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Abstract The hybridisation of fibres reinforced lam-

inates, i.e., the combined use of two or more families

of fibres, is an effective technique to achieve a pseudo-

ductile response and overcome the inherent brittleness

which limits the wider use of composite materials. In

this paper, a one-dimensional analytical model for uni-

directional hybrid laminates is derived. The model con-

siders two elastic-brittle layers bonded together by a co-

hesive elasto-plastic-brittle interface. This formulation

is applied to the study of the de-bonding and fracture of

laminates under uniaxial loading and the results com-

pared to experiments available from the open literature.

This study shows that the proposed model provides a

close fit to the experimental data and it is able to match

accurately the crack patterns seen in the experiments.

The model predicts four different failure mechanisms

and is able to discriminate among them according to

the geometrical and mechanical properties of the lay-

ers.
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1 Introduction

Although composite materials are increasingly used in

all fields of engineering, their inherent brittleness is a

significant issue that limits their wider use. Uni-Directional

(UD) composite laminates are prone to a catastrophic

failure when the ultimate tensile stress is reached. As

a consequence, when used in applications for which the

loading conditions are unpredictable, high safety coef-

ficients are adopted with the drawback of drastically

reducing their cost effectiveness. Thus, it is not sur-

prising that most of the research in this field has been

devoted to overcome this fundamental limitation and

several strategies to improve the material ductility have

been proposed including the use of ductile [6] or ta-

pered fibers [25], woven or braided fabrics [11, 12, 20]

and more generically the use of hybrid materials [22,

21, 9, 24].

Among the others, the hybridisation of continuous

fibers has been successfully applied to obtain a pseudo-

ductile response in thin-ply laminates [8]. This tech-

nique is based on the combined use of two or more

families of fibers, e.g., carbon/glass fibers, with differ-

ent mechanical properties tuned to drive the failure of

the interface within the plies and achieve the pseudo-

ductile response much sought after.

All these techniques, however, ask for reliable mod-

els able to predict correctly the material behavior and

guide the experimentalists towards the definition of new

layups. Over the years, several idealised models were

proposed in order to predict the strength of compos-

ite laminates [27, 18, 26] and have proved to be able

to qualitatively match the experimental curves. In [10]

the strength of a structural member composed by two

elastic layers bonded together by an adhesive layer is es-

timated by following an analytical approach. Similarly

in [16, 17] strength and fracture patterns observed in

a bilayer system subjected to thermal expansion are

studied. Many works have investigated the strength of

structural members reinforced with hybrid laminates

through 1-D or 2-D numerical simulations [5, 23]. More

recently finite elements simulations were carried out in

[13] to simulate the interface between two plies with

different strengths by using cohesive elements; the au-

thors introduced a Damage Mode Map (DMM), i.e. a

2D plot which describes the different failure scenarios

in terms of the geometric properties of the layup. Four

different failure mechanisms were accounted for all ter-

minating with the failure of the high strength layer,

namely: (i) diffuse delamination, (ii) multiple fractures

of the low strain material, (iii) fragmentation in the

low strain material followed by diffuse delamination,

(iv) premature failure of the high strain material. All
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these failure modes are indeed experimentally observed

which proves the map to be an effective design tool to

aid the development of new composite layups. Based on

previous results, the same authors proposed in [14] an

analytical model: the main underlying hypothesis was

assuming the interface to have a perfectly plastic re-

sponse. From one hand, this choice allowed the deriva-

tion of a closed form expression of the ultimate tensile

stresses in terms of the laminate parameters; from the

other hand, it underestimates the typical crack length

and requires the use of complex stochastic tools to pre-

dict the crack evolution in the low-strain layer.

In this work, we aim at providing a more accurate

description of the laminate failure mechanisms by en-

forcing a simple yet effective cohesive law of the inter-

face. Such a choice is representative of the real material

and in fact leads to a more accurate prediction of the

stress evolution within the laminate as well as of the

crack spacing length observed in the experiments [7].

Moreover, the cohesive law removes the indeterminacy

of the crack locations in the low strain layer, which is

usually overcome in rigid-perfectly plastic models by

enforcing a stochastic distribution of the material pa-

rameters. A closed-form expression of the damage mode

map is also derived to describe the different failure

mechanism seen in the experimental data.

The plan of the paper is as follows. In Sec. 2 the

overall laminate problem is introduced and it is shown

that it can be reduced to the study of a unit-cell repre-

sentative element. In Sec. 3 the response of the unit-cell

subjected to an imposed external displacement is ana-

lyzed and the results are used in Sec. 4 to obtain the

response of the entire laminate and highlight the differ-

ent failure mechanisms that could occur. A comparison

between the proposed model and the experimental re-

sults available from the open literature is carried out in

Sec. 5. Finally conclusions are drawn in Sec. 6.

2 Position of the problem

The UD hybrid laminate considered in this study is

made of two homogeneous elastic-brittle layers with dif-

ferent failure strains and periodically alternating through

the thickness Fig. 1a.

Due to the periodicity of the structure, the me-

chanical response of the laminate can be analysed by

studying in a one-dimensional setting the response of

the semi-periodic slice in Fig. 1b with length L and

thickness h � L; this slice consists of two layers with

heights h1 and h2 respectively, bonded together by a co-

hesive interface whose thickness is assumed negligible.

