.

5.2.1. Boundary localizations

As shown in Figure 5, the minimal localizations that may arise in FwT correspond to half
oscillations over a support of length ` near the boundary.

Localizations of type (a) and (c), described in Figure 5a and Figure 5c, typically model
the nucleation from pure austenite of a martensite region near the ends of the bar. According
to (A.2) and (A.5) such profiles have a stress-dependent peak equal to ᾱF(σ) defined in (91).
At σ = σMS

the profiles degenerate into pure austenite, while the maximum grows under
decreasing stress until σ = σMP

(see (93)) when the peak is completely transformed into
martensite.

Localizations of type (b) and (d) (Figure 5b, Figure 5d), typically model the coalescence
of a region near the ends of the bar with the rest of the bar already transformed to pure
martensite. According to (A.3) and (A.6) such profiles have a stress-dependent minimum
given by (A.4). At σ = σMP

the profile consists of a partially transformed region with the
right end still in pure austenite, the minimum value grows under decreasing stress until
σ = σMF

when it degenerates into pure martensite.
This discussion applies to profiles that may arise in FwT. A similar discussion can be

carried out to characterize the profiles that may arise in RvT. Analogous shapes can be
obtained but at different stress levels, in particular the roles of σMS

, σMP
, σMF

are replaced
by the corresponding values σAS

, σAP
, σAF

.
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Figure 5: The four basic types of boundary localizations that may occur in FwT. The profiles that may
occur in RvT are analogous provided the stress levels are varied accordingly.

5.2.2. Inner localizations

Localizations may also arise in the interior of the bar. As shown in Figure 6, the minimal
inner localization corresponds to a complete oscillation over a support of length 2` centered
around some internal point xi.

Localizations of the type (e) (Figure 6a) typically model the nucleation in a region of
a martensite in the interior of the bar. According to (A.7) this has a stress-dependent
maximum equal to ᾱF(σ) as for localizations of type (a) and (c). Similarly at σ = σMS

it degenerate into pure austenite, while the maximum grows under decreasing stress until
σ = σMP

when the peak is completely transformed into martensite.
Localizations of type (f) (Figure 6b), typically model the coalescence of an internal region

with the rest of the bar already transformed to pure martensite. According to (A.8) this
has a stress-dependent minimum equal to the one of types (b) and (d) so that at σ = σMF

it degenerates into pure martensite.
Concerning RvT, as discussed in previous Section, analogous profiles may arise at the

suitable stress levels.
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6. Evolution of a single boundary localization

Experimental evidence shows that under isothermal conditions a single localization tends to
form. Multiple localizations are, on the other hand, typical of the non-isothermal setting as
a consequence of the fact that nucleation stresses are temperature-dependent and the tem-
perature tends to change due to the latent heat associated with the phase transformations.

In the following, the simplest case where a single boundary localization nucleates at the
left end will be discussed. This situation may be considered as one of the most common as
it can usually be triggered by stress concentrations at the grip.

6.1. Nucleation and growth

A left boundary localization can nucleate at time tI if FwT = [0, `]. As discussed in the
previous Section this gives rise to an half-sinusoid of type (a) (Figure 5) with a stress-
dependent peak that grows under decreasing stress. During growth the support of the
localization remains constantly equal to ` hence it is determined solely by the parameter η
in the free energy density.

The growth phase ends when stress is equal to σMP
and the left end is completely trans-

formed into martensite. The stress drop needed for the complete growth of the localization
is equal to the ratio between the transformation strain and the interaction energy coefficient
because of

σMS
− σMP

=
Ω

µ
(96)

To complete the determination of the candidate solution the actual value of the stress has
to be computed for times t > tI. The average value of the phase fraction profile (A.2) is

〈αt〉 =
ᾱF(σ)

2

`

L
(97)

which inserted into (62) yields to the stress

σt = − 2ΩE

Eµ2`− 2ΩL

(
Lt− Eµ2

2Ω
`tI

)
=

L

`s − L

(
`s
L
σMS
− Et

)
(98)
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σMF
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σMP

xi Lxi + `xi − `
(b) Type f.

Figure 6: The two basic types of inner localizations that may occur in FwT. The profiles that may occur in
RvT are analogous provided the stress levels are varied accordingly.
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It turns out that the denominator of the first factor above can be either positive or negative
depending on the length of the bar. Suppose for the moment that L ≤ `s, namely that the
bar is so short that the denominator is positive. This means that attention is restricted to
bars of length ` ≤ L < `s, which makes sense since, due to (9), it turns out that ` < `s. It
is worth nothing that for such bar lengths the homogeneous solution is also stable such that
both homogeneous and non-homogeneous responses can be admissible. This possibility has
already been noticed and commented in the context of damage mechanics, [38].

