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SCATTERING FOR NLS WITH A DELTA POTENTIAL

VALERIA BANICA AND NICOLA VISCIGLIA

Abstract. We prove H1 scattering for defocusing NLS with a delta potential and mass-
supercritical nonlinearity, hence extending in an inhomogeneous setting the classical 1−D

scattering results first proved by Nakanishi in the translation invariant case.
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1. Introduction

We consider the defocusing Schrödinger equation on the line with a delta potential of
strength q > 0:

(1.1)

{

i∂tu−Hqu− u|u|α = 0, α > 4,
u↾t=0 = ϕ

where Hq = −1
2∂xxu+ qδ is a self-adjoint operator on the domain

D(Hq) = {f ∈ C(R) ∩H2(R \ {0}), f ′(0+)− f ′(0−) = 2qf(0)}.

The quadratic form associated with Hq is
1
4‖∂xf‖2L2 +

q
2 |f(0)|2, on the energy space H1(R)

(see for instance Adami-Noja [AN09]). We underline that in the case q = 0 the operator
1

http://arxiv.org/abs/1504.02640v1


2 VALERIA BANICA AND NICOLA VISCIGLIA

H0 is the classical Laplace operator −1
2∂xx on the domain H2(R) and (1.1) reduces to

(1.2)

{

i∂tu+ 1
2∂xxu− u|u|α = 0,
u↾t=0 = ϕ.

The operator Hq describes a δ−interaction of strength q centered at x = 0. On the one
hand, this kind of interaction, known also as Fermi pseudopotential, give rise to many
currently used models in physiscs. We refer to the monograph of Albeverio-Gesztesy-
Høegh-Krohn-Holden [AGHKH05]. We remark also that (1.1) is the simplest case of the
nonlinear Schrödinger equation posed on a metric graph with delta-conditions at the ver-
tices, namely when the graph has only one vertex and two edges. On the other hand,
the qualitative properties of the solutions of the nonlinear Schrödinger equation with a
potential is a subject of current interest. First a series of studies dealt with the dispersive
properties of the perturbed linear operator in 1 − D (Christ-Kiselev [CK02], D’Ancona-
Fanelli [DF06], Goldberg-Schlag [GS04], Weder [Wed99], Yajima [Yaj95] to quote a few of
them...). Also a huge literature has been developed around the corresponding perturbed
nonlinear equations in 1−D, to quote the most recent results we mention Carles [Car14],
Cuccagna-Georgiev-Visciglia [CGV14], Germain-Hani-Walsh [GHW15], and all the refer-
ences therein.
Let us recall now the facts known about (1.1). In the repulsive case q ≥ 0, the free so-
lutions can be computed explicitly (see Gaveau-Schulman [GS86]), yielding the classical

dispersion estimate ‖e−itHqf‖L∞ ≤ Ct−
1
2‖f‖L1 and therefore classical Strichartz estimates.

These estimates remain valid in the attractive case q < 0, up to projecting outside the dis-

crete spectrum, composed by the unique eigenvalue − q2

4 associated with the eigenvector

uq(x) =

√

|q|
2 e

q|x| (see Adami-Sacchetti [AS05]). The nonlinear problem (1.1) is therefore

globally well-posed in H1 and that the mass
∫

R
|u(t, x)|2dx and the energy

E(u(t)) =
1

4

∫

R

|∂xu(t, x)|2dx+
q

2
|u(t, 0)|2 + 1

α+ 2

∫

R

|u(t, x)|α+2dx

are two conserved in time quantities. Let us mention also that (1.1) in the focusing cubic
case, i.e. opposite sign in front of the nonlinearity, slow and fast solitons evolutions have
been studied in a series of papers Goodman-Holmes-Weinstein [GHW04], Holmer-Zworsky
[HZ07], Holmer-Marzuola-Zworsky [HMZ07b],[HMZ07a], Datchev-Holmer [DH09]. Also,
stability results for bound states were obtained in Adami-Noja-Visciglia [ANV13], Fukuizumi-
Ohta-Ozawa [FOO08], Le Coz-Fukuizumi-Fibish-Ksherim-Sivan [LCFF+08], Holmer-Zworsky
[HZ09], Deift-Park [DP11]. Finally, let us note that in both cubic cases with repulsive po-
tential small data long-range wave operators in L2 were recently proved by Segata [Seg14].

Our main contribution is the proof of the asymptotic completeness for (1.1) in H1(R)
for α > 4, in the repulsive case q > 0. We recall that in the case q = 0 this result
was first proved by Nakanishi in [Nak99] by using a weighted in space and time Morawetz
inequality. New proofs have been provided via interaction Morawetz estimates in the papers
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Colliander-Holmer-Visan-Zhang [CHVZ08], Colliander-Grillakis-Tzirakis [CGT09], Planchon-
Vega [PV09].
Next we state our result.

Theorem 1.1. Let ϕ ∈ H1(R) be given and u(t, x) ∈ C(R;H1(R)) be the unique global
solution to (1.1) with q > 0 and α > 4. Then there exist ϕ± ∈ H1(R) such that

(1.3) ‖e−itHqϕ± − u(t, x)‖H1(R)
t→±∞−→ 0.

In the sequel we use the following compact notation for any ϕ ∈ H1(R):

Sc(ϕ) occurs ⇐⇒ (1.3) is true for suitable ϕ± ∈ H1(R)

where u(t, x) ∈ C(R;H1(R)) is the unique global solution to (1.1).

The proof is heavily based on the concentration-compactness/rigidity technique first in-
troduced by Kenig-Merle in [KM06] and borrows arguments from Duyckaerts-Holmer-
Roudenko [DHR08] and Fang-Xie-Cazenave [FXC11]. In fact the main difficulty in our
context is the lack of translation invariance of the equation, due to the delta interaction.
The same difficulty appears in the paper [Hon14] by Hong where he considers NLS in 3-D
with a potential type perturbation. In this case the lack of homogeneity is solved thanks
to the choice of a suitable Strichartz couple that allows to prove smallness of a suitable
reminder. This technique seems to be non useful in the 1-D case because of a numerology
problem. To give an idea of the main difference between Strichartz estimates in 1D and
3D, recall that in 1-D Strichartz estimates are far from reaching the L2 time summability
that is available in 3-D.
Moreover the delta interaction is a singular perturbation and hence the profile decompo-
sition proof, as well as the construction of the minimal element, cannot be given in the
perturbative spirit as in Hong proof, where linear scattering is at hand. We believe that
the proof of the profile decomposition associated with a delta type interaction, given along
this paper, has its own interest. In particular it does not rely on the corresponding profile
decomposition available in the free case.

In the focusing cases q < 0 or an opposite sign in front of the nonlinearity in (1.1) the above
arguments can be used to prove scattering up to the natural threshold, given in terms of
ground states, between global existence and blow-up.

Notation. We shall use the following notations without any further comments:

Lp = Lp(R),Hs = Hs(R), LpLq = Lp(R;Lq(R), CHs = C(R;Hs(R)).

We also denote by (., .) the usual L2 scalar product and by (., .)H1 the scalar product in H1,
i.e. (f, g)H1 =

∫

R
f(x)ḡ(x)dx+

∫

R
f ′(x)ḡ′(x)dx. We denote by τx the translation operator,

i.e. τxf(y) = f(y − x). Given a sequence (xn)n∈N we denote by xn
X→ x and xn

X
⇀ x

respectively the strong and weak convergence in the topology of X as n→ ∞.



4 VALERIA BANICA AND NICOLA VISCIGLIA

Acknowledgements: The authors are grateful to Prof. Riccardo Adami for interesting
discussions. V.B. is partially supported by the French ANR project ”SchEq” ANR-12-JS01-
0005-01, N.V. is supported by FIRB project Dinamiche Dispersive.

