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Abstract

There are several real spherical models associated with a root arrangement, depending on the choice
of a building set. The connected components of these models are manifolds with corners which can be
glued together to obtain the corresponding real De Concini-Procesi models. In this paper, starting from
any root system Φ with finite Coxeter group W and any W -invariant building set, we describe an explicit
realization of the real spherical model as a union of polytopes (nestohedra) that lie inside the chambers
of the arrangement. The main point of this realization is that the convex hull of these nestohedra is a
larger polytope, a permutonestohedron, equipped with an action of W or also, depending on the building
set, of Aut(Φ). The permutonestohedra are natural generalizations of Kapranov’s permutoassociahedra.

1 Introduction
Let V be an euclidean vector space of dimension n, let Φ ⊂ V be a root system which spans V and has finite
Coxeter group W , and let G be a W -invariant building set associated with Φ (see Section 2 for a definition
of building set).

The main goal of this paper is to provide an explicit linear realization of the permutonestohedron PG(Φ), a
polytope whose face poset was introduced in [20]; this polytope is linked with the geometry of the wonderful
model of the arrangement and is equipped with an action of W or also, depending on the building set, of
Aut(Φ).

Let us briefly describe the framework from which the permutonestohedra arise.
Given a building set G one can construct as in [7] a real and a complex De Concini-Procesi model (resp.

YG(R) and YG), or their ‘spherical’ version, a real model with corners CYG (see [19]).
These models play a relevant role in several fields of mathematical research: subspace and toric arrange-

ments, toric varieties (see for instance [9], [17], [31]), moduli spaces of curves and configuration spaces (see
for instance [13], [26]), box splines and index theory (see the exposition in [8]), discrete geometry (see [14]
for further references).

From the point of view of discrete geometry and combinatorics the spherical model CYG is a particularly
interesting object. In fact CYG has as many connected components as the number of chambers and these
connected components are non linear realizations of some polytopes that belong to the family of nestohedra.
The nestohedra have been defined and studied in [28], [29], [35], and successively in several other papers, due
to the interest of nested sets complexes in combinatorics and geometry (see for instance [16] for applications
to tropical geometry and [4] for applications to the study of Dahmen-Micchelli modules).

Moreover we remark that a suitable gluing of the connected components of CYG produces the model
YG(R), which is therefore presented as a CW complex. If G is W -invariant, YG(R) (as well as YG) inherits
an action of W which gives rise to geometric representations in cohomology.

The permutonestohedron PG(Φ) arises in the middle of this rich algebraic and geometric picture. Its
name comes from the following remarks:
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• some of its facets lie inside the chambers of the arrangement; they are nestohedra, and their union is
a W -invariant linear realization of CYG ; their convex hull is the full permutonestohedron;

• if Φ = An and G is the minimal building set associated to Φ, the permutonestohedron is a realization
of Kapranov’s permutoassociahedron (see [25]).

We remark that a non linear realization in V of CYG (and of a convex body whose face poset is the same as
the face poset of PG(Φ)) was provided in [20].

As we explain in Section 3.3, the linear realization of CYG that we describe in this paper is inspired by
(and generalizes in a way) Stasheff and Shnider’s construction of the associahedron in the Appendix B of
[33].

The main point in our choice of the defining hyperplanes is that the every nestohedron in CYG lies
inside a chamber of the arrangement; furthermore, each of these hyperplanes is invariant with respect to the
action of a parabolic subgroup. These are the reasons why, in the global construction, when we consider the
convex hull of all the nestohedra that lie in the chambers, the extra facets of the permutonestohedron PG(Φ)
appear. These turn out to be combinatorially equivalent to the product of a nestohedron with some smaller
permutonestohedra (see Theorem 6.1).

We notice that when Φ = An1 , as the building set varies, the nestohedra we obtain inside every orthant
are all the nestohedra in the ‘interval simplex-permutohedron’ (see [27]). In particular in the case of the
associahedron our construction coincides with the one in [33], while for the other nestohedra it is analogue
to the constructions in [12] and [11], [3], that are remarkable generalizations of Stasheff and Shnider’s
construction.

In general, once Φ is fixed, the nestohedron which lies inside a chamber depends on G. For instance, the
minimal building set associated to Φ is the building set made by the irreducible subspaces, i.e., the subspaces
spanned by the irreducible root subsystems, while the maximal building set is made by all the subspaces
spanned by some of the roots. Now, if Φ is An, Bn or Cn and G is the minimal building set, the nestohedron
is a n−1 dimensional Stasheff’s associahedron; if Φ is Dn and G is the minimal building set, the nestohedron
is a graph associahedron of type D. For any n-dimensional root system, if G is the maximal building set the
nestohedron is a n − 1 dimensional permutohedron (so in this case our permutonestohedron could also be
called ‘permutopermutohedron’). When the root system is of type An, Bn, Cn, Dn the full poset of invariant
building sets has been described in [21].

As mentioned before, we obtain the permutonestohedron PG(Φ) by taking the convex hull of the nesto-
hedra that lie in the chambers and whose union realizes CYG . From this point of view the construction of
the permutonestohedron is inspired by Reiner and Ziegler construction of Coxeter associahedra in [32], since
these are obtained as the convex hull of some Stasheff’s associahedra that lie inside the chambers. Anyway
we remark that only when Φ = An and G is the minimal building set the permutonestohedron PG(Φ) is com-
binatorially equivalent to a Coxeter associahedron (i.e., in the case of Kapranov’s permutoassociahedron).
For instance in the Bn case the Coxeter associahedron is the convex hull of some n−2 dimensional Stasheff’s
associahedra, while our minimal permutonestohedron is the convex hull of some n−1 dimensional Stasheff’s
associahedra; furthermore, non minimal permutonestohedra are convex hulls of different nestohedra.

We will also focus on the group of isometries of the permutonestohedron PG(Φ): it contains W or
even, depending on the ‘symmetry’ of G, the group Aut(Φ), and we will describe some conditions which
are sufficient to ensure that it is equal to Aut(Φ). We will also point out that a subposet of the minimal
permutonestohedron of type An−1 is equipped with an ‘extended’ action of Sn+1.

Finally, here it is a short outline of this paper. In Section 2 we briefly recall the basic properties of
building sets, nested sets and spherical models, while Section 3 contains the definition of permutonestohedra
and the statement of main theorems, Theorems 3.1 and 3.2, whose proofs can be found respectively in Section
4 and Section 5.

Section 6 is devoted to a presentation of the face poset of the permutonestohedron PG(Φ); this points
out the action of W , since the faces of PG(Φ) are indicized by pairs of the form (coset of W , labelled nested
set). Furthermore, Theorem 6.1 shows that every facet that does not lie inside a chamber is combinatorially
equivalent to the product of a nestohedron with some smaller permutonestohedra. We also show (Corollary
6.2) that PG(Φ) is a simple polytope if and only if G is the maximal building set associated to Φ.
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Figure 1: The maximal permutonestohedron of type B3: inside each chamber of the arrangement there is a
nestohedron (in this case a hexagon, i.e. a two dimensional permutohedron), and the permutonestohedron
is the convex hull of all these nestohedra.

The full group of isometries that leave PG(Φ) invariant is explored in Section 7: if G is invariant with
respect to Aut(Φ) this group contains Aut(Φ), and we describe some natural conditions that are sufficient
to ensure that it is equal to Aut(Φ).

In Section 8 we show how the well know ‘extended’ Sn+1 action on the minimal De Concini-Procesi
model of type An−1 can be lifted to a subposet of the minimal permutonestohedron of type An−1, providing
geometrical realizations of the representations IndSn+1

G Id, where G is any subgroup of the cyclic group of
order n+ 1.

Finally in Section 9 we show some examples and pictures of permutonestohedra and, as an example of
face counting, we compute the f -vectors of the minimal and of the maximal permutonestohedron of type
An.

All the pictures of three-dimensional polytopes (like the one in Figure 1) have been realized using the
mathematical software package polymake ([22]).

2 Building sets, nested sets, nestohedra and spherical models
Let us recall from [7], [6] the definitions of nested set and building set of subspaces; more precisely, we
specialize these definitions to the case we are interested in, i.e. the case when we deal with a central
hyperplane arrangement.

Let A be a central line arrangement in an Euclidean space V . We denote by CA the closure under the
sum of A and by A⊥ the hyperplane arrangement

A⊥ = {A⊥ |A ∈ A}

Definition 2.1. The collection of subspaces G ⊂ CA is called building set associated to A if A ⊂ G and
every element C of CA is the direct sum C = G1⊕G2⊕ . . .⊕Gk of the maximal elements G1, G2, . . . , Gk of
G contained in C. This is called the G-decomposition of C.

Given a hyperplane arrangement A, there are several building sets associated to it. Among these there
always are a maximum and a minimum (with respect to inclusion). The maximum is CA, the minimum is
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the building set of irreducibles. In the case of a root arrangement the building set of irreducibles is the set
of subspaces spanned by the irreducible root subsystems of the given root system (see [34]).

Definition 2.2. Let G be a building set associated to A. A subset S ⊂ G is called (G-) nested, if given a
subset {U1, . . . , Uh} (with h > 1) of pairwise non comparable elements in S, then U1 ⊕ · · · ⊕ Uh /∈ G.