Substituting (98) into (A.2) the explicit form of the phase fraction profile as a function
of time is

αt (x) =


(
Eµ(t− tI)

Ω

L

`s − L

)
cos2

( π
2`
x
)

x ∈ [0, `]

0 x ∈ [`, L]
(99)

At time tI this reduces to homogeneous austenite, whereas at later times the nucleation grows
accompanied by a stress decrease determined by (98).

The expressions (98) and (99) also show that the slowest possible softening and trans-
formation rates are obtained for the shortest bar L = ` (Figure 7). On the other hand
transformation rates are faster and faster for longer bars. In the limit case of L = `s, infinite
rates are obtained and this can be interpreted as the occurrence of a snap-back characterized
by a sudden localized transformation accompanied by an instantaneous stress drop from σMS

to σMP
. The same phenomenon has necessarily to occur also for bars longer than `s in order

not to contradict causality of time evolution. This effect is shown in the experimental test
of Figure 15. The growth of the boundary nucleation is then completed at time

tIII =

 tI +
Ω

Eµ

(
`s
L
− 1

)
if ` ≤ L < `s

tI if L ≥ `s

(100)

Therefore if the length of the bar is bounded by `s and ` then tIII > tI and the effects of
the localization growth are observable as a non-sharp peak in the displacement controlled
traction test (Figure 7). The quantity `s can then be interpreted not only as a stability
internal length but also as a snap-back length, providing the occurrence of a single boundary
localization. In case of multiple localizations, discussed in the next section, the stability
internal length `s will differ from the snap-back length which thus will be denoted Ls (≥ `s).

6.2. Front propagation

At time tIII the bar is in pure martensite at the left end and the bar is partitioned in the
zone FwT = [0, `] where the transformation criterion Π = ΛF is satisfied as an equality and
the remaining zone where Π < ΛF in pure austenite. A further decrease of the stress would
produce points with α > 1 which is meaningless. On the other hand, a stress increase would
produce a decrease of the phase fraction which is inconsistent with the occurrence of FwT.
However, the transformation can proceed at constant stress σ = σMP

provided the average
phase fraction increases

〈αt〉 =
1

µ
t− σMP

Eµ
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Since, as just discussed, this cannot be produced by a growth of the localization in [0, `], the
increase of the applied displacements can induce a front propagation described by

FwT (t) = [l(t), l(t) + `]

where l(t) indicates the length of the boundary region converted to pure martensite (Fig-
ure 8). This corresponds to to a phase fraction profile

αt (x) =


1 x ∈ [0, l(t)]

cos2
π(x− l(t))

2`
x ∈ [l(t), l(t) + `]

0 x ∈ [l(t) + `, L]

The length l(t) can be computed by substituting the value of the average phase fraction into
the expression of the stress

l(t) =
L

µ
(t− tI) +

Ω

Eµ2
(L− `s) (101)

If L < `s it follows that l(tIII) = 0 hence propagation proceeds smoothly, whereas if L ≥ `s

l(tIII) =
Ω

Eµ2
(L− `s) (102)

this gives a jump in the length of the transformed zone. Propagation is possible until the
rightest point of the front reaches the right-end where there is no space to enlarge the fully
transformed zone without modifying the localization shape (Figure 8). This happens at time
tIV such that `+ l (tIV) = L that is

tIV = tI +

(
µ− Ω

Eµ

(
L+ `s
L

))

L→∞

t

σ

tIII

L ↑

σMS

σMP

L = `s

tI

homogeneous
response or L = `

Figure 7: Detail of the response at the onset of the phase transformation and following localization process.
The snap-back response occurrence is highlighted as well the limit behaviors depending on the bar length.
The effect of an increasing bar length is the same of a decreasing internal length η.
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It turns out that time needed to complete the propagation increases with the length of the
bar. The earliest possible occurrence for tIV arises in the case of a bar with L = `. For longer
bars the propagation completion takes longer time and, in particular, it is tIV = tII for L = `s
(Figure 9).

x

0

α

1

Ll(t) + `l(t)

Figure 8: Schematic representation of the propagation of the left boundary localization.