2. Profile decomposition

2.1. The general case. The aim of this section is the proof of profile decomposition
associated with a general family of propagators e−itA. From now on A will denote a self-
adjoint operator

A : L2 ⊃ D(A) ∋ u 7→ Au ∈ L2

that satisfies suitable assumptions. More precisely we assume the following:

• there exist c, C > 0 such that

(2.1) c‖u‖2H1 ≤ (Au, u) + ‖u‖2L2 ≤ C‖u‖2H1 , ∀u ∈ D(A);

• let B : D(A)×D(A) ∋ (f, g) 7→ B(f, g) ∈ C be defined as follows:

(2.2) (Au, v) = (u, v)H1 +B(u, v), ∀u, v ∈ D(A)×D(A),

then

(2.3) B(τxnψ, τxnhn)
n→∞−→ 0, ∀ψ ∈ H1

provided that:

either xn
n→∞−→ ±∞, sup

n
‖hn‖H1 <∞,

or xn
n→∞−→ x̄ ∈ R, hn

H1

⇀ 0;

• let (tn)n∈N, (xn)n∈N be sequences of real numbers, then we have the following
implications:

(2.4) tn
n→∞−→ ±∞ =⇒ ‖eitnAτxnψ‖Lp

n→∞−→ 0, 2 < p <∞, ∀ψ ∈ H1;

tn
n→∞−→ t̄ ∈ R, xn

n→∞−→ ±∞ =⇒(2.5)

∀ψ ∈ H1 ∃ψ̃ ∈ H1, ‖τ−xneit
nAτxnψ − ψ̃‖H1

n→∞−→ 0;

(2.6) tn
n→∞−→ t̄ ∈ R, xn

n→∞−→ x̄ ∈ R =⇒ ‖eitnAτxnψ − eit̄Aτx̄ψ‖H1
n→∞−→ 0, ∀ψ ∈ H1.

We can now state the main result of this section.

Theorem 2.1. Let (un)n∈N be a sequence bounded in H1 and let A be a self-adjoint operator
that satisfies (2.1), (2.2), (2.3), (2.4), (2.5) and (2.6). Then, up to subsequence, we can
write

un =
J
∑

j=1

eit
n
j Aτxnj ψj +RJn, ∀J ∈ N

where,
tnj ∈ R, xnj ∈ R, ψj ∈ H1

are such that:
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• for any fixed j we have:

either tnj = 0, ∀n, or tnj
n→±∞−→ ±∞,(2.7)

either xnj = 0, ∀n, or xnj
n→∞−→ ±∞;

• orthogonality of the parameters:

(2.8) |tnj − tnk |+ |xnj − xnk |
n→∞−→ ∞, ∀j 6= k;

• smallness of the reminder:

(2.9) ∀ǫ > 0 ∃J = J(ǫ) ∈ N such that lim sup
n→∞

‖e−itARJn‖L∞L∞ ≤ ǫ;

• orthogonality in Hilbert norms:

(2.10) ‖un‖2L2 =
J
∑

j=1

‖ψj‖2L2 + ‖RJn‖2L2 + o(1), ∀J ∈ N;

(2.11) ‖un‖2H =

J
∑

j=1

‖τxnj ψj‖
2
H + ‖RJn‖2H + o(1), ∀J ∈ N,

where ‖v‖2H = (Av, v).

Moreover we have

(2.12) ‖un‖pLp =

J
∑

j=1

‖eitnj Aτxnj ψj‖
p
Lp + ‖RJn‖pLp + o(1), p ∈ (2,∞), ∀J ∈ N,

and in particular

(2.13) E(un) =

J
∑

j=1

E(eit
n
j Aτxnj ψj) + E(RJn) + o(1), ∀J ∈ N,

where E(u) = 1
2‖u‖2H + 1

α+2‖u‖
α+2
Lα+2 .

In order to prove the theorem, we need first the following lemma, where we implicitly
assume the same assumptions as in Theorem 2.1.

Lemma 2.1. Let (hn)n∈N be bounded in H1 and (tn, tn1 , t
n
2 , t

n, xn1 , x
n
2 )n∈N be sequences of

real numbers. Then we have the following implications:

(2.14) hn
H1

⇀ 0, τ−xn2 e
i(tn2−t

n
1 )Aτxn1hn

H1

⇀ ψ 6= 0 =⇒ |tn1 − tn2 |+ |xn1 − xn2 |
n→∞−→ ∞;

(2.15) hn
H1

⇀ 0, tn
n→∞−→ t̄ ∈ R, xn

n→∞−→ ±∞ =⇒ τ−xne
itnAτxnhn

H1

⇀ 0.
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Proof. For ψ ∈ H1 we get

(τ−xn2 e
i(tn2−t

n
1 )Aτxn1hn, ψ) = (hn, τ−xn1 e

−i(tn2−t
n
1 )Aτxn2ψ),

where (., .) denotes the L2-scalar product. Hence by (2.5) we have τ−xn2 e
i(tn2−t

n
1 )Aτxn1 hn

L2

⇀ 0,
and up to subsequence we obtain (2.15).

Concerning (2.14) it is equivalent to prove that

hn
H1

⇀ 0, sn
n→∞−→ s̄ ∈ R, yn − zn

n→∞−→ z̄ ∈ R

=⇒ τ−zne
isnAτynhn

H1

⇀ 0.

This fact is equivalent to

τ−zne
isnAτzngn

H1

⇀ 0

where gn = τz̄hn
H1

⇀ 0. Hence we conclude by (2.15) in the case zn
n→∞−→ ±∞; in the

case zn
n→∞−→ z̄ ∈ R we conclude by the strong convergence of the sequence of operators

(τ−zne
isnAτzn)n∈N to the operator τ−z∗e

is̄Aτz̄.
�

Lemma 2.2. Let (vn)n∈N be bounded in H1 and

Γ(vn) = {w ∈ L2 | ∃(xk)k∈N ∈ R, (nk)k∈N ∈ N with nk ր ∞ s. t. τxk(vnk
)
L2

⇀ w}.
Then there exist M =M(supn ‖vn‖H1) > 0, such that:

(2.16) lim sup
n→∞

‖vn‖L∞ ≤M(γ(vn))
1/3, where γ(vn) = sup

w∈Γ(vn)
‖w‖L2 .

Proof. We introduce the Fourier multipliers χR(|D|) and χ̃R(|D|) associated with the func-

tion χ( ξR ) and 1− χ( ξR) where

χ(ξ) ∈ C∞(R), χ(x) = 1 for |x| < 1, χ(x) = 0 for |x| > 2.

Recall that H3/4 ⊂ L∞ and hence

(2.17) ‖χ̃R(|D|)vn‖L∞ ≤ CR− 1
4 ‖vn‖H1 .

In order to estimate ‖χR(|D|)vn‖L∞ we select {yn} ∈ R such that

(2.18) ‖χR(|D|)vn‖L∞ ≤ 2|χR(|D|)vn(yn)|.
Notice that

|χR(|D|)vn(yn)| = R|
∫

η(Rx)vn(x− yn)dx|

where χ̂ = η. Moreover for every subsequence (nk)k∈N we can select another subsequence

{nkh} such that vnkh
(x− ynhk

)
L2

⇀ w ∈ Γ(vn) and hence

lim sup
h→∞

|χR(|D|)vnkh
(ynkh

)| = R|
∫

η(Rx)wdx| ≤ CR‖η(Rx)‖L2‖w‖L2 ≤ C
√
Rγ(vn)
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which implies

lim sup
n→∞

|χR(|D|)vn(yn)| ≤ C
√
Rγ(vn).

By combining this estimate with (2.17) and (2.18) we get:

lim sup
n→∞

‖vn‖L∞ ≤ CR− 1
4 sup

n
‖vn‖H1 + C

√
Rγ(vn)

and we conclude by choosing R = C(supn ‖vn‖H1) (γ(vn))
− 4

3 .
�

Lemma 2.3. Let (vn)n∈N be bounded in H1. Then up to subsequence there exist ψ ∈ H1,
(xn)n∈N, (t

n)n∈N sequences of real numbers and L = L(supn ‖vn‖H1) > 0 such that,

(2.19) τ−xn(e
−itnAvn) = ψ +Wn

where:

Wn
H1

⇀ 0;(2.20)

lim sup
n→∞

‖e−itAvn‖L∞L∞ ≤ L‖ψ‖1/3
L2 ;(2.21)

‖vn‖2L2 = ‖ψ‖2L2 + ‖Wn‖2L2 + o(1);(2.22)

‖vn‖2H = ‖τxnψ‖2H + ‖τxnWn‖2H + o(1), where ‖v‖2H = (Av, v);(2.23)

‖vn‖pLp = ‖eitnAτxnψ‖pLp + ‖eitnAτxnWn‖pLp + o(1), ∀p ∈ (2,∞).(2.24)

Moreover we can assume (up to subsequence):

either tn = 0, ∀n, or tn
n→±∞−→ ±∞,(2.25)

either xn = 0, ∀n, or xn
n→∞−→ ±∞.

Proof. First we give the definition of ψ, (Wn)n∈N, (t
n)n∈N, (x

n)n∈N in (2.19). Let (tn)n∈N
be a sequence of real numbers such that

(2.26) ‖e−itnAvn‖L∞ >
1

2
‖e−itAvn‖L∞L∞ .

Note that we get the boundedness of (e−itAvn)n∈N in H1 by using (2.1) and the assumption
on the boundedness of (vn)n∈N in H1. Following the notations of Lemma 2.2 we introduce
Γ(e−it

nAvn) ⊂ L2 and also γ(e−it
nAvn) ∈ [0,∞). Then up to subsequence we get the

existence of (xn)n∈N ⊂ R and ψ ∈ H1 such that

(2.27) τ−xn(e
−itnAvn)

H1

⇀ ψ

and

(2.28) ‖ψ‖L2 ≥ 1

2
γ(e−it

nAvn).

On the other hand by combining Lemma 2.2 with (2.28) we get

lim sup
n→∞

‖e−itnAvn‖L∞ ≤ 21/3M‖ψ‖1/3
L2 .
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By combining this estimate with (2.26) we get (2.21).

The proof of (2.20) follows by (2.27) together with the definition of Wn in (2.19).

To prove (2.22) we combine (2.19), (2.20) and the Hilbert structure of L2 in order to
get

‖vn‖2L2 = ‖τ−xn(e−it
nAvn)‖2L2 = ‖ψ‖2L2 + ‖Wn‖2L2 + o(1),

where we used that τxe
−itA is an isometry in L2 for every (t, x).

Next we prove (2.23). By (2.19) we get

vn = eit
nAτxnψ + eit

nAτxnWn

and hence (2.23) follows provided that

(eit
nAτxnψ, e

itnAτxnWn)H
n→∞−→ 0.

Notice that we have

(eit
nAτxnψ, e

itnAτxnWn)H = (τxnψ, τxnWn)H = (τxnψ, τxnWn)H1 +B(τxnψ, τxnWn)

where we used (2.2). Therefore

(eit
nAτxnψ, e

itnAτxnWn)H = (ψ,Wn)H1 +B(τxnψ, τxnWn).

Up to subsequence we have either xn
n→∞−→ ±∞ or xn

n→∞−→ x̄ ∈ R, and in both cases we
conclude by (2.3).

Next we prove (2.24). We can assume that, up to subsequence, we are in one of the
following cases:

First case: tn
n→∞−→ ±∞.

Since

vn = eit
nAτxnψ + eit

nAτxnWn

and Wn is uniformly bounded in H1, we conclude by assumption (2.4).

Second case: tn
n→∞−→ t̄ ∈ R, xn

n→∞−→ x̄ ∈ R.

Notice that we have

(2.29) vn − eit
nAτxnψ = eit

nAτxnWn
n→∞−→ 0 a.e. x ∈ R.

The last property follows by

(eit
nAτxnWn, ϕ)L2 = (Wn, τ−xne

−itnAϕ)L2 = (Wn, τ−x̄e
−it̄Aϕ)L2 + o(1) = o(1)
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that implies eit
nAτxnWn

L2

⇀ 0. Hence by H1-boundedness eit
nAτxnWn

H1

⇀ 0 (up to subse-
quence). We conclude by Rellich Theorem the convergence in L2

loc which in turn implies
pointwise convergence. By combining (2.6) with (2.29) we get, up to subsequence,

vn − eit̄Aτx̄ψ = eit
nAτxnWn + hn(x)

n→∞−→ 0 a.e. x, ‖hn‖Lp
n→∞−→ 0,

and hence by the Brézis-Lieb Lemma (see [BL83]) we get

‖eitnAτxnWn‖pLp = ‖vn‖pLp − ‖eit̄Aτx̄ψ‖pLp + o(1)

= ‖vn‖pLp − ‖eitnAτxnψ‖pLp + o(1).

Third case: tn
n→∞−→ t̄ ∈ R, xn

n→∞−→ ±∞.

We have by (2.19) and (2.15)

(2.30) τ−xnvn − τ−xne
itnAτxnψ = τ−xne

itnAτxnWn
H1

⇀ 0,

so as before we obtain pointwise convergence towards zero. Moreover, by (2.5) we get

ψ̃ ∈ H1 such that

(2.31) τ−xne
itnAτxnψ

H1

−→ ψ̃.

By combining the pointwise convergence and (2.31) with the Brézis-Lieb Lemma and with
the translation invariance of the Lp norm we get

‖eitnAτxnWn‖pLp = ‖vn‖pLp − ‖ψ̃‖pLp + o(1)

= ‖vn‖pLp − ‖τ−xneit
nAτxnψ‖Lp + o(1) = ‖vn‖pLp − ‖eitnAτxnψ‖Lp + o(1).

Finally we focus on (2.25). First we consider the case (tn)n∈N is bounded, when we get

up to subsequence tn
n→∞−→ t̄ ∈ R. Next we consider three cases (that can occur up to

subsequence).

First case: tn
n→∞−→ t̄ ∈ R, xn

n→∞−→ ±∞.

In this case we claim that we can write a new identity of the type (2.19) by replacing

ψ by another ψ̃, the sequence (Wn)n∈N by another sequence (W̃n)n∈N and the parameters

(tn, xn) by (0, xn), where W̃n
H1

⇀ 0.

Then the proof of (2.22), (2.23), (2.24) (where we replace ψ by ψ̃ and Wn by W̃n) follows

as above. Moreover the proof of (2.21), with ψ replaced by ψ̃, is trivial and follows by the

fact that by the construction below we get ‖ψ̃‖L2 = ‖ψ‖L2 .
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Recall that thanks to (2.5) we get the existence of ψ̃ ∈ H1 such that

τ−xne
itnAτxnψ

H1

−→ ψ̃.

Hence, in view of (2.19) (with the parameters (tn, xn) and functions ψ, (Wn)n∈N constructed
above)

vn = τxnψ̃ + eit
nAτxnWn + rn(x), ‖rn‖H1

n→∞−→ 0.

Hence we get the decomposition

τ−xnvn = ψ̃ + W̃n

where

W̃n = τ−xne
itnAτxnWn + τ−xnrn.

Notice that by (2.15) and ‖rn‖H1
n→∞−→ 0 we obtain W̃n

H1

⇀ 0.

Second case: tn
n→∞−→ t̄ ∈ R, xn

n→∞−→ x̄ ∈ R.

We argue as in the previous case and we look for suitable ψ̃, (W̃n)n∈N, (t̃
n, x̃n) = (0, 0).

We select ψ̃ as follows:

ψ̃ = eit̄Aτx̄ψ.

We then have

W̃n = eit
nAτxnψ − τ−x̄e

it̄Aτx̄ψ + eit
nAτxnWn.

Notice that in this case the property W̃n
H1

⇀ 0 follows by the fact that the sequence of oper-
ators (eit

nAτxn)n∈N converge in strong topology sense to the operator eit̄Aτx̄. We conclude
as in the previous case.

Third case: (tn)n∈N is unbounded.

Up to subsequence, we can suppose tn
n→∞−→ ±∞. If (xn)n∈N is unbounded too, then

up to subsequence xn
n→∞−→ ±∞ and we are done. In the case (xn)n∈N is bounded, then up

to subsequence we can suppose xn
n→∞−→ x̄ ∈ R, and we choose ψ̃ = τx̄ψ, (t̃

n, x̃n) = (tn, 0),

W̃n = (τxn − τx̄)ψ + τxnWn. We conclude as in the previous cases. �

Proof of Theorem 2.1. We iterate several times Lemma 2.3.

First step: construction of ψ1.

By Lemma 2.3 we get

(2.32) un = eit
n
1A(τxn1ψ1) +R1

n
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where ψ = ψ1, (tn)n∈N = (tn1 )n∈N, (x
n
1 )n∈N = (xn)n∈N, (R

1
n)n∈N = (eit

n
1A(τxn1W

1
n))n∈N,

(W 1
n)n∈N = (Wn)n∈N and ψ, (tn)n∈N, (x

n)n∈N, (Wn)n∈N are given by Lemma 2.3 for (un)n∈N
equal to (vn)n∈N. Moreover by (2.22) we get

(2.33) ‖un‖2L2 = ‖ψ1‖2L2 + ‖W 1
n‖2L2 + o(1) = ‖ψ1‖2L2 + ‖R1

n‖2L2 + o(1),

and by (2.20)

(2.34) τ−xn1 (e
−itn1AR1

n) =W 1
n
H1

⇀ 0.

The proof of (2.11) for J = 1 follows by (2.23), and we get

(2.35) ‖un‖2H = ‖τxn1ψ1‖2H + ‖R1
n‖2H + o(1).

Moreover (2.12) follows by (2.24).

Second step: construction of ψ2.

We apply again Lemma 2.3 to the sequence vn = R1
n = eit

n
1A(τxn1W

1
n) and we get

(2.36) R1
n = eit

n
2A(τxn2ψ2) +R2

n

where
R2
n = eit

n
2A(τxn2W

2
n).

Moreover we get

(2.37) ‖R1
n‖2L2 = ‖ψ2‖2L2 + ‖W 2

n‖2L2 + o(1),

and

(2.38) W 2
n
H1

⇀ 0.

Summarizing by (2.32) and (2.36) we get

un = eit
n
1A(τxn1ψ1) + eit

n
2A(τxn2ψ2) +R2

n.

By combining (2.33) and (2.37) we get

‖un‖2L2 = ‖ψ1‖2L2 + ‖ψ2‖2L2 + ‖W 2
n‖2L2 + o(1) = ‖ψ1‖2L2 + ‖ψ2‖2L2 + ‖R2

n‖2L2 + o(1).

Arguing as in the first step we can also prove

‖R1
n‖2H = ‖τx2nψ2‖2H + ‖R2

n‖2H
and hence by (2.35)

‖un‖2H = ‖τxn1ψ1‖2H + ‖τxn2ψ2‖2H + ‖R2
n‖2H + o(1).

Notice also that (for J = 2) (2.12) follows by (2.24).
Next we prove that (tn1 )n∈N, (t

n
2 )n∈N, (x

n
1 )n∈N, (x

n
2 )n∈N satisfy (2.8). By combining (2.36)

and (2.38) we get

τ−xn2 e
−itn2Aeit

n
1Aτxn1W

1
n = τ−xn2 (e

−itn2AR1
n) = ψ2 +W 2

n
H1

⇀ ψ2,
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hence either ψ2 = 0 and we conclude the proof, or ψ2 6= 0 and we get (2.8) by (2.14) and
(2.34).

Third step: construction of ψJ .

By iteration of the construction above we get

un = eit
n
1A(τxn1ψ1) + ...+ eit

n
JA(τxnJψJ) +RnJ

where

RnJ = eit
n
JA(τxnJW

J
n ).

By repeating the computations above we obtain (2.10), (2.11) and (2.12).
Next we prove (2.9). Notice that by (2.10) and since supn ‖un‖L2 < ∞ we get that

‖ψJ‖L2
J→∞−→ 0 and hence by (2.21) we get lim supn→∞ ‖eitARJ−1

n ‖L∞L∞
J→∞−→ 0.

The proof of (2.8) for generic j, k is similar to the proof given in the second step in the
case j = 1, k = 2. We skip the details.
Finally notice that (2.7) follows by (2.25) in Lemma 2.3.

✷

2.2. The case A = Hq. Along this section we verify the abstract assumptions (2.1), (2.2),
(2.3), (2.4), (2.5), (2.6) required on the operator A along section 2 in the specific case

A = Hq = −1

2
∂2x + qδ0.

Notice that we get in this specific context B(f, g) = f(0)ḡ(0). The verification of (2.1),
(2.2) and (2.3) are straightforward and follow by classical properties of the space H1. Also
the verification of (2.6) is trivial.

Next we shall verify (2.4) and (2.5) and we shall make extensively use of the following
identity (see Lemma 2.1 in [HMZ07a]) available for any initial datum f ∈ L1 and sup-
ported in (−∞, 0]:

e−itHqf(x) = e−itH0f(x)(2.39)

+(e−itH0(f ⋆ ρq))(x) · 1x≥0(x) + (e−itH0(f ⋆ ρq))(−x) · 1x≤0(x),

where ρq(x) = −qeqx · 1x≤0(x).

We check the validity of (2.5). Since [e−itH0 , τx] = 0 it is sufficient to prove that

‖τ−xne−it
nHqτxnψ(x) − τ−xne

−itnH0τxnψ(x)‖H1
n→∞−→ 0

and since τ−xn are isometries on H1 it is equivalent to

(2.40) ‖e−itnHqτxnψ(x) − e−it
nH0τxnψ(x)‖H1

n→∞→ 0, if tn
n→∞−→ t̄ ∈ R, xn

n→∞−→ ±∞.
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In order to prove (2.40) we use formula (2.39). First notice that by a density argument

we can assume ψ ∈ C∞
0 (R). In particular in the case xn

n→∞−→ −∞ we can assume τxnψ ⊂
(−∞, 0) and in the case xn

n→∞−→ +∞ we can assume τxnψ ⊂ (0,∞). In the first case we can
combine (2.39) and the translation invariance of the H1 norm, and hence (2.40) becomes:

‖(e−itnH0(τxnψ ⋆ ρq))(x) · 1x≥0(x) + (e−it
nH0(τxnψ ⋆ ρq))(−x) · 1x≤0(x)‖H1

n→∞−→ 0.

Notice that

(e−it
nH0(τxnψ ⋆ ρq))(x) · 1x≥0(x) = τxnϕ(x) · 1x≥0(x) + τxnrn(x) · 1x≥0(x)

and

(e−it
nH0(τxnψ ⋆ ρq))(−x) · 1x≤0(x) = (τxnϕ)(−x) · 1x≤0(x) + τxnrn(x) · 1x≤0(x)

where ϕ = e−it̄H0(ψ ⋆ρq) and rn(x) = (e−it
nH0 − e−it̄H0)(ψ ⋆ρq). Notice that by continuity

property of the flow e−itH0 we get rn
H1

−→ 0 and since we are assuming xn
n→∞−→ −∞, we get

‖(τxnϕ)(x) · 1x≥0(x)‖H1
n→∞−→ 0, ‖(τxnϕ)(−x) · 1x≤0(x)‖H1

n→∞−→ 0.

In the second case (i.e. xn
n→∞−→ +∞) we get

e−it
nHqτxnψ(x) = Re−it

nHqRτxnψ

where Rf(x) = f(−x) and we used R2 = Id and [e−it
nHq , R] = 0. Hence (2.40) follows

since we have the following identity

e−it
nHqτxnψ − e−it

nH0τxnψ = R(e−it
nHqRτxnψ − e−it

nH0Rτxnψ),

R is an isometry in H1 and moreover Rτxnψ = τ−xnRψ(x) where −xn n→∞−→ −∞. Hence

we are reduced to the previous case (i.e. xn
n→∞−→ −∞).

Next we prove (2.4), i.e.

(2.41) tn
n→∞−→ ±∞ =⇒ (up to subsequence) ‖eitnHqτxnψ‖Lp

n→∞−→ 0, ∀ψ ∈ H1,

where p ∈ (2,∞). We treat only the case tn
n→∞−→ +∞, the other case is equivalent. By

combining the time decay estimate ‖e−itHq‖L(L1,L∞) ≤ Ct−1/2 with the uniform bound

‖e−itHq‖L(H1,Lp) ≤ C and with a density argument, we deduce eitHq
t→∞−→ 0 in the strong

topology of the operators L(H1, Lp). Hence we conclude (2.41) in the case xn
n→∞−→ x̄ ∈ R

by a compactness argument. Hence it is sufficient to prove

(2.42) ‖e−itnHqτxnψ(x)− e−it
nH0τxnψ(x)‖Lp

n→∞−→ 0, if tn
n→∞−→ −∞, xn

n→∞−→ ±∞,

and to conclude by the decay properties of the group eitH0 . The proof of (2.42) can be done

via a density argument by assuming ψ ∈ C∞
0 (R) and xn

n→∞−→ −∞ (the case xn
n→∞−→ +∞

can be reduced to the previous one via the reflexion operator R, exactly as we did above
along the proof of (2.40)). Hence we can rely on (2.39) and we are reduced to prove

‖e−itnH0(τxnψ ⋆ ρq))(x) · 1x≥0(x)‖Lp
n→∞−→ 0,

‖e−itnH0(τxnϕ ⋆ ρq))(−x) · 1x≤0(x)‖Lp
n→∞−→ 0
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which is equivalent to

‖τxn(e−it
nH0(ψ ⋆ ρq))(x) · 1x≥0(x)‖Lp

n→∞−→ 0,

‖τxn(e−it
nH0(ϕ ⋆ ρq))(−x) · 1x≤0(x)‖Lp

n→∞−→ 0.

Notice that the facts above follow by the translation invariance of the Lp norm and by the

property e−itH0
t→−∞−→ 0 in the strong topology of the operators L(H1, Lp).

3. Preliminary results

Since now on we shall use the following notations:

r = α+ 2, p =
2α(α + 2)

α+ 4
, q =

2α(α + 2)

α2 − α− 4
,

and α > 4 is the same parameter as in (1.1).

3.1. Strichartz estimates. We recall the following homogeneous and inhomogeneous
Strichartz estimates:

‖e−itHqϕ‖LpLr ≤ C‖ϕ‖H1 ;(3.1)

‖e−itHqϕ‖LαL∞ ≤ C‖ϕ‖H1 ;(3.2)

‖
∫ t

0
e−i(t−s)HqF (s)ds‖LpLr ≤ C‖F‖Lq′Lr′ ;(3.3)

‖
∫ t

0
e−i(t−s)HqF (s)ds‖LαL∞ ≤ C‖F‖Lq′Lr′ .(3.4)

Since p, r > 6, the first one is obtained by ‖e−itHqϕ‖LpL2p/(p−4) ≤ C‖ϕ‖L2 in conjunction
with a Sobolev embedding. Since α > 4, the second one is obtained by interpolating
between the 1-d admissible space L4L∞ and L∞L∞. The third one enters the frame of
non-admissible inhomogeneous Strichartz estimates in Lemma 2.1 in Cazenave-Weissler
[CW92]. The last one is contained in Theorem 1.4 of Foschi [Fos05], who extends the
non-admissible inhomogeneous Strichartz exponents.

3.2. Perturbative nonlinear results.

Proposition 3.1. Let ϕ ∈ H1 be given and assume that the unique global solution to (1.1)
u(t, x) ∈ CH1 satisfies u(t, x) ∈ LpLr. Then Sc(ϕ) occurs.

Proof. We first prove that

u(t, x) ∈ L∞H1 ∩ LpLr =⇒ u(t, x) ∈ LαL∞.

It follows by the following chain of inequalities

‖u‖LαL∞ ≤ C(‖ϕ‖H1 + ‖u|u|α‖Lq′Lr′ ) ≤ C(‖ϕ‖H1 + ‖u‖α+1
LpLr) <∞,
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where we have used the Strichartz estimates above. We shall exploit also the following
trivial estimate:

‖
∫ t2

t1

eisHqF (s)ds‖H1 ≤ ‖F (s)‖L1((t1,t2);H1), ∀t1, t2.

Hence by the integral equation

‖eit1Hqu(t1, .) − eit2Hqu(t2, .)‖H1 = ‖
∫ t2

t1

eisHq(u(s)|u(s)|α)ds‖H1

≤ ‖u(s)|u(s)|α‖L1((t1,t2);H1) ≤ C‖u‖L∞H1‖u‖αLα
(t1,t2)

L∞
t1,t2→±∞−→ 0.

Hence we get scattering via a standard argument.
�

Proposition 3.2. There exists ǫ0 > 0 such that :

ϕ ∈ H1, ‖ϕ‖H1 < ǫ0 =⇒ ‖u‖LpLr ≤ Cǫ0‖ϕ‖H1 , ‖v‖LpLr ≤ Cǫ0‖ϕ‖H1 ,

where u, v are the solutions of (1.1) and (1.2) respectively.

Proof. It is sufficient to check that if u(t, x) ∈ CH1 is the unique global solution to (1.1),
then u(t, x) ∈ LpLq. In fact by the Strichartz estimates we get

‖u‖Lp((−T,T );Lr) ≤ C(‖ϕ‖H1 + ‖u|u|α‖Lq′ ((−T,T );Lr′)) ≤ C(ǫ+ ‖u‖α+1
Lp((−T,T );Lr)).

We conclude by a continuity argument that if ǫ is small enough, then supT ‖u‖Lp((−T,T );Lr) <
∞ and hence u ∈ LpLr. The proof goes the same for v.

�

We also need the following perturbation result.

Proposition 3.3. For every M > 0 there exists ǫ = ǫ(M) > 0 and C = C(M) > 0 such
that the following occurs. Let v ∈ CH1 ∩ LpLr be a solution of the integral equation with
source term e(t, x):

v(t, x) = e−itHqϕ− i

∫ t

0
e−i(t−s)Hq (v(s)|v(s)|α)(x)ds + e(t, x)

with ‖v‖LpLr < M and ‖e‖LpLr < ǫ. Assume moreover that ϕ0 ∈ H1 is such that
‖e−itHqϕ0‖LpLr < ǫ, then the solution u(t, x) to (1.1) with initial condition ϕ+ ϕ0:

u(t, x) = e−itHq (ϕ+ ϕ0)− i

∫ t

0
e−i(t−s)Hq (u(s)|u(s)|α)ds,

satisfies u ∈ LpLr and moreover ‖u− v‖LpLr < Cǫ.

Proof. It is contained in [FXC11], setting the space dimension N = 1.
�
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3.3. The nonlinear profiles.

Proposition 3.4. Let (xn)n∈N be a sequence of real numbers such that |xn| → +∞, ψ ∈ H1

and U(t, x) ∈ CH1∩LpLr be the unique solution to (1.2) with initial data ψ. Then we have

Un(t, x) = e−itHqψn + i

∫ t

0
e−i(t−s)Hq (Un(s)|Un(s)|α)ds+ gn(t, x)

where

ψn = τxnψ and Un = U(x− xn, t)

and

‖gn(t, x)‖LpLr
n→∞−→ 0.

Proof. We are reduced to show:

‖e−itHqψn − e−itH0ψn‖LpLr
n→∞−→ 0;(3.5)

‖
∫ t

0
e−i(t−s)Hq (Un(s)|Un(s)|α)ds−

∫ t

0
e−i(t−s)H0(Un(s)|Un(s)|α)ds‖LpLr

n→∞−→ 0.(3.6)

First we prove (3.5) via the formula (2.39). Notice that by a density argument we can
assume that ψ is compactly supported. Moreover modulo subsequence we can assume

xn
n→∞−→ ±∞. In the case xn

n→∞−→ −∞ we get supp (τxnϕ) ⊂ (−∞, 0) and in the case

xn
n→∞→ +∞ we get supp τxnϕ ⊂ (0,∞), for large n. In the first case we can use (2.39)

and hence (3.5) becomes:

‖(e−itH0(τxnψ ⋆ ρq))(x) · 1x≥0(x) + (e−itH0(τxnψ ⋆ ρq))(−x) · 1x≤0(x)‖LpLr
n→∞−→ 0.

Notice that

(e−itH0(τxnψ ⋆ ρq))(x) · 1x≥0(x) = τxn(e
−itH0(ψ ⋆ ρq)) · 1x≥0(x)

and

(e−itH0(τxnψ ⋆ ρq))(−x) · 1x≤0(x) = (τxne
−itH0(ψ ⋆ ρq))(−x) · 1x≤0(x)

hence we conclude since by the usual Strichartz estimate we have e−itH0(ψ ⋆ ρq) ∈ LpLr

and moreover we are assuming xn
n→∞−→ −∞.

In the case xn
n→∞−→ +∞ we can reduce to the case xn

n→∞−→ −∞ via the reflection operator
R (see the proof of (2.40)).

Next we focus on the proof of (3.6). As above we shall assume xn
n→∞−→ −∞ (the other case

xn
n→∞−→ +∞ can be handled via the reflection operator R). We shall prove the following

fact:

‖
∫ t

0
e−i(t−s)HqF (s, x−xn)ds−

∫ t

0
e−i(t−s)H0F (s, x−xn)ds‖LpLr

n→∞−→ 0, ∀F (t, x) ∈ L1H1.

Notice that this fact is sufficient to conclude since by the classical scattering theory for
NLS with constant coefficients we have U |U |α ∈ L1H1.
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By a density argument we can assume the existence of a compact K ⊂ R such that
supp F (t, x) ⊂ K, ∀t. In particular for n large enough we get supp F (t, x − xn) ⊂
(−∞, 0), ∀t. Hence we can use formula (2.39) and we are reduce to prove

‖
(

∫ t

0
e−i(t−s)H0(τxnF (s) ⋆ ρq)(x)ds

)

· 1x≥0(x)‖LpLr
n→∞−→ 0;

‖
(

∫ t

0
e−i(t−s)H0(τxnF (s) ⋆ ρq)(−x)ds

)

· 1x≤0(x)‖LpLr
n→∞−→ 0.

Next notice that

(

∫ t

0
e−i(t−s)H0(τxnF (s) ⋆ ρq)(x)ds

)

· 1x≥0(x)

= τxn
(

∫ t

0
(e−i(t−s)H0(F (s) ⋆ ρq))(x)ds

)

· 1x≥0(x)

and

(

∫ t

0
e−i(t−s)H0(τxnF (s) ⋆ ρq))(−x)ds

)

· 1x≤0(x)

= τxn
(

∫ t

0
(e−i(t−s)H0(F (s) ⋆ ρq))ds

)

(−x) · 1x≤0(x).

Since F (t, x)⋆ρq ∈ L1H1 we get by Strichartz estimates
∫ t
0 e

−i(t−s)H0(F (s)⋆ρq))ds ∈ LpLr.
We conclude since xn

n→∞−→ −∞.
�

Proposition 3.5. Let ϕ ∈ H1, then there exist W± ∈ CH1 ∩ Lp
R±L

r solution to (1.1) and
such that

(3.7) ‖W±(t, .)− e−itHqϕ‖H1
t→±∞−→ 0.

Moreover, if (tn)n∈N ⊂ R is such that tn
n→∞−→ ∓∞, then

W±,n(t, x) = e−itHqϕn − i

∫ t

0
e−i(t−s)Hq (W±,n(s)|W±,n(s)|α)ds+ f±,n(t, x)

where

ϕn = eit
nHqϕ and W±,n(t, x) =W±(t− tn, x)

and

‖f±,n(t, x)‖LpLr
n→∞−→ 0.

Proof. The first part of the statement concerning the existence of wave operators is classical,
since e−itHq enjoys Strichartz estimates as e−itH0 and since we are in the defocusing case
insuring global existence. For the second part of the statement we notice that by the
translation invariance with respect to time we get f±,n(t, x) = e−itHq (W±(−tn)− ϕn). We
conclude by combining Strichartz estimates with (3.7). �
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Proposition 3.6. Let (tn)n∈N, (x
n)n∈N be sequences of numbers such that tn

n→∞−→ ∓∞
and |xn| n→∞−→ +∞, ϕ ∈ H1 and V±(t, x) ∈ CH1 ∩ LpLr be a solution to (1.2) such that

(3.8) ‖V±(t, .)− e−itH0ϕ‖H1
t−→±∞−→ 0.

Then we have

V±,n(t, x) = e−itHqϕn − i

∫ t

0
e−i(t−s)Hq (V±,n(s)|V±,n(s)|α)ds+ e±,n(t, x)

where

ϕn = eit
nHqτxnϕ and V±,n(t, x) = V±(t− tn, x− xn)

and

‖e±,n(t, x)‖LpLr
n→∞−→ 0.

Proof. By combining (3.8) with the integral equation solved by V±(t, x), it is sufficient to
prove:

‖e−i(t−tn)Hqτxnϕ− e−i(t−t
n)H0τxnϕ‖LpLr

n→∞−→ 0;

‖
∫ t

0
e−i(t−s)HqV±,n(s)|V±,n(s)|αds−

∫ t

0
e−i(t−s)H0V±,n(s)|Vn(s)|αds‖LpLr

n→∞−→ 0.

The first one reduces to (3.5) by the change of variable t− tn → t. By the same change of
variable the second one reduces to the estimate in (3.6) with integral between −tn and t;
its proof is similar to the one of (3.6).

�

4. Proof of Theorem 1.1

In this section we prove the scattering result in Theorem 1.1. For this aim we introduce
the critical energy level defined as follows:

Ec = sup{E > 0 | ∀ϕ ∈ H1, E(ϕ) < E =⇒ u(t, x) ∈ LpLr},

where u(t, x) denotes the unique solution to (1.1) with initial data ϕ. Our aim is to show
that Ec = +∞, then we can conclude by Proposition 3.1. Notice also that due to Propo-
sition 3.2 we have Ec > 0.
The main strategy is to prove that if by the absurd Ec < ∞, then Ec is achieved by a
suitable critical initial data ϕc ∈ H1 whose corresponding solution that does not scatter
and moreover enjoys suitable compactness properties. The existence of such an object will
be excluded via a rigidity argument by Proposition 4.2. Therefore we shall conclude that
Ec = +∞.



SCATTERING FOR NLS WITH A DELTA POTENTIAL 19

4.1. Existence and compactness of a minimal element.

Proposition 4.1. Assume that Ec < +∞, then there exists a non trivial initial data ϕc ∈
H1 such that the corresponding solution uc(t, x) to (1.1) has the property that {uc(t, x), t ∈
R} is relatively compact in H1.

Proof. Since we are assuming Ec < +∞ then we can select a sequence ϕn ∈ H1 such that

E(ϕn)
n→∞−→ Ec and un(t, x) /∈ LpLr where un(t, x) is the corresponding solution to (1.1).

First we shall prove that under these hypotheses there exists a subsequence converging in
H1 to a function with energy Ec, whose nonlinear evolution by (1.1) does not scatter. For
this purpose we use the profile decomposition for the H1 uniformly bounded sequence ϕn:

(4.1) ϕn =

J
∑

j=1

eit
n
j Hqτxnj ψj +RJn

where ψ1, ..., ψJ ∈ H1. We fix J large enough in a sense to be specified later. From the
energy estimate (2.13) we recall that

(4.2) Ec ≥ lim sup
n→∞

J
∑

j=1

E(eit
n
j Hqτxnj ψj).

Notice that in view of (2.7), modulo rearrangement we can choose 0 ≤ J ′ ≤ J
′′ ≤ J

′′′ ≤
J iv ≤ J such that:

(tnj , x
n
j ) = (0, 0), ∀n, 1 ≤ j ≤ J ′,

tnj = 0, ∀n and |xnj |
n→∞−→ ∞, J ′ + 1 ≤ j ≤ J ′′

xnj = 0, ∀n and lim
n→∞

tnj = +∞, J ′′ + 1 ≤ j ≤ J ′′′′

xnj = 0, ∀n and lim
n→∞

tnj = −∞, J ′′′ + 1 ≤ j ≤ J iv

lim
n→∞

|xnj | = +∞ and lim
n→∞

tnj = +∞, J iv + 1 ≤ j ≤ Jv

lim
n→∞

|xnj | = +∞ and lim
n→∞

tnj = −∞, Jv + 1 ≤ j ≤ J.

Above we are assuming that if a > b then there is no j such that a ≤ j ≤ b. Notice that
by the condition (2.8) we have that J ′ ∈ {0, 1}.

Next we shall prove that in (4.1) we have J = 1 and the remainder can be assumed
arbitrary small in Strichartz norm. To this purpose we shall suppose by absurd that J > 1
and we can consider two cases:
- J ′ = 1;
- J ′ = 0.
We shall treat only the first case which is the most complicated one - the other case is a
simplified version of the first case. Then we have (tn1 , x

n
1 ) = (0, 0) and we also have (recall

that we are assuming by the absurd J > 1) by (4.2) that E(ψ1) < Ec. Hence by definition
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of Ec we get the existence of N(t, x) ∈ CH1 ∩ LpLr such that

N(t, x) = e−itHqψ1 − i

∫ t

0
e−i(t−s)Hq (N(s)|N(s)|α)ds.

For every j such that J ′ + 1 ≤ j ≤ J ′′ we associate with the profile ψj the func-
tion Uj(t, x) ∈ CH1 ∩ LpLr according with Proposition 3.4. In particular we introduce
Uj,n = Uj(t, x− xnj ).

For every j such that J ′′ + 1 ≤ j ≤ J ′′′ we associate with the profile ψj the function
W−,j(t, x) ∈ CH1 ∩ Lp

R−L
r according with Proposition 3.5. We claim that W−,j(t, x) ∈

CH1 ∩ LpLr. In fact by (4.2) we get E(et
n
j Hqψj) < Ec −

‖∇ψj′‖
2
L2

4 for some 1 ≤ j′ 6=
j ≤ J , whose existence is insured by the hypothesis J > 1. Hence E(W−,j(t, x)) =

limn→∞E(et
n
j Hqψj) < Ec, soW−,j scatters both forward and backwards in time and there-

fore W−,j(t, x) ∈ CH1 ∩ LpLr. In the sequel we shall denote W−,j,n =W−,j(t− tnj , x).

For every j such that J ′′′ + 1 ≤ j ≤ J iv we introduce in a similar way following Propo-
sition 3.5 the nonlinear solutionsW+,j(t, x) ∈ CH1∩LpLr and alsoW+,j,n =W+,j(t−tnj , x).

For every j such that J iv + 1 ≤ j ≤ Jv we associate with ψj the function V−,j(t, x) ∈
CH1 ∩ LpLr according with Proposition 3.6 and also V−,j,n = V−,j(t− tnj , x− xnj ).

Finally, for every j such that Jv+1 ≤ j ≤ J we associate with ψj the function V+,j(t, x) ∈
CH1 ∩ LpLr according with Proposition 3.6 and also V+,j,n = V+,j(t− tnj , x− xnj ).

Our aim is to apply the perturbative result of Proposition 3.3 to un and to ZJ,n defined
as follows:

ZJ,n = N +

J ′′
∑

j=J ′+1

Uj,n +

J ′′′
∑

j=J ′′+1

W−,j,n +

Jiv
∑

j=J ′′′+1

W+,j,n +

Jv
∑

j=Jiv+1

V−,j,n +

J
∑

j=Jv+1

V+,j,n.

Notice that by combining Propositions 3.4, 3.5 and 3.6 the function ZJ,n satisfies:

ZJ,n(t) = e−itHq (ϕn −RJn)− izJ,n + rJ,n,

where ‖rJ,n‖LpLq
n→∞−→ 0 and

zJ,n(t, x) =

∫ t

0
e−i(t−s)Hq (N(s)|N(s)|α)ds+

J ′′
∑

j=J ′+1

∫ t

0
e−i(t−s)Hq (Uj,n(s)|Uj,n(s)|α)ds

+
J ′′′
∑

j=J ′′+1

∫ t

0
e−i(t−s)Hq (W−,j,n(s)|W−,j,n(s)|α)ds+

Jiv
∑

j=J ′′′+1

∫ t

0
e−i(t−s)Hq (W+,j,n(s)|W+,j,n(s)|α)ds
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+

Jv
∑

j=Jiv+1

∫ t

0
e−i(t−s)Hq (V−,j,n(s)|V−,j,n(s)|α)ds+

J
∑

j=Jv+1

∫ t

0
e−i(t−s)Hq (V+,j,n(s)|V+,j,n(s)|α)ds.

We note that in Lemma 6.3 of [FXC11], the estimates in LpLr needed to apply the pertur-
bative result are proved first in a space LγLγ , and then concluded by an uniform bound in
L∞H1 of the approximate solutions. This last uniform bound, proved in Corollary 4.4 of
[FXC11], is more delicate in our case. Therefore we prove in the appendix estimates directly
for the LpLr norm. In view of Corollary 5.1 in the appendix, based on the orthogonality
condition (2.8), we have

‖zJ,n(t, x) −
∫ t

0
e−i(t−s)Hq (ZJ,n(s)|ZJ,n(s)|α)ds‖LpLr

n→∞−→ 0.

Summarizing we get:

ZJ,n(t) = e−itHq (ϕn −RJn)− i

∫ t

0
e−i(t−s)Hq (ZJ,n(s)|ZJ,n(s)|α)ds+ sJ,n

with ‖sJ,n‖LpLr
n→∞−→ 0. In order to apply the perturbative result of Proposition 3.3, we

need also a bound on supJ(lim supn→∞ ‖ZJ,n‖LpLr). Corollary 5.2 ensures us that

lim sup
n→∞

(‖ZJ,n‖LpLr)1+α ≤ 2‖N‖1+αLpLr + 2

J ′′
∑

j=J ′+1

‖Uj‖1+αLpLr

+2
J ′′′
∑

j=J ′′+1

‖W−,j‖1+αLpLr +2
Jiv
∑

j=J ′′′+1

‖W+,j‖1+αLpLr +2
Jv
∑

j=Jiv+1

‖V−,j‖1+αLpLr +2
J
∑

j=Jv+1

‖V+,j‖1+αLpLr .

By using the defocusing conserved energy we obtain that the initial data of the wave
operators V±,j,W±,j are upper-bounded in H1 by C‖ϕj‖H1 . In view of the orthogonality
relation (2.11) we obtain the existence of J0 such that for any J ≥ J0 we have

‖ϕj‖H1 < ǫ0,

where ǫ0 is the universal constant in Proposition 3.2. Then by Proposition 3.2, the fact
that N,Uj , V±,j,W±,j belong to LpLr and by Corollary 5.2 we get

(4.3) sup
J

(lim sup
n→∞

‖ZJ,n‖LpLr) =M <∞.

Due to (4.3) we are in position to apply Proposition 3.3 to ZJ,n provided that we choose
J large enough in such a way that lim supn→∞ ‖e−itHqRJn‖ < ǫ, where ǫ = ǫ(M) > 0 is the
one given in Proposition 3.3. As a by-product we get that Sc(ϕn) occurs for n large, and
hence we get a contradiction.

Therefore we have obtained that J = 1 so

(4.4) ϕn = eit
n
1Hqτxn1ψ1 +R1

n
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where ψ1 ∈ H1 and lim supn→∞ ‖e−itHqR1
n‖LpLr = 0. Following the same argument as in

Lemma 6.3 of [FXC11] one can deduce that (tn1 )n∈N is bounded and hence we can assume
tn1 = 0. Moreover arguing by the absurd and by combining Propositions 3.4 and 3.3 we get
xn1 = 0 (otherwise Sc(ϕn) occurs for n large enough, and it is a contradiction). We obtain
then that Sc(ψ1) does not occurs, so E(ψ1) ≥ Ec. Equality occurs by the energy estimate
(4.2), and in particular there is a subsequence of (ϕn)n∈N converging in H1 to ψ1. We have
as a critical element ϕc = ψ1.

The compactness of the trajectory uc(t, x) ∈ H1 follows again by standard arguments.
More precisely, for (tn)n∈N a sequence of times, (uc(t

n, x))n∈N satisfies the same hypothe-
sis as ϕn at the beggining of the proof above so we conclude that there is a subsequence
converging in H1.

�

4.2. Rigidity of compact solutions. We shall get now a constraint on the solution
uc(t, x) constructed above.

Proposition 4.2. Assume u solves (1.1) with q ≥ 0 and satisfies the property:

(4.5) {u(t, x), t ∈ R} is compact in H1.

Then u = 0.

Proof. We start with the following virial computation.

Lemma 4.1. Let u(t, x) ∈ CH1 be a global solution to (1.1) and λ(x) a weight such that
∂xλ(0) = 0. Then

d2

dt2

∫

λ|u|2dx =
d

dt
( Im

∫

∂xλ∂xuūdx)(4.6)

=

∫

λ′′|u′|2dx− 1

4

∫

λiv|u|2dx+ qλ
′′
(0)|u(t, 0)|2 + α

α+ 2

∫

λ′′|u|α+2dx.

Proof. We shall use the notations u′ = ∂xu, λ
′ = ∂xλ, ut = ∂tu . We compute, for a weight

in space λ(x):

d

dt

∫

λ|u|2dx = 2 Re

∫

λutūdx

= 2 Re

∫

λ(
i

2
u′′ū− iuū|u|α)dx+ 2 Re λ(0)i|u(t, 0)|2 = − Re

∫

iλ′u′ūdx.

Next we compute, due to the previous identity:

d2

dt2

∫

λ|u|2dx = Im

∫

λ′(u′ū)tdx(4.7)
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We get, by using integrations by parts and λ′(0) = 0:

Im

∫

λ′(u′ū)tdx = Im

∫

λ′u′ūtdx+ Im

∫

λ′u′tūdx

(4.8)

= 2 Im

∫

λ′u′ūtdx− Im

∫

λ′′utūdx

= − Re

∫

λ′u′ū′′dx+ 2 Re

∫

λ′u′ū|u|αdx− 1

2
Re

∫

λ′′u′′ūdx+ Re

∫

λ′′(u|u|α)ūdx+ qλ
′′
(0)|u(t, 0)|2.

Next notice that

− Re

∫

λ′u′ū′′dx− 1

2
Re

∫

λ′′u′′ūdx

=
1

2

∫

λ′′|u′|2dx++
1

2
Re

∫

λ′′′u′ūdx+
1

2
Re

∫

λ′′|u′|2dx

=

∫

λ′′|u′|2dx− 1

4

∫

λiv|u|2dx,
and

2 Re

∫

λ′u′ū|u|αdx+ Re

∫

λ′′(u|u|α)ūdx

= − 2

α+ 2

∫

λ′′(|u|α+2) +

∫

λ′′|u|α+2dx =
α

α+ 2

∫

λ′′|u|α+2dx.

We conclude by combining the computations above with (4.7) and (4.8).
�

We continue the proof of Proposition 4.2 and we assume by the absurd the existence
of a non-trivial solution u(t, x) that satisfies (4.5). We fix a cut-off χ vanishing outside
B(0, 2) and equal to one on B(0, 1). Let R > 0 to be chosen later. By using Lemma 4.1

for λ(x) = x2χ( |x|R ) then we get:

d

dt
( Im

∫

(x2χ(
|x|
R

))′u′ūdx)

≥
∫

|x|<R
|u′|2dx+

α

α+ 2

∫

|x|<R
|u|α+2dx− C

∫

|x|>R
(|u|2 + |u′|2 + |u|α+2)dx

≥ δ − C

∫

|x|>R
(|u|2 + |u′|2 + |u|α+2)dx,

for some δ > 0. Notice that the existence of a positive δ comes from the fact that u(t, x)
is assumed to be non trivial and moreover satisfies (4.5). By integrating from 0 to t and
using Cauchy-Schwartz inequality, then we obtain

C(R)‖u‖L∞H1 ≥ tδ − C

∫ t

0

∫

|x|>R
(|u|2 + |u′|2 + |u|α+2)dx.

By using again the compacteness hypothesis (4.5) then we get a contradiction as t goes to
infinity, provided R > 0 is large enough.
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�

As a conclusion, the existence of the solution uc(t, x) constructed in Proposition 4.1 is
constrained by Proposition 4.2 to be the null function. Since E(uc) = Ec > 0 we get a
constradiction, so the hypothesis Ec < +∞made in Proposition 4.2 cannot hold. Therefore
we conclude that Ec = +∞, so all solutions of (1.1) scatter.

5. Appendix

Proposition 5.1. Let Wi(t, x) ∈ CH1 ∩ LpLr for i = 1, 2 be space-time functions and

(tn, sn, xn, yn)n∈N be sequences of real numbers. Assume that |tn− sn|+ |xn− yn| n→∞−→ +∞
then we get

‖|W1(t− tn, x− xn)|α × |W2(t− sn, x− yn)|‖Lq′Lr′
n→∞−→ 0.

Proof. First assume that |tn − sn| n→∞−→ ∞. Then in this case we get:

‖|W1(t− tn, x− xn)|α × |W2(t− sn, x− yn)|‖Lq′Lr′

≤
∥

∥‖W1(t− tn, x− xn)‖αLr
x
× ‖W2(t− sn, x− yn)‖Lr

x

∥

∥

Lq′

t

.

The conclusion follows by the following elementary fact:

|tn − sn| n→∞−→ +∞ =⇒ ‖|f1(t− tn)|α × |f2(t− sn)|‖Lq′

t

n→∞−→ 0,

where fi(t) = ‖Wi(t, x)‖Lr ∈ Lpt , i = 1, 2.

Next we assume that (|tn− sn|)n∈N is bounded and |xn− yn| n→∞−→ ∞. First notice that we
have

‖|W1(t, x− xn)|α × |W2(t+ tn − sn, x− yn)|‖Lq′

|t|>T
Lr′

≤ ‖W1(t, x)‖αLp
|t|>T

Lr‖W2(t+ tn − sn, x)‖Lp
|t|>T

Lr
T→∞−→ 0.

Hence it is sufficient to prove

(5.1) ‖|W1(t, x− xn)|α × |W2(t+ tn − sn, x− yn)|‖Lq′

|t|<T
Lr′

n→∞−→ 0

for every fixed T . We notice that for every fixed t we get:

‖|W1(t, x− xn)|α × |W2(t+ tn − sn, x− yn)|‖Lr′
x

= ‖|W1(t, x)|α × |W2(t+ tn − sn, x+ xn − yn)|‖Lr′
x

n→∞−→ 0

where we used at the last step the following facts (below we use the propertyWi(t, x) ∈ CH1

to give a meaning to the function Wi(t, x) for every fixed t):

|W1(t, x)|α ∈ L
r
α , ∀t

{W2(t+ tn − sn, x), n ∈ N} is compact in Lr, ∀t
and

|xn − yn| n→∞−→ ∞.
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Indeed the first property above follows by the Sobolev embeddingH1 ⊂ Lr, and second one
follows from the fact that (|tn−sn|)n∈N is bounded and the function R ∋ t→W2(t, x) ∈ H1

is continuous. On the other hand we have

sup
t∈(−T,T )

‖|W1(t, x)|α × |W2(t+ tn − sn, x+ xn − yn)|‖Lr′
x

≤ sup
t∈(−T,T )

‖W1(t, x)‖αLr
x
× ‖W2((t+ tn − sn, x)‖Lr

x
<∞,

where we used again the Sobolev embedding H1 ⊂ Lr and the assumption u(t, x) ∈ CH1.
We deduce (5.1) by the Lebesgue dominated convergence theorem.

�

As a consequence we get the following corollary.

Corollary 5.1. Let Wj(t, x) ∈ LpLr∩CH1, j = 1, ..., N be a family of space-time functions
and let (tnj , x

n
j )n∈N, j = 1, ..., N be sequences of real numbers that satisfy the ortogonality

condition:

|tnj − tnk |+ |xnj − xnk |
n→∞−→ +∞, j 6= k.

Then we have

‖
N
∑

j=1

Wj,n(t, x)|Wj,n(t, x)|α − (

N
∑

j=1

Wj,n(t, x))(|
N
∑

j=1

Wj,n(t, x)|α)‖Lq′Lr′
n→∞−→ 0,

where Wj,n(t, x) =Wj(t− tnj , x− xnj ).

Proof. It follows by Proposition 5.1 in conjunction with the following elementary inequality

(5.2)
∣

∣

N
∑

j=1

aj|aj |α − (
N
∑

j=1

aj)|
N
∑

j=1

aj|α
∣

∣ ≤ C(N,α)
∑

j 6=k

|aj ||ak|α, ∀a1, ..., aN ∈ C.

�

Corollary 5.2. Let Wj(t, x) ∈ LpLr∩CH1, j = 1, ..., N be a family of space-time functions
and let (tnj , x

n
j )n∈N, j = 1, ..., N be sequences of real numbers that satisfy the ortogonality

condition:

|tnj − tnk |+ |xnj − xnk |
n→∞−→ +∞, j 6= k.

Then we have

lim sup
n→∞

(‖
N
∑

j=1

Wj,n(t, x)‖LpLr)1+α ≤ 2

N
∑

j=1

‖Wj‖1+αLpLr

where Wj,n(t, x) =Wj(t− tnj , x− xnj ).

Proof. We have

‖
N
∑

j=1

Wj,n(t, x)‖LpLr ≤ (‖(
N
∑

j=1

|Wj,n(t, x)|)1+α‖Lq′Lr′ )
1

1+α
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≤ (‖(
N
∑

j=1

|Wj,n(t, x)|)1+α −
N
∑

j=1

|Wj,n(t, x)|1+α‖Lq′Lr′ + ‖
N
∑

j=1

|Wj,n(t, x)|1+α‖Lq′Lr′ )
1

1+α .

The conclusion follows by combining (5.2) with Proposition 5.1. �
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