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Abstract.

In this work we investigate whether and how a molecule undergoing a nona-
diabatic transition can show different energy mean values and distributions
in the two electronic states that are populated. We analyse three models,
of which models I and II mimick the limiting cases of almost adiabatic and
almost diabatic regimes, respectively, and are solvable by first order per-
turbation theory. Model III represents realistically the photodissociation of
a diatomic molecule and is treated numerically. The three models provide
a consistent picture of the energy selection effect. For a typical avoided
crossing, the wavepacket component that undegoes the transition between
the two adiabatic states has a larger mean value of energy than the other
component, both for upward and for downward transitions. The analysis
of model II shows that the Landau-Zener rule can be deduced in a fully
quantum mechanical way. We believe that the energy selection effect can be
observed experimentally in the photodissociation of diatomic molecules. The
effect should be particularly relevant for wavepackets endowed with a broad
energy spectrum, as the result of excitation with ultrashort light pulses.



1 Introduction

Excitation of molecules with short light pulses necessarily generates wavepack-
ets with a broad energy distribution. The ongoing tendency to decrease the
pulse duration, going from femtochemistry to attochemistry,1,2 will make this
feature even more conspicuous. There are several processes occurring in the
excited states that are energy selective, in the sense that their probability
depends on energy and therefore the final state shows an energy bias with
respect to the initial distribution. A trivial example is the photodissociation
of a polyatomic molecule yielding chemically different products.

A more intriguing case is provided by nonadiabatic transitions. When
the interaction that causes the transition is of nonadiabatic type, it depends
directly on the momenta of the nuclei, i.e. on their kinetic energy. So, there
is a reason to believe that higher energy components of the initial wavepacket
have larger transition probabilities between adiabatic states. As a result, the
total (electronic + nuclear) energy of a wavepacket that has undergone a
transition may be displaced towards higher values with respect to the ini-
tial one. Since of course total energy is conserved, what we expect is just
that the higher energy components of the initial wavepacket populate selec-
tively the final electronic state, while the lower energy ones tend to remain
in the initial state. Relevant effects may then be observed for wavepackets
endowed with a broad energy spectrum, as the result of excitation with ul-
trashort light pulses. Clues about energy selection effects can be found in
theoretical and experimental work concerning avoided crossings3,4 and con-
ical intersections.5–8 Extensive tests on models showed how the transition
probability between adiabatic states depends on the vibrational energy when
a wavepacket goes through a conical intersection.6 Namely, the probability
increases when more energy is put in the branching plane coordinate that
corresponds to the gradient difference of the two diabatic potential energy
surfaces, and decreases when energy is put in the orthogonal coordinate. As
a result, the energy selection effect would depend on details of the excita-
tion process and of the energy transfer between vibrational modes, that may
end up with a statistical distribution.9 Besides the theoretical challenge of
making predictions for polyatomics, it would also be hard to measure the
complete energy distribution of polyatomic, or even diatomic, fragments (i.e.
all the populations of roto-vibrational states). For these reasons, we prefer to
investigate the simpler case of diatomics, where experimental tests are more
feasible.
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A bias in favour of higher kinetic energies is embodied in the Landau-
Zener rule, where the transition probability depends on the nuclear velocity.3

However, the Landau-Zener theory does not take into account the role of the
electronic energy difference between the initial and final state. It is then
worth to investigate whether the selection effect is the same for downward
and upward transitions and how it depends on the energy gap. This is a prob-
lematic issue in semiclassical treatments: for instance, energy conservation
in surface hopping is usually imposed a posteriori after each nonadiabatic
event,10–13 which can be hardly justified on quantum mechanical grounds.
The theory we present is exclusively based on quantum mechanics, but our
conclusions may suggest new approaches to the energy conservation problem
in semiclassical dynamics.

To analyse in the simplest conditions whether and why a nonadiabatic
transition can give place to two wavepackets, in the initial and in the final
electronic states, with different total energy mean values and distributions,
we set up three one-dimensional models. The first two models can be solved
analytically by means of certain approximations, that are valid in conditions
close to the adiabatic limit for the first model and to the diabatic limit for the
second one. By adiabatic limit we mean a regime in which the probability of
transition between adiabatic states is very small, while in the diabatic limit
the same probability is close to one. In the third model, which is only solved
numerically, we can span the two limiting cases and all the intermediate
regimes. The three models concur in building a consistent picture where the
energy difference between the two electronic states and the change in nuclear
momentum due to the transition play an essential role.

2 Models I and II: perturbative solution.

In models I and II the initial wavepacket χ1(q, t) belongs to the electronic
state 1 and a new wavepacket χ2(q, t) is created by a radiationless transition
to state 2. We assume the interaction between the two electronic states
to be concentrated in a limited region of the nuclear coordinate q. The
wavepackets are supposed to be outside the interaction region both at the
initial and final time, which will be taken to be t = −∞ and t = +∞.
As a consequence, the total energy at the initial and final times is a sum
of the two independent wavepacket energies, without an interaction energy
contribution. The transition process will take place only at intermediate
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times.
The two models will feature electronic potentials that only support eigen-

states belonging to the continuum spectrum. This is not, however, an essen-
tial restriction in view of the energy selection effects we want to highlight.
The normalized time-dependent state of the system is

|Ψ(q, t)〉 = χ1(q, t) |1〉+ χ2(q, t) |2〉 (1)

where |i〉 indicates an electronic state. We shall call U1(q) and U2(q) the
potential energy curves of the two electronic states:

Ui(q) =
〈

i
∣

∣

∣
Ĥel

∣

∣

∣
i
〉

(2)

where Ĥel is the electronic hamiltonian. We shall expand the two wavepack-
ets in the basis of the nuclear eigenfunctions ϕi,E,n, where E is the eigenen-
ergy and n is a supplementary quantum number that is needed in case of
degeneracy:

χi(q, t) =

gi
∑

n=1

∫ ∞

Ei,min

Ci,n(E, t) e
−iEt/~ ϕi,E,n(q) dE (3)

We call V̂ the interaction operator and we assume V̂ to have only off-diagonal

matrix elements
〈

ϕi,E,n

∣

∣

∣
V̂
∣

∣

∣
ϕj,E′,n′

〉

in the electronic quantum numbers i and

j. The dynamic equations for the expansion coefficients are then

i~
dCi,n(E, t)

dt
=

gj
∑

n′=1

∫ ∞

Ej,min

〈

ϕi,E,n

∣

∣

∣
V̂
∣

∣

∣
ϕj,E′,n′

〉

ei(E−E′)t/~ Cj,n′(E ′, t) dE ′ (4)