After De Concini and Procesi’s paper [7], nested sets and building sets appeared in the literature, con-
nected with several combinatorial problems. One can see for instance [15], where building sets and nested sets
were defined in the more general context of meet-semilattices, and [10] where the connection with Dowling
lattices was investigated. Other purely combinatorial definitions were used to give rise to the polytopes that
were named nestohedra in [29] and turned out to play a relevant role in discrete mathematics and tropical
geometry. Presentations of nestohedra can be found for instance in [28], [29], [35], [16], [2], [3], [27].

Here we recall, for the convenience of the reader, the combinatorial definitions of building sets and nested
sets as they appear in [28], [29]. One can refer to Section 2 of [27] for a short comparison among various
definitions and notations in the literature.

Definition 2.3. A building set B is a set of subsets of {1, 2, ..., n}, such that:

a) If A,B ∈ B have nonempty intersection, then A ∪B ∈ B.

b) The set {i} belongs to B for every i ∈ {1, 2, ..., n}.

Definition 2.4. A subset S of a building set B is a nested set if and only if the following three conditions
hold:

a) For any I, J ∈ S we have that either I ⊂ J or J ⊂ I or I ∩ J = ∅.

b) Given elements {J1, ..., Jk} (k ≥ 2) of S pairwise not comparable with respect to inclusion, their union
is not in B.

c) S contains all the sets of B that are maximal with respect to inclusion.

The nested set complex N (B) is the poset of all the nested sets of B ordered by inclusion. A nestohedron
PB is a polytope whose face poset, ordered by reverse inclusion, is isomorphic to the nested set complex
N (B).

Let us now consider a ‘geometric’ building set G of subspaces associated with a root arrangement, ac-
cording to the Definition 2.1, and let us suppose that V ∈ G.

Definition 2.5. We will denote by Gfund the building set made by the subspaces in G that are spanned by
some subset of the set of simple roots.

Now Gfund gives rise to a building set in the sense of the Definition 2.3 in the following way: we associate
to a subspace A ∈ Gfund the set of indices of the simple roots contained in it.

Having established this correspondence, the nested sets in the sense of De Concini and Procesi are
nested sets in the sense of the Definition 2.4 provided that they contain V , the maximal subspace in Gfund.
These nested sets form a nested set complex denoted by N (Gfund). The nestohedra that will appear in
our construction, as facets of permutonestohedra, are the nestohedra PGfund associated with the nested set
complexes N (Gfund).

Now let A be, as above, a central line arrangement in an Euclidean space V , and let M(A⊥) be the
complement in V to A⊥. In [19] the following compactifications of M̂(A⊥) =M(A⊥)/R+ were defined, in
the spirit of De Concini-Procesi construction of wonderful models.

Let us denote by S(V ) the n − 1-th dimensional unit sphere in V , and, for every subspace A ⊂ V , let
S(A) = A ∩ S(V ). Let G be a building set associated to A, and let us consider the compact manifold

K = S(V )×
∏
A∈G

S(A)

4



There is an open embedding φ : M̂(A⊥) −→ K which is obtained as a composition of the section s :

M̂(A⊥) 7→ M(A⊥)

s([p]) =
p

|p|
∈ S(V ) ∩M(A⊥)

with the map
M(A⊥) 7→ S(V )×

∏
A∈G

S(A)

that is well defined on each factor.

Definition 2.6. We denote by CYG the closure in K of φ(M̂(A⊥)).

It turns out (see [19]) that CYG is a smooth manifold with corners. Its (not connected) boundary
components are in correspondence with the elements of the building set G, and the intersection of some
boundary components is nonempty if and only if these components correspond to a nested set. We notice
that CYG has as many connected components as the number of chambers ofM(A⊥).

In [20] these connected components were realized inside the chambers, as the complements of a suitable
set of tubular neighbouroods of the subspaces in G⊥, giving rise to some non linear realizations of the
nestohedra PGfund .

3 The construction of permutonestohedra

3.1 Selected hyperplanes
The goal of this section is to give the equations of the hyperplanes that will be used in the definition of the
permutonestohedra.

Let V be as before an euclidean vector space of dimension n with scalar product ( , ). Let us consider a
root system Φ in V with finite Coxeter group W , and a basis of simple roots ∆ = {α1, ..., αn} for Φ. If Φ is
irreducible, we consider in the open fundamental chamber Ch(∆) the vector

δ =
1

2

∑
α∈Φ+

α =

n∑
i=1

ωi

where Φ+ is the set of positive roots and the simple weights ωi are defined by

2(αi, ωi)

(αi, αi)
= δij

(see [1], [24] as general references on root systems and finite Coxeter groups).
If Φ is not irreducible and splits into the irreducible subsystems Φ1,Φ2, . . . ,Φs we put δ =

∑
δΦi where,

for every i, δΦi is the semisum of all the positive roots of Φi.
Let us denote by CΦ the building set of all the subspaces that can be generated as the span of some of

the roots in Φ and by FΦ the building set of all the irreducible subspaces in CΦ. As we recalled in Section
2, FΦ is made by all the subspaces that are spanned by the irreducible root subsystems of Φ.

Let G be a building set associated to the root system Φ which contains V and is W -invariant; when the
root system is of type An, Bn, Cn, Dn these building sets have been classified in [21].

Given A ∈ Gfund − {V }, we will denote by WA the parabolic subgroup generated by the reflections sα
with α ∈ Φ ∩A. We denote by δA the orthogonal projection of δ to A⊥; we have

δA =
1

|WA|
∑
σ∈WA

σ(δ)

and we also write δA = δ − πA where πA belongs to A.
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Remark 3.1. If A ∩Φ is an irreducible root subsystem, we notice that πA is the semisum of all its positive
roots. If A ∩ Φ is not irreducible, and splits into the irreducible subsystems Φ1, ...,Φs, then πA =

∑
πΦi

where πΦi is the semisum of all the positive roots of Φi.
Let I be the set of indices made by the i ∈ {1, 2, ..., n} such that αi ∈ A and let J be the set of indices, in

the complement of I, such that j ∈ J iff (αj , αi) < 0 for some i ∈ I. Then

πA =
∑

i s.t. αi∈A
ωi −

∑
j∈J

cjωj

with all cj > 0. Therefore
δA =

∑
s∈{1,2,...,n}−I

bsωs

with all bs ≥ 1.

Remark 3.2. We put δV = πV = δ. Despite appearances, this notation will not be confusing.

Let us consider two subspaces B ⊂ A in Gfund of dimension j < i respectively and write πA and πB as
non negative linear combinations of the simple roots. We denote by a the maximum coefficient of πA and
by b the minimum coefficient of πB and put RAB = a

b .
We then define Rij as the maximum among all the RAB with A,B as above.

Definition 3.1. A list of positive real numbers ε1 < ε2 < . . . < εn−1 < εn = a will be suitable if εi >
2Rii−1εi−1 for every i = 2, ...., n.

We are now in position to define a set of selected hyperplanes that depend on the choice of a suitable
list ε1 < ε2 < . . . < εn−1 < εn = a and are indicized by the elements of CΦfund . These hyperplanes, together
with their images via the W action, will be the defining hyperplanes of the permutonestohedron PG(Φ).

The motivation for this definition of suitable list will be pointed out in Section 3.3.
We start from:

Definition 3.2. Let us denote by HV the hyperplane

HV = {x ∈ V | (x, δ) = a}

and by HSV the closed half-space that contains the origin and whose boundary is HV .

For every i = 1, 2, ..., n we call vi the intersection HV ∩ < ωi >; all the vectors vi lie on the hyperplane
HV and their convex hull, as it is well known, is a (n− 1)- simplex.

Definition 3.3. For every A ∈ Gfund − {V }, we define the hyperplane HA as

HA = {x ∈ V | (x, δA) = a− εdim A}

and we denote by HSA the closed half-space that contains the origin and whose boundary is HA.

Now we have to define the hyperplanes indicized by the elements of CΦfund − Gfund:

Definition 3.4. Let B be a subspace in CΦfund − Gfund, i.e. a subspace which does not belong to Gfund
and is generated by some of the simple roots, and let B = A1 ⊕ A2 ⊕ · · · ⊕ Ak where A1, A2, ..., Ak is its
Gfund-decomposition. Then we put

HB = {x ∈ V | (x, δB) = a− εdim A1 − εdim A2 − · · · − εdim Ak}

where δB = δ −
∑k
i=1 πAi . We denote by HSB the closed half-space that contains the origin and whose

boundary is HB.
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3.2 Definition of the permutonestohedra
This section starts with the definition of the permutonestohedron PG(Φ) as the intersection of closed half-
spaces. We then state two theorems that show that the permutonestohedron is a convex hull of nestohedra
and explicitly determine its vertices.

Definition 3.5. The permutonestohedron PG(Φ) is the polytope given by the intersection of the half-spaces
σHSA and of the half-spaces σHSB, for all σ ∈W , A ∈ Gfund and B ∈ CΦfund − Gfund.