The first layer Ω1, denominated high-strain layer, has

a higher failure strain compared to the second layer Ω2,

therefore denominated low-strain layer. The hybrid lam-

inate, and hence the semi-periodic slice, is subjected to

a prescribed displacement UL(t) applied to the right-

end side whereas the left-end side is fixed. The exter-

nal applied displacement is assumed to be monotoni-

cally increasing at a sufficiently low rate; as such, rate-

dependent and inertial effects can be neglected from the

analysis.

For such a model, during the initial stage of the

loading process, all layers experience the same homoge-

neous strain until the low-strain layer, assumed in the

figure to be underneath, reaches its elastic limit and

a first fracture appears. Being the two layers homoge-

neous, the position of this first crack is indeterminate

by the model. The mechanical response of the fractured

laminate changes abruptly and by further increasing the

displacement, the different fracture scenarios (i)-(iv) de-

scribed in the Introduction could occur. However, dis-

regarding the exact failure mechanisms, the laminate is

the superposition of several unit-cells (UCs) of generic

length ` as shown in Fig. 1c.

Each unit-cell (UC) represents a portion of the lam-

inate with one end identified by the position at which

the layers experience the same displacement and the

other end corresponding to the neighbour position at

which a fracture has occurred. The determination of

the mechanical response of the UC in terms of the dis-

placement prescribed to the high-strain layer allows the

response of the entire laminate to be obtained by simple

compatibility arguments as shown in the next sections.

3 Unit-Cell response

In this section, the mechanical response of the UC in

Fig. 1c under a prescribed displacement at Ω1 is de-

termined by assuming that both layers have an infinite

strength, i.e., no further cracks occur apart from the one

already in Ω2. The high- and the low-strain layers are

assumed to have an elastic-brittle response with tensile

moduli E1, E2 and ultimate strains ε̄2 < ε̄1, respec-

tively (Fig. 2a). Correspondingly, the ultimate stresses

are σ̄1 := E1ε̄1 and σ̄2 := E2ε̄2.

The cohesive interface Γ , whose thickness is very

thin compared to the other layers, is assumed to have

an elasto-plastic-brittle response for which τ = µδ if

δ ≤ δy, τ = τ̄ if δy < δ ≤ δ̄ and τ = 0 when δ > δ̄

(Fig. 2b). Here δ(x) := u1(x)− u2(x) is the relative dis-

placement between the two layers at a given position x,

µ is the shear stiffness modulus (the adhesive shear

modulus divided by the interface thickness which may

embed also the contribution of the shear deformation of

the cracked layer in the same spirit suggested in [19]), τ̄
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Fig. 1: Schematic representation of: (a) the hybrid lam-

inate, (b) the one-dimensional model where fractures at

the low strength layers and delamination at the inter-

face have occurred, (c) the unit-cell model
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Fig. 2: Material response for: (a) the elastic layers, (b)

the cohesive interface

and δy the shear yield stress and displacement respec-

tively and δ̄ the debonding displacement. The interface

mode II fracture toughness is the area under the curve

τ(δ̄), i.e., GIIc = τ̄
(
δ̄ − δy/2

)
. When the relative dis-

placement δ between the layers is zero, the effects of the

interface on the UC response are neglected since the ad-

hesive thickness is evanescent and the tensile modulus

of Γ is assumed much lower than the one of the layers.

Note that the model [15] is recovered when δy = 0.

The response of the UC, whose length has been

normalized to 1, is characterized by the three different

stages elastic, elasto-plastic and elasto-plastic-delaminated

for an increasing prescribed dimensionless displacement

U = UC(t)/`. Initially, the UC is in its elastic stage,

Fig. 3a, until the stress at the interface reaches its yield

stress, namely τ = τ̄ . By continuing increasing the dis-

placement, a plastic region is created which evolves to-

U(t)

x

1

(a) Elastic stage

U(t)

x

10 `e

`e `p

U(t)

x

10

`e `p `d

`e `e + `p

(b) Elastic-plastic stage

(c) Elastic-plastic-delaminated stage

0

Fig. 3: Different stages of the UC loading process

wards the fixed end of the UC. This stage is there-

fore called elasto-plastic stage, Fig. 3b, and lasts un-

til the relative displacement of the two layers reaches

the debonding limit, namely δ = δ̄. Further increments

of U lead to the propagation of a delamination from

the right-end side of the UC towards the fixed end

which accordingly shifts and modifies the width of the

plastic region. This latter stage is called elasto-plastic-

delaminated stage, Fig. 3c.

In the next subsections each stage of the loading
process is analyzed in detail, where all equations are

presented in a dimensionless form through the following

non-dimensional quantities:

x̂ = x/`, ûi = ui/`, δ̂ = δ/`

σ̂i = σi/E1, τ̂ = τ/E1

(1)

This non-dimensional formulation will be used through-

out the paper unless differently stated. For the sake of

conciseness, the superimposed hat (̂ ) will be omitted

in the following.

3.1 Elastic stage

During the initial stage of the loading process, both the

layers experience the same deformation and hence the

adhesive doesn’t contribute to the composite response

and stays unstressed. The apparent tensile modulus of

the UC can be expressed in terms of the tensile moduli
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and the thicknesses of the layers as

Ec =
E1h1 + E2h2

h
(2)

with E1, E2 being the elastic moduli in their dimensional

forms.