We now expand the coefficients in perturbation orders with respect to the
matrix elements of the V̂ interaction. We have non vanishing zero order
coefficients C

(0)
1,n only for state 1, and first order coefficients C

(1)
2,n only for

state 2. The zero order coefficients are constant in time and the first order
ones obey the equation

dC
(1)
2,n(E, t)

dt
= − i

~

g1
∑

n′=1

∫ ∞

E1,min

〈

ϕ2,E,n

∣

∣

∣
V̂
∣

∣

∣
ϕ1,E′,n′

〉

C
(0)
1,n′(E

′) ei(E−E′)t/~ dE ′

(5)
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By integrating over time we get

C
(1)
2,n(E,∞) =

= −2πi

g1
∑

n′=1

∫ ∞

E1,min

〈

ϕ2,E,n

∣

∣

∣
V̂
∣

∣

∣
ϕ1,E′,n′

〉

C
(0)
1,n′(E

′) δ(E − E ′) dE ′ (6)

If E < E1,min, then C
(1)
2,n(E,∞) = 0, otherwise

C
(1)
2,n(E,∞) = −2πi

g1
∑

n′=1

〈

ϕ2,E,n

∣

∣

∣
V̂
∣

∣

∣
ϕ1,E,n′

〉

C
(0)
1,n′(E) (7)

This simple first-order perturbation theory solution (FOPT) will allow us to
highlight the physical origin of the energy selection effect in models I and
II and to apply the same concepts in interpreting the numerical results of
model III.

In both models I and II the potential of the initial state is constant,
U1(q) = 0. Then, the energy eigenstates are also momentum eigenstates:

ϕ1,k1,±(q) = (2π)−1/2 e±ik1q (8)

where k1 = (2mE)1/2/~ and m is the reduced nuclear mass. The quantum
number n can be identified with the sign of the momentum ±~k1. Note that
ϕ1,k1,± is normalized to δ(k1 − k′1), while the energy normalized eigenstate is

ϕ1,E,±(q) =
m1/2

(2πk1)1/2~
e±ik1q (9)

The wavepacket in state 1 will be assumed to be of gaussian shape,14 i.e.
in the momentum representation:

χ̃1(±k1, t) = 21/4π−1/4σ
1/2
0 e−σ2

0
(±k1−k0)2 e−i~k2

1
t/2m (10)

In the coordinate representation we have

χ1(q, t) = (2π)−1/4σ
1/2
0

(

σ2
0 +

i~t

2m

)−1/2

exp

[

− (q − vt)2

4
(

σ2
0 +

i~t
2m

) + ik0

(

q − vt

2

)

]

(11)
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Here v = ~k0/m and σ0 is the minimum position uncertainty, that is reached
at t = 0. The center of the wavepacket is q = 0 at t = 0. The coefficients of
the energy eigenstates (9) are

C
(0)
1,±(E) =

21/4(mσ0)
1/2

π1/4~k
1/2
1

e−σ2

0
(±k1−k0)2 (12)

Considering that we get the same initial energy E = ~
2k21/2m with two

opposite values of the momentum, the energy distribution is

ρ1(E) =
∣

∣

∣
C

(0)
1,+(E)

∣

∣

∣

2

+
∣

∣

∣
C

(0)
1,−(E)

∣

∣

∣

2

=
21/2mσ0
π1/2~2k1

[

e−2σ2

0
(k1−k0)2 + e−2σ2

0
(k1+k0)2

]

(13)

(remember that k1 =
√
2mE/~). In this expression, the two gaussian terms

in square brackets represent the contributions of positive momenta (the one
with k1 − k0) and of negative momenta (the one with k1 + k0). If k0 ≫ σ−1

0 ,
only the former counts, the latter being much smaller.

3 Model 1: two constant potentials.

As a first example we take the extremely simple case where both the adi-
abatic potentials are constant: U1(q) = 0 and U2(q) = D. The expres-
sions for ϕ2,k2,±(q) and ϕ2,E,±(q) are analogous to eqs. (8) and (9), but

k2 =
√

2m(E −D)/~.

We shall consider two alternative definitions of the interaction V̂ . The
first is of electronic type, such as the spin-orbit interaction, and is represented
as a simple function of q. The second is of nonadiabatic type, which means
it contains derivative operators with respect to q.

3.1 Model Ia: electronic type interaction.

For the electronic type interaction we shall assume a gaussian shape:

V̂ ≡ V (q) = V0 e
−q2/4σ2

V (14)

Then
〈

ϕ2,E,s2

∣

∣

∣
V̂
∣

∣

∣
ϕ1,E,s1

〉

=
mσV V0

π1/2~2(k1k2)1/2
e−σ2

V
(s1k1−s2k2)2 (15)
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Here s1 and s2 are the signs of the momenta in the eigenfunctions ϕ1,E,s1 and
ϕ2,E,s2 . From eq. (7) we get

C
(1)
2,±(E,∞) =

2π1/2i mσV V0
~2(k1k2)1/2

[

e−σ2

V
(k1∓k2)2 C

(0)
1,+(E) + e−σ2

V
(k1±k2)2 C

(0)
1,−(E)

]

(16)

The final energy distribution in state 2 is therefore

ρ2(E) =
∣

∣

∣
C

(1)
2,+(E,∞)

∣

∣

∣

2

+
∣

∣

∣
C

(1)
2,−(E,∞)

∣

∣

∣

2

=

=
4(2π)1/2m3σ0(σV V0)

2

~6k21k2

{

[

e−σ2

V
(k1−k2)2−σ2

0
(k1−k0)2 + e−σ2

V
(k1+k2)2−σ2

0
(k1+k0)2

]2

+

+
[

e−σ2

V
(k1+k2)2−σ2

0
(k1−k0)2 + e−σ2

V
(k1−k2)2−σ2

0
(k1+k0)2

]2
}

(17)

The density ρ2(E) vanishes for either E < D or E < 0, i.e. for E <
max(0, D). Note that the energy distribution does not depend on the V0
parameter, that appears only as a multiplicative factor.