6.3. Coalescence and transformation completion

At time tIV propagation at constant stress is no longer possible since there is no space to
further enlarge the region of fully transformed points. At this time a further reduction of
stress is possible via the modification of the phase fraction profile which is now possible
due to the possibility to impose different boundary conditions on (87). This gives rise to
a right boundary localization of type (d). As already discussed the minimum increases for
decreasing stress which evolves according to

σt = E
`s

L− `s

(
L

`s
t− tI

)
+

2Ω`s − Eµ2L

µ (L− `s)

At time t = tIV this correctly reduces to σMP
. Substituting it into (A.6) the explicit expression

of the phase fraction profile is obtained

αt(x) =


1, if x ∈ [0, L− `)

1−
(

L

L− `s

(
2Ω− Eµ2

Ω
+
Eµ (t− tI)

Ω

))
cos2

π (L− x)

2`
, if x ∈ [L− `, L]

(103)
This profile has a minimum equal to

αmin = 1−
(

L

L− `s

(
2Ω− Eµ2

Ω
+
Eµ (t− tI)

Ω

))
(104)

that increases with time. The transformation is completed when the minimum is equal to
1 and this happens at the same time tII at which the homogeneous FwT completes and the
stress is equal to σMF

. Non-homogeneous FwT is then completed at the same instant and at
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Figure 9: Detail of the response at the end of the phase transformation and following coalescence process.
The snap-back response occurrence is highlighted as well the limit behaviors depending on the bar length.
The effect of an increasing bar length is the same of a decreasing internal length η.

the same stress level at which the homogeneous transformation would complete, irrespective
of the length of the bar.

The formulas for σt and for the instant tII at which propagation is complete show that
there are again two possible situations (Figure 9).

If ` ≤ L < `s it turns out that tIV < tII so that the transformation completion occurs
with stress decreasing linearly from σMP

to σMF
in the time interval [tIV, tII]. The stress rate

is faster for longer bars and in the limit case of L = `s an infinite the stress rate is obtained.
Propagation completion then takes place at the same time at which coalescence completes,
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Figure 10: Global stress-displacement response with a single boundary localization and the occurrence of
snap-back phenomena depending on the length of the bar: ` ≤ L < `s (left) and L ≥ `s (right)
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namely tIV = tV = tII This may be interpreted again as the occurrence of a snap-back after
which the bar suddenly becomes fully martensitic and the localization disappears with an
instantaneous stress drop from σMP

to σMF
(Figure 9).

For longer bars L ≥ `s it would be tIV > tII but this again would violate the causality of
time evolution hence this can be interpreted as the occurrence of a snap-back, at time tIV with
instantaneous completion of the transformation. In this case, as soon as the transformation is
completed the first-order stability is immediately satisfied as Π > ΛR and the global response
curve drops to the curve corresponding to elastic strain of pure martensite at stress level

σ̄MF
= E(tIV + µ)

generally greater than σMF
(Figure 9)). This means that the stress drop associated with

the coalescence of the last untransformed region is generally smaller than the one associated
with the nucleation. Specifically it is smaller the longer is the bar and it vanishes in the limit
of L → ∞ (Figure 9). For this reason it is much more difficult to capture in experiments
such stress peak, although a trace of it can be found in [51].

6.4. Reverse transformation

If applied displacements are further increased after completion of the FwT, there is again
stable elastic loading of the bar fully of pure austenite. If unloading occurs thereafter a
discussion analogous the the previous one can be carried out, provided the stress values are
modified accordingly. Figure 10 explains the situation by showing the global response.

7. General non-homogeneous responses

After the discussion of the basic case of a single boundary localization, more complex cases,
where multiple localizations nucleates and evolve, can be treated as well.

7.1. Nucleation

Non-homogeneous phase fraction profiles may nucleate at σ = σMS
in FwT or at σ = σAS

in
RvT when the bar is partitioned as the union of disjointed regions where one of the criteria
(64) is met and the rest of the bar where first-order stability is satisfied as a strict inequality
and transformations do not occur, denoted NoT as in (31).

Multiple localizations nucleate when the sets (95) are, in turn, the union of two or more
intervals where the solutions (87) and (89) have to be evaluated with suitable boundary
conditions. Each one of such intervals can be either a boundary localization with support
equal to an odd multiple of ` or an inner localization with support equal to an even multiple
of `. Hence, a general solution can be composed by n full localizations taking place over
a support of 2` and m half-localizations supported over a length ` (provided, of course,
(2n+m)` ≤ L and 0 ≤ m ≤ 2).
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7.2. Growth

From the results shown in Appendix A it follows that, during growth, all localizations have
fixed support and extrema completely determined by the value of the stress. Therefore mul-
tiple localizations necessarily grow simultaneously with a common maximum or minimum.