This elastic stage ends up when the first crack ap-

pears, that is when the stress in the second layer reaches

the failure stress σ̄2 or equivalently the corresponding

overall strain ε̄2. In such a case, the configuration dis-

played in Fig.3a can be studied. All the materials are

still in their elastic regime but the interface starts play-

ing a role in the UC response. The non-dimensional

governing equations of the problem are:{
u′′1 − F (u1 − u2) = 0, in Ω1

Ku′′2 + F (u1 − u2) = 0, in Ω2

, x ∈ [0, 1] (3)

where the two non-dimensional constants K and F are

given by

K := E2h2/(E1h1), F := µ`2/(E1h1) (4)

representing, respectively, the relative stiffness of the

layers and a generalized elastic interface shear stiff-

ness. The boundary conditions are given by u1(0) = 0,

u2(0) = 0, u1(1) = U and u′2(1) = 0. By introducing the

dimensionless parameters α = F(K+1)/K and β = F/K,

the solution of (3) in terms of the dimensionless stresses

is

σ1(x) =
β
√
α cosh(

√
α) + (α− β) cosh(x

√
α)

β
√
α cosh(

√
α) + (α− β) sinh(

√
α)

U, (5)

σ2(x) =

√
α (α− β) (cosh(

√
α)− cosh(x

√
α))

β
√
α cosh(

√
α) + (α− β) sinh(

√
α)

U (6)

whereas the dimensionless shear stress at the interface

is

τ(x) =

√
α (α− β) sinh(x

√
α)

β
√
α cosh(

√
α) + (α− β) sinh(

√
α)

U (7)

Due to the occurrence of the crack, the stress in the

second layer is released and becomes zero at the crack

tip, i.e., at x = 1. As such, the stress at the interface

is maximum in correspondence of the crack, whereas

decreases monotonically towards x = 0.

An example of the stress evolution along the UC

length is shown in Fig. 4 for K = 1, F = 3 and U =

1. The figure shows that σ1 and τ are maximum at

the crack location whereas σ2 is maximum at x = 0;

the interface yield limit is therefore reached at x = 1

and the corresponding limit displacement Uy can be

evaluated from (5).

1.5

1

0.5

0

U(t)

10

σ1
τ

σ2
σ1

σ2
τ

x
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 4: Stresses distribution along the UC during the

elastic stage for K = 1, F = 3 and U = 1

The apparent dimensionless tensile modulus of the

UC, defined as Ec := σ1(1)/U , is equal to

Ec =
α
√
α√

αβ + (α− β) tanh(
√
α)

(8)

The elastic stage ends up when the interface relative

displacement δ reaches the yield limit δy, which implies

the stresses σ1(1) and σ2(0) to be

σ̄ep
1 = δy

√
α coth

(√
α
)

(9)

σ̄ep
2 =

β δy tanh(
√
α/2)√

α
(10)

3.2 Elasto-plastic stage

Once the interface has started yielding, the elasto-plastic

front evolves from the right-end side towards the left-

end side of the UC till the debonding strain δ̄ is reached.

This configuration is schematically depicted in Fig. 3b

where the elastic and plastic regions, respectively of di-

mensionless lengths `e and `p with `e + `p = 1, are

highlighted.

In this case, the problem can be split into two sub-

domains, with the corresponding equilibrium equations

given by{
u′′1e − F (u1e − u2e) = 0 in Ω1

Ku′′2e + F (u1e − u2e) = 0 in Ω2

, x ∈ [0, `e] (11a){
u′′1p − τ̄ = 0 in Ω1

Ku′′2p + τ̄ = 0 in Ω2

, x ∈ [`e, 1] (11b)
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and the corresponding boundary conditions at x = 0

(the fixed boundary):

u1e(0) = 0, u2e(0) = 0; (12)

at x = `e (continuity):

u1e(`e) = u1p(`e), u2e(`e) = u2p(`e),

u′1e(`e) = u′1p(`e), u′2e(`e) = u′2p(`e);
(13)

and at x = 1, where the applied displacement is pre-

scribed:

u1p(1) = U, u′2p(1) = 0 (14)

The lengths of the two regions `e and `p are de-

termined by assuming that the interface at the elasto-

plastic transition point attains the yield condition, i.e.,(
u1e(`e)− u2e(`e)

)
µ = τ̄

which gives an implicit expression of `e in terms of the

applied displacement Uep(`e) (Eq. (27) in Appendix).

This function allows the governing equations (11) to be

solved by parameterizing the problem with `e and de-

ducing a posteriori the corresponding applied displace-

ment U = Uep(`e). The solution in the elastic region is

the same as the one in Sec. 3.1 but properly rescaled

whereas the stresses in the plastic region are linear and

the shear stress constant at the interface.

An example of the stress profiles along the UC is

given in Fig 5. As for the elastic stage, the stresses

in Ω1 and Ω2 are maxima at x = 1 and x = 0, re-

spectively. The elasto-plastic stage lasts until the shear

strain reaches the ultimate limit at x = 1, that is when

u1p(1)−u2p(1) = δ̄ (Eq. (28) in Appendix). The corre-

sponding limit length ¯̀
e and limit displacement Ū are

evaluated by using (27) with the expression (28). Cor-

respondingly, the maximum stress in Ω1 is σ1(1) = σ̄pd
1

whereas the maximum stress in Ω2 is σ2(0) = σ̄pd
2 . The

quantities σ̄pd
1 and σ̄pd

2 are respectively given in Ap-

pendix by the equations (29) and (30).