The largest exponential term in expression (17) is exp[−σ2
V (k1 − k2)

2 −
σ2
0(k1 − k0)

2]. If we introduce the “central” kinetic energy of the initial
wavepacket E0 = ~

2k20/2m, all the exponents in eq. (17) contain the terms
−2mσ2

0(
√
E ±

√
E0)

2/~ and −2mσ2
V (
√
E ±

√
E −D)2/~. With reasonable

values of the reduced mass and of the position uncertainty (for the latter,
take for instance the usual vibrational amplitudes), 2mσ2

0/~ ≈ 102 a.u. or
larger. If V (q) does not undergo abrupt changes as a function of q, 2mσ2

V /~
is likely to be even larger. So, if m, σ0, σV and E0 are not too small, we can
neglect all the exponentials in eq. (17) except the first one:

ρ2(E) ≃
∣

∣

∣
C

(1)
2,+(E,∞)

∣

∣

∣

2

≃ 4(2π)1/2m3σ0(σV V0)
2

~6k21k2
e−2σ2

V
(k1−k2)2−2σ2

0
(k1−k0)2 (18)

In the approximation of eq. (18), the probability ratio for a given energy
component of the initial wavepacket is

R(E) =
ρ2(E)

ρ1(E)
≃ 4πm2(σV V0)

2

~4k1k2
e−2σ2

V
(k1−k2)2 (19)

The energy dependence of the ratio R(E) shows that the nonadiabatic tran-
sition introduces a bias towards larger energies. Note that we are interested
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D = −0.010 a.u.
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Figure 1: Probability ratio as a function of E, i.e. the ratio of the final to initial
energy distributions R(E) = ρ2(E)/ρ1(E), eq. (19). The relevant parameters are
m = 5000 a.u., σ2

V = 1 a.u. and V0 = 0.001 a.u. Six different values of D are tried.

in energies not too far from E0, where the initial state probability is largest.
R(E) depends on energy through two factors

f(E) =
1

k1k2
=

~
2

2m
√

E(E −D)
(20)

and the exponential

g(E) = e−2σ2

V
(k1−k2)2 = e−4mσ2

V
(
√
E−

√
E−D)2/~2 (21)

The former factor is required to switch from the momentum to the energy
distribution. It is a decreasing function of E and diverges at the lower limit of
the energy range (E = max(0, D)). On the contrary, the exponential factor
g(E) is an increasing function of E that takes the value exp(−4mσ2

V |D|) at
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ρ2(E) with D > 0
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Figure 2: Initial and final energy distributions for model Ia, eqs. (13) and (17),
respectively. The model parameters are: m = 5000, D = ±0.008, V0 = 0.001, σV =
1, σ0 = 0.2, E0 = 0.05 (all in a.u.). ρ2(E) is amplified by a factor 200.

E = max(0, D). Unless D is close to zero, which would be hardly consistent
with quasi-adiabatic conditions, the starting value of g(E) is so small that
the increase of R(E) for E approaching E = max(0, D), due to the f(E)
factor, is confined to a very limited range of energies (not even detectable in
fig. 1).

The factor g(E) shows that a large change of the nuclear momentum as a
result of the electronic transition is unlikely. In fact, two flat potentials have
no effect on the momenta, only the weak V (q) interaction has. Moreover, the
momentum can change only during the limited time spent by the wavepacket
in the interaction region. Since the total energy cannot change but the
potential energy does, the kinetic energy must decrease or increase by D
when switching from electronic state 1 to 2. The corresponding variation in
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the momentum is

(k2 − k1)
2 =

2m

~2

[

(E −D)1/2 − E1/2
]2

=
mD2

2~2E
+O(E−2) (22)

We see that the momentum difference decreases with energy and vanishes
for E → ∞, so the g(E) function goes to the asymptotic value of 1 at large
energies. The bias towards larger energies due to the momentum/energy
matching effect, for a wavepacket with an energy spectrum extending from
E +∆ to E −∆, can be quantified as

g(E +∆)

g(E −∆)
≃ exp

(

2mσ2
VD

2

~2

∆

E2 −∆2

)

(23)

The bias will be more effective the larger the potential energy difference D
and the broadness of the wavepacket ∆. On the contrary, higher central
energies E will decrease the effect.

In fig. 2 we show ρ1(E) and ρ2(E) for a set of physically plausible param-
eters (all in a.u.): m = 5000, D = ±0.008, V = 0.001, σV = 1, σ0 = 0.2, E0 =
0.05. The total transition probability is very small, of the order of 0.1-0.2%.
We see that the final energy distribution is displaced at higher energies with
respect to the initial one, even with D < 0, because this allows to satisfy
at once the rigorous energy conservation and the approximate momentum
conservation, as already highlighted by eq. (22) and fig. 1. We find lower
transition probabilities and slightly higher energies with D > 0 than with
D < 0. In both cases the energy bias due to the electronic transition is
not negligible and should be experimentally detectable in a real system with
similar or equivalent molecular parameters.

In Table 1 we compare the predictions of FOPT with the results of ac-
curate numerical calculations performed with a standard method.15 In both
cases the transition probability is computed as

P12 =

∫ ∞

0

ρ2(E) dE (24)

while the averaged energy difference between the final wavepackets in state
2 and state 1 is

∆〈E〉 =
∫∞
0
ρ2(E) E dE

∫∞
0
ρ2(E) dE

−
∫∞
0
ρ1(E) E dE

∫∞
0
ρ1(E) dE

(25)
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P12 ∆〈E〉
D V0 FOPT num. FOPT num.

0.008 0.00025 0.0000687 0.0000670 0.01202 0.01212
0.008 0.00100 0.0010999 0.0007141 0.01202 0.01379
0.008 0.00200 0.0043997 0.0006850 0.01202 0.01736
-0.008 0.00025 0.0001276 0.0001249 0.00942 0.00949
-0.008 0.00100 0.0020417 0.0014299 0.00942 0.01073
-0.008 0.00200 0.0081670 0.0016422 0.00942 0.01550

Table 1: Transition probabilities P12 and averaged energy differences ∆〈E〉 (a.u.)
obtained for model Ia with different values of the interaction parameter V0. All
other parameters as in the example of Fig. 2. First-order perturbation theory
(FOPT) predictions are compared with accurate numerical results.

The FOPT results are obtained with ρ1 and ρ2 supplied by eqs. (13) and (17).
Table 1 shows that in the limit of small couplings FOPT is quite accurate,
but the predicted transition probability deteriorates rapidly as V0 increases.
Even probabilities of the order of 1% are not accurately reproduced, prob-
ably because when the wavepacket goes through the interaction region the
population of the initial state decreases by large amounts, orders of magni-
tude larger than the final result, thus contradicting the basic assumption of
FOPT. However, the averaged energy differences agree reasonably with the
exact ones and in particular the latter are not much affected by the value of
V0. We conclude that this level of theory is adequate for an understanding
of the energy selection effects.