Remark 3.3. We are in fact defining infinite permutonestohedra, depending on the choice of a suitable list
ε1 < ε2 < . . . < εn−1 < εn = a, so we should write PG(Φ, ε1, ε2, . . . , εn) instead than PG(Φ). We use the
shorter notation PG(Φ) since in this paper the dependence on the suitable list will be relevant only when we
will deal with the automorphism group in Section 7, where we will take care of avoiding ambiguities.

Now, given a subset T of Gfund containing V and of cardinality n, with the property that the vectors
{δA |A ∈ T } are linearly independent, we denote by vT the vector defined by

vT =
⋂
A∈T

HA

As we will observe in Proposition 4.2, every maximal nested set S of Gfund has the above mentioned
property.

The following theorems will be proven in Section 4 and Section 5.

Theorem 3.1. The intersection of HV with all the half-spaces HSA, for A ∈ Gfund − {V }, is a realization
of the nestohedron PGfund which lies in the open fundamental chamber. Its vertices are the vectors vS where
S ranges among the maximal nested sets in Gfund.

Theorem 3.2. The permutonestohedron PG(Φ) coincides with the convex hull of all the nestohedra σPGfund
(σ ∈ W ) that lie inside the open chambers. Its vertices are σvS , where σ ∈ W and S ranges among the
maximal nested sets in Gfund.

3.3 Motivations for the choice of suitable lists
In the proofs of Theorems 3.1 and 3.2 the properties of suitable lists will play a crucial role. This is why we
devote this section to suitable lists: we will prove a key lemma and we will show how these lists generalize
Stasheff and Shnider’s choice of parameters in their construction of the associahedron in [33].

The following lemma introduces an important inequality that is satisfied by suitable lists and is tied to
the combinatorics of root systems.

Lemma 3.1. Let ε1 < ε2 < . . . < εn−1 < εn = a be a suitable list of positive numbers. Let B be a subspace
in Gfund that can be expressed as a sum of some subspaces B1, B2, ..., Br in Gfund (r > 1), and let this sum
be non-redundant, i.e. if we remove anyone of the subspaces Bi the sum of the others is strictly included in
B. Then we have

εdim B >

r∑
i=1

Rdim B
dim Biεdim Bi

Proof. Let m = dim B. We notice that by definition of the numbers Rij we have:

r∑
i=1

Rmdim BiπBi m πB

where α m β means that the difference α − β can be expressed as a non negative linear combination of the
simple roots. Let m− k be the maximum among the dimensions of the Bi’s. Then r ≤ k+ 1 because of the
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non-redundancy of the Bi’s: anyone of the Bi’s contains at least a simple root which is not contained in the
others. Now εm > 2Rmm−1εm−1 by definition, and then recursively we obtain

εm > 2kRmm−1R
m−1
m−2 · · ·R

m−k+1
m−k εm−k

Since Rmm−1R
m−1
m−2 · · ·R

m−k+1
m−k ≥ Rmm−k and 2k ≥ k + 1 (when k ≥ 1), this implies:

εm > 2kRmm−kεm−k ≥ (k + 1)Rmm−kεm−k ≥ rRmm−kεm−k

The final inequality

rRmm−kεm−k ≥
r∑
i=1

Rmdim Biεdim Bi

is now straightforward.

Depending on Φ and on the building set G, there may be lists of numbers εi that are not suitable but
can be used to construct permutonestohedra, since they ensure that the claim of the above lemma is true.

More generally, we could construct permutonestohedra using the following suitable functions: first, for
every set of subspaces B,B1, B2, ..., Br as in the statement of the Lemma 3.1, let us choose numbers RBBi
such that

r∑
i=1

RBBiπBi m πB

Definition 3.6. A function ε : G 7→ R+ is suitable if, for every set of subspaces B,B1, B2, ..., Br in Gfund
as above and for every w ∈W , it satisfies

ε(wB) >

r∑
i=1

RBBiε(wBi)

This is the essential property we need in our construction of permutonestohedra. As it is shown by the
Lemma 3.1, given a suitable list of numbers one obtains a suitable function by putting ε(C) = εdim C for
every C ∈ G.

We chose to use suitable lists to make our construction more concrete and to obtain more symmetry: since
the associated suitable function depends only on the dimension of the subspaces, if G is Aut(Φ)-invariant the
automorphism group of the permutonestohedron includes Aut(Φ), as we will show in Section 7. Anyway, the
definition of the hyperplanes HA, HB , and the proofs of Theorem 3.1 and Theorem 3.2 in the next sections
could be repeated almost verbatim using a suitable function instead of a suitable list.

A further interesting aspect of suitable lists and suitable functions is illustrated by the example of the
root system An1 , that corresponds to the boolean arrangement.

In this case our definition of suitable list consists in the condition εi > 2εi−1 for every i > 1. As for
suitable functions, in their definition we can choose all the numbers RBC equal to 1. Now let us number
from 1 to n the positive roots of An1 . Then let us denote by G′ the W = Zn2 -invariant building set made
by the subspaces that are spanned by a set of positive roots whose associated numbers are an interval in
[1, ..., n]. For this G′ we have G′ = G′fund and the corresponding nestohedron PG′fund that we obtain in the
fundamental chamber is a Stasheff’s associahedron. In fact in this case one immediately checks that our
suitable functions are the same as the suitable functions used by Stasheff and Shnider in their construction
of the associahedron in Appendix B of [33].

In Section 9 of [12] Došen and Petrić describe a generalization of Stasheff and Shnider’s construction to
all the nestohedra that are in the ‘interval simplex-permutohedron’. These nestohedra are exactly all the
nestohedra obtained as G varies among the Zn2 -invariant building sets associated to An1 and our suitable
functions for this root system are compatible with the ones described in [12].
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4 The nestohedron PGfund

This section is devoted to the proof of Theorem 3.1. We will give a self-contained proof that the hyperplanes
HA for A ∈ Gfund define a realization of the nestohedron PGfund ; as we have remarked in Section 3.3, our
construction is a generalization of Stasheff and Shnider’s construction of the associahedron in Appendix B
of [33]. We notice that other constructions of nestohedra can be found for instance in [2], [3], [12], [27], [28],
[29], [35].

Our choice of the hyperplanes ensures that the resulting nestohedron lies inside a chamber of the ar-
rangement. Furthermore for every A ∈ Gfund the hyperplane HA is fixed by the action of WA. Thanks to
these properties when we pass to the global construction, and consider the convex hull of all the nestohedra
which lie in the chambers, the extra facets of the permutonestohedron PG(Φ) appear.

Proposition 4.1. Let us consider a subset T of Gfund containing V and of cardinality n such that the
vectors {δA |A ∈ T } are linearly independent: if T is not nested the vector vT does not belong to PGfund .

Proof. If vT doesn’t belong to the open fundamental chamber, it does not belong to PGfund . In fact let us
write a vector x ∈ PGfund in terms of the basis ωi, x =

∑
biωi; since x belongs to HS<αi> for every simple

root αi ∈ ∆, we have (x, π<αi>) ≥ ε1 > 0, which implies bi > 0 for every i. 1

Let us then consider the case when vT lies in the open fundamental chamber.
Let B be a subspace in Gfund that can be expressed as a sum of some (more than 1) subspaces in T .

Such B exists since T is not nested. Now let B = B1 + · · · + Br with r > 1, {B1, B2, ..., Br} ⊂ T , be a
non-redundant sum (see the statement of Lemma 3.1).

First we show that B /∈ T . Since vT is in the open fundamental chamber, it can be written as vT =∑
i=1,...n biωi with all the coefficients bi > 0. Then if B ∈ T we have (vT , πB) = εdim B and (vT , πBi) =

εdim Bi . According to the definition of the numbers Rij we have that∑
i=1,...,r

Rdim B
dim BiπBi m πB

Then we deduce that (vT ,
∑
i=1,...,r R

dim B
dim Bi

πBi) ≥ (vT , πB), which is a contradiction since εdim B >∑
i=1,...,r R

dim B
dim Bi

εdim Bi by Lemma 3.1.
So we can assume B /∈ T . We will show that vT /∈ HSB .
We notice that

HSB ∩HV = {x ∈ HV | (x, δB) ≤ a− εdim B} =

= {x ∈ HV | (x, δ − πB) ≤ a− εdim B} = {x ∈ HV | (x, πB) ≥ εdim B}

Let us then check if vT belongs to HSB . As we observed before we have

(vT , πB) ≤ (vT ,
∑

j=1,...,r

Rdim B
dim BiπBj ) =

∑
j=1,...,r

Rdim B
dim Biεdim Bj

Now Lemma 3.1 implies (vT , πB) < εdim B , which proves that vT does not belong to HSB (so it does not
belong to PGfund).

Proposition 4.2. If S is a nested set of Gfund the vectors {δA |A ∈ S} are linearly independent. If S is a
maximal nested set, the vectors {δA | A ∈ S} are a basis of V and the vectors vS lie inside the fundamental
chamber.

1This has the following interpretation: after truncating the starting simplex (the one generated in HV by the vectors vi,
see Section 3.2) by the hyperplanes H<αi> we have a polytope which lies in the fundamental chamber and which, after other
truncations, will become PGfund .
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Proof. It is sufficient to prove the linear independence for maximal nested sets, since every nested set can
be completed to a maximal nested set.