In the case of FwT this occur in the stress range σMP
< σ < σMS

where localizations of
types (a), (c), (e) can occur all of them matched with pure austenite without points in pure
martensite. The average phase fraction is then given by

〈αt〉 =

(
µ (σMS

− σ)

Ω

)(
2n+m

2

)
`

L

and stress evolves according to

σt =
Ls σMS

− ELt
Ls − L

(105)

where
Ls := (2n+m)`s (106)

The growth may be either gradual of sudden depending on the possible occurrence of a
snap-back. Eq. (105) shows that the presence of multiple localizations influences the snap-
back length Ls which is proportional to the total length of the region FwT and the stability
internal length, (106). Therefore the more localizations occur the more likely is to observe a
non-sharp nucleation peak,{

L < Ls, the non-homogeneous transformation has no snap-backs

L ≥ Ls, the non-homogeneous transformation has snap-backs
(107)

7.3. Propagation and coalescence

The growth phase proceeds until the points where extreme values occur are converted into
a pure phase. In FwT this can only occur at the stress level σMP

when all localizations have
a common peak in pure martensite. At this time growth is no longer possible as it would
produce non admissible values of the phase fraction. If the non-transforming set NoT is not
empty, propagation at constant stress takes place by enlarging the region where transforma-
tion is complete until the region NoT vanishes. At this stage boundary localizations may
translate while inner localizations may either translate or split into pairs of moving half lo-
calizations (Figure 11). The length l(t) of the completed transformation region in (101) can
still be computed by the same formula provided the suitable value of Ls is used. In presence
of multiple localizations it is correlated with the distance between the transformation fronts.
More precisely, in the case of a single inner localization, it is indeed equal to the distance be-
tween the two propagating fronts. In presence of multiple boundary and inner localizations
l(t) is equal to the sum of the lengths li(t) of all intervals where transformation is completed,
so that L − l(t) is the sum of the distances between all the fronts (Figure 11). The model
then predicts that the sum of all distances between the fronts increases at constant rate and
this is consistent with the experimental observations [42].
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When the region NoT is empty, there is no room for front propagation with phase fraction
profile of the same shape and the coalescence of the regions, non completely transformed,
occur. This generally entails a reduction of the stress in the interval σMF

< σ < σMP
when

localizations of type (b), (d), (f) can take place with or without snap-back depending on the
length of the bar.

8. The stability of the non-homogeneous responses

The study of the stability of non-homogeneous solutions has proved to be a prohibitive task
in gradient-damage models [38] since the second-order stability conditions strongly depend
on the localization itself. Similar considerations apply also to the SMA model in [24]. On
the contrary, here the second variation of the free energy does not depend directly upon the
state variables and the stability of non-homogeneous candidate solutions can be carried out
in a straightforward way.

The full stability of elastic loading and unloading has been already proven in Section 4.1.
It remains to check the non-homogeneous transformation stages.

Second-order stability has to be evaluated over the set S1, defined in (26), of test direc-
tions with respect to which first-order stability is satisfied as an equality. In this case, this
means that the only relevant test directions α̃ are those that vanish outside the regions FwT
or RvT while are respectively non-negative and non-positive inside, namely

S1(ut, αt) = {(ũ, α̃) ∈ U0 × Vα |


α̃(x) ≥ 0, if x ∈ FwT
α̃(x) ≤ 0, if x ∈ RvT
α̃(x) = 0, otherwise

} (108)

But, according to (95) the sets where transformation criteria are met are, in general,
the union of several connected components and moreover, as discussed in Section 7, each
component corresponds either to a full localization of support 2` or to an half-localization
of support `.

Attention can then be focused on a general non-homogeneous response composed by n
full localizations supported over the intervals Fi and m half-localizations supported over the

x
0

α

1

L

l(t)

(a)

x
0

α

1

L

l2(t)l1(t) l3(t)

(b)

Figure 11: Propagation of an inner localization (left) and of one inner and two boundary localizations (right)
to illustrate the meaning of the length l(t).
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intervals Hj (provided, of course (2n+m)` ≤ L) all disjointed. This response can be assumed
to arise either in FwT or in RvT, the difference being the type of profiles. The Rayleigh
ratio is then given by

R(ũ, α̃) =

n∑
i=1

(∫
Fi

(
E (ũ′ − µ α̃)2 + Ω η2α̃′

)2
dx
)

+
m∑
j=1

(∫
Hj

(E (ũ′ − µα̃2) + Ωη2α̃′2) dx
)

n∑
i=1

(
2Ω
∫
Fi
α̃2 dx

)
+

m∑
j=1

(
2Ω
∫
Hj α̃2 dx

)
Since the minimum of the Rayleigh ratio has to be compared with the value 1 and each
addend in the sums is a positive term, the stability of the non-homogeneous state reduces to

min
S1

((RF (ũ, α̃),RH(ũ, α̃))

{
> 1, ⇒ the state (u, α) is stable

< 1, ⇒ the state (u, α) is unstable
(109)

where

RF (ũ, α̃) =

∫ 2`

0

(
E (ũ′ − µ α̃)2 + Ω η2α̃′2

)
dx

2Ω
∫ 2`

0
α̃2 dx

, RH(ũ, α̃) =

∫ `
0

(
E (ũ′ − µ α̃)2 + Ω η2α̃′2

)
dx

2Ω
∫ `
0
α̃2 dx

.