3.2 Model Ib: nonadiabatic type interaction.

We now replace the coupling V̂ with two nonadiabatic operators Ŵ12 and
Ŵ21:

Ŵij = − 1

m

[

gij(q)
∂

∂q
+

1

2

∂gij
∂q

]

(26)

where g12 =
〈

ψ1

∣

∣

∣

∂
∂q

∣

∣

∣
ψ2

〉

and ψi is an electronic wavefunction.16 The coupling

function g12 is again assumed to be a gaussian function and g21 = −g12:

g12(q) = W0 e
−q2/4σ2

W (27)
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Then eq. 15 is replaced by:

〈

ϕ2,E,s2

∣

∣

∣
Ŵ21

∣

∣

∣
ϕ1,E,s1

〉

=
iσWW0

2π1/2~2

s1k1 + s2k2
(k1k2)1/2

e−σ2

W
(s1k1−s2k2)2 (28)

and

C
(1)
2,±(E,∞) =

π1/2σWW0

~2(k1k2)1/2
·

·
[

(k1 ± k2)e
−σ2

W
(k1∓k2)2 C

(0)
1,+(E)− (k1 ∓ k2)e

−σ2

W
(k1±k2)2 C

(0)
1,−(E)

]

(29)

ρ2(E) with D < 0

ρ2(E) with D > 0

ρ1(E)

energy (a.u.)

ρ
1
(E

),
ρ
2
(E

)
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.u
.)

0.10.080.060.040.020

40

35

30

25

20

15

10

5

0

Figure 3: Initial and final energy distributions for model Ib, eqs. (13) and (30),
respectively. The model parameters are: m = 5000, D = ±0.008,W0 = 0.2, σW =
1, σ0 = 0.2, E0 = 0.05 (all in a.u.). ρ2(E) is amplified by a factor 400.
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The final energy distribution in state 2 is

ρ2(E) =
(2π)1/2mσ0(σWW0)

2

~6k21k2
·

·
{

[

(k1 + k2)e
−σ2

W
(k1−k2)2−σ2

0
(k1−k0)2 − (k1 − k2)e

−σ2

W
(k1+k2)2−σ2

0
(k1+k0)2

]2

+

+
[

(k1 − k2)e
−σ2

W
(k1+k2)2−σ2

0
(k1−k0)2 − (k1 + k2)e

−σ2

W
(k1−k2)2−σ2

0
(k1+k0)2

]2
}

(30)

As before, ρ2(E) = 0 for E < max(0, D) and, with the same considerations
as in case Ia, we can approximate ρ2 as

ρ2(E) ≃
(2π)1/2mσ0(σWW0)

2

~6k21k2
(k1 + k2)

2 e−2σ2

W
(k1−k2)2−2σ2

0
(k1−k0)2 (31)

Also, the energy distributions of eqs. (30) or (31) are independent on the
coupling parameter W0. The main difference with respect to the purely
electronic coupling case are the factors (k1 ± k2) that enter this formula
because of the derivative operator contained in Ŵij. Physically, this means
that the faster or more energetic components of the wavepacket are more
likely to undergo the nonadiabatic transition, not only because of the easier

P12 ∆〈E〉
D W0 FOPT num. FOPT num.

0.008 0.05 0.0000644 0.0000630 0.01395 0.01399
0.008 0.10 0.0002577 0.0002357 0.01395 0.01411
0.008 0.20 0.0010308 0.0007124 0.01395 0.01467
0.008 0.40 0.0041233 0.0006753 0.01395 0.01828
-0.008 0.05 0.0001306 0.0001280 0.01127 0.01130
-0.008 0.10 0.0005225 0.0004812 0.01127 0.01140
-0.008 0.20 0.0020900 0.0014881 0.01127 0.01183
-0.008 0.40 0.0083602 0.0016324 0.01127 0.01464

Table 2: Transition probabilities P12 and averaged energy differences ∆〈E〉 (a.u.)
obtained for model Ib with different values of the interaction parameter W0. All
other parameters as in the example of Fig. 3. First-order perturbation theory
(FOPT) predictions are compared with accurate numerical results.
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matching of energy and momentum, but also because of the more effective
coupling. Figure 3 shows the ρ1(E) and ρ2(E) energy distributions with
σW = 1 and W0 = 0.2 a.u. All the other model parameters are the same
as in Figure 2. We see that the ρ2(E) distributions are further displaced
towards high energies with respect to those of model Ia, but the difference
is small and with these parameters the energy/momentum matching effect
is clearly more important than the increase of the coupling strength with
energy.

In Table 2 we compare the predictions of FOPT with the results of accu-
rate numerical calculations, as we did in the previous section for model Ia.
The FOPT density ρ2 is here given by eq. (30). Again, for small couplings
the FOPT results are accurate while for larger couplings P12 is overestimated,
but ∆〈E〉 is rather well reproduced.

4 Model II: avoided crossing.

This model is defined by two diabatic potentials that cross each other at
q = 0. Here the coupling V̂ is again a mere function of q, but for maximum
simplicity we shall assume it constant. Because of this off-diagonal electronic
matrix element the crossing is avoided in the adiabatic representation. How-
ever, we shall stick to the diabatic representions, because we want to treat
the quasi-diabatic limiting case, i.e. a weakly avoided crossing. As in the
Landau-Zener model, the potentials are linear functions of q. As a further
simplification, the potential U1 that hosts the initial wavepacket is constant:

U1(q) = 0 U2(q) = −F q V (q) = V0 (32)

The eigenfunctions in the diabatic state 1 are the same as in eq. (9). The
eigenfunctions in the diabatic state 2 obey the Schrödinger equation

(

− ~
2

2m

d2

dq2
− F q − E

)

ϕ2,E(q) = 0 (33)

By substituting

q =
x

β
+ q0 (34)

with β = −
(

2~−2mF
)1/3

and q0 = −E/F we reduce to Airy’s equation18

(

d2

dx2
− x

)

A(x) = 0 (35)

13



The standard solution A(x) can be expressed through its Fourier transform:

Ã(ω) = (2π)−1/2eiω
3/3 (36)

The (unnormalized) eigenfunctions are then

ϕ2,E(q) = A(−β(q − q0)) (37)

and their Fourier transforms

ϕ̃2,E(ω) = −β−1 Ã(−β−1ω) e−iωq0 (38)

Since

〈ϕ2,E |ϕ2,E′ 〉 = 〈ϕ̃2,E |ϕ̃2,E′ 〉 = F

β2
δ(E − E ′) (39)

normalization requires

ϕ̃2,E(ω) = −(2π)−1/2F−1/2 e−i(β−3ω3/3+ωq0) (40)

The interaction matrix element is

〈

ϕ2,E

∣

∣

∣
V̂
∣

∣

∣
ϕ1,E,±

〉

= − m1/2V0
(2πFk)1/2~

e±i(β−3k3/3+kq0) (41)

where k =
√
2mE/~.