Let then S be a maximal nested set (therefore it contains V ). As we have already observed, the vectors
{δA |A ∈ S} are linearly independent if and only if the vectors {πA |A ∈ S} are linearly independent. If these
vectors are not linearly independent, since for every A the vector πA belongs to A, we can find a minimal
C ∈ S such that the vectors {πD | D ∈ S, D ⊆ C} are not linearly independent. Therefore we have, by
nestedness of S and by minimality of C, a relation of the form

πC =
∑

D∈S,D(C
γDπD

This is a contradiction, since C contains a simple root αi which is not contained in any D ∈ S, D ( C 2:
when πC is written in terms of the simple roots αj , its i − th coefficient is >0, while when we write πD
(D ∈ S, D ( C) in terms of the simple roots the i− th coefficient is equal to 0.

This proves the linear independence, and therefore vS is well defined.
Let us now prove that vS lies in the fundamental chamber. Let us consider the graph associated to S.

This graph is a tree and coincides with the Hasse diagram of the poset induced by the inclusion relation.
Therefore it can be considered as an oriented rooted tree: the root is V and the orientation goes from the
root to the leaves, that are the minimal subspaces of S. We observe that we can partition the set of vertices
of the tree into levels: level 0 is made by the leaves, and in general, level k is made by the vertices v such
that the maximal length of an oriented path that connects v to a leaf is k.

Let vS =
∑n
i=1 biωi. Since S is maximal, it contains at least a subspace of dimension 1. In particular,

all the minimal subspaces, i.e. the leaves of the graph, have dimension 1. Let < αi1 >, ..., < αir > be
the subspaces of dimension 1 in S. From the relation (vS , π<αij>) = ε1 we deduce that bij > 0 for every
j = 1, . . . , r. Now if A is a subspace which in the graph is in level 1, then it contains some of the leaves,
say < αi1 >, ..., < αiq >. By the maximality of S we deduce that dim A = q + 1 and we can write
A =< αh, αi1 , ..., αiq > where αh is the only simple root which belongs to A but does not belong to the
leaves of the graph. Then

πA = chαh +

q∑
j=1

ajπ<αij>

with ch > 0 and aj ≤ Rq+1
1 for every j = 1, ..., q. Therefore

(vS , πA) = εq+1 = ch(vS , αh) +

q∑
j=1

aj(vS , π<αij>) ≤ ch(vS , αh) + qRq+1
1 ε1

From Lemma 3.1 we know that
εq+1 > (q + 1)Rq+1

1 ε1

Then ch(vS , αh) must be > 0 and from this we deduce, given that ch > 0 and (vS , αh) is a positive multiple
of bh, that bh > 0. In a similar way, by induction on the level, we prove that all the coefficients bi are > 0.

Proposition 4.3. Let us consider a maximal nested set S of Gfund. For every A ∈ Gfund−S the vector vS
belongs to the open part of HSA, therefore vS is a vertex of PGfund .

Proof. We know by definition that vS belongs to the hyperplanes HΓ for every Γ ∈ S, therefore to prove the
claim it is sufficient to show that for every A ∈ Gfund − S the vector vS belongs to the open part of HSA.

The set {A} ∪ S is not nested since S is a maximal nested set and A doesn’t belong to S.
Let C be the minimal element in S which strictly contains A (it could be C = V ). We observe that there

is one (and only one, by the maximality of S) simple root αi which belongs to C but doesn’t belong to any
2Otherwise C would be equal to the sum of the subspaces D, and this would contradict the nestedness of S.
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K ∈ S such that K ( C. Then αi must belong to A: if αi /∈ A, we have A ⊆ T =
∑
K∈S,K(C,K∩A 6={0}K.

We notice that T strictly includes the subspaces K such that K ∈ S,K ( C,K ∩ A 6= {0} because of the
minimality of C. Now, since A + T ∈ Gfund3 this implies that T ∈ Gfund which contradicts the nestedness
of S.

Since αi ∈ A we can find a subset I of {K ∈ S |K ( C} such that

C = A+
∑
K∈I

K

and the sum is non-redundant. Then we have

Rdim C
dim AπA +

∑
K∈I

Rdim C
dim KπK m πC

which implies

πA m
1

Rdim C
dim A

(
πC −

∑
K∈I

Rdim C
dim KπK

)
Now since vS belongs to the open fundamental chamber (Proposition 4.2) we have

(vS , πA) ≥ 1

Rdim C
dim A

(
εdim C −

∑
K∈I

Rdim C
dim Kεdim K

)

We observe that vS belongs to the open part of HSA if and only (vS , πA) > εdim A; this inequality is verified
since, by Lemma 3.1 we have:

εdim C > Rdim C
dim Aεdim A +

∑
K∈I

Rdim C
dim Kεdim K

The proof of Theorem 3.1 is an immediate consequence of the Propositions 4.1, 4.2, 4.3: the faces of
dimension i are in bijection with the nested sets of cardinality n− i containing V .

5 From nestohedra to the permutonestohedron
This section is devoted to the proof of Theorem 3.2. We will split the proof in two steps, given by following
propositions:

Proposition 5.1. For every σ ∈ W , for every A ∈ Gfund − {V } and for every maximal nested set S of
Gfund, we have

(δA, σvS) ≤ (δA, vS)

and the equality holds if and only if σ ∈WA. This means that σvS belongs to HSA, and it lies in HA if and
only if A ∈ S and σ ∈WA; more precisely, HA is the affine span of such vectors. Furthermore we have

(δ, σvS) < (δ, vS)

for every σ ∈W different from the identity.
3For any K in the sum, A +K ∈ Gfund since A,K ∈ Gfund and A ∩K 6= {0}; for the same reason, if we take K1 6= K in

the sum we have A+K +K1 ∈ Gfund, and so on..
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Proof. Let us consider A ∈ Gfund−{V } (in the case A = V the proof is similar). Let I = {αi1 , αi2 , . . . , αik}
be the set of simple roots that belong to A. Then δA =

∑
i∈∆−I biωi with all the bi > 0 (Remark 3.1).

Since vS lies inside the open fundamental chamber, we can write vS =
∑
j∈∆ ajωj with all the aj > 0.

As it is well known (see for instance [1], [24]),

σ(ωi) = ωi −
si∑
t=1

βit

where the βit are positive roots and si ∈ N: as a notation, when σ(ωi) = ωi we put si = 0 and the sum is
empty. Then we have:

(δA, σvS) = (
∑

i∈∆−I
biωi,

∑
j∈∆

aj(ωj −
sj∑
t=1

βjt)) =

= (δA, vS)− (
∑

i∈∆−I
biωi,

∑
j,t

βjt)

The scalar product
(
∑

i∈∆−I
biωi,

∑
j,t

βjt)

is easily seen to be ≥ 0 since (ωi, βjt) ≥ 0.
If σ ∈WA then all the roots βjt belong to A, therefore

(
∑

i∈∆−I
biωi,

∑
j,t

βjt) = 0.

Otherwise, at least one of the positive roots, say βrs, does not belong to A,4 and we have:

(
∑

i∈∆−I
biωi, βrs) > 0

It remains to prove that HA is the affine span of the vectors σvS with σ ∈ WA and A ∈ S. The vectors vS
with A ∈ S are all the vertices of a (n − 2)-dimensional face of the nestohedron PGfund . The affine span of
this face is the subspace T whose elements satisfy the relations (x, δ) = a and (x, πA) = εdim A. Then T +A
coincides with the hyperplane HA defined by the relation (x, δA) = a− εdim A.

Now the vectors σvS with A ⊂ S and σ ∈ WA lie on T + A and, since for every simple root αi which
belongs to A, we have that σαivS − vS is a non zero scalar multiple of αi, the affine span of these vectors
coincides with T +A = HA.

Lemma 5.1. Let B be a subspace which does not belong to Gfund and is generated by some of the simple
roots and let B = A1 ⊕ A2 ⊕ · · · ⊕ Ak be its Gfund-decomposition. Then the subspaces A1, A2, · · · , Ak are
pairwise orthogonal. The vector δB = δ −

∑k
i=1 πAi of Definition 3.4 can be obtained as

δB =
1

|WA1
×WA2

× · · · ×WAk |
∑

σ∈WA1
×WA2

×···×WAk

σδ

4In fact let σ = σαi1 σαi2 · · ·σαik be a reduced expression for σ, and let r be the smallest index such that αir does not
belong to I. Then for every j the roots βjt which appear in the proof are among the roots:

σαi1 σαi2 · · ·σαik−1
αik , σαi1 σαi2 · · ·σαik−2

αik−1
, . . . , σαi1 σαi2 · · ·σαir−1

αir , ....

In particular the root σαi1 σαi2 · · ·σαir−1
αir is one of the roots βr,t and it satisfies

(σαi1 σαi2 · · ·σαir−1
αir , ωir ) = (αir , ωir ) > 0
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Furthermore, if I is the set of indices given by the i ∈ {1, 2, ..., n} such that αi ∈ B, we have

δB =
∑

s∈{1,2,...,n}−I

csωs

with all cs > 0.