3.3 Elasto-plastic-delaminated stage

The final stage of the loading process, depicted in Fig. 3c,

is characterized by three regions: elastic, plastic and

delaminated. Indeed, as soon as the interface relative

displacement δ, which is maximum at x = 1, attains

the limit value δ̄, debonding is triggered and the de-

laminated region starts extending towards the left-end

side of the UC with length `d. Consequently, the elasto-

plastic region has length `e + `p = 1 − `d, Fig. 3c. In

the delaminated region, the stress is not transferred be-

tween the layers, thus the structural problem can be

U(t)

10

σ1
τ

σ2 σ1

σ2

τ

x

0

1

2

3

4

5

`e

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 5: Stresses distribution along the UC length during

the elasto-plastic stage for K = 1, F = 3 and U =

Uep(`e = 0.5)

decomposed into two subproblems. The former, associ-

ated to the subdomain x ∈ [0, `e + `p], can be studied

by rescaling the elasto-plastic problem already inves-

tigated in Sec. 3.2. The latter, which is associated to

the subdomain x ∈ [`e + `p, 1], is a linear elastic prob-

lem in which all loading is carried by Ω1 whereas Ω2 is

unstressed and, therefore, rigidly shifted (see Fig. 6).

10

`e `p `d

`e `e + `p

U(t)
σ1d

x

`e + `p

Fig. 6: Problem decomposition in the elasto-plastic-

delaminated stage

The equilibrium equations for this stage are{
u′′1e − F (u1e − u2e) = 0 in Ω1

Ku′′2e + F (u1e − u2e) = 0 in Ω2

, x ∈ [0, `e] (15a)

{
u′′1p − τ̄ = 0 in Ω1

Ku′′2p + τ̄ = 0 in Ω2

, x ∈ [`e, `p] (15b)

for the first subproblem, whereas for the second sub-

problem{
u′′1d = 0 in Ω1

Ku′′2d = 0 in Ω2

, x ∈ [`e + `p, 1] (16)
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Fig. 7: Stresses distribution along theUC length during

the elasto-plastic-delaminated stage for K = 1, F = 3

and U = U(`d = 0.2)

with boundary conditions at x = 0 (the fixed bound-

ary):

u1e(0) = 0, u2e(0) = 0; (17)

at x = `e (continuity):

u1e(`e) = u1p(`e), u2e(`e) = u2p(`e),

u′1e(`e) = u′1p(`e), u′2e(`e) = u′2p(`e);
(18)

at x = `e + `p (continuity):

u1p(`e + `p) = u1d(`e + `p),

u2p(`e + `p) = u2d(`e + `p),

u′1p(`e + `p) = u′1d(`e + `p),

u′2p(`e + `p) = u′2d(`e + `p);

(19)

and at x = 1, where the applied displacement is pre-

scribed:

u1d(1) = U, u′2d(1) = 0 (20)

By using Eq. (16), the solution of the second sub-

problem is

σ1d = const. and σ2d = 0 (21)

which coupled with the solution of the first problem

(15a)-(15b), derived in the previous section, allows the

stress evolution in the entire UC parametrized with re-

spect to `d to be obtained. An example of the stress

profiles in this stage is given in Fig. 7.

σ̄ep
1

σ̄pd
1

σ̄ep
2

σ̄pd
2

10

U/Uy

10 2 3 4 5

0

2

4

6

8

U(t)
σ1(1)

σ1(0)

σ2(0)

Fig. 8: Example of stress evolution during the elasto-

plastic-debonding stage for K = 1, F = 3, δy = 1, δ̄ =

3 and `d = 0.2. The colors refer to the stages, blue

for elastic, red for elasto-plastic and green for elasto-

plastic-delaminated

3.4 Global response of the UC

Previous solutions are used here to derive the global

response of the UC once the assumption of having in-

finitely resistant layers is removed.

The maximum stresses inΩ1 andΩ2 are attained for

each loading stage at x = 0 and x ∈ [`e + `p, 1], respec-

tively; their values can be calculated from Eqs. (9)-(10)

and Eqs. (29)-(30) which by comparison with the cor-

responding limit stresses σ̄1 and σ̄2 determine the state

of the UC, e.g., elastic, elasto-plastic or elasto-plastic-

delaminated. It is worth remarking that the stress σ1(1)

monotonically increases with the displacement whereas

σ2(0) increases during the elasto-plastic stage but de-

creases during the propagation of the delamination, mean-

ing that the capability of the interface to transfer stresses

between the layers is progressively reduced. As a con-

sequence, the failure of the low-strain layer Ω2 (frag-

mentation) can only occur during the elastic- or elasto-

plastic stages. The evolution of the stress within the

layers for an increasing displacement is given in Fig. 8

for K = 1, F = 3, δy = 1, δ̄ = 3 and `d = 0.2.

According to whether the low- or high-strain layer

reaches the ultimate strength first, several evolution

scenarios in the response of the UC may occur. If dur-

ing the elasto-plastic stage the low-strain material Ω2

reaches the ultimate strength, fragmentation occurs which

could possibly lead to a diffuse delamination. On the
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contrary, if the high-strain material Ω1 fails first, the

entire UC collapses.

4 Laminate response

The construction of the laminate global response can be

algorithmically derived from the UC response by taking

into account all the possible failure scenarios.

Initially the undamaged laminate is elastically loaded

until the uniform strain in Ω2 reaches the critical value

ε̄2 and a crack appears. The corresponding stress and

strain, normally indicated as yield stress and yield strain,

are

εY = ε̄2, and σY = Ecε̄2 (22)

with Ec being the apparent tensile modulus of the un-

damaged laminate in (2).