If we are close to the diabatic limit, we can resort to the perturbation
theory developed in section 2 and obtain

C
(1)
2 (E,∞) =

(2π)1/2i m1/2V0
(Fk)1/2~

[

ei(β
−3k3/3+kq0) C

(0)
1,+(E) + e−i(β−3k3/3+kq0) C

(0)
1,−(E)

]

(42)

and

ρ2(E) =
(8π)1/2 m2σ0V

2
0

Fk2~4
·

·
[

e−2σ2

0
(k−k0)2 + e−2σ2

0
(k+k0)2 + 2 e−2σ2

0
(k2+k2

0
) cos(2β−3k3/3 + 2kq0)

] (43)
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By considering only the positive momentum component, the ratio ρ2(E)/ρ1(E)
can be approximated as

R(E) ≃ |C(1)
2 (E,∞)|2

|C(0)
1,+(E)|2

=
2πmV 2

0

~2F k
=

21/2πm1/2V 2
0

~F E1/2
(44)

Within this model, R(E) is a diabatic transition probability, i.e. it is the
probability to remain in the same adiabatic state. The probability Padia to
switch to the other adiabatic state is 1−R(E). Since ~k/m is the speed v at
which the wave ϕ1,E,+ travels, our estimate of Padia is approximately equal
to the Landau-Zener one:

PLZ = e−2πV 2

0
/(~vF ) ≃ 1−R(E) (45)

This equality is valid to first order in R(E). Since the Landau-Zener rule is
valid in the semiclassical framework under certain conditions that are met
only near the diabatic limit, we do not need a more accurate identity than
eq. (45) to state that the Landau-Zener rule holds also in a fully quantum
mechanical treatment.

The diabatic transition probability R(E) is a simple decreasing function
of E, so we expect a behaviour qualitatively similar to that of model I:
the wavepacket that remains on the same adiabatic state (here, the smaller
component χ2) has a lower energy than the one that makes the nonadia-
batic transition (here, the larger component χ1). The energy selection effect
is here due to the coupling matrix element, as in the nonadiabatic model
Ib, and more precisely to the k =

√
2mE/~ factor in the denominator of

∣

∣

∣

〈

ϕ2,E

∣

∣

∣
V̂
∣

∣

∣
ϕ1,E,±

〉∣

∣

∣

2

. At variance with models Ia and Ib, here we see no

influence of the energy/momentum matching, because the transition takes
place when the electronic states are almost degenerate. In fact the V0 pa-
rameter only enters the ρ2(E) function as a multiplicative factor (see eq.
(43)), so it does not affect the shape of the distribution and the energy se-
lection. Moreover, if σ0k0 ≫ 1, as already noted the energy distributions in
state 1 and 2 are approximately proportional to two simple functions of E:

ρ1(E) ∝
1

k1
e−2σ2

0
(k1−k0)2 (46)

and

ρ2(E) ∝
1

k21
e−2σ2

0
(k1−k0)2 (47)
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Figure 4: Initial and final energy distributions for the avoided crossing model II,
eqs. (13) and (43), respectively. The relevant parameters are: m = 5000, F =
0.03, V0 = 0.002, E0 = 0.05, σ0 = 0.2, all in atomic units. ρ2 is multiplied by 2.

Computing average energy differences ∆〈E〉 between the two states implies
elliptic integrals, but we can approximate ∆〈E〉 with the displacement of the
maxima of the two distributions. By requiring dρ1(E)/dE = 0 we get

k1 =
k0
2

(

1±
√

1− σ−2
0 k−2

0

)

(48)

We choose the solution closer to k0 and we approximate the square root in
the assumption that σ−2

0 k−2
0 ≪ 1. Then

k1 ≃ k0 −
1

4σ2
0k0

(49)

This amounts to say that the maximum of ρ1(E) is found at

E1 ≃ E0 −
~
2

4mσ2
0

(50)
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In a similar way, for ρ2(E) one finds

E2 ≃ E0 −
~
2

2mσ2
0

(51)

So, the displacement of the maxima is

∆Emax = E2 − E1 ≃ − ~
2

4mσ2
0

(52)

We see that, provided the momentum uncertainty ∆k = 1/2σ0 is well below
the central value k0, the energy selection effect is also independent on k0 or
E0 and is proportional to ∆k2.

In Figure 4 we show the distributions for this model, with the same pa-
rameters as in Figures 2 and 3, where applicable. We see that lower energies
are favoured in the transition, but the difference between ρ1 and ρ2 is much
smaller than in model I. This was expected, since the momentum/energy
matching effect is absent in this case. The average energy difference, ob-
tained by numerical integration, is very close to −(4mσ2

0)
−1 = −0.00127

a.u.
In Table 3 we compare the predictions of FOPT with the results of ac-

curate numerical calculations, as we did in the previous sections for models
Ia and Ib. The FOPT density ρ2 is here given by eq. (43). We see that, at
variance with the other models, FOPT is here accurate even for rather large
transition probabilities, of the order of 20%. We conclude that its application
is much more reliable in the quasi-diabatic limit than in the quasi-adiabatic
one.

P12 ∆〈E〉
V0 FOPT num. FOPT num.

0.001 0.04744 0.04635 -0.001267 -0.001314
0.002 0.18976 0.17273 -0.001267 -0.001381
0.003 0.42697 0.34684 -0.001267 -0.001522

Table 3: Transition probabilities P12 and averaged energy differences ∆〈E〉 (a.u.)
obtained for model II with different values of the interaction parameter V0. All
other parameters as in the example of Fig. 4. First-order perturbation theory
(FOPT) predictions are compared with accurate numerical results.
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5 Model III: photodissociation with an avoided

crossing.

In this section we analyse a more realistic model, by solving it numerically.
The aim is to throw a bridge between the quasi-adiabatic case (model I) and
the quasi-diabatic one (model II). Moreover, we want to provide an example
of what could be measured to confirm experimentally the energy selection
effect.