Proof. As for the orthogonality of the subspaces Ai, we notice that if two simple roots α, β satisfy α ∈ A1,
β ∈ A2 and (α, β) < 0, then < α, β > is an irreducible subspace. Therefore it belongs to Gfund, and this
contradicts that B = A1 ⊕A2 ⊕ · · · ⊕Ak is a Gfund-decomposition. The claims on δB easily follow from the
orthogonality of the subspaces Ai and from the formula for the vectors πA in Remark 3.1.

Proposition 5.2. Let B be a subspace which does not belong to Gfund and is generated by some of the simple
roots and let B = A1 ⊕ A2 ⊕ · · · ⊕ Ak be its Gfund-decomposition. Then for every σ ∈ W and for every
maximal nested set S of Gfund the vertices σvS lie in the half-space HSB. They lie on the hyperplane HB

if and only if {A1, A2, ..., Ak} ⊂ S and σ ∈ WA1
×WA2

× · · · ×WAk and HB is the affine span of all such
vertices.

Proof. The vertices vS with {A1, A2, ..., Ak} ⊂ S are all the vertices of a (n − 1 − k)-dimensional face of
the nestohedron PGfund . The affine span of this face is the subspace T whose elements satisfy the relations
(x, δ) = a and (x, πAj ) = εdim Aj for every j = 1, ..., k. Then T +B is the hyperplane5 HB whose elements
are subject to the relation (x, δB) = a− εdim A1 − εdim A2 − · · · − εdim Ak .

As shown in Lemma 5.1, δB is a scalar multiple of
∑
σ∈WA1

×WA2
×···×WAk

σδ. Therefore for every σ ∈
WA1 ×WA2 × · · · ×WAk we have

(σvS , δB) = (vS , σ
−1δB) = (vS , δB)

and the vectors σvS with σ as above lie on the hyperplane HB .
Their affine span is exactly T +B = HB since the vertices vS span T and, for every simple root αi which

belongs to B = A1 ⊕A2 ⊕ · · · ⊕Ak, we have that σαivS − vS is a non zero scalar multiple of αi.
Let us now prove that for every γ ∈ W and for every maximal nested set T in Gfund which does not

contain {A1, A2, ..., Ak} we have:

(γvT , δB) < a− εdim A1 − εdim A2 − · · · − εdim Ak

This inequality is equivalent to

(γvT , πB) > εdim A1 + εdim A2 + · · ·+ εdim Ak

where πB = δ − δB = πA1
+ · · ·+ πAk . We first prove this when γ = e.

For every i = 1, 2, ..., k let Ci be the minimal subspace in T which contains Ai. We notice that at least
for one index j we have Cj 6= Aj because T does not contain {A1, A2, ..., Ak}. Then as in the proof of
Proposition 4.3 we deduce that (vT , πAj ) > εdim Aj because the list of the numbers εj is suitable. This easily
leads to prove that (vT , πB) > εdim A1 + εdim A2 + · · ·+ εdim Ak .

When γ 6= e, since δB =
∑
i s.t.αi /∈B ciωi with all ci > 0 (Lemma 5.1) we can conclude, as in the first

part of the proof of Proposition 5.1, that

(γvT , δB) ≤ (vT , δB).

It remains to prove the claim when the maximal nested set T contains {A1, A2, ..., Ak} but γ /∈ WA1
×

WA2
× · · · ×WAk ; this is essentially the same reasoning as in the second part of the proof of Proposition

5.1.

Propositions 5.1 and 5.2 determine the vertices of the permutonestohedron and prove Theorem 3.2.
5One can check that the dimension of (T − vS) + B is equal to n − 1 by checking that the dimension of (T − vS) ∩ B is

dim B − k. In fact a vector in B belongs to (T − vS) if and only if it satisfies the independent equations (x, πAj ) = 0 for every
j = 1, ..., k (from Lemma 5.1 one deduces that the equation (x, δ) = 0 is dependent on these for the vectors in B).
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6 The face poset of the permutonestohedron
In this section we will give a description of the full face poset of the permutonestohedron. We will im-
prove and complete the description that was first sketched in [20], where a non linear realization of the
permutonestohedron appeared.

The faces of PG(Φ) are in bijective correspondence with the pairs (σH,S), where:

• S is a nested set of Gfund that contains V and has labels attached to its minimal elements: if A is a
minimal element, its label is either the subgroup WA of W or the trivial subgroup {e}. For brevity in
the sequel we will omit to write the label {e} and we will write A to indicate that A is labelled by WA;

• σH is a coset of W , where H is the subgroup of W given by the direct product of all the labels.

This bijective correspondence is motivated in the following way: to obtain the face represented by (σH,S)
one starts from the face F of the nestohedron P (Gfund) which is associated with the nested set S. Then one
considers all the images of this face under the action of the elements of H and takes their convex hull. This
gives a face F ′ of the permutonestohedron which intersects the fundamental chamber (see Proposition 6.1
below). Then σF ′ is the face associated with the pair (σH,S).

Proposition 6.1. Let S be a nested set of Gfund which contains V and has labels attached to its minimal
elements, with at least one nontrivial label. Let A1,A2,...,Ak the subset of its minimal elements that have a
nontrivial label and let H = WA1 ×WA2 × · · · ×WAk . Let us then consider the face F of the nestohedron
P (Gfund) associated with S, and let F ′ be the convex hull of all the faces hF with h ∈ H. Then F ′ is the
(|S| − k)-codimensional face of PG(Φ) determined by the intersection of the defining hyperplanes associated
with A1 ⊕A2 ⊕ · · · ⊕Ak and B + (A1 ⊕A2 ⊕ · · · ⊕Ak) for every B ∈ S − {V,A1, A2, ..., Ak}.

Proof. First we observe that for every B ∈ S −{V,A1, A2, ..., Ak} the sum B+ (A1⊕A2⊕· · ·⊕Ak) is equal,
by nestedness, to B ⊕Ai1 ⊕ · · · ⊕Air where {Ai1 , . . . , Air} is a (possibly empty) subset of {A1, A2, ..., Ak};
if {Ai1 , . . . , Air} is not empty then the corresponding space is HB⊕Ai1⊕···⊕Air , otherwise it is HB . In both
cases it is one of the defining hyperplanes of the permutonestohedron.

Let us then denote by L the face of the permutonestohedron determined by the intersection of the defining
hyperplanes mentioned in the claim.

It is straightforward to check, using Propositions 5.1 and 5.2, that the set of vertices of L coincides with
the set of all the vertices which belong to ∪h∈HhF .

Therefore L = F ′; now, applying an argument analogue to the one of the proof of Proposition 5.2 one
checks that the affine span of the vertices in F ′ coincides with the subspace < F > +(A1 ⊕ A2 ⊕ · · · ⊕ Ak)
that has codimension |S| − k (here < F > denotes the affine span of F ).

The pictures in Figure 2 and Figure 3 illustrate, in the case of the permutoassociahedron PFA3
(A3), the

correspondence between faces and pairs described above.
From now on we will denote a face by its corresponding pair; as an immediate consequence of Proposition

6.1 we have:

Corollary 6.1. The dimension of the face (σH,S) is given by n−|S|+ l where l is the number of nontrivial
labels.

Remark 6.1. For instance, (W, {V }) is the full permutonestohedron. The nestohedra inside the chambers
correspond to the pairs

(σ{e}, {V })

for every σ ∈W , while the other facets, the facets that ‘cross some of the chambers’, correspond to

(σWA1
×WA2

× · · · ×WAk , {V,A1, A2, . . . , Ak})

Here the nested set on the right is made by V and by the proper subspaces A1, A2, . . . , Ak that are all
minimal and with non trivial label.
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Figure 2: Some planar pictures of the portion of PFA3
(A3) which is around the fundamental chamber:

the dotted lines represent the hyperplanes which intersect the closed fundamental chamber, as indicated
in the picture on the left. In the picture on the left, the thick arrows indicate respectively the vertex
({e}, {V,< α1 >,< α3 >}) and the edge ({e}, {V,< α1, α2 >}). In the picture in the middle the thick arrow
indicates the edge (W<α1>, {V,< α1 >,< α3 >}). In the picture on the right the thick arrow indicates the
facet (W<α1> ×W<α3>, {V,< α1 >,< α3 >}).

The following corollary points out that, once Φ is fixed, only the maximal permutonestohedron PCΦ(Φ)
is a simple polytope.

Corollary 6.2. A vertex vS in PGfund belongs to exactly n facets of PG(Φ) if and only if S has only one
minimal element. Therefore the polytope PG(Φ) is simple if and only if G is the maximal building set CΦ.

Proof. First we observe that a nested set S in Gfund has only one minimal element if and only if it is linearly
ordered.

Then we notice that Proposition 6.1 can be used to determine all the facets that contain vS . These are
the facets

(σWA1
×WA2

× · · · ×WAk , {V,A1, A2, . . . , Ak})
where {V,A1, A2, . . . , Ak} is a nested subset of S and the Ai are minimal (we are including the case k = 0,
i.e., the face ({e}, {V })). If S is not linearly ordered these facets are more than n, while if S is linearly
ordered they are exactly n.