Having assumed the two layers homogeneous with

no imperfections, the position of the first crack is in-

determinate. However, the presence of the crack allows

the fractured laminate to be regarded as two UCs in

series with possibly different lengths, whose response is

completely known by the analysis carried out in the pre-

vious section. For an increasing applied displacement,

the laminate response is given by the response of the

two UCs until the ultimate strength limit is reached

either in the high-strain or in the low-strain layer. In

the former case, the entire laminate fails. In the latter

case instead, another fracture in Ω2 occurs where σ2 is

maximum, i.e., at the fixed end of the longest UC. Cor-

respondingly, the laminate can be analyzed as a three

UCs chain and the previous analysis can be repeated

leading to an increasing number of UCs until the high-

strain layer reaches its ultimate strength.

It is worth noting that for a n-UCs chain the max-

imum stress in the low-strain layer is attained either

at the center of the furthest contiguous cracks or at

one laminate end. This last situation is likely to occur

if the distance between the laminate end and the clos-

est crack is larger than half of the size of the largest

distance between two contiguous cracks. Moreover, no

further fracture of Ω2 could occur if the delamination

of the interface has started. This property guarantees

that diffuse delamination is most likely to be triggered.

One of the objective of the present analysis was

the accurate prediction of the different failure modes

of the laminate; this is indeed a key feature to as-

sess its pseudo-ductile performance. In this respect the

damage mode map (DMM) introduced in [13] is an ef-

fective design tool and allows the different failure sce-

narios to be outline in a 2D plot in terms of the geo-

metric properties of the composite layup. In particular,

1 Initialisation:

ltol = 0.01, lmin, lmax, material parameters (h1,

h2, . . . );

2 if FMF(lmax) = f-1 or f-3 then

3 l = lmax;

4 fm = FMF(lmax);

5 Break();

6 else

7 while lmax − lmin > ltol do

8 l̄ = (lmax − lmin) /2;

9 switch fm = FMF(lmax) do

10 case fm = f-1 → lmin = l̄;

11 case fm = f-2e or f-2p → lmax = l̄;

12 case fm = f-3 → lmin = l̄;

13 l = lmax, fm = FMF(lmax)

Fig. 9: The failure-mode prediction algorithm (FMPA).

In the algorithm fm stands for failure mode and f-1/2/3

represent the different failure mechanisms described in

Tab. 1. The failure mechanism function (FMF) is de-

fined in the Appendix, Fig. 13

the DMM is usually plotted against the relative thick-

ness h2/h and the absolute thickness h2. This choice

is useful to give a very effective and clear representa-

tion of the four regions that identify the failure mecha-

nisms: (C) Catastrophic delamination, (D) fragmenta-

tion and diffuse Delamination, (F) F ragmentation and

(P) Premature failure of the high strain material. The

curves that limit each region are shown in Fig. 10 and

are labeled CCP, CDF for the case of incipient debonding

and CCD, CFP for the case of of fragmentation.

The base idea for assembling the DMM is the failure-

mode prediction algorithm (FMPA) shown in Fig. 9 and

based on a trial-error scheme. The algorithm seeks the

maximum UC length at which the ultimate failure mode

occurs, namely a complete delamination or the failure

of the high-strain layer. More specifically, the function

FMPA is used to determine the minimum length at

which two different failure mechanisms simultaneously

occur; the full DMM is recovered by spanning the entire

range of admissible layer heights.

The closed form expressions for the limit curves can-

not be obtained with an elasto-plastic interface. Never-

theless, it can be shown numerically that these curves

coincide with those of an elastic-brittle interface model

(δy = δ̄) with the same fracture toughness and maxi-

mal shear stress. In this latter case the solution can be

explicitly found by deriving the expression of the max-
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imum elastic stress (force) in Ω1 at which each failure

mechanism occurs; the limit curves can be determined

by imposing that two failure mechanisms simultane-

ously occur.

f-1 high-strain layer failure

f-2e low-strain layer failure (fragmentation)
with elastic interface

f-2p low-strain layer failure (fragmentation)
with plastic interface

f-3 interface delamination

Table 1: Different failure modes and their corresponding

labels

The failure of the high strain layer occurs when the

dimensionless force s1 := σ1/E1 equals the limit value

s̄1 := σ̄1/E1, namely

s1 = s̄1 (f-1)

Similarly, the failure of the low strain layer occurs when

the dimensionless force s̄2 = σ̄2h2/(E1h1), which corre-

sponds to a fragmentation of the composite, is attained.

The explicit condition in terms of the non-dimensional

material parameters and the force s1 reads

αs̄2 + (α− β)
(
sech

(√
α
)
− 1
)
s1 = 0 (f-2)

A delamination of the interface occurs if u1 − u2 = δ̄,

which leads to the condition, in terms of the dimension-

less material parameters and the force s1,

s1 −
√
α coth

(√
α
)
δ̄ = 0 (f-3)

Based on previous results, the limit curves are here-

after expressed by making explicit h2 as a function of

h1 at fixed material parameters:

curve CCP is obtained by assuming the contemporary

occurrence of debonding and the high-strain layer

failure, hence conditions (f-1) and (f-3), for a lami-

nate of infinite length. This leads to the explicit law

hCP
2 = − E2

1µh1δ̄
2

E2

(
E1µδ̄2 − h1σ̄2

1

) (23)

curve CCD is obtained by assuming the contemporary

occurrence of debonding and fragmentation, hence

conditions (f-2) and (f-3), for a laminate of infinite

length. This leads to the explicit law

hCD
2 =

σ̄2

√
E1h1

(
4E2

2µδ̄
2 + E1h1σ̄2

2

)
− E1h1σ̄

2
2

2E2σ̄2
2

(24)