(110)
The choice of the limits of integration in (110) is immaterial since the Rayleigh ratio does
not depend upon the actual state, so that they simply have to be such that the integration
domain correspond to a full, Fi, or half, Hj, localization.

Eliminating the field ũ as in Section 3.2 and performing a change of integration variable
as in Section 4.1, the ratios (110) can be reduced to ratios R̂F and R̂H of the form (82) with

a =
µ2E

2Ω
, for both R̂F and R̂H , and b =

η
2/8`2 = 1/4π2, for R̂F

η2/2`2 = 1/π2, for R̂H

(111)

Invoking again the result (83) it follows that

min
S∗1
R̂F = min

(
a,

3
√

4π2a2b
)

= min
(
a, 3
√
`2s/`

2
)

(112)

while
min
S∗1
R̂H = min

(
a,

3
√
π2a2b

)
= min

(
a, 3
√
`2s/`

2
)

(113)

so that, regardless of the number and types of disjointed localizations,

min
S1
R(ũ, α̃) > 1

since both a and `2s/`
2 are greater than one. Hence, localized solutions, when admissible, are

always stable in sense of (DS).
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Figure 12: Stability diagram for the homogeneous (H-) and non-homogeneous (NH-) evolutions. The star
symbol (∗) denotes the occurrence of a snap-back in the response.

Accordingly to this last result and summing up (86), (88) and (107), one can conclude
that, depending on the bar length, different types of stable responses may occur, which are
likely to be observed, Tab. 1 and Figure 12. In particular, for ` ≤ L < `s, the investigation
of the transition from a homogeneous solution to a non-homogeneous solution (bifurcation
problem) is similar to [38] in the context of damage mechanics but is out of scope in this
paper.

L < ` homogeneous response

` ≤ L < `s homogeneous or non-homogeneous response without snap-back

`s ≤ L < Ls non-homogeneous response without snap-back

Ls ≤ L non-homogeneous response with snap-back

Table 1: Stable responses which are likely to be observed depending on the bar length during the phase
transformation.

9. Experiments comparison

The model discussed in the previous Sections is now validated against some experimental
data, taken from [21] due to the accurate experimental setting which allows one to observe
the stress nucleation peaks as well as the evolution of the transformation fronts.
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Figure 13: FwT Transformation.

The specimen is a 60 mm sample of a 0.76 mm diameter superelastic Nitinol wire. The
wire, which is initially unstretched in pure austenite, is monotonically loaded by applied
displacements at an average strain rate of U̇(t)/L = 10−4s−1 slow enough to ensure almost
isothermal evolution at a temperature of T = 24.0 ◦C. Before the beginning of the loading, a
local heating is artificially imposed at both extremities of the bar, producing local tempera-
ture gradients that inhibit nucleations at the grips that would otherwise be triggered by the
stress concentrations. This creates the conditions for the nucleation of an inner localization
close to the middle of the wire, as shown by optical images reported in Figure 13a.

The two fronts associated with the inner localizations then propagates towards the ends of
the bar. The loading is stopped when the two fronts enter the regions where the temperature
gradients are applied. The temperature near the grips is then artificially lowered before
unloading in order to be able to stop the reverse propagation of the FwT fronts until the
creation of the conditions for the nucleation of a RvT inner localization close to the middle
of the wire. The RvT then proceeds with four propagating fronts (Figure 14a).

Transformation stresses and the corresponding average strains are identified from the
global response curve of the wire (Figure 15) and are reported in Tab. 2. Similarly, the
elastic modulus, that has been assumed equal to the value of pure austenite E = 46.1 GPa,
is obtained again from the global response curve (Figure 15). The parameters BT , Ω, ΛF

and ΛR are identified from transformation stresses and strains, after assuming ΛF = −ΛR as
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Figure 14: RvT Transformation.