The model describes the photodissociation of a diatomic molecule, so
the coordinate q is the internuclear distance. We consider three adiabatic
electronic states: the ground state |0〉 has a binding potential U0(q), while
the two excited states |1〉 and |2〉 are dissociative and exhibit an avoided
crossing. From the lowest vibrational state in U0 we excite the molecule with
a coherent light pulse to either state |1〉 or state |2〉. The ground state curve
is a Morse function:

U0(q) = Ediss,0

[

1− e−α(q−qeq)
]2

(53)

The excited adiabatic potential energy curves U1 and U2 are the eigenvalues
of a 2x2 hamiltonian matrix expressed in a diabatic basis |η1〉 , |η2〉. The
matrix elements are:

H11(q) =
〈

η1

∣

∣

∣
Ĥel

∣

∣

∣
η1

〉

= Ediss,1 + A1 e
−β1(q−qeq)

H22(q) =
〈

η2

∣

∣

∣
Ĥel

∣

∣

∣
η2

〉

= Ediss,2 + A2 e
−β2(q−qeq)

H12(q) =
〈

η1

∣

∣

∣
Ĥel

∣

∣

∣
η2

〉

= V12 e
−γ(q−qx)2

(54)

with the parameters

Ediss,0 = 2.0 eV α = 0.6 a.u. qeq = 4.0 bohr
Ediss,1 = 2.0 eV A1 = 2.5 eV β1 = 0.6 a.u.
Ediss,2 = 2.4 eV A2 = 0.8 eV β2 = 1.2 a.u.
γ = 0.3 a.u. qx = 6.91 bohr

(55)

The maximum strength of the coupling, V12, is varied in order to explore
a range of conditions, from the quasi-diabatic one (small V12) to the quasi-
adiabatic (large V12). As we can see in Fig. 5, the H11(q) and H22(q) curves
cross at approximately q=6.91 bohr and the couplingH12(q) has its maximum
at the same distance. Since the H12(q) gaussian function practically vanishes
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at q = qeq, in the Franck-Condon region the adiabatic and diabatic states
practically coincide, namely |1〉 = |η2〉 and |2〉 = |η1〉. Moreover, the vertical
excitation energies are not affected by the coupling strength V12: U1(qeq) −
U0(qeq) = Ediss,1+A1 = 4.5 eV and U2(qeq)−U0(qeq) = Ediss,2+A2 = 3.2 eV.
The coupling also vanishes at large distances, so the dissociating wavepackets
do not interact any more and their individual energies are well defined. At
dissociation, |1〉 = |η1〉 and |2〉 = |η2〉.

We want to examine the dynamics following excitation to either |1〉 or
|2〉, so in the first case we assume transition dipoles 〈0 |µ| 1〉 = 1 a.u. (inde-
pendent on q) and 〈0 |µ| 2〉 = 0, and viceversa in the second case. The case in
which both states carry oscillator strength shows very interesting interference
effects19,20 that would make the discussion of energy selection effects more
complex. The light pulse is tuned to either the first or the second transition
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en
er
gy
,
eV

12108642

8

7

6

5

4

3

2

1

0

Figure 5: Adiabatic and diabatic potential energy curves for model III, with
V12 = 0.006. The interaction H12 and the nonadiabatic coupling function g12 are
shown in the inset.
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energy and has a cosine envelope:

E(t) = E0 cos

(

πt

2τ

)

cos(Ωt) for t ∈ [−τ, τ ]
E(t) = 0 for t /∈ [−τ, τ ]

(56)

The duration of the pulse was chosen at τ = 2 fs, because the associated
frequency bandwidth is large enough as to produce a broad distribution of
energies in the initial wavepacket, which is one of the basic requirements to
observe the energy selection effect, as shown by eq. (23). We present below
a few tests showing the effect of the pulse length.

The quantum wavepacket dynamic equations were solved in a numerically
exact way by standard techniques.15 We adopted the adiabatic representation
and the coupling between the two excited adiabatic states was represented
by the same operator as in section 3.2, eq. (26). In Fig. 5 we show the shape

initial state 2, ρ2(E)

initial state 2, ρ1(E) x3
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Figure 6: Energy distributions in the two adiabatic states obtained after the
passage through the avoided crossing region with V12 = 0.006 a.u.
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τ initial initial
(fs) state |1〉 state |2〉
1 0.0070 0.0025
2 0.0064 0.0020
5 0.0041 0.0008

Table 4: Energy differences ∆〈E〉 (a.u.) obtained for model III with V12 = 0.006
a.u. and three different pulse lengths τ .

of the g12 coupling function for V12 = 0.006. In all simulations, the reduced
mass was 3000 a.u.

In Figure 6 we show the energy distributions obtained after the passage
through the avoided crossing region with V12 = 0.006 a.u. We remind that
these are total energies, made of the well defined electronic energy of the
two dissociated atoms plus the kinetic energy of the nuclear wavepacket. We
see an energy selection effect such that the distribution for the wavepacket
that has undergone the nonadiabatic transition is displaced to higher ener-
gies. The effect is larger when we excite to the lower adiabatic state than
to the higher one. This is consistent with two features we highlighted when
analysing model I, namely (1) the energy selection is more effective for tran-
sitions from lower to upper state than viceversa, and (2) with a larger ki-
netic energy the required momentum change is smaller and therefore the
process is less selective (see the discussion of eq. (23)). In the following
we shall quantify the effect by computing averaged energy differences ∆〈E〉.
They are taken as the expectation value of the molecular hamiltonian for the
wavepacket that has undergone the nonadiabatic transition minus that of the
wavepacket that has remained in the initial adiabatic state. In the example
we have just discussed (V12 = 0.006 a.u.), we get ∆〈E〉 = 0.0064 or 0.0020
a.u. when exciting to state |1〉 or to state |2〉, respectively.