2`

1.3 mm

This work
Jalalvand et al. (2015)

(a) Layup 1 (G2CG2)

2.3 mm

2`

This work
Jalalvand et al. (2015)

(b) Layup 2 (G2C2G2)

Fig. 11: Quasi-periodic crack patterns observed in the

experiments in [8] for two different layups. Black and

yellow regions represent the unbounded and bounded

interfaces, respectively. Blue and red bars correspond

to the predicted analytical lengths of Tab. 3

curve CDF is obtained by assuming the contemporary

occurrence of debonding and the high-strain layer

failure, hence conditions (f-1) and (f-3) but within

a fragmentation regime (f-2). This leads to the ex-

plicit law

hDF
2 =

2E2h1σ̄1σ̄2 − E1h1σ̄
2
2

2E2σ̄2
2

−√
(2E2h1σ̄1σ̄2 − E1h1σ̄2

2)
2 − 4E1E2

2µh1δ̄
2σ̄2

2

2E2σ̄2
2

(25)

curve CFP is obtained by assuming the contemporary

occurrence of fragmentation and high strain mate-

rial failure, hence conditions (f-1) and (f-2), for a

laminate of infinite length. This leads to the explicit

law

hFP
2 =

E2h1σ̄1 − E1h1σ̄2
E2σ̄2

(26)

An example of the DMM and respective limit curves

is shown in Fig. 10 with the constitutive parameters of

Tab. 2a and Tab. 2b.

5 Results and Discussion

In this section, the prediction of the model is com-

pared to some experimental results in [8]. In particu-

lar, the analysis is focused on two layups, made of thin

glass (Ω1) and carbon (Ω2) plies, for which pictures at

failure of the upper surface are shown in Fig. 11. The

failure mechanism and the presence of bounded and un-

bounded interfaces is clearly shown in the pictures as

well as the characteristic crack spacing dependent upon

the laminate layup.
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Fig. 10: Damage mode map built with the constitutive parameters of Tab. 2a and Tab. 2b with corresponding

limit curves (gray lines) and validated against experiments in [8] of standard glass/carbon laminates (black circles

and black dots, this last considered in detail in Sec. 5). Green dots, red dots, green squares and blue squares stand

for regions D, F, C and P respectively. The size of the dots is proportional to the crack spacing length at failure

The material and geometrical properties of these

considered laminates are listed in Tab. 2 together with

δ̄ and δy = 2(δ̄ − GIIc/τ̄). The value of δ̄ has been de-

rived by fitting the proposed model against the exper-

imental data in terms of the characteristic crack spac-
ing. The expected failure mechanisms according to the

damage mode map in Fig. 10 are: fragmentation for the

G2CG2 layup (Layup 1) and fragmentation with diffuse

delamination of the interface for the G2C2G2 laminate

(Layup 2); this latter confers to the laminate a pseudo-

ductile behavior.

The global structural responses of the laminates,

subjected to an uniaxial tension test, are determined by

fitting the model in Sec. 4 and compared to the experi-

mental results in Fig. 12. The good agreement between

the simple proposed model and the experiments is clear

from the figure where the slight differences are likely

due to the presence of defects in the real materials, not

accounted by the model, and the neglecting of 2D in-

plane effects which may play a significant role when

strong inhomogeneities and stress localizations occur.

It is worth remarking that the abrupt release of en-

ergy triggered by the crack initiation may produce a

local dynamic process which could end up in overload-

E1 38.7 GPa

E2 101.7 GPa

σ̄1 1548.0 MPa

σ̄2 1962.0 MPa

(a) Layers mechanical
properties

δy 0.021 mm

δ̄ 0.025 mm

τ̄ 67.0 MPa

GIIc 1.0 N/mm

(b) Interface mechanical
properties

Layup 1 Layup 2

h1 0.29 mm 0.29 mm

h2 0.03 mm 0.06 mm

(c) Thicknesses for the two speci-
mens

Table 2: Mechanical and geometrical properties for the

experimental comparisons. The data with gray back-

ground are taken from [8]

ing the interface and possibly trigger a delamination.

This indeed seems to occur in Layup 1 where a diffuse

delamination at failure can be seen from Fig. 11a with

the carbon layer debonded from the glass layer in the
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Fig. 12: Comparison of the global responses for a uni-

axial traction test between the analytic model and the

experiments in [8, Figures 9-10]

surrounding of the cracks, although the prediction by

the DMM of a pure fragmentated response.

Despite having small differences in the stress-strain

curves, the proposed model is able to predict the crack

spacing seen in the experiments whereas the model in

[14] with a rigid perfectly plastic interface underesti-

mates it by 50% (see Tab. 3 and Fig. 11). This is due

to the additional parameter introduced in the interface

constitutive law with respect to the rigid perfectly plas-

tic model in [14]. The values of the constitutive param-

eters obtained by the fitting and reported in Tab. 2

corresponds to Ge
IIc = 0.7 N/mm and Gp

IIc = 0.3 N/mm

experimental
length

perfectly-
plastic

interface

elasto-plastic
interface

Layup 1 1.3mm 0.5 mm 1.3mm

Layup 2 2.3mm 1.0 mm 2.3mm

Table 3: Crack spacing length comparisons

whereas the corresponding values in [14] areGe
IIc = 0.0 N/mm

andGp
IIc = 1.0 N/mm. Such a feature of the model would

allow a more accurate prediction of the effective bond

length as discussed in [10].