To finish the proof we remark that if G is not the maximal building set CΦ there exist non linearly ordered
G-nested sets: to obtain a non linearly ordered nested set made by two elements it is sufficient to take two
subspaces A,B ∈ G whose sum is direct and doesn’t belong to G. As an immediate consequence, if G is not
the maximal building set associated to Φ there exists a maximal nested set S in Gfund that is not linearly
ordered.

We now focus on the facets that cross the chambers: they are combinatorially equivalent to a product of
a nestohedron with some permutonestohedra. More precisely, let us consider the facet

(σWA1
×WA2

× · · · ×WAk , {V,A1, A2, . . . , Ak})

and denote by GAi the subset of G given by the subspaces which are included in Ai. This is a building set
associated with the root system Φ ∩ Ai. Furthermore, let us denote A1 ⊕ A2 ⊕ · · · ⊕ Ak by D and consider
the building set G in V/D given by

G = {(C +D)/D | C ∈ Gfund}
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Figure 3: Again some planar pictures of the portion of PFA3
(A3) which is around the fundamental cham-

ber. In the picture on the left, the thick arrow indicates the facet (W<α1,α2>, {V,< α1, α2 >}). In the
picture in the middle the thick arrows indicate respectively the edge ({e}, {V,< α1 >}) and the facet
(W<α1>, {V,< α1 >}). In the picture on the right the thick arrow indicates the edge (W<α2>, {V,< α2 >,<
α2, α3 >}).

According to the notation in Section 2 we call PG the nestohedron associated with G.

Theorem 6.1. The facet (σWA1×WA2×· · ·×WAk , {V,A1, A2, . . . , Ak}) of PG(Φ) is combinatorially equiv-
alent to the product6

PG × PGA1 (Φ ∩A1)× · · · × PGAk (Φ ∩Ak)

Proof. Let us show how to associate to a face (σH,S) of (σWA1
×WA2

× · · · ×WAk , {V,A1, A2, . . . , Ak}) a
face in the product

PG × PGA1 (Φ ∩A1)× · · · × PGAk (Φ ∩Ak)

We remark that

a) S ⊂ Gfund is a labelled nested set that contains V,A1, A2, . . . , Ak;

b) σ = σ1σ2 · · ·σk with σi ∈WAi ;

c) H is a subgroup of WA1
×WA2

× · · · ×WAk that can be expressed as a product of WAij for some
minimal subspaces Aij ∈ S (i = 1, ..., k and, for every i, Aij ⊂ Ai and the index j ranges from 0 to a
natural number si, with the convention that WAi0 is the trivial group).

Then we associate to (σH,S):

• the face of PG which corresponds to the nested set S = {K +D/D |K ∈ S} of G;

• for every i = 1, ..., k, the face

(σiWAi1 ×WAi2 × · · · ×WAisi
,SAi)

of PGAi (Φ ∩ Ai), where SAi is the subset of S given by the subspaces which are included into Ai and
the labelled subspaces of S keep their label in SAi .

The above described map is easily shown to be bijective, and, using Proposition 6.1, a poset isomorphism.

6Here we are considering the well defined product of combinatorial polytopes.
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As a corollary of Proposition 6.1 and Theorem 6.1, we conclude this section with an explicit description
of the order relation on the face poset of PG(Φ).

Corollary 6.3. Given two faces (σ′H ′,S ′) and (σH,S) in the face poset of PG(Φ) we have

(σ′H ′,S ′) < (σH,S)

if and only if σ′H ′ ⊆ σH and S ′ is obtained from S by a composition of some of the following moves:

• adding a subspace which is not minimal, i.e. it contains some of the subspaces in S;

• adding a subspace A, minimal in S ′, with trivial label and with the property that A is not included in
any of the minimal subspaces of S, or it is included in a minimal subspace B of S which is labelled by
{e}; in the latter case B loses its label;

• adding some subspaces A1, .., Ak that are minimal in S ′, all with nontrivial label, and all included in a
minimal subspace B of S which was labelled by WB and loses its label;

• changing the non trivial label of a minimal subspace into the trivial label.

7 The automorphism group
In this section we study the automorphism group Aut(PG(Φ)), i.e. the group of the isometries of V that
send PG(Φ) onto itself. We adopt here the following normalization of the root system Φ: if Φ is made by
two or more irreducible components, we impose that all the short roots have the same length7.

Let Aut(Φ) be the group of the automorphisms of V that leave Φ invariant. With the above normalization
its elements are isometries.

Theorem 7.1. Let us suppose that G is Aut(Φ) invariant. Then Aut(Φ) is a subgroup of Aut(PG(Φ)). If
Aut(PG(Φ)) leaves invariant the set of the nestohedra {wPGfund | w ∈W} then Aut(Φ) = Aut(PG(Φ)).

Remark 7.1. Until now in this paper we have used the notations wvS , wHA..., without parentheses, to
indicate the action of an element w of the Weyl group. We feel that in the following proof this could be
confusing, since the product of elements in the automorphism group comes into play, so we decided, for the
sake of clarity, to put parentheses here.

Proof. To prove the first part of the claim we will show that an element ϕ ∈ Aut(Φ) permutes the defining
hyperplanes of the permutonestohedron.

Since Aut(Φ) is the semidirect product of the Weyl group with the automorphism group Γ of the Dynkin
diagram of Φ, we can write ϕ = wγ where w ∈W and γ ∈ Γ.

It is therefore sufficient to show that ϕ sends the hyperplanes HV , HA, HB , for any A ∈ Gfund, B ∈
CΦfund − Gfund, to other defining hyperplanes of PG(Φ).

Now γ(δ) = δ since γ leaves invariant the set of the positive roots. Then ϕ(δ) = w(δ), and therefore
ϕ(HV ) = w(HV ) since the vectors in ϕ(HV ) satisfy the defining equation of w(HV ) which is (x,wδ) = a.

Then we show that for any A ∈ Gfund we have ϕ(HA) = w(Hγ(A)): since δA = δ − πA we have
γ(δA) = δ − γ(πA), but γ(πA) is the semisum of all the positive roots contained in γ(A), thus it is equal to
πγ(A), therefore γ(δA) = δγ(A). It is now immediate to prove that ϕ(HA) satisfies the defining equation of
w(Hγ(A)).

The same reasoning applies to prove that, for B ∈ CΦfund − Gfund we have ϕ(HB) = w(Hγ(B)).
For the second part of the claim, let us suppose that θ ∈ Aut(PG(Φ)) sends PGfund to w(PGfund). It is

sufficient to show that w−1θ belongs to Aut(Φ). First we observe that since w−1θ sends HV onto itself and
is an isometry we have w−1θ(δ) = δ. Now, let us consider a simple root α ∈ ∆ and let S be a nested set
which contains < α >, so that vS ∈ H<α>.

7If all the roots of an irreducible component have the same length we consider them short roots.
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We observe that w−1θ(vS) belongs to PGfund ; it also belongs to H<β> where β is a simple root. In fact if
we denote by F the facet of PGfund determined by a hyperplane HA with A ∈ Gfund (the corresponding pair
in the poset is ({e}, {V,A})), and by F the facet of the permutonestohedron different from PGfund which
contains F (the corresponding pair in the poset is (WA, {V,A})), we notice that in F there are exactly |WA|
(n − 2)-dimensional faces which belong to one of the nestohedra {w(PGfund) | w ∈ W}. As a consequence,
under our hypothesis, also the the facet w−1θ(F ) has |WA| (n− 2)-dimensional faces which belong to one of
the nestohedra {w(PGfund) | w ∈W}.

Moreover we observe that A is the span of a simple root if and only if |WA| = 2.
Therefore in our case we have A =< α > and w−1θ(F ) has two (n− 2)-dimensional faces which belong

to one of the nestohedra {w(PGfund) |w ∈W}. This means that w−1θ(F ) is a facet of PGfund determined by
a hyperplane HB with B equal to the span < β > of a simple root β (possibly equal to α).

Since w−1θ sends H<α> onto H<β> and is an isometry we have that w−1θ(δ<α>) = δ<β>. From this,
since w−1θ(δ) = δ and δ<α> = δ − 1

2α, δ<β> = δ − 1
2β, it follows w

−1θ(α) = β.
This means that w−1θ sends ∆ to itself.
Now, considering a two dimensional subspace D ∈ Gfund and comparing the cardinality of WD and

Ww−1θ(D) we prove that two simple roots α and β are orthogonal if and only if their images w−1θ(α) and
w−1θ(β) are orthogonal. Moreover w−1θ preserves root lengths, since sends ∆ to itself and is an isometry.
These properties imply that w−1θ is an automorphism of the Dynkin diagram.

Remark 7.2. If Φ = An, any W -invariant building set is also Aut(Φ) invariant and satisfies the hypothesis
of the theorem above. If a building set is not Aut(Φ) invariant, let G be the maximal subgroup of Aut(Φ)
which leaves G invariant. Then the claim of the theorem (and its proof) is still valid with G in place of
Aut(Φ).

As we will see in the next section, we can choose a suitable list ε1 < ε2 such that Aut(PFA2
(A2; ε1, ε2))

is greater than Aut A2. Anyway, we can state the following theorem.