We tested the effect of the pulse length by running calculations with τ =
1, 2 and 5 fs. Qualitatively the results remain the same, i.e. ∆〈E〉 is positive
and is larger when we excite in state |1〉, but the energy selection effect
decreases noticeably for the longest pulse duration because the spectrum of
the exciting light becomes too narrow (see table 4). We only see a modest
increase of ∆〈E〉 when decreasing τ below 2 fs, which indicates that the
factor limiting the width of the energy spectrum of the excited wavepacket is
the width of the absorption band. For this reason, in the following we shall
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Figure 7: Transition probability Pf/Pi (upper panel) and average energy differ-
ence ∆〈E〉 between the final and the initial state (lower panel) as functions of
V12 in model III. Pi is the population of the initial state just after the end of the
radiation pulse (t = 5 fs), while Pf is the population of the other state after one
passage through the avoided crossing region. The Pf and energy values are taken
when Pf (t) is well stabilized because the wavepacket has cleared the interaction
region, which happens at t = 60 fs or at t = 40 fs if the initial state is |1〉 or |2〉,
respectively.
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present the results for τ = 2 fs.
We further analysed the results as a function of V12. Total transition

probabilities between the adiabatic states and average energy differences are
shown in Fig. 7. We find that for moderate values of V12, ∆〈E〉 is positive,
increasing with V12 and larger when the initial state is the lower one. At
the same time, the transition probability decreases, showing a gradual evo-
lution from the quasi-diabatic to the quasi-adiabatic regime. After reaching
a maximum in ∆〈E〉, that roughly corresponds to a minimum in the tran-
sition probability, we observe a more irregular dependence on V12. This is
due to the fact that with large V12 the interaction region broadens to the
point where the dynamics is far from what is expected for a typical avoided
crossing.

In the region where ∆〈E〉 and the transition probability are monotonic
functions of V12, respectively increasing and decreasing, we can compare the
numerical results of model III with the predictions for models Ib and II. To
this aim, the parameters of models Ib and II are adapted to represent the
avoided crossing discussed here, to begin with the reduced mass which is
m = 3000 a.u. To obtain a wavepacket with the right kinetic energy when it
goes through the avoided crossing region, we set

E0 = EFC − EX ± V12

where: EFC is the energy of the Franck-Condon point (0.1176 and 0.1649
a.u. respectively for states 1 and 2); EX = 0.0891 a.u. is the energy of
the crossing between the diabatic curves; the V12 term is negative for the
higher state and positive for the lower one. We find that a width σ0 = 0.36
bohr yields energy profiles in the initial state quite similar to those of model
III. The D parameter of model Ib is taken equal in module to 2V12, i.e.
approximately the minimum energy gap at the avoided crossing. The sign
of D is positive when the initial state is 1 and negative when it is 2. The V0
interaction of model II is simply identified with V12. Finally, the parameters
of the nonadiabatic coupling function g12, eq. (25), areW0 = F/(2V12) where
F = 0.00859 a.u. is the slope difference between the diabatic curves, and
σW =

√
πV12/(2F ). This corresponds to a typical avoided crossing where the

area under the g12(q) curve is π/2.
For small values of V12, i.e. when the dynamics is nearly diabatic, the

term of comparison is model II. With the parameters adopted here, model II
yields ∆〈E〉 ≃ 0.00065 a.u. and this result is nearly independent on V12 and
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Figure 8: Average energy difference ∆〈E〉 between the final and the initial state
as a function of V12 in model III. Red and blue full dots show the results of model
Ib, obtained respectively for excitation to the lower and upper states. Red and
blue open circles show results obtained in the same way, except that the kinetic
energy of the wavepacket is set to the same value irrespective of the starting state.

on the choice of the initial state, for the reasons discussed in section 4. Note
that here the initial state also affects E0, but ∆〈E〉 has been shown not to
depend on this parameter within model II. Therefore, although the predicted
value of ∆〈E〉 is of the right order of magnitude, this model cannot account
for the difference between the 1 → 2 and 2 → 1 nonadiabatic processes.

More interesting is the comparison with model Ib, for which the pertur-
bative solution is valid with larger values of D. As already stated, here |D|
is assimilated with 2V12. Some values of ∆〈E〉, computed by means of eqs.
(13) and (30), are shown by red and blue dots in Fig. 8. Although the de-
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pendence of ∆〈E〉 on V12 appears to be overestimated (the same is true for
the transition probabilities, that decrease too fast), the trend is fairly well
reproduced. Two factors concur in yielding a larger ∆〈E〉 when the molecule
is excited to the lower state: one is the fact that the upward nonadiabatic
transitions show a more effective energy selection than the downward ones;
the other is the larger kinetic energy available when exciting to the upper
state, which decreases the energy/momentum matching effect (see section 3).
In order to estimate the relative importance of these two factors, we com-
puted again ∆〈E〉 according to model Ib, but using the same E0 = 0.0522
a.u. (an average value) for both initial states. The results are shown by red
and blue open circles in Fig. 8. The difference in ∆〈E〉 between exciting to
the lower versus the upper state is still noticeable, but is reduced to 20%-50%
of the previous values. We can conclude that both factors are important, but
in this example the difference in the kinetic energies is more effective than
the upward versus downward direction of the transition.

6 Surface hopping and energy selection.

We ran surface hopping (SH) simulations on model III, in order to show how
the energy selection effect is reproduced by this popular method of semi-
classical dynamics. Our version of SH includes “overlap-based” decoherence
corrections (ODC) that usually improve the agreement with fully quantum
mechanical (QM) nonadiabatic transition probabilities.12 We found that in
the case of model III the parameter σ, i.e. the width of the virtual wavepack-
ets that the ODC algorithm associates with classical points in the nuclear
phase space, must be quite small (we chose σ = 0.02 bohr). Such a small
σ implies a very short decoherence time, which seems to be consistent with
two features of the model: a very fast transit of the wavepacket through the
strong interaction region; and, the alternation of negative and positive signs
of the g12(q) function, that in the absence of decoherence leads to an under-
estimation of the transition probability. The excitation with the ultrashort
light pulse was simulated by vertical transitions from a Wigner distribution
of phase space points in the ground state.13

We ran SH simulations (each one made of 104 trajectories) for some rep-
resentative values of V12. The nonadiabatic transition probabilities PIJ and
the ∆〈E〉 values obtained by averaging over the trajectories belonging to
each electronic state are shown in Table 5. For comparison, we also list the
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Initial excitation to state 1
V12 P12 ∆〈E〉

SH QM SH QM
0.002 0.515 0.598 0.00155 0.00094
0.003 0.325 0.366 0.00130 0.00149
0.004 0.230 0.188 0.00132 0.00235

Initial excitation to state 2
V12 P21 ∆〈E〉

SH QM SH QM
0.002 0.714 0.688 0.00164 0.00022
0.003 0.479 0.527 0.00172 0.00043
0.004 0.332 0.401 0.00160 0.00078

Table 5: Nonadiabatic transition probabilities PIJ and averaged energy differences
∆〈E〉 (a.u.) between the final and the initial state, as functions of V12 (a.u.).

corresponding QM results. It is clear that the ∆〈E〉 values computed by SH,
although of the right order of magnitude and sign, do not increase with V12 as
the QM ones. Also the larger energy selection effect characterizing upward
versus downward transitions is not reproduced, on the contrary SH yields
slightly smaller ∆〈E〉 for the upward transition. These two failures are due
to the fact that in surface hopping, as in Landau-Zener theory, the transi-
tion probability does not take into account the momentum/energy matching
factor. Although a larger energy gap tends to decrease the transition proba-
bility, there is no difference between upward and downward hops. While the
transition probability in SH depends on the nuclear momentum through its
scalar product with the nonadiabatic coupling vector, the kinetic energy as
such is not considered. Only after a hop has taken place, the kinetic energy is
usually readjusted to guarantee energy conservation, as we did in this work,
but this operation does not affect the hopping probability, nor does it intro-
duce a difference between upward and downward hops (except in the case
of “frustrated hops”10,11 that are anyway rare when decoherence corrections
are applied12).