σMS 535 MPa
σM 441 MPa
σAS 138 MPa
σA 225 MPa

tI 1.16 %
tII 5.68 %
t̄I 4.59 %
t̄II 0.44 %

Table 2: Identified values of the transformation stresses and average strains.

follows
σMS

= (BT + Ω + Λ) /µ =535 MPa

σM = (BT − Ω + Λ) /µ =441 MPa

σAS
= (BT − Ω− Λ) /µ =148 MPa

tIV − tI = −2Ω/Eµ+ µ =4.52 %

The parameter η has be identified starting from the observation that the nucleation peak in
FwT is sharp and then snap-backs occur so that it must be L > `s. Moreover, from optical
images it is possible to observe a propagation jump of about 2 mm. Using formula (102) it
is then possible to compute the value of the snap-back length Ls = 9.92 mm, from which,
using (106) in the case n = 1 and m = 0 (that corresponds to the occurrence of a single inner
localization) as well together with the definition (84) leads to identify the value for η. The
identified constitutive parameters are reported in Tab. 3. The global force-displacement
response is shown in Figure 15 where both experimental and analytical curves are compared.
The stress drop associated with FwT nucleation is given by Ω/µ = 90.2 MPa which is in
very good agreement with the experimental observation.

41



BT 16.5 MPa
Ω 4.42 MPa
Λ 5.32 MPa
µ 0.049
η 0.18 mm

Table 3: Identification of the model constitutive parameters.
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Figure 15: Experimental (dashed-red line) and analytical (solid-black line) global stress-strain response.

The time history of the front propagation predicted by the model in FwT is shown in
Figure 13b. The model correctly predicts the extent of the propagation jump and gives
a reasonable approximation of the localization nucleation and propagation. The FwT in
the modeling reaches its completion just before the end of the loading phase. This is in
contrast with the experiments where the loading is stopped when the fronts enter the regions
where the thermoelectric wafers used to control the temperature near the ends are located.
Therefore FwT comes only close to its completion. This, together the presence of the local
temperature gradients, help to explain the less agreement with the observation in this stage
of the experiment. The time history of the front propagation predicted by the model in RvT
is shown in Figure 14b where an evolution with four fronts is simulated. Again, the model
correctly predicts the extent of the propagation jump and gives an approximate symmetrized
description of front propagation.

10. Concluding remarks

By the application of a variational formulation based on the three energetic requirements of
Irreversibility, Energy Balance and Directional Stability the evolution problem of displacement-
controlled tensile tests on SMA wires has been studied.

The analyses show that the occurrence of localized transformations are captured even
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by the simplest version of the constitutive model and can be studied in detail, analytically,
through a stability analysis. Closed form expressions are obtained for the nucleation and
propagation stresses as well as for the localized phase fraction profiles and their spatio-
temporal evolution.

A full stability analysis has been carried out for both the homogeneous and non-homogeneous
solutions where the role of two internal lengths is highlighted, namely ` and `s which de-
termine respectively the existence of non-homogeneous responses and the stability of the
homogeneous response. Moreover the occurrence of snap-back phenomena, which can only
occur in non-homogeneous evolutions, is discussed by introducing a third length Ls. It is
worth noting that for specific lengths L, such that ` ≤ L < `s, both homogeneous and
non-homogeneous solutions are allowed.

The analysis of the coalescence explains why the second stress drop associated with the
transformation completion is always smaller than the one associated with nucleation and for
this reason is more difficult to observe experimentally.

The attention has been restricted to isothermal conditions in order to test the applicability
of the approach to model the main phenomena. Forthcoming works will deal with more
refined models taking into account the crucial influence of the thermomechanical coupling
as well as typical SMA peculiarities like, for example, the heterogeneity of the material
properties and variable driving force thresholds.

Acknowledgments

The support provided by the ”Istituto Nazionale di Alta Matematica Francesco Severi”
(INdAM) through the grant ”Progetto Giovani 2014 - GNFM” is gratefully acknowledged.

References

References

[1] Roberto Alessi, Jean-Jacques Marigo, and Stefano Vidoli. Gradient Damage Models
Coupled with Plasticity and Nucleation of Cohesive Cracks. Archive for Rational Me-
chanics and Analysis, 214(2):575–615, June 2014.

[2] Roberto Alessi, Jean-Jacques Marigo, and Stefano Vidoli. Gradient damage models
coupled with plasticity: Variational formulation and main properties. Mechanics of
Materials, 80, Part B(0):351–367, 2015.

[3] K M Armattoe, Mohamed Haboussi, and Tarak Ben Zineb. A 2D finite element based
on a nonlocal constitutive model describing localization and propagation of phase trans-
formation in shape memory alloy thin structures. International Journal of Solids and
Structures, 51(6):1208–1220, March 2014.

[4] Nathan J Bechle and Stelios Kyriakides. Localization in NiTi tubes under bending.
International Journal of Solids and Structures, 51(5):967–980, March 2014.

43



[5] Davide Bernardini. On the macroscopic free energy functions for shape memory alloys.
Journal of the Mechanics and Physics of Solids, 49(4):813–837, April 2001.

[6] Davide Bernardini and Renato Masiani. New micromechanical estimates of the in-
teraction energy for shape memory alloys modeled by a two-phases microstructure.
Mathematics and Mechanics of Solids, pages 1081286514562291–, December 2014.