6 Conclusions and Perspectives

In this work, a one-dimensional analytical model for the

description of UD hybrid laminate has been proposed

and used to describe the mechanical response and the

failure mechanisms of the composite subjected to a ten-

sile loading. The model assumes elastic-brittle layers

and cohesive elasto-plastic-brittle interface.

The global response of the composite has been ob-

tained by first deriving the response of a unit-cell and

then by iteratively reconstructing the response of the

entire laminate. The same algorithm is used to inves-

tigate all the possible failure scenarios in terms of the

layup geometric properties.

The boundaries of the different damage regions have

been fully characterized and closed form expressions for

of the limiting curves were derived. As such, the model

can provide an efficient and effective way to investigate

experimentally new composite layups.

Compared to a model with a rigid-perfectly plastic

interface, such as [14], the proposed approach with a co-

hesive interface has allowed both a more accurate pre-

diction of the crack spacings (underestimated by 50%

in the perfectly plastic model) and a good agreement

with the stress-strain curves. These latter evidenced the

presence of a pseudo-ductile response. Moreover, the ca-

pability of the interface to store elastic energy removes

the indeterminacy of the crack location in the low strain

layer usually seen in rigid-perfectly plastic models. In-

deed when the cracks spacing is large, the location of

the next crack is determined in the actual material by

imperfections as the stress in the layers is almost con-

stant away from the existing crack. Nevertheless, it is

reasonably expected that the introduction of a statisti-

cal variation of the parameters affects weakly the final

crack spacing.

The proposed analytical approach could be extended

by taking advantage of the variational framework used

in [3, 4, 1, 2] to two dimensional problems. Crack pat-
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terns similar to the ones observed in [17] with the si-

multaneous occurrence of debonding and fragmentation

are expected.
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A Failure-mode function

1 Given ` compute σ̄ep
1 , σ̄pd

1 , σ̄ep
2 and σ̄pd

2 :

2 if σ̄1 < σ̄ep
1 then

3 if σ̄2 < σ̄ep
2 then

4 if Ū1 < Ū2 then

5 f-1

6 else if Ū1 ≥ Ū2 then

7 f-2e

8 else if σ̄2 ≥ σ̄ep
2 then

9 f-1

10 else if σ̄ep
1 ≤ σ̄1 < σ̄pd

1 then

11 if σ̄2 < σ̄ep
2 then

12 f-2e

13 else if σ̄ep
2 ≤ σ̄2 < σ̄pd

2 then

14 if Ū1 < Ū2 then

15 f-1

16 else if Ū1 ≥ Ū2 then

17 f-2p

18 else if σ̄2 ≥ σ̄pd
2 then

19 f-1

20 else if σ̄1 ≥ σ̄pd
1 then

21 if σ̄2 < σ̄ep
2 then

22 f-2e

23 else if σ̄ep
2 ≤ σ̄2 < σ̄pd

2 then

24 f-2p

25 else if σ̄2 ≥ σ̄pd
2 then

26 f-3

Fig. 13: The failure-mode function (FMF) used in the

failure-mode prediction algorithm of Fig. 9. The dis-

placements Ū1 and Ū2 correspond respectively to the

high-strain and low-strain failure displacement of the

UC. The labels of the possible failure modes are listed

in Tab. 1
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B Equations of Sec. 3.2

Eq. (27) gives the implicit relation between the applied dis-
placement and the length of the elastically reacting interface

during the elasto-plastic stage of the UC. Instead, (28) allows
to determine the maximum length ¯̀e of the elastically react-
ing interface at which delamination is triggered. Eqs. (29) and
(30) give respectively the maximal stresses in the low-strain
and high-strain layer as soon as delamination is triggered.

Uep(`e) =
(2 + (1− `e)2α+ (1− `2e)β)α− 2β + 2

√
α ((1− `e)α+ `eβ) coth(`e

√
α)

2α(α− β)
τ̄ (27)

α ((`e − 1)
√
α (2U (α− β) + (`e − 1)β τ̄) cosh(`e

√
α)− 2 (U (α− β) + (`e − 1)β τ̄) sinh `e

√
α)

2 (α− β) (
√
α ((`e − 1)α− `eβ) cosh(`e

√
α)− (α− β) sinh(`e

√
α))

= δ̄. (28)

σ̄pd
1 :=

α3/2
(
2Ū + (−1 + ¯̀e)2τ̄

)
cosh

(
¯̀e
√
α
)

+ 2(¯̀e − 1)α τ̄ sinh
(
¯̀e
√
α
)

2
√
α((1− ¯̀e)α+ ¯̀eβ) cosh

(
¯̀e
√
α
)

+ 2(α− β) sinh
(
¯̀e
√
α
) (29)

σ̄pd
2 :=

√
α
(
2Ū(β − α) +

(
(1− ¯̀e)2α+ (1− ¯̀2

e)β
)
τ̄
)

−
(
2
(√
α((1− ¯̀e)α+ ¯̀eβ) cosh

(
¯̀e
√
α
)

+ (α− β) sinh
(
¯̀e
√
α
)))

+
(α− β)

(√
α
(
2Ū + (1− ¯̀e)2τ̄

)
cosh

(
¯̀e
√
α
)

+ 2(1− ¯̀e)τ̄ sinh
(
¯̀e
√
α
))

−
(
2
(√
α((1− ¯̀e)α+ ¯̀eβ) cosh

(
¯̀e
√
α
)

+ (α− β) sinh
(
¯̀e
√
α
))) (30)

References

1. Alessi R, Bernardini D (2015) Analysis of localization
phenomena in Shape Memory Alloys bars by a variational
approach. International Journal of Solids and Structures
73-74:113–133

2. Alessi R, Pham K (2016) Variational formulation and sta-
bility analysis of a three dimensional superelastic model
for shape memory alloys. Journal of the Mechanics and
Physics of Solids 87:150–176

3. Alessi R, Marigo JJ, Vidoli S (2014) Gradient Damage
Models Coupled with Plasticity and Nucleation of Cohe-
sive Cracks. Archive for Rational Mechanics and Analysis
214(2):575–615

4. Alessi R, Marigo JJ, Vidoli S (2015) Gradient damage
models coupled with plasticity: Variational formulation
and main properties. Mechanics of Materials 80, Part
B(0):351–367

5. Ascione L, Feo L, Fraternali F (2005) Load carrying
capacity of 2D FRP/strengthened masonry structures.
Composites Part B: Engineering 36(8):619–626

6. Callens MG, Gorbatikh L, Verpoest I (2014) Ductile steel
fibre composites with brittle and ductile matrices 61:235–
244

7. Carrara P, Lorenzis LD (2015) A coupled damage-
plasticity model for the cyclic behavior of shear-loaded
interfaces. Journal of the Mechanics and Physics of Solids
85:33–53

8. Czél G, Wisnom MR (2013) Demonstration of pseudo-
ductility in high performance glass/epoxy composites by
hybridisation with thin-ply carbon prepreg. Composites
Part A: Applied Science and Manufacturing 52:23–30

9. Esmaeeli E, Barros J (2015) Flexural strengthening of
RC beams using Hybrid Composite Plate (HCP): Exper-
imental and analytical study. Composites Part B: Engi-
neering 79:604–620

10. Franco A, Royer-Carfagni G (2014) Effective bond length
of FRP stiffeners. International Journal of Non-Linear
Mechanics 60:46–57

11. Fukunaga H, Chou T, Fukuda H (1984) Strength of Inter-
mingled Hybrid Composites. Journal of Reinforced Plas-
tics and Composites 3(2):145–160

12. Grace NF, Ragheb WF, Abdel-Sayed G (2003) Flexu-
ral and shear strengthening of concrete beams using new
triaxially braided ductile fabric. ACI Structural Journal

13. Jalalvand M, Czél G, Wisnom MR (2014) Numerical
modelling of the damage modes in UD thin carbon/glass
hybrid laminates. Composites Science and Technology
94:39–47

14. Jalalvand M, Czél G, Wisnom MR (2015) Damage anal-
ysis of pseudo-ductile thin-ply UD hybrid composites -
A new analytical method. Composites Part A: Applied
Science and Manufacturing 69:83–93

15. Jalalvand M, Czél G, Wisnom MR (2015) Parametric
study of failure mechanisms and optimal configurations
of pseudo-ductile thin- ply UD hybrid composites. Com-
posites Part A: Applied Science and Manufacturing

16. León Baldelli AA, Bourdin B, Marigo JJ, Maurini C
(2012) Fracture and debonding of a thin film on a stiff
substrate: analytical and numerical solutions of a one-
dimensional variational model. Continuum Mechanics
and Thermodynamics 25(2-4):243–268

17. León Baldelli AA, Maurini C, Pham K (2015) A gradient
approach for the macroscopic modeling of superelasticity
in softening shape memory alloys. International Journal
of Solids and Structures 52:45–55



14 Roberto Alessi et al.

18. Manders PW, Bader MG (1981) The strength of hybrid
glass/carbon fibre composites. Journal of Materials Sci-
ence 16(8):2233–2245

19. van der Meer FP, Dávila CG (2013) Cohesive modeling
of transverse cracking in laminates under in-plane load-
ing with a single layer of elements per ply. International
Journal of Solids and Structures 50(20-21):3308–3318

20. Mishra R, Militky J, Gupta N, Pachauri R, Behera B
(2015) Modelling and simulation of earthquake resistant
3D woven textile structural concrete composites. Com-
posites Part B: Engineering 81:91–97

21. de Moura MFSF, Fernandes R, Silva FGA, Dourado
N (2015) Mode II fracture characterization of a hybrid
cork/carbon-epoxy laminate. Composites Part B: Engi-
neering 76:44–51

22. Nguyen H, Mutsuyoshi H, Zatar W (2015) Hybrid FRP-
UHPFRC composite girders: Part 1 - Experimental and
numerical approach. Composite Structures 125:631–652

23. Seo SY, Feo L, Hui D (2013) Bond strength of near
surface-mounted FRP plate for retrofit of concrete struc-
tures. Composite Structures 95:719–727

24. Swolfs Y, Meerten Y, Hine P, Ward I, Verpoest I, Gor-
batikh L (2015) Introducing ductility in hybrid carbon
fibre/self-reinforced composites through control of the
damage mechanisms. Composite Structures 131:259–265

25. Wetherhold R, Lee F (2001) Shaped ductile fibers to im-
prove the toughness of epoxy-matrix composites. Com-
posites Science and Technology 61(4):517–530

26. Wu ZS (2004) Structural Strengthening and Integrity
with Hybrid FRP Composites. In: Proceedings of the
Second International Conference on FRP Composites in
Civil Engineering (CICE), pp 905–912

27. Zweben C (1977) Tensile strength of hybrid composites.
Journal of Materials Science 12(7):1325–1337


	Introduction
	Position of the problem
	Unit-Cell response
	Laminate response
	Results and Discussion
	Conclusions and Perspectives
	Failure-mode function
	Equations of Sec. 3.2