Theorem 7.2. Let G be Aut(Φ) invariant. There are infinite suitable lists ε1 < · · · < εn = a such that
Aut(Φ) = Aut(PG(Φ)). More precisely, once a is fixed, for all the possible suitable lists whose greatest number
is a, except at most for a finite number, we have Aut(Φ) = Aut(PG(Φ)).

Proof. This follows from the observation that the elements of Aut(PG(Φ)) are isometries and, once a is fixed,
all the choices, except for a finite number of exceptions, of the other numbers εi imply that the distance from
the origin of HV is different from the distances from the origin of the other defining hyperplanes. Therefore
Aut(PG(Φ)) leaves invariant the set of the nestohedra {wPGfund |w ∈W} and we can apply Theorem 7.1.

The following corollary illustrates another sufficient (non metric) condition for Aut(PG(Φ)) = Aut(Φ).
For any C ∈ CΦfund let GC be the subgroup of Aut(PG(Φ)) which leaves the facet determined by the
hyperplane HC (or HC) invariant. We observe that WC ⊂ GC by construction.

Corollary 7.1. Let G be Aut(Φ) invariant. If for every C ∈ CΦfund the automorphism group of the Dynkin
diagram of Φ is not isomorphic to the group GC then we have Aut(PG(Φ)) = Aut(Φ). In particular if the
automorphism group of the Dynkin diagram of Φ is trivial then Aut(PG(Φ)) = Aut(Φ) = W .

Proof. This is an immediate application of Theorem 7.1 since the subgroup of Aut(PG(Φ)) which leaves PGfund
invariant is, as we showed in the proof of Theorem 7.1, the automorphism group Γ of the Dynkin diagram. Let
ϕ ∈ Aut(PG(Φ)); then the subgroup of Aut(PG(Φ)) which leaves the facet ϕ(PGfund) invariant is a conjugate
of Γ, and, under our hypothesis, this implies that ϕ(PGfund) is one of the facets in {wPGfund | w ∈W}. The
claim of Theorem 7.1 then implies that Aut(PG(Φ)) = Aut(Φ).

Remark 7.3. The corollary above is easy to apply when Φ is irreducible, since the automorphism group of
the Dynkin diagram is small (it is either trivial or Z2, or S3 in the case D4) and it is easy to compare it
with the groups GC .
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8 A remark on the Sn+1 action on the face poset of CYFAn−1

As we have seen in the preceding section, the face poset of a permutonestohedron PG(Φ) provides nice
geometrical realizations of representations of W or even of Aut(Φ). In this section we focus on a special
case, where W = Sn and some representations of Sn+1 also come into play.

First we recall that there is a well know ‘extended’ Sn+1 action on the De Concini-Procesi model YFAn−1
,

that is a quotient of CYFAn−1
: it comes from the isomorphism with the moduli space M0,n+1 (see [7], [18]),

and its character has been computed in [13].
This extended action can be lifted to the face poset of CYFAn−1

, which is a subposet of PFAn−1
(An−1).

We illustrate this lifting using our description of this subposet.
Let ∆ = {α0, α1, ..., αn−1} be a basis for the root system of type An, where we added to a basis of

An−1 the extra root α0, and let ∆̃ = {α̃, α0, α1, ..., αn−1} be the set of roots that appear in the affine
diagram. We identify in the standard way Sn+1 with the group which permutes {0, 1, ..., n} and sα0

with the
transposition (0, 1). Therefore Sn, the subgroup generated by {sα1 , ..., sαn−1}, is identified with the subgroup
which permutes {1, ..., n}.

Let S = {V,A1, A2, ..., Ak, B1, B2, ..., Bs} be a nested set in FAn−1fund
and let σ ∈ Sn+1. Let us then

denote by C the cyclic subgroup generated by (0, 1, 2, 3, 4, 5, ..., n) and by w = σ(0, 1, 2, 3, 4, 5, ..., n)r the
only element in the coset σC which fixes 0; we notice that w belongs to Sn.

Moreover, let us suppose that, for every subspace Aj , some of the roots contained in σAj have α0 in their
support (when they are written with respect to the basis ∆), while this doesn’t happen for the subspaces
σBt. Then for every j we denote by Aj the subspace generated by all the roots of ∆̃ which are orthogonal
to Aj .
As a first step in the description of the Sn+1 action, we put

σ · ({e},S) = (w{e}, {V, .., w−1σAj , .., w
−1σBs, ..}).

As one can quickly check, this can be extended to an Sn+1 action on the full face poset of CYFAn−1
by

imposing that σ sends the face (γ{e},S), where γ ∈ Sn, to the face σγ · ({e},S).

Example 8.1. Let S be the nested set of FA4fund made by V , A =< α1, α2 > and B =< α4 >. The group
S6 is generated by the reflections sα0

, sα1
, sα2

, sα3
, sα4

and we identify S5 with the subgroup generated by
sα1

, sα2
, sα3

, sα4
. Now we compute sα0

({e}, {V,A,B}).
We notice that the root sα0

α1 contains α0 in its support (when it is written with respect to the basis ∆).
We then denote by A the subspace generated by all the roots of ∆̃ which are orthogonal to A: A =< α̃, α4 >.

Let w = (0, 1)(0, 1, 2, 3, 4, 5) i.e. the representative of the coset (0, 1)C in S6 which leaves 0 fixed. Then
sα0 = (0, 1) sends the face ({e}, {V,A,B}) to the face

(w{e}, {V,w−1sα0A,w
−1sα0B}) = (w{e}, {V,< α3, α4 >,< α3 >})

Therefore the group Sn+1 acts on the face poset of CYFAn−1
, which is the disjoint union of n! associahedra:

the action of σ ∈ Sn+1 sends the face poset of the associahedron that lies in the fundamental chamber onto
the face poset of an associahedron that lies in a chamber which may be different from the fundamental one.
But it is easy to provide examples where two associahedra that lie in two adjacent chambers are sent to two
associahedra whose chambers are not adjacent.

This shows that this lifted action is not induced by an isometry and it cannot be extended to the full
permutoassociahedron. Anyway it provides geometrical realizations of all the representations IndSn+1

G Id,
where G is any subgroup of the cyclic group C and Id is its trivial representation (the case G = {e}, i.e. the
regular representation of Sn+1, occurs only if n ≥ 4).

In fact the stabilizer of an element of the face poset is by construction a subgroup of the cyclic group C: in
the notation above, w = e only if σ ∈ C. Now we want to show that all the above mentioned representations
appear. As for the regular representation of Sn+1, we notice that, for instance, if n ≥ 4 the stabilizer of
({e}, {V,< α1, ..., αn−2 >}) is the trivial subgroup.
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Let then d < n+ 1 be a divisor of n+ 1. We will exhibit an element of the face poset whose stabilizer is
generated by (0, 1, 2, 3, 4, 5, ..., n)d.

If d > 2 and dk = n + 1 we consider for instance the face ({e}, {V,< α1, ..., αd−2 >,< αd+1, ..., α2d−2 >
, ..., < α(k−1)d+1, ..., αkd−2 >}): its stabilizer is generated by (0, 1, 2, 3, 4, 5, ..., n)d.

If d = 2 and 2k = n + 1 we consider ({e}, {V,< α1, α2, ..., αn−2 >,< α1 >,< α3 >, ..., < αn−2 >}). Its
stabilizer is generated by (0, 1, 2, 3, 4, 5, ..., n)2.

If d = 1 we consider ({e}, {V }). Its stabilizer is, by definition of the Sn+1 action, the full cyclic group C.

9 Examples

9.1 Some low-dimensional cases
In this section we will show some examples and pictures of permutonestohedra.

Let us start from A2. There is only one building set associated to this root system, since the maximal and
the minimal building set coincide. There are six chambers and in every chamber the nestohedron is a segment.
Therefore in this case the permutonestohedron is a dodecagon, and it is a Kapranov’s permutoassociahedron
(see Figure 4). It is not necessarily regular; this depends on the choice of ε1, ε2: once ε2 is fixed, there is only

Figure 4: The permutonestohedron of type A2 (i.e. the two dimensional Kapranov’s permutoassociahedron).
The thick edges provide a linear realization of CYFA2

: once ε2 is fixed, there is only one admissible value for
ε1 such that the dodecagon is regular.

one admissible value for ε1 such that PFA2
(A2) is regular. If it is not regular its edges have two different

lengths and its automorphism group coincides with Aut A2
∼= S3 o Z2; if it is regular its automorphism

group, which is the full dihedral group with 24 elements, strictly contains Aut A2.
In the A3 case there are two distinct S4 invariant building sets: the building set of the irreducibles FA3

and the maximal building set. A picture of the corresponding permutonestohedra, which are a Kapranov’s
permutoassociahedron (PFA3

(A3)) and a ‘permutopermutohedron’, is in Figure 5. It is easy to show that
for every choice of a suitable list ε1 < ε2 < ε3 = a their automorphism group coincides with Aut A3

∼=
S4 o Z2. In the minimal case the nestohedra that lie inside the chambers are pentagons (i.e., the two
dimensional Stasheff’s associahedra) while in the maximal case they are hexagons (i.e. the two dimensional
permutohedra).