[7] Davide Bernardini and Thomas J Pence. Models for one-variant shape memory mate-
rials based on dissipation functions. International Journal of Non-Linear Mechanics,
37(8):1299–1317, December 2002.

[8] Davide Bernardini and Thomas J Pence. ShapeMemory Materials, Modeling. In Ency-
clopedia of Smart Materials. John Wiley & Sons, Inc., July 2002.

[9] Davide Bernardini and Thomas J Pence. Mathematical Models for Shape Memory
Materials. In Mel Schwartz, editor, Smart Materials. 2009.

[10] B C Chang, J A Shaw, and Mark A Iadicola. Thermodynamics of Shape Memory Alloy
Wire: Modeling, Experiments, and Application. Continuum Mechanics and Thermody-
namics, 18(1-2):83–118, May 2006.

[11] C B Churchill, J A Shaw, and Mark A Iadicola. TIPS AND TRICKS FOR CHAR-
ACTERIZING SHAPE MEMORY ALLOY WIRE: PART 3-LOCALIZATION AND
PROPAGATION PHENOMENA. Experimental Techniques, 33(5):70–78, September
2009.

[12] Hui-Hui Dai and Zongxi Cai. Phase transitions in a slender cylinder composed of an
incompressible elastic material. I. Asymptotic model equation. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 462(2065):75–95, January
2006.

[13] Dorian Depriester, Anne Maynadier, Karine Lavernhe-Taillard, and Olivier Hubert.
Thermomechanical modelling of a NiTi SMA sample submitted to displacement-
controlled tensile test. International Journal of Solids and Structures, 51(10):1901–1922,
February 2014.

[14] Arnaud Duval, Mohamed Haboussi, and Tarak Ben Zineb. Modelling of localization
and propagation of phase transformation in superelastic SMA by a gradient nonlocal
approach. International Journal of Solids and Structures, 48(13):1879–1893, June 2011.

[15] B Fedelich and A Ehrlacher. An analysis of stability of equilibrium and of quasi-static
transformations on the basis of the dissipation function. European journal of mechanics.
A. Solids, 16(5):833–855, 1997.

[16] P Feng and Qing-Ping Sun. Experimental investigation on macroscopic domain forma-
tion and evolution in polycrystalline NiTi microtubing under mechanical force. Journal
of the Mechanics and Physics of Solids, 54(8):1568–1603, August 2006.

44



[17] S Fu, Y Huo, and I Müller. Thermodynamics of pseudoelasticity - an analytical ap-
proach. Acta Mechanica, 99(1-4):1–19, March 1993.

[18] J F Hallai and Stelios Kyriakides. Underlying material response for Lüders-like insta-
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Appendix A. Formal integration of the FwT nonlocal criterion

The phase fraction profiles that may occur during FwT can be obtained by evaluating the
general integral (87) of the transformation criterion (64) over each interval FwT i, together
with suitable boundary conditions. The solution (87) has an oscillatory character with
extrema taking place at

x̄+ n` with x̄ :=
`

π
arctan

C2

C1

(A.1)

where x̄ corresponds to some maximum. Different solutions may arise depending on the
geometry of FwT . In the following the basic situations are illustrated. More general profiles
can then be obtained by combining the elementary cases. For illustration see Figure 5 and
Figure 6.

A left boundary localization arises if FwT is of the form [0, `]. Taking into account (42)
it follows that

α′t(0) = 0, α̇′t(0) = 0

therefore both phase fraction and its rate must take extremum values at the left end of the
bar. At the other endpoint it must be

α′t(`) = 0, α̇t(`) = 0

due to the spatial continuity of α′t and the fact that in the adjacent region the phase fraction
cannot evolve. It then follows that the region may accommodate one or more spatial oscil-
lations, the minimal case being the one in which an half-oscillation over a length ` with a
minimum or a maximum the the boundary. Similar considerations hold for a right boundary
localization of the form [L− `, L] and, overall, there are four basic cases.