These findings suggest that the surface hopping algorithms may be im-
proved by taking into account the energy/momentum matching in the deter-
mination of the hopping probability. For instance, large momentum changes
might be forbidden or made less probable. The goal would be not only to im-
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prove the treatment of energy selection, but rather to make surface hopping
more consistent with the physical reality.

7 Conclusions.

In this work we show that nonadiabatic transitions between two electronic
states are possibly associated with energy selection effects. By this we mean
that the component of the time-dependent wavefunction undergoing the tran-
sition has an energy distribution markedly different from the other one.
We investigate this issue by three one-dimensional models. Two are very
schematic models that can represent the quasi-adiabatic and quasi-diabatic
behaviours, respectively, and are analysed with the help of first-order pertur-
bation theory. The third is a more realistic model for the photodissociation
of a diatomic molecule in states undergoing an avoided crossing, such that all
regimes from quasi-diabatic to quasi-adiabatic can be spanned. This model
is treated numerically.

The predictions of the two solvable models and the numerical results
of the third one provide a consistent picture of the energy selection effect.
The average total energy of the wavepacket that undergoes the transition
tends to be higher than that of the wavepacket that remains in the initial
state, even if the electronic energy has decreased (downward transition).
The energy difference between the two final wavepackets is however larger
for upward transitions and it increases with the energy gap between the two
electronic states. As a result, large energy differences are associated with
small transition probabilities between adiabatic states.

Probably the most appropriate way to detect this effect experimentally
is to perform the photodissociation of a diatomic molecule that could yield
atomic fragments in two different final states. The measurement of their
kinetic energy by a state selective spectroscopy, for instance LIF with sub-
Doppler resolution, should provide the total energy (i.e. electronic plus
nuclear kinetic energy) for the two channels. Ideally, the molecular elec-
tronic states should exhibit an avoided crossing that splits the dissociating
wavepacket in the two channels. To obtain a fairly large energy difference
one should accept a small yield (say < 10%) in the channel that is populated
by the nonadiabatic transition. Since the effect is based on the selection of
different energy components in a nuclear wavepacket, the latter should have
a sufficiently broad energy spectrum, hence the need for ultrashort pump
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pulses, of the order of few femtoseconds.
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Energy selection in nonadiabatic transitions.
G. Granucci, G. Melani, M. Persico, P. Van Leuven

Supporting Information.

Comparison between models Ib, II and III.

The numerical results of model III are here compared with those of models
Ib and II, based on perturbation theory. To this aim, the parameters of
the two models Ib and II are adapted to represent the avoided crossing of
section 5. The reduced mass is in all cases m = 3000 a.u. To obtain a
wavepacket with the right kinetic energy when it goes through the avoided
crossing region, we set

E0 = EFC − EX ± V12

where:
• EFC is the energy of the Franck-Condon point (0.1176 and 0.1649 a.u.
respectively for states 1 and 2);

• EX = 0.0891 a.u. is the energy of the crossing between the diabatic curves;
• the V12 term is negative for the higher state and positive for the lower one.
We find that a width σ0 = 0.36 bohr yields energy profiles in the initial state
quite similar to those of model III. The D parameter of model Ib is taken
equal in module to 2V12, i.e. approximately the minimum energy gap at the
avoided crossing. The sign of D is positive when the initial state is 1 and
negative when it is 2. The V0 interaction of model II is simply identified
with V12. Finally, the parameters of the nonadiabatic coupling function g12,
eq. (25), are W0 = F/(2V12 where F = 0.00859 a.u. is the slope difference
between the diabatic curves, and σW =

√
πV12/(2F ). This corresponds to a

typical avoided crossing where the area under the g12(q) curve is π/2.
For small values of V12, i.e. when the dynamics is nearly diabatic, the

term of comparison is model II. With the parameters adopted here, model II
yields ∆〈E〉 ≃ 0.00065 a.u. and this result is nearly independent on V12 and
on the choice of the initial state, for the reasons discussed in section 4. Note
that here the initial state also affects E0, but ∆〈E〉 has been shown not to
depend on this parameter within model II. Therefore, although the predicted
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Figure S1: Average energy difference ∆〈E〉 between the final and the initial state

as a function of V12 in model III. Red and blue full dots show the results of model

Ib, obtained respectively for excitation to the lower and upper states. Red and

blue open circles show results obtained in the same way, except that the kinetic

energy of the wavepacket is set to the same value irrespective of the starting state.
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value of ∆〈E〉 is of the right order of magnitude, this model cannot account
for the difference between the 1 → 2 and 2 → 1 nonadiabatic processes.

More interesting is the comparison with model Ib, for which the per-
turbative solution is valid with larger values of V12. Some values of ∆〈E〉,
computed by means of eqs. (13) and (28), are shown by red and blue dots
in Fig. S1. Although the dependence of ∆〈E〉 on V12 appears to be overes-
timated (the same is true for the transition probabilities, that decrease too
fast), the trend is fairly well reproduced. Two factors concur in yielding a
larger ∆〈E〉 when the molecule is excited to the lower state: one is the fact
that the upward nonadiabatic transitions show a more effective energy selec-
tion than the downward ones; the other is the larger kinetic energy available
when exciting to the upper state, which decreases the energy/momentum
matching effect (see section 3). In order to estimate the relative importance
of these two factors, we computed again ∆〈E〉 according to model Ib, but us-
ing the same E0 = 0.0522 a.u. (an average value) for both initial states. The
results are shown by red and blue open circles in Fig. S1. The difference in
∆〈E〉 between exciting to the lower versus the upper state is still noticeable,
but is reduced to 20%-50% of the previous values. We can conclude that
both factors are important, but in this example the difference in the kinetic
energies is more effective than the upward versus downward direction of the
transition.
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