In the B2 case there is only one building set, and the corresponding permutonestohedron is a polygon
with 16 edges. It is not regular and, depending on the choice of ε1, its edges can have two or three different
lengths; its automorphism group is WB2

∼= Z2
2 o S2, i.e. the dihedral group with eight elements.

In the B3 case we have two WB3
-invariant building sets. The corresponding permutonestohedra appear

in Figure 6. As in the A3 case, in the minimal case the nestohedra inside the chambers are pentagons while
in the maximal case they are hexagons.

The automorphism group of these permutonestohedra is WB3
∼= Z3

2 o S3 as it follows for instance from
Corollary 7.1.

Let us now consider the boolean arrangements Bo(n), i.e., the arrangements associated with the root
systems An1 . The nestohedra PGfund , as G varies among all the W = Zn2 - invariant building sets containing
V , are all the nestohedra in the ‘interval simplex-permutohedron’ (see [27]).
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Figure 5: The minimal (on the left) and the maximal permutonestohedron of type A3. In accordance with
Corollary 6.2, the maximal permutonestohedron is a simple polytope, while the minimal one is not simple.

Figure 6: The minimal (on the left) and the maximal permutonestohedron of type B3.

In the A1 × A1 case there is only one possible building set which contains V and the corresponding
permutonestohedron is an octagon. It may be regular, depending on the choice of ε1. If it is not regular its
edges have two different lengths and its automorphism group coincides with Aut A2

1
∼= Z2

2 o S2 (∼= WB2
).

In Figure 7 there are two pictures of the maximal permutonestohedron of type A1 × A1 × A1. Its
automorphism group coincides with Aut A3

1
∼= Z3

2 oS3 (∼= WB3
). We recall that the real De Concini-Procesi

model associated with the maximal building set of the boolean arrangement Bo(n) is isomorphic to the toric
variety of type An−1 (see Procesi [30], Henderson [23]).

In the case of the root system A4 there is one S5-invariant building set which strictly contains the minimal
one and is different from the maximal one. Therefore there is a permutonestohedron which is intermediate
between the minimal and the maximal one. For any irreducible root system of dimension n ≥ 4 intermediate
building sets (i.e., not minimal or maximal) appear: in [21] all the W -invariant building sets G of type
An, Bn, Cn, Dn have been classified.

We observe that, if Φ = An, Bn, Cn and we consider the minimal building set, the corresponding permu-
tonestohedron is the convex hull of |W | (resp. n!, 2nn!, 2nn!) (n − 1)-dimensional Stasheff ’s associahedra.
In the An case this minimal permutonestohedron is a Kapranov’s permutoassociahedron, and therefore it is
combinatorially equivalent to Reiner and Ziegler’s Coxeter associahedron of type An (see [32]). In the Bn
and Cn case it is easy to check that the minimal permutoassociahedron is different from the corresponding
Coxeter associahedron, since the latter is the convex hull of |W | Stasheff’s associahedra whose dimension is
(n − 2), not (n − 1). For instance, the Coxeter associahedron of type B2 is an octagon, while the unique
permutonestohedron of type B2 is a polygon with 16 edges, as we observed before.

Furthermore, we remark that if Φ = Dn the minimal permutonestohedon is not the convex hull of some
Stasheff’s associahedra: it is the convex hull of 2n−1n! graph associahedra of type Dn (for a description of
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Figure 7: Two pictures of the maximal permutonestohedron in the three dimensional boolean case (A1 ×
A1 ×A1).

these polytopes see for instance [2] and Section 8 of [28]).
For any root system Φ, the maximal permutonestohedron is the convex hull of |W | permutohedra.

9.2 Counting faces
As an example of face counting on permutonestohedra, in this section we will compute the f -vectors of the
minimal and maximal permutonestohedra associated to the root system An (resp. PFAn (An) and PCAn (An)).
These computations are variations of the well known computations of the f -vectors of the Stasheff’s associ-
ahedron and of the permutohedron. We first need to introduce some notation.

For any positive integer n let us denote by Λn the set of the partitions of n and, if λ ∈ Λn we denote by
l(λ) the number of parts of λ. Therefore we can write λ = (λ1, λ2, . . . , λl(λ)). A partition λ ∈ Λn can also
be written as λ =

∏
1≤i≤n i

mi : this means that in λ the number i appears mi times. We then put

w(λ) =
l(λ)!∏

1≤i≤nmi!

There is a bijective correspondence between the elements of FAn−1 and the subsets of {1, · · · , n} of cardi-
nality at least two: if A⊥ is the subspace described by the equation xi1 = xi2 = · · · = xik then we represent
A ∈ FAn−1

by the set {i1, i2, . . . , ik}. In an analogous way we can establish a bijective correspondence
between the elements of the maximal building set CAn−1

and the unorderd partitions of the set {1, · · · , n}
in which at least one part has more than one element: for instance, {1, 5, 6}{2, 3}{4}{7, 8} represents the
subspace B in CA7 of dimension 4 such that B⊥ is described by the system of equations x1 = x5 = x6,
x2 = x3 and x7 = x8.

Now, to each unordered partition of {1, · · · , n} we can associate, considering the cardinalities of its parts,
a partition in Λn. Therefore we can associate a partition in Λn to every subspace in CAn−1

. We will say
that a subspace in CAn−1

has the form λ ∈ Λn if its associated partition is λ. For instance, the subspace
{1, 5, 6}{2, 3}{4}{7, 8} in CA7 has the form (3, 2, 2, 1).

Theorem 9.1. For every 0 ≤ k ≤ n − 2 the number of faces of codimension k + 1 of the minimal permu-
tonestohedron PFAn−1

(An−1) is

∑
λ∈Λn, l(λ)≥2+k

w(λ)
n!

λ1!λ2! · · ·λl(λ)!

[
1

k + 1

(
l(λ)− 2

k

)(
l(λ) + k

k

)]
Proof. Let us denote by G, for brevity, the minimal building set FAn−1

. As a first step we consider the faces
represented in the poset by the pais (σH,S) such that the sum of the minimal subspaces of S which are non
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trivially labelled has the form λ for a fixed λ ∈ Λn. It is immediate to check that there are w(λ) choices of
a set of minimal subspaces with this property in Gfund.

We then notice that, if S ′ is the complement in S to the subset given by V and by the non trivially
labelled minimal subspaces, the codimension of the face represented by (σH,S) is equal to |S ′|+ 1. So, once
the set of minimal non trivially labelled subspaces is fixed (with the form λ), we have to count in how many
ways it is possible to complete this set of subspaces to a nested set S adding V and k other subspaces in
Gfund.

This is equivalent to finding the number of distinct parenthesizations with k couples of parentheses of an
ordered list of l(λ) distinct elements. This number was computed by Cayley in [5] and is equal to

1

k + 1

(
l(λ)− 2

k

)(
l(λ) + k

k

)
To finish our proof it if sufficient to observe that the number of faces represented by the pairs (σH,S), once
S and H are fixed, is equal to the index of H in W , which in our case is n!

λ1!λ2!···λl(λ)!
.

Remark 9.1. In the case of the faces of codimension n − 1, i.e. the vertices, the formula of Theorem 9.1
specializes, as expected, to Cn−1n! where Cn−1 is the Catalan number 1

n

(
2n−2
n−1

)
.

Theorem 9.2. For every 0 ≤ k ≤ n − 2 the number of faces of codimension k + 1 of the maximal permu-
tonestohedron PCAn−1

(An−1) is

∑
λ∈Λn, l(λ)≥2+k

w(λ)
n!

λ1!λ2! · · ·λl(λ)!

 ∑
1<j1<···<jk<l(λ)=jk+1

k∏
t=1

(
ji+1 − 1

ji − 1

)
Proof. Let us denote by G, for brevity, the maximal building set CAn−1

. As in the first part of the proof of
the preceding theorem, we observe that, given λ ∈ Λn there are w(λ) subspaces in Gfund whose form is λ.
So, once λ if fixed, we have w(λ) ways to choose a minimal non-trivially labelled subspace whose form is λ.
Now we have to count in how many ways it is possible to complete this subspace to a nested set S adding V
and k other subspaces in Gfund. Since the nested sets in this maximal case are linearly ordered by inclusion,
we can do this in k steps. At the first step we have to add a subspace which contains the minimal one, which
is equivalent to split into jk parts (with 1 < jk < l(λ)) an ordered list of l(λ) distinct elements. Then at the
second step we have to add a subspace which contains the one added at the first step, which is equivalent to
split into jk−1 (with 1 < jk−1 < jk) parts an ordered list of jk distinct elements. This process is successful
if we manage to complete k steps of this kind; this happens in

∑
1<j1<···<jk<l(λ)=jk+1

k∏
t=1

(
ji+1 − 1

ji − 1

)

different ways, where the sum ranges over all the possible lists of k numbers ji that satisfy the required
inequalities. The claim then follows, as in the preceding theorem, by counting the index of the subgroup
given by the non trivial label.

Remark 9.2. The formula of Theorem 9.2 in particular claims that the vertices of PCAn−1
(An−1) are

(n− 1)!n!, as expected from a ‘permutopermutohedron’.
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