• Left boundary localization over the interval [0, `] matched with pure austenite (type a,
Figure 5a) characterized by:

x̄ = 0, α (`) = 0

that gives

C1 =
ᾱF(σ)

2
, C2 = 0

so that

α(x) =


µ(σMS

− σ)

Ω
cos2

( π
2`
x
)

x ∈ [0, `]

0 x ∈ [`, L]
(A.2)

This corresponds to an half-sinusoid with stress-dependent maximum at x = 0 and a
non-evolving minimum equal to 0 at x = `. The peak value αmax = ᾱF(σ) increases
with decreasing stress and it is equal to 1 at σMP

therefore this type of localization
may arise for

σMP
≤ σ ≤ σMS
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• Left boundary localization over the interval [0, `] matched with pure martensite (type
b, Figure 5b) characterized by:

x̄− ` = 0, α (`) = 1

that gives:

C1 =
ᾱF(σ)

2
− 1, C2 = 0

so that

α (x) =

1−
(

2− σMS
− σ

σMS
− σMP

)
cos2

πx

2`
x ∈ [0, `]

1 x ∈ [`, L]
(A.3)

This corresponds to an half-sinusoid with a non-evolving maximum equal to 1 at x = `
and a stress-dependent minimum at x = 0

αmin =
σMP
− σ

σMS
− σMP

(A.4)

The minimum increases with decreasing stress and it is equal to 0 at σMP
while it is

equal to 1 at σMF
therefore this type of localization may arise for

σMF
≤ σ ≤ σMP

A right boundary localization arises if FwT is of the form [L− `, L]. Similarly to what
just discussed, there are two main cases.

• Right boundary localization over the interval [L − `, L] matched with pure austenite
(type c, Figure 5c) characterized by:

x̄ = L, α (L− `) = 0

that gives

C1 =
ᾱF(σ)

2
cos

(
L

`
π

)
, C2 =

ᾱF(σ)

2
sin

(
L

`
π

)
so that

α (x) =

0 x ∈ [0, L− `]
µ(σMS

− σ)

Ω
cos2

π (L− x)

2`
x ∈ [L− `, L]

(A.5)

This corresponds to an half-sinusoid with stress-dependent maximum at x = L and a
non-evolving minimum equal to 0 at x = L−`. The peak value has the same expression
as for type a) hence this localization may arise in the same stress interval;

• Right boundary localization over the interval [L − `, L] matched with pure martensite
(type d, Figure 5d) characterized by:

x̄+ ` = L, α (L− `) = 1
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that gives

C1 =

(
ᾱF(σ)

2
− 1

)
cos

(
πL

`

)
C2 =

(
ᾱF(σ)

2
− 1

)
sin

(
πL

`

)
so that

α (x) =

1 x ∈ [0, L− `]

1−
(

2− σMS
− σ

σMS
− σMP

)
cos2

π (L− x)

2`
x ∈ [L− `, L]

(A.6)

This corresponds to an half-sinusoid with stress-dependent minimum at x = L and a
non-evolving maximum equal to 1 at x = L − `. The minimum value has the same
expression as for type b) hence the localization may arise in the same stress interval.

An inner localization is a connected component of FwT of the form [a, b] with a, b points in
the interior of the bar. Taking into account boundary conditions, phase fraction must take
non-evolving extremum values at the end points of the interval so that b−a must be an even
multiple of `, the basic case being a full oscillation over a support of 2` with an evolving
maximum or minimum at the midpoint of the interval (the center of the localization). To
this end there are two possibilities.

• Inner localization from pure austenite (type e, Figure 6a) over an interval [xi−`, xi+`]
for some internal point ` ≤ x = xi ≤ L− ` characterized by:

x̄ = xi, α (xi − `) = 0

that gives

C1 =
ᾱF(σ)

2
cos
(π
`
xi

)
C2 =

ᾱF(σ)

2
sin
(π
`
xi

)
so that

α (x) =


0 x ∈ [0, xi − `]
µ(σMS

− σ)

Ω
cos2

π (x− xi)
2`

x ∈ [xi − `, xi + `]

0 x ∈ [xi + `, L]

(A.7)

This corresponds to a sinusoid with two non-evolving minima equal to 0 at x = xi − `
and x = xi + ` and a stress-dependent maximum at x = xi. The peak value has the
same expression as for types a) and c) hence this localization may arise in the same
stress interval;
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• Inner localization from pure martensite (type f, Figure 6b) over an interval [xi−`, xi+`]
for some internal point ` ≤ x = xi ≤ L− ` characterized by:

x̄− ` = xi, α (x̄) = 1

that gives

C1 =

(
ᾱF(σ)

2
− 1

)
cos
(π
`
xi

)
C2 =

(
ᾱF(σ)

2
− 1

)
sin
(π
`
xi

)
so that

α (x) =


1 x ∈ [0, xi − `]

1−
(

2− σMS
− σ

σMS
− σMP

)
cos2

π (x− xi)
2`

x ∈ [xi − `, xi + `]

1 x ∈ [xi + `, L]

(A.8)

This corresponds to a sinusoid with two non-evolving maxima equal to 1 at x = xi− `
and x = xi + ` and a stress-dependent minimum at x = xi. The minimum value has
the same expression as for types b) and d) hence this localization may arise in the
same stress interval.